Analytical solutions to two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to first- and third-type inlet boundary conditions
► Analytical solutions for 2-D advection–dispersion equation in cylindrical coordinates in finite domain was derived. ► Significant discrepancy between solutions for first- and third-type conditions. ► Solutions useful for interpreting a column experiment or an infiltration tracer test. This study p...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 405; no. 3; pp. 522 - 531 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
05.08.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Analytical solutions for 2-D advection–dispersion equation in cylindrical coordinates in finite domain was derived. ► Significant discrepancy between solutions for first- and third-type conditions. ► Solutions useful for interpreting a column experiment or an infiltration tracer test.
This study presents exact analytical solutions to the two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to the first- and third-type inlet boundary conditions. The second kind finite Hankel transform and the generalized integral transform technique are adopted to solve the two-dimensional advection–dispersion equation in cylindrical coordinates and its associated initial and boundary conditions. The developed analytical solutions are compared with the solutions for semi-infinite domain subject to the first- and third-type inlet boundary conditions available in literature to illustrate the impacts of the exit boundary conditions. Results show that significant discrepancies between the breakthrough curves obtained from analytical solutions for the finite domain and infinite domain for small Peclet number. Numerical evaluations of the developed analytical solutions for finite domain are computationally intensive because that the convergences of the series progress slowly for medium Peclet number. The developed solutions should be especially useful for testing numerical model simulated solutions for the finite domain subject to first- and third-type inlet boundary conditions. |
---|---|
AbstractList | This study presents exact analytical solutions to the two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to the first- and third-type inlet boundary conditions. The second kind finite Hankel transform and the generalized integral transform technique are adopted to solve the two-dimensional advection–dispersion equation in cylindrical coordinates and its associated initial and boundary conditions. The developed analytical solutions are compared with the solutions for semi-infinite domain subject to the first- and third-type inlet boundary conditions available in literature to illustrate the impacts of the exit boundary conditions. Results show that significant discrepancies between the breakthrough curves obtained from analytical solutions for the finite domain and infinite domain for small Peclet number. Numerical evaluations of the developed analytical solutions for finite domain are computationally intensive because that the convergences of the series progress slowly for medium Peclet number. The developed solutions should be especially useful for testing numerical model simulated solutions for the finite domain subject to first- and third-type inlet boundary conditions. ► Analytical solutions for 2-D advection–dispersion equation in cylindrical coordinates in finite domain was derived. ► Significant discrepancy between solutions for first- and third-type conditions. ► Solutions useful for interpreting a column experiment or an infiltration tracer test. This study presents exact analytical solutions to the two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to the first- and third-type inlet boundary conditions. The second kind finite Hankel transform and the generalized integral transform technique are adopted to solve the two-dimensional advection–dispersion equation in cylindrical coordinates and its associated initial and boundary conditions. The developed analytical solutions are compared with the solutions for semi-infinite domain subject to the first- and third-type inlet boundary conditions available in literature to illustrate the impacts of the exit boundary conditions. Results show that significant discrepancies between the breakthrough curves obtained from analytical solutions for the finite domain and infinite domain for small Peclet number. Numerical evaluations of the developed analytical solutions for finite domain are computationally intensive because that the convergences of the series progress slowly for medium Peclet number. The developed solutions should be especially useful for testing numerical model simulated solutions for the finite domain subject to first- and third-type inlet boundary conditions. |
Author | Liu, Chen-Wuing Liang, Ching-Ping Chen, Juan-Tse Lin, Chien-Wen Chen, Jui-Sheng |
Author_xml | – sequence: 1 givenname: Jui-Sheng surname: Chen fullname: Chen, Jui-Sheng email: jschen@geo.ncu.edu.tw organization: Graduate Institute of Applied Geology, National Central University, Jhongli City, Taoyuan County 32001, Taiwan – sequence: 2 givenname: Juan-Tse surname: Chen fullname: Chen, Juan-Tse organization: Graduate Institute of Applied Geology, National Central University, Jhongli City, Taoyuan County 32001, Taiwan – sequence: 3 givenname: Chen-Wuing surname: Liu fullname: Liu, Chen-Wuing organization: Departmnent of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan – sequence: 4 givenname: Ching-Ping surname: Liang fullname: Liang, Ching-Ping organization: Department of Environmental Engineering and Science, Fooyin University, Kaohsiung City 83102, Taiwan – sequence: 5 givenname: Chien-Wen surname: Lin fullname: Lin, Chien-Wen organization: Graduate Institute of Applied Geology, National Central University, Jhongli City, Taoyuan County 32001, Taiwan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24370731$$DView record in Pascal Francis |
BookMark | eNqFUUtuFDEQtVCQmASOgNQbBJtu_OnfiAWKIn5SJDawtip2tVKtHntiu4N6lztwDw7FSXDPDBsWxBvL9T5VrnfOzpx3yNhLwSvBRft2rMbbxQY_VZILUfG24lw-YRvRd9tSdrw7Y5tckaVot_Uzdh7jyPNRqt6wX5cOpiWRgamIfpoTeReL5Iv0w5eWduhirmQQ7D2aFf398NNS3GNYgQLvZlirBbnCLBM5Gw5exvtgyUHCuEIDOUpYWL-D_IrzzZjN1jYDhZjKApwt0i0FW6Zlj1kxYSpu_OwshCWbOUuHyZ6zpwNMEV-c7gv2_eOHb1efy-uvn75cXV6XUMsulTW2Ta2aZgDFuwEbo0BKI4QwuB36DqUywMHwBnoFwrZ900BmtbZvTG9Bqgv2-ui7D_5uxpj0jqLBaQKHfo667xWvW6m6zHzzX6ZQbcNV125X6qsTFWLe0RDAGYp6H2iXf6llrXJWSmTeuyPPBB9jwEEbSoctpwA0acH1mrse9Sl3veaueatzylnd_KP-2-Ax3fujDvNe7wmDjobQGbQUcljaenrE4Q9G89OA |
CODEN | JHYDA7 |
CitedBy_id | crossref_primary_10_1016_j_amc_2022_127570 crossref_primary_10_1016_j_colsurfb_2014_06_063 crossref_primary_10_1061__ASCE_EM_1943_7889_0001346 crossref_primary_10_1007_s12046_024_02452_9 crossref_primary_10_1016_j_jhydrol_2017_08_050 crossref_primary_10_1061__ASCE_HE_1943_5584_0001035 crossref_primary_10_3390_app10155349 crossref_primary_10_3390_en16145511 crossref_primary_10_1016_j_jobe_2024_109587 crossref_primary_10_1002_mrm_28584 crossref_primary_10_1007_s12040_019_1231_5 crossref_primary_10_1002_ghg_1527 crossref_primary_10_1007_s10652_013_9325_0 crossref_primary_10_1016_j_advwatres_2021_104018 crossref_primary_10_1155_2014_646495 crossref_primary_10_1007_s10652_020_09766_2 crossref_primary_10_1016_j_jhydrol_2019_124164 crossref_primary_10_1680_jgein_23_00091 crossref_primary_10_1016_j_jhydrol_2016_11_058 crossref_primary_10_1002_nag_3474 crossref_primary_10_1016_j_jhydrol_2011_12_001 crossref_primary_10_1016_j_jhydrol_2012_06_017 crossref_primary_10_3390_en12193740 crossref_primary_10_1007_s42102_022_00092_3 crossref_primary_10_1016_j_ces_2014_05_043 crossref_primary_10_1016_j_jconhyd_2018_09_002 crossref_primary_10_1016_j_jhydrol_2014_08_046 crossref_primary_10_1007_s13762_020_03096_y crossref_primary_10_1016_j_cej_2020_124234 crossref_primary_10_11948_20200383 crossref_primary_10_1016_j_jhydrol_2022_128633 crossref_primary_10_1016_j_chroma_2017_03_048 crossref_primary_10_1016_j_compgeo_2015_05_002 crossref_primary_10_1093_chromsci_bmx007 crossref_primary_10_1016_j_jhydrol_2023_129287 crossref_primary_10_1080_09593330_2021_2016992 crossref_primary_10_3390_soilsystems2030040 crossref_primary_10_1016_j_jhydrol_2025_132977 crossref_primary_10_1142_S0217979223500893 crossref_primary_10_1016_j_ces_2023_118764 crossref_primary_10_1016_j_ces_2014_09_018 crossref_primary_10_1016_j_jhydrol_2013_02_042 crossref_primary_10_5194_hess_15_2471_2011 crossref_primary_10_1007_s40201_020_00567_9 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120569 crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_128 crossref_primary_10_5194_hess_20_733_2016 |
Cites_doi | 10.1016/0022-1694(95)02752-1 10.1029/91WR01190 10.1029/WR025i006p01125 10.1016/j.envsoft.2004.12.003 10.2136/sssaj1978.03615995004200010004x 10.2136/sssaj1988.03615995005200010001x 10.1029/91WR01912 10.1016/j.ijheatmasstransfer.2009.02.002 10.1007/s11242-009-9368-3 10.1108/09615539710185569 10.2136/sssaj1984.03615995004800040002x 10.1016/j.advwatres.2010.12.008 10.1097/00010694-199203000-00001 10.1016/j.jhydrol.2006.01.004 10.1111/j.1745-6584.2007.00301.x 10.2136/sssaj1973.03615995003700020014x 10.1016/j.jhydrol.2008.08.007 10.1016/0735-1933(96)00015-2 10.1016/S0169-7722(01)00136-X 10.2136/sssaj1985.03615995004900050051x 10.1016/j.jhydrol.2010.06.030 10.1029/93WR00977 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7S9 L.6 8FD FR3 KR7 |
DOI | 10.1016/j.jhydrol.2011.06.002 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | AGRICOLA Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
EndPage | 531 |
ExternalDocumentID | 24370731 10_1016_j_jhydrol_2011_06_002 S0022169411003878 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 L.6 8FD FR3 KR7 |
ID | FETCH-LOGICAL-a427t-4e654355fa307fe5c3a22c111ce9f87e23ca0ac05a83a1d6855ae5c6d85c8da23 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Fri Jul 11 04:46:54 EDT 2025 Fri Jul 11 03:21:53 EDT 2025 Mon Jul 21 09:17:54 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Tue Jul 01 03:07:11 EDT 2025 Fri Feb 23 02:28:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Generalized integral transform technique (GITT) Finite domain Analytical solution Advection–dispersion equation Finite Hankel transform technique Cylindrical coordinates advection solutes GITT testing mathematical models ground water Advection-dispersion equation solution numerical models Generalized integral transform technique dispersion boundary conditions porous media |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a427t-4e654355fa307fe5c3a22c111ce9f87e23ca0ac05a83a1d6855ae5c6d85c8da23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1365037697 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_883046237 proquest_miscellaneous_1365037697 pascalfrancis_primary_24370731 crossref_citationtrail_10_1016_j_jhydrol_2011_06_002 crossref_primary_10_1016_j_jhydrol_2011_06_002 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2011_06_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-05 |
PublicationDateYYYYMMDD | 2011-08-05 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Batu (b0015) 1993; 29 Sneddon (b0070) 1972 Massabò, Catania, Paladino (b0055) 2007; 45 Barry, Sposito (b0005) 1988; 52 Frippiat, Pérez, Holeyman (b0040) 2008; 362 Pérez Guerrero, Skaggs (b0100) 2010; 390 Zhang, Qi, Zhou, Pang (b0115) 2006; 328 Parlange, Barry, Starr (b0120) 1985; 49 Parlange, Starr (b0085) 1978; 42 Pérez Guerrero, Pimentel, Skaggs, van Genuchten (b0090) 2009; 52 Park, Zhan (b0075) 2001; 53 Batu (b0010) 1989; 25 Moridis, Reddell (b0065) 1991; 27 Parlange, Starr, van Genuchten, Barry, Parker (b0080) 1992; 153 Leij, Skaggs, Van Genuchten (b0045) 1991; 27 van Genuchten, M.Th., Alves W.J., 1982. Analytical solutions of the one-dimensional convective–dispersive solute transport equation. US Department of Agriculture, Technical Bulletin No. 1661. 151 pp. van Genuchten, Parker (b0105) 1984; 48 Batu (b0020) 1996; 174 Clearly, Adrian (b0025) 1973; 37 Corrêa, Cotta, Orlande (b0035) 1997; 7 Chen, Liu, Liang, Liu, Lin (b0030) 2011; 34 Peréz Guerrero, Skaggs, van Genuchten (b0095) 2009; 80 Mikhailov, Cotta (b0060) 1996; 23 Massabò, Cianci, Paladino (b0050) 2006; 21 Massabò (10.1016/j.jhydrol.2011.06.002_b0055) 2007; 45 van Genuchten (10.1016/j.jhydrol.2011.06.002_b0105) 1984; 48 Zhang (10.1016/j.jhydrol.2011.06.002_b0115) 2006; 328 Batu (10.1016/j.jhydrol.2011.06.002_b0015) 1993; 29 Massabò (10.1016/j.jhydrol.2011.06.002_b0050) 2006; 21 Pérez Guerrero (10.1016/j.jhydrol.2011.06.002_b0100) 2010; 390 Clearly (10.1016/j.jhydrol.2011.06.002_b0025) 1973; 37 Frippiat (10.1016/j.jhydrol.2011.06.002_b0040) 2008; 362 Barry (10.1016/j.jhydrol.2011.06.002_b0005) 1988; 52 Sneddon (10.1016/j.jhydrol.2011.06.002_b0070) 1972 Parlange (10.1016/j.jhydrol.2011.06.002_b0120) 1985; 49 Chen (10.1016/j.jhydrol.2011.06.002_b0030) 2011; 34 Batu (10.1016/j.jhydrol.2011.06.002_b0010) 1989; 25 Batu (10.1016/j.jhydrol.2011.06.002_b0020) 1996; 174 Moridis (10.1016/j.jhydrol.2011.06.002_b0065) 1991; 27 Parlange (10.1016/j.jhydrol.2011.06.002_b0085) 1978; 42 Peréz Guerrero (10.1016/j.jhydrol.2011.06.002_b0095) 2009; 80 Park (10.1016/j.jhydrol.2011.06.002_b0075) 2001; 53 Parlange (10.1016/j.jhydrol.2011.06.002_b0080) 1992; 153 Pérez Guerrero (10.1016/j.jhydrol.2011.06.002_b0090) 2009; 52 Leij (10.1016/j.jhydrol.2011.06.002_b0045) 1991; 27 10.1016/j.jhydrol.2011.06.002_b0110 Corrêa (10.1016/j.jhydrol.2011.06.002_b0035) 1997; 7 Mikhailov (10.1016/j.jhydrol.2011.06.002_b0060) 1996; 23 |
References_xml | – volume: 53 start-page: 41 year: 2001 end-page: 61 ident: b0075 article-title: Analytical solutions of contaminant transport from finite one-, two, three-dimensional sources in a finite-thickness aquifer publication-title: J. Contam. Hydrol. – volume: 42 start-page: 15 year: 1978 end-page: 18 ident: b0085 article-title: Dispersion in soil column: effect of boundary conditions and irreversible reactions publication-title: Soil Sci. Soc. Am. J. – volume: 52 start-page: 3 year: 1988 end-page: 9 ident: b0005 article-title: Application of the convection–dispersion model to solute transport in finite soil columns publication-title: Soil Sci. Soc. Am. J. – volume: 23 start-page: 299 year: 1996 end-page: 303 ident: b0060 article-title: Ordering rules for double and triple eigenseries in the solution of multidimensional heat and fluid flow problems publication-title: Int. Commun. Heat Mass Transfer – volume: 27 start-page: 2719 year: 1991 end-page: 2733 ident: b0045 article-title: Analytical solution for solute transport in three-dimensional semi-infinite porous media publication-title: Water Resour. Res. – volume: 49 start-page: 1325 year: 1985 ident: b0120 article-title: Comments on boundary conditions for displacement experiments through short laboratory soil columns publication-title: Soil Sci. Soc. Am. J. – volume: 34 start-page: 365 year: 2011 end-page: 374 ident: b0030 article-title: Exact analytical solutions for two-dimensional advection–dispersion equation in cylindrical coordinates subject to third-type inlet boundary condition publication-title: Adv. Water Resour. – volume: 37 start-page: 197 year: 1973 end-page: 199 ident: b0025 article-title: Analytical solution of the convective–dispersive equation for cation adsorption in soils publication-title: Soil Sci. Soc. Am. Proc. – volume: 328 start-page: 614 year: 2006 end-page: 619 ident: b0115 article-title: An in situ method to measure the longitudinal and transverse dispersion coefficients of solute transport in soil publication-title: J. Hydrol. – volume: 7 start-page: 675 year: 1997 end-page: 695 ident: b0035 article-title: On the reduction of computational costs in eigenfunction expansions of multidimensional diffusion problems, Int publication-title: J. Numer. Methods Heat Fluid Flow – volume: 48 start-page: 703 year: 1984 end-page: 708 ident: b0105 article-title: Boundary conditions for displacement experiments through short laboratory soil columns publication-title: Soil Sci. Soc. Am. J. – volume: 153 start-page: 165 year: 1992 end-page: 171 ident: b0080 article-title: Exit condition for miscible displacement experiments in finite columns publication-title: Soil Sci. – year: 1972 ident: b0070 article-title: The Use of Integral Transforms – volume: 25 start-page: 1125 year: 1989 end-page: 1132 ident: b0010 article-title: A generalized two-dimensional analytical solution for hydrodynamic dispersion in bounded media with the first-type boundary condition at the source publication-title: Water Resour. Res. – volume: 45 start-page: 339 year: 2007 end-page: 347 ident: b0055 article-title: A new method for laboratory estimation of the transverse dispersion coefficient publication-title: Ground Water – volume: 362 start-page: 57 year: 2008 end-page: 68 ident: b0040 article-title: Estimation of laboratory-scale dispersivities using an annulus-and-core device publication-title: J. Hydrol. – volume: 390 start-page: 57 year: 2010 end-page: 65 ident: b0100 article-title: Analytical solution for one-dimensional advection–dispersion transport equation with distance-dependent coefficients publication-title: J. Hydrol. – volume: 21 start-page: 681 year: 2006 end-page: 688 ident: b0050 article-title: Some analytical solutions for two-dimensional convection–dispersion equation in cylindrical geometry publication-title: Environ. Modell. Softw. – volume: 29 start-page: 2881 year: 1993 end-page: 2892 ident: b0015 article-title: A generalized two-dimensional analytical solute transport model in bounded media for flux-type finite multiple sources publication-title: Water Resour. Res. – volume: 174 start-page: 57 year: 1996 end-page: 82 ident: b0020 article-title: A generalized three-dimensional analytical solute transport model for multiple rectangular first-type sources publication-title: J. Hydrol – volume: 80 year: 2009 ident: b0095 article-title: Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media publication-title: Transport Porous Med. – volume: 27 start-page: 1873 year: 1991 end-page: 1884 ident: b0065 article-title: The Laplace transform finite difference method for simulation of flow through porous media publication-title: Water Resour. Res. – volume: 52 start-page: 3297 year: 2009 end-page: 3304 ident: b0090 article-title: Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique publication-title: Int. J. Heat Mass Transf. – reference: van Genuchten, M.Th., Alves W.J., 1982. Analytical solutions of the one-dimensional convective–dispersive solute transport equation. US Department of Agriculture, Technical Bulletin No. 1661. 151 pp. – volume: 174 start-page: 57 year: 1996 ident: 10.1016/j.jhydrol.2011.06.002_b0020 article-title: A generalized three-dimensional analytical solute transport model for multiple rectangular first-type sources publication-title: J. Hydrol doi: 10.1016/0022-1694(95)02752-1 – volume: 27 start-page: 1873 issue: 8 year: 1991 ident: 10.1016/j.jhydrol.2011.06.002_b0065 article-title: The Laplace transform finite difference method for simulation of flow through porous media publication-title: Water Resour. Res. doi: 10.1029/91WR01190 – volume: 25 start-page: 1125 issue: 6 year: 1989 ident: 10.1016/j.jhydrol.2011.06.002_b0010 article-title: A generalized two-dimensional analytical solution for hydrodynamic dispersion in bounded media with the first-type boundary condition at the source publication-title: Water Resour. Res. doi: 10.1029/WR025i006p01125 – volume: 21 start-page: 681 issue: 5 year: 2006 ident: 10.1016/j.jhydrol.2011.06.002_b0050 article-title: Some analytical solutions for two-dimensional convection–dispersion equation in cylindrical geometry publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2004.12.003 – volume: 42 start-page: 15 year: 1978 ident: 10.1016/j.jhydrol.2011.06.002_b0085 article-title: Dispersion in soil column: effect of boundary conditions and irreversible reactions publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1978.03615995004200010004x – volume: 52 start-page: 3 issue: 1 year: 1988 ident: 10.1016/j.jhydrol.2011.06.002_b0005 article-title: Application of the convection–dispersion model to solute transport in finite soil columns publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1988.03615995005200010001x – volume: 27 start-page: 2719 issue: 10 year: 1991 ident: 10.1016/j.jhydrol.2011.06.002_b0045 article-title: Analytical solution for solute transport in three-dimensional semi-infinite porous media publication-title: Water Resour. Res. doi: 10.1029/91WR01912 – volume: 52 start-page: 3297 year: 2009 ident: 10.1016/j.jhydrol.2011.06.002_b0090 article-title: Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.02.002 – volume: 80 year: 2009 ident: 10.1016/j.jhydrol.2011.06.002_b0095 article-title: Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media publication-title: Transport Porous Med. doi: 10.1007/s11242-009-9368-3 – volume: 7 start-page: 675 issue: 7 year: 1997 ident: 10.1016/j.jhydrol.2011.06.002_b0035 article-title: On the reduction of computational costs in eigenfunction expansions of multidimensional diffusion problems, Int publication-title: J. Numer. Methods Heat Fluid Flow doi: 10.1108/09615539710185569 – volume: 48 start-page: 703 year: 1984 ident: 10.1016/j.jhydrol.2011.06.002_b0105 article-title: Boundary conditions for displacement experiments through short laboratory soil columns publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1984.03615995004800040002x – volume: 34 start-page: 365 issue: 3 year: 2011 ident: 10.1016/j.jhydrol.2011.06.002_b0030 article-title: Exact analytical solutions for two-dimensional advection–dispersion equation in cylindrical coordinates subject to third-type inlet boundary condition publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2010.12.008 – volume: 153 start-page: 165 issue: 3 year: 1992 ident: 10.1016/j.jhydrol.2011.06.002_b0080 article-title: Exit condition for miscible displacement experiments in finite columns publication-title: Soil Sci. doi: 10.1097/00010694-199203000-00001 – volume: 328 start-page: 614 issue: 3–4 year: 2006 ident: 10.1016/j.jhydrol.2011.06.002_b0115 article-title: An in situ method to measure the longitudinal and transverse dispersion coefficients of solute transport in soil publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.01.004 – volume: 45 start-page: 339 issue: 3 year: 2007 ident: 10.1016/j.jhydrol.2011.06.002_b0055 article-title: A new method for laboratory estimation of the transverse dispersion coefficient publication-title: Ground Water doi: 10.1111/j.1745-6584.2007.00301.x – volume: 37 start-page: 197 year: 1973 ident: 10.1016/j.jhydrol.2011.06.002_b0025 article-title: Analytical solution of the convective–dispersive equation for cation adsorption in soils publication-title: Soil Sci. Soc. Am. Proc. doi: 10.2136/sssaj1973.03615995003700020014x – ident: 10.1016/j.jhydrol.2011.06.002_b0110 – volume: 362 start-page: 57 issue: 1–2 year: 2008 ident: 10.1016/j.jhydrol.2011.06.002_b0040 article-title: Estimation of laboratory-scale dispersivities using an annulus-and-core device publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.08.007 – year: 1972 ident: 10.1016/j.jhydrol.2011.06.002_b0070 – volume: 23 start-page: 299 issue: 2 year: 1996 ident: 10.1016/j.jhydrol.2011.06.002_b0060 article-title: Ordering rules for double and triple eigenseries in the solution of multidimensional heat and fluid flow problems publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/0735-1933(96)00015-2 – volume: 53 start-page: 41 issue: 1–2 year: 2001 ident: 10.1016/j.jhydrol.2011.06.002_b0075 article-title: Analytical solutions of contaminant transport from finite one-, two, three-dimensional sources in a finite-thickness aquifer publication-title: J. Contam. Hydrol. doi: 10.1016/S0169-7722(01)00136-X – volume: 49 start-page: 1325 issue: 5 year: 1985 ident: 10.1016/j.jhydrol.2011.06.002_b0120 article-title: Comments on boundary conditions for displacement experiments through short laboratory soil columns publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1985.03615995004900050051x – volume: 390 start-page: 57 issue: 1–2 year: 2010 ident: 10.1016/j.jhydrol.2011.06.002_b0100 article-title: Analytical solution for one-dimensional advection–dispersion transport equation with distance-dependent coefficients publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.06.030 – volume: 29 start-page: 2881 issue: 8 year: 1993 ident: 10.1016/j.jhydrol.2011.06.002_b0015 article-title: A generalized two-dimensional analytical solute transport model in bounded media for flux-type finite multiple sources publication-title: Water Resour. Res. doi: 10.1029/93WR00977 |
SSID | ssj0000334 |
Score | 2.2544432 |
Snippet | ► Analytical solutions for 2-D advection–dispersion equation in cylindrical coordinates in finite domain was derived. ► Significant discrepancy between... This study presents exact analytical solutions to the two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to the... This study presents exact analytical solutions to the two-dimensional advection-dispersion equation in cylindrical coordinates in finite domain subject to the... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 522 |
SubjectTerms | Advection–dispersion equation Analytical solution Boundary conditions Cylindrical coordinates Earth sciences Earth, ocean, space equations Exact sciences and technology Finite domain Finite Hankel transform technique Generalized integral transform technique (GITT) Hydrogeology Hydrology. Hydrogeology Inlets Mathematical analysis Mathematical models Peclet number simulation models Transforms Two dimensional |
Title | Analytical solutions to two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to first- and third-type inlet boundary conditions |
URI | https://dx.doi.org/10.1016/j.jhydrol.2011.06.002 https://www.proquest.com/docview/1365037697 https://www.proquest.com/docview/883046237 |
Volume | 405 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPbRQSp90-1hU6FW7WkuytccQGrYtzamB3IysB-sltbe73oa9hP6H_I_8qPySzMj2htCWQI-2JEtoRqPxPL4h5KPj0hmeWqatnzIpFWdGaMsCqBpK88JPY27Vt-N0diK_nKrTPXLY58JgWGUn-1uZHqV192bc7eZ4WZaY45skE8zDnKB7K8OEXykz5PLRxW2YBxdC9ojh2Ps2i2e8GC3mW7eqzzokz3RnXfnL_fR4adawa6Etd_GH5I7X0dFT8qTTI-lBu9RnZM9Xz8nDrqT5fPuCXEW4kWippjv-ok1Nm_OaOcT0b_E4qHG_YjhWdf370pUIHI4N1P9sQcBpWVG7BWXURTARamv4XS0rVFGxKZSotFJX_zDwtN4UaNfBaUIJeiWjpnK0mZcrx9DYCyOAT2gRazmttvAx9Jjjyl6Sk6NP3w9nrCvOwIxMsoZJj1mpSgUDUiJ4ZYVJEguSE2gedOYTYQ03liujhZm4VCtloFfqtLLamUS8IvtVXfnXhGbKwF2ahSzIQgppjS-kUrbgQaSFC2FAZE-S3HbI5VhA4yzvQ9QWeUfJHCmZx1C9ZEBGu2HLFrrjvgG6p3d-hwdzuF7uGzq8wx-7CRHvEaToZEA-9AyTwwFGr4ypfL1Z5xhnyEHMT7MBof_oozU6sBORvfn_Jb4lj3p7OFfvyH6z2vj3oFA1xTCemCF5cPD56-z4BpV3KGA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEF7RcKBShfqrpqV0K_W6xNkfe3NEqCgUyAkkbqv1_iiOwE4Tp1VufYe-Rx-KJ2HHXgehtkLq0faOvfKMvx3PznyD0GebcKuT1BBp3IhwLhKimTTEB1dDyCR3o6a26nySji_51ytxtYWOuloYSKuM2N9ieoPW8cwgvs3BvCigxpfSIdRhDmF7K5NP0DawU4ke2j48OR1P7gGZMd6RhoPAfSHPYHYwm67torqOZJ7pJsDylyXq2Vwvw4vzbceLP8C7WZGOn6Pd6Eriw3a2L9CWK1-indjVfLp-hX43jCNNsBpvTAzXFa5_VMQCrX9LyYG1_d5kZJW3P3_ZArjD4QJ231oecFyU2KyDP2obPhFsqvDHWpTgpcIlX4Dfim11o8PRcpVDaAce44vgWhKsS4vrabGwBOK9QSKYCs6bdk6LdbgZbJrDzF6jy-MvF0djEvszEM1pVhPuoDBVCK8DUHgnDNOUmgCeQe1eZo4yoxNtEqEl00ObSiF0GJVaKYy0mrI3qFdWpXuLcCZ0WE4zn3mec8aNdjkXwuSJZ2luve8j3qlEmUheDj00rlWXpTZTUZMKNKmabD3aRwcbsXnL3vGYgOz0rR6YoQorzGOi-w_sY_NAoHwMQDrso0-dwajwDcPGjC5dtVoqSDVMAtKPsj7C_xgjJexhU5a9-_8pfkQ744vzM3V2Mjl9j5524fFE7KFevVi5D8G_qvP9-P3cAZDYKxE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+solutions+to+two-dimensional+advection%E2%80%93dispersion+equation+in+cylindrical+coordinates+in+finite+domain+subject+to+first-+and+third-type+inlet+boundary+conditions&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Chen%2C+Jui-Sheng&rft.au=Chen%2C+Juan-Tse&rft.au=Liu%2C+Chen-Wuing&rft.au=Liang%2C+Ching-Ping&rft.date=2011-08-05&rft.issn=0022-1694&rft.volume=405&rft.issue=3-4&rft.spage=522&rft.epage=531&rft_id=info:doi/10.1016%2Fj.jhydrol.2011.06.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2011_06_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |