Analytical solutions to two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to first- and third-type inlet boundary conditions

► Analytical solutions for 2-D advection–dispersion equation in cylindrical coordinates in finite domain was derived. ► Significant discrepancy between solutions for first- and third-type conditions. ► Solutions useful for interpreting a column experiment or an infiltration tracer test. This study p...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 405; no. 3; pp. 522 - 531
Main Authors Chen, Jui-Sheng, Chen, Juan-Tse, Liu, Chen-Wuing, Liang, Ching-Ping, Lin, Chien-Wen
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 05.08.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► Analytical solutions for 2-D advection–dispersion equation in cylindrical coordinates in finite domain was derived. ► Significant discrepancy between solutions for first- and third-type conditions. ► Solutions useful for interpreting a column experiment or an infiltration tracer test. This study presents exact analytical solutions to the two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to the first- and third-type inlet boundary conditions. The second kind finite Hankel transform and the generalized integral transform technique are adopted to solve the two-dimensional advection–dispersion equation in cylindrical coordinates and its associated initial and boundary conditions. The developed analytical solutions are compared with the solutions for semi-infinite domain subject to the first- and third-type inlet boundary conditions available in literature to illustrate the impacts of the exit boundary conditions. Results show that significant discrepancies between the breakthrough curves obtained from analytical solutions for the finite domain and infinite domain for small Peclet number. Numerical evaluations of the developed analytical solutions for finite domain are computationally intensive because that the convergences of the series progress slowly for medium Peclet number. The developed solutions should be especially useful for testing numerical model simulated solutions for the finite domain subject to first- and third-type inlet boundary conditions.
AbstractList This study presents exact analytical solutions to the two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to the first- and third-type inlet boundary conditions. The second kind finite Hankel transform and the generalized integral transform technique are adopted to solve the two-dimensional advection–dispersion equation in cylindrical coordinates and its associated initial and boundary conditions. The developed analytical solutions are compared with the solutions for semi-infinite domain subject to the first- and third-type inlet boundary conditions available in literature to illustrate the impacts of the exit boundary conditions. Results show that significant discrepancies between the breakthrough curves obtained from analytical solutions for the finite domain and infinite domain for small Peclet number. Numerical evaluations of the developed analytical solutions for finite domain are computationally intensive because that the convergences of the series progress slowly for medium Peclet number. The developed solutions should be especially useful for testing numerical model simulated solutions for the finite domain subject to first- and third-type inlet boundary conditions.
► Analytical solutions for 2-D advection–dispersion equation in cylindrical coordinates in finite domain was derived. ► Significant discrepancy between solutions for first- and third-type conditions. ► Solutions useful for interpreting a column experiment or an infiltration tracer test. This study presents exact analytical solutions to the two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to the first- and third-type inlet boundary conditions. The second kind finite Hankel transform and the generalized integral transform technique are adopted to solve the two-dimensional advection–dispersion equation in cylindrical coordinates and its associated initial and boundary conditions. The developed analytical solutions are compared with the solutions for semi-infinite domain subject to the first- and third-type inlet boundary conditions available in literature to illustrate the impacts of the exit boundary conditions. Results show that significant discrepancies between the breakthrough curves obtained from analytical solutions for the finite domain and infinite domain for small Peclet number. Numerical evaluations of the developed analytical solutions for finite domain are computationally intensive because that the convergences of the series progress slowly for medium Peclet number. The developed solutions should be especially useful for testing numerical model simulated solutions for the finite domain subject to first- and third-type inlet boundary conditions.
Author Liu, Chen-Wuing
Liang, Ching-Ping
Chen, Juan-Tse
Lin, Chien-Wen
Chen, Jui-Sheng
Author_xml – sequence: 1
  givenname: Jui-Sheng
  surname: Chen
  fullname: Chen, Jui-Sheng
  email: jschen@geo.ncu.edu.tw
  organization: Graduate Institute of Applied Geology, National Central University, Jhongli City, Taoyuan County 32001, Taiwan
– sequence: 2
  givenname: Juan-Tse
  surname: Chen
  fullname: Chen, Juan-Tse
  organization: Graduate Institute of Applied Geology, National Central University, Jhongli City, Taoyuan County 32001, Taiwan
– sequence: 3
  givenname: Chen-Wuing
  surname: Liu
  fullname: Liu, Chen-Wuing
  organization: Departmnent of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan
– sequence: 4
  givenname: Ching-Ping
  surname: Liang
  fullname: Liang, Ching-Ping
  organization: Department of Environmental Engineering and Science, Fooyin University, Kaohsiung City 83102, Taiwan
– sequence: 5
  givenname: Chien-Wen
  surname: Lin
  fullname: Lin, Chien-Wen
  organization: Graduate Institute of Applied Geology, National Central University, Jhongli City, Taoyuan County 32001, Taiwan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24370731$$DView record in Pascal Francis
BookMark eNqFUUtuFDEQtVCQmASOgNQbBJtu_OnfiAWKIn5SJDawtip2tVKtHntiu4N6lztwDw7FSXDPDBsWxBvL9T5VrnfOzpx3yNhLwSvBRft2rMbbxQY_VZILUfG24lw-YRvRd9tSdrw7Y5tckaVot_Uzdh7jyPNRqt6wX5cOpiWRgamIfpoTeReL5Iv0w5eWduhirmQQ7D2aFf398NNS3GNYgQLvZlirBbnCLBM5Gw5exvtgyUHCuEIDOUpYWL-D_IrzzZjN1jYDhZjKApwt0i0FW6Zlj1kxYSpu_OwshCWbOUuHyZ6zpwNMEV-c7gv2_eOHb1efy-uvn75cXV6XUMsulTW2Ta2aZgDFuwEbo0BKI4QwuB36DqUywMHwBnoFwrZ900BmtbZvTG9Bqgv2-ui7D_5uxpj0jqLBaQKHfo667xWvW6m6zHzzX6ZQbcNV125X6qsTFWLe0RDAGYp6H2iXf6llrXJWSmTeuyPPBB9jwEEbSoctpwA0acH1mrse9Sl3veaueatzylnd_KP-2-Ax3fujDvNe7wmDjobQGbQUcljaenrE4Q9G89OA
CODEN JHYDA7
CitedBy_id crossref_primary_10_1016_j_amc_2022_127570
crossref_primary_10_1016_j_colsurfb_2014_06_063
crossref_primary_10_1061__ASCE_EM_1943_7889_0001346
crossref_primary_10_1007_s12046_024_02452_9
crossref_primary_10_1016_j_jhydrol_2017_08_050
crossref_primary_10_1061__ASCE_HE_1943_5584_0001035
crossref_primary_10_3390_app10155349
crossref_primary_10_3390_en16145511
crossref_primary_10_1016_j_jobe_2024_109587
crossref_primary_10_1002_mrm_28584
crossref_primary_10_1007_s12040_019_1231_5
crossref_primary_10_1002_ghg_1527
crossref_primary_10_1007_s10652_013_9325_0
crossref_primary_10_1016_j_advwatres_2021_104018
crossref_primary_10_1155_2014_646495
crossref_primary_10_1007_s10652_020_09766_2
crossref_primary_10_1016_j_jhydrol_2019_124164
crossref_primary_10_1680_jgein_23_00091
crossref_primary_10_1016_j_jhydrol_2016_11_058
crossref_primary_10_1002_nag_3474
crossref_primary_10_1016_j_jhydrol_2011_12_001
crossref_primary_10_1016_j_jhydrol_2012_06_017
crossref_primary_10_3390_en12193740
crossref_primary_10_1007_s42102_022_00092_3
crossref_primary_10_1016_j_ces_2014_05_043
crossref_primary_10_1016_j_jconhyd_2018_09_002
crossref_primary_10_1016_j_jhydrol_2014_08_046
crossref_primary_10_1007_s13762_020_03096_y
crossref_primary_10_1016_j_cej_2020_124234
crossref_primary_10_11948_20200383
crossref_primary_10_1016_j_jhydrol_2022_128633
crossref_primary_10_1016_j_chroma_2017_03_048
crossref_primary_10_1016_j_compgeo_2015_05_002
crossref_primary_10_1093_chromsci_bmx007
crossref_primary_10_1016_j_jhydrol_2023_129287
crossref_primary_10_1080_09593330_2021_2016992
crossref_primary_10_3390_soilsystems2030040
crossref_primary_10_1016_j_jhydrol_2025_132977
crossref_primary_10_1142_S0217979223500893
crossref_primary_10_1016_j_ces_2023_118764
crossref_primary_10_1016_j_ces_2014_09_018
crossref_primary_10_1016_j_jhydrol_2013_02_042
crossref_primary_10_5194_hess_15_2471_2011
crossref_primary_10_1007_s40201_020_00567_9
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120569
crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_128
crossref_primary_10_5194_hess_20_733_2016
Cites_doi 10.1016/0022-1694(95)02752-1
10.1029/91WR01190
10.1029/WR025i006p01125
10.1016/j.envsoft.2004.12.003
10.2136/sssaj1978.03615995004200010004x
10.2136/sssaj1988.03615995005200010001x
10.1029/91WR01912
10.1016/j.ijheatmasstransfer.2009.02.002
10.1007/s11242-009-9368-3
10.1108/09615539710185569
10.2136/sssaj1984.03615995004800040002x
10.1016/j.advwatres.2010.12.008
10.1097/00010694-199203000-00001
10.1016/j.jhydrol.2006.01.004
10.1111/j.1745-6584.2007.00301.x
10.2136/sssaj1973.03615995003700020014x
10.1016/j.jhydrol.2008.08.007
10.1016/0735-1933(96)00015-2
10.1016/S0169-7722(01)00136-X
10.2136/sssaj1985.03615995004900050051x
10.1016/j.jhydrol.2010.06.030
10.1029/93WR00977
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7S9
L.6
8FD
FR3
KR7
DOI 10.1016/j.jhydrol.2011.06.002
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList AGRICOLA
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
EndPage 531
ExternalDocumentID 24370731
10_1016_j_jhydrol_2011_06_002
S0022169411003878
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7S9
L.6
8FD
FR3
KR7
ID FETCH-LOGICAL-a427t-4e654355fa307fe5c3a22c111ce9f87e23ca0ac05a83a1d6855ae5c6d85c8da23
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Fri Jul 11 04:46:54 EDT 2025
Fri Jul 11 03:21:53 EDT 2025
Mon Jul 21 09:17:54 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Tue Jul 01 03:07:11 EDT 2025
Fri Feb 23 02:28:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Generalized integral transform technique (GITT)
Finite domain
Analytical solution
Advection–dispersion equation
Finite Hankel transform technique
Cylindrical coordinates
advection
solutes
GITT
testing
mathematical models
ground water
Advection-dispersion equation
solution
numerical models
Generalized integral transform technique
dispersion
boundary conditions
porous media
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a427t-4e654355fa307fe5c3a22c111ce9f87e23ca0ac05a83a1d6855ae5c6d85c8da23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1365037697
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_883046237
proquest_miscellaneous_1365037697
pascalfrancis_primary_24370731
crossref_citationtrail_10_1016_j_jhydrol_2011_06_002
crossref_primary_10_1016_j_jhydrol_2011_06_002
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2011_06_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-05
PublicationDateYYYYMMDD 2011-08-05
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-05
  day: 05
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Batu (b0015) 1993; 29
Sneddon (b0070) 1972
Massabò, Catania, Paladino (b0055) 2007; 45
Barry, Sposito (b0005) 1988; 52
Frippiat, Pérez, Holeyman (b0040) 2008; 362
Pérez Guerrero, Skaggs (b0100) 2010; 390
Zhang, Qi, Zhou, Pang (b0115) 2006; 328
Parlange, Barry, Starr (b0120) 1985; 49
Parlange, Starr (b0085) 1978; 42
Pérez Guerrero, Pimentel, Skaggs, van Genuchten (b0090) 2009; 52
Park, Zhan (b0075) 2001; 53
Batu (b0010) 1989; 25
Moridis, Reddell (b0065) 1991; 27
Parlange, Starr, van Genuchten, Barry, Parker (b0080) 1992; 153
Leij, Skaggs, Van Genuchten (b0045) 1991; 27
van Genuchten, M.Th., Alves W.J., 1982. Analytical solutions of the one-dimensional convective–dispersive solute transport equation. US Department of Agriculture, Technical Bulletin No. 1661. 151 pp.
van Genuchten, Parker (b0105) 1984; 48
Batu (b0020) 1996; 174
Clearly, Adrian (b0025) 1973; 37
Corrêa, Cotta, Orlande (b0035) 1997; 7
Chen, Liu, Liang, Liu, Lin (b0030) 2011; 34
Peréz Guerrero, Skaggs, van Genuchten (b0095) 2009; 80
Mikhailov, Cotta (b0060) 1996; 23
Massabò, Cianci, Paladino (b0050) 2006; 21
Massabò (10.1016/j.jhydrol.2011.06.002_b0055) 2007; 45
van Genuchten (10.1016/j.jhydrol.2011.06.002_b0105) 1984; 48
Zhang (10.1016/j.jhydrol.2011.06.002_b0115) 2006; 328
Batu (10.1016/j.jhydrol.2011.06.002_b0015) 1993; 29
Massabò (10.1016/j.jhydrol.2011.06.002_b0050) 2006; 21
Pérez Guerrero (10.1016/j.jhydrol.2011.06.002_b0100) 2010; 390
Clearly (10.1016/j.jhydrol.2011.06.002_b0025) 1973; 37
Frippiat (10.1016/j.jhydrol.2011.06.002_b0040) 2008; 362
Barry (10.1016/j.jhydrol.2011.06.002_b0005) 1988; 52
Sneddon (10.1016/j.jhydrol.2011.06.002_b0070) 1972
Parlange (10.1016/j.jhydrol.2011.06.002_b0120) 1985; 49
Chen (10.1016/j.jhydrol.2011.06.002_b0030) 2011; 34
Batu (10.1016/j.jhydrol.2011.06.002_b0010) 1989; 25
Batu (10.1016/j.jhydrol.2011.06.002_b0020) 1996; 174
Moridis (10.1016/j.jhydrol.2011.06.002_b0065) 1991; 27
Parlange (10.1016/j.jhydrol.2011.06.002_b0085) 1978; 42
Peréz Guerrero (10.1016/j.jhydrol.2011.06.002_b0095) 2009; 80
Park (10.1016/j.jhydrol.2011.06.002_b0075) 2001; 53
Parlange (10.1016/j.jhydrol.2011.06.002_b0080) 1992; 153
Pérez Guerrero (10.1016/j.jhydrol.2011.06.002_b0090) 2009; 52
Leij (10.1016/j.jhydrol.2011.06.002_b0045) 1991; 27
10.1016/j.jhydrol.2011.06.002_b0110
Corrêa (10.1016/j.jhydrol.2011.06.002_b0035) 1997; 7
Mikhailov (10.1016/j.jhydrol.2011.06.002_b0060) 1996; 23
References_xml – volume: 53
  start-page: 41
  year: 2001
  end-page: 61
  ident: b0075
  article-title: Analytical solutions of contaminant transport from finite one-, two, three-dimensional sources in a finite-thickness aquifer
  publication-title: J. Contam. Hydrol.
– volume: 42
  start-page: 15
  year: 1978
  end-page: 18
  ident: b0085
  article-title: Dispersion in soil column: effect of boundary conditions and irreversible reactions
  publication-title: Soil Sci. Soc. Am. J.
– volume: 52
  start-page: 3
  year: 1988
  end-page: 9
  ident: b0005
  article-title: Application of the convection–dispersion model to solute transport in finite soil columns
  publication-title: Soil Sci. Soc. Am. J.
– volume: 23
  start-page: 299
  year: 1996
  end-page: 303
  ident: b0060
  article-title: Ordering rules for double and triple eigenseries in the solution of multidimensional heat and fluid flow problems
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 27
  start-page: 2719
  year: 1991
  end-page: 2733
  ident: b0045
  article-title: Analytical solution for solute transport in three-dimensional semi-infinite porous media
  publication-title: Water Resour. Res.
– volume: 49
  start-page: 1325
  year: 1985
  ident: b0120
  article-title: Comments on boundary conditions for displacement experiments through short laboratory soil columns
  publication-title: Soil Sci. Soc. Am. J.
– volume: 34
  start-page: 365
  year: 2011
  end-page: 374
  ident: b0030
  article-title: Exact analytical solutions for two-dimensional advection–dispersion equation in cylindrical coordinates subject to third-type inlet boundary condition
  publication-title: Adv. Water Resour.
– volume: 37
  start-page: 197
  year: 1973
  end-page: 199
  ident: b0025
  article-title: Analytical solution of the convective–dispersive equation for cation adsorption in soils
  publication-title: Soil Sci. Soc. Am. Proc.
– volume: 328
  start-page: 614
  year: 2006
  end-page: 619
  ident: b0115
  article-title: An in situ method to measure the longitudinal and transverse dispersion coefficients of solute transport in soil
  publication-title: J. Hydrol.
– volume: 7
  start-page: 675
  year: 1997
  end-page: 695
  ident: b0035
  article-title: On the reduction of computational costs in eigenfunction expansions of multidimensional diffusion problems, Int
  publication-title: J. Numer. Methods Heat Fluid Flow
– volume: 48
  start-page: 703
  year: 1984
  end-page: 708
  ident: b0105
  article-title: Boundary conditions for displacement experiments through short laboratory soil columns
  publication-title: Soil Sci. Soc. Am. J.
– volume: 153
  start-page: 165
  year: 1992
  end-page: 171
  ident: b0080
  article-title: Exit condition for miscible displacement experiments in finite columns
  publication-title: Soil Sci.
– year: 1972
  ident: b0070
  article-title: The Use of Integral Transforms
– volume: 25
  start-page: 1125
  year: 1989
  end-page: 1132
  ident: b0010
  article-title: A generalized two-dimensional analytical solution for hydrodynamic dispersion in bounded media with the first-type boundary condition at the source
  publication-title: Water Resour. Res.
– volume: 45
  start-page: 339
  year: 2007
  end-page: 347
  ident: b0055
  article-title: A new method for laboratory estimation of the transverse dispersion coefficient
  publication-title: Ground Water
– volume: 362
  start-page: 57
  year: 2008
  end-page: 68
  ident: b0040
  article-title: Estimation of laboratory-scale dispersivities using an annulus-and-core device
  publication-title: J. Hydrol.
– volume: 390
  start-page: 57
  year: 2010
  end-page: 65
  ident: b0100
  article-title: Analytical solution for one-dimensional advection–dispersion transport equation with distance-dependent coefficients
  publication-title: J. Hydrol.
– volume: 21
  start-page: 681
  year: 2006
  end-page: 688
  ident: b0050
  article-title: Some analytical solutions for two-dimensional convection–dispersion equation in cylindrical geometry
  publication-title: Environ. Modell. Softw.
– volume: 29
  start-page: 2881
  year: 1993
  end-page: 2892
  ident: b0015
  article-title: A generalized two-dimensional analytical solute transport model in bounded media for flux-type finite multiple sources
  publication-title: Water Resour. Res.
– volume: 174
  start-page: 57
  year: 1996
  end-page: 82
  ident: b0020
  article-title: A generalized three-dimensional analytical solute transport model for multiple rectangular first-type sources
  publication-title: J. Hydrol
– volume: 80
  year: 2009
  ident: b0095
  article-title: Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media
  publication-title: Transport Porous Med.
– volume: 27
  start-page: 1873
  year: 1991
  end-page: 1884
  ident: b0065
  article-title: The Laplace transform finite difference method for simulation of flow through porous media
  publication-title: Water Resour. Res.
– volume: 52
  start-page: 3297
  year: 2009
  end-page: 3304
  ident: b0090
  article-title: Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique
  publication-title: Int. J. Heat Mass Transf.
– reference: van Genuchten, M.Th., Alves W.J., 1982. Analytical solutions of the one-dimensional convective–dispersive solute transport equation. US Department of Agriculture, Technical Bulletin No. 1661. 151 pp.
– volume: 174
  start-page: 57
  year: 1996
  ident: 10.1016/j.jhydrol.2011.06.002_b0020
  article-title: A generalized three-dimensional analytical solute transport model for multiple rectangular first-type sources
  publication-title: J. Hydrol
  doi: 10.1016/0022-1694(95)02752-1
– volume: 27
  start-page: 1873
  issue: 8
  year: 1991
  ident: 10.1016/j.jhydrol.2011.06.002_b0065
  article-title: The Laplace transform finite difference method for simulation of flow through porous media
  publication-title: Water Resour. Res.
  doi: 10.1029/91WR01190
– volume: 25
  start-page: 1125
  issue: 6
  year: 1989
  ident: 10.1016/j.jhydrol.2011.06.002_b0010
  article-title: A generalized two-dimensional analytical solution for hydrodynamic dispersion in bounded media with the first-type boundary condition at the source
  publication-title: Water Resour. Res.
  doi: 10.1029/WR025i006p01125
– volume: 21
  start-page: 681
  issue: 5
  year: 2006
  ident: 10.1016/j.jhydrol.2011.06.002_b0050
  article-title: Some analytical solutions for two-dimensional convection–dispersion equation in cylindrical geometry
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2004.12.003
– volume: 42
  start-page: 15
  year: 1978
  ident: 10.1016/j.jhydrol.2011.06.002_b0085
  article-title: Dispersion in soil column: effect of boundary conditions and irreversible reactions
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1978.03615995004200010004x
– volume: 52
  start-page: 3
  issue: 1
  year: 1988
  ident: 10.1016/j.jhydrol.2011.06.002_b0005
  article-title: Application of the convection–dispersion model to solute transport in finite soil columns
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1988.03615995005200010001x
– volume: 27
  start-page: 2719
  issue: 10
  year: 1991
  ident: 10.1016/j.jhydrol.2011.06.002_b0045
  article-title: Analytical solution for solute transport in three-dimensional semi-infinite porous media
  publication-title: Water Resour. Res.
  doi: 10.1029/91WR01912
– volume: 52
  start-page: 3297
  year: 2009
  ident: 10.1016/j.jhydrol.2011.06.002_b0090
  article-title: Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.02.002
– volume: 80
  year: 2009
  ident: 10.1016/j.jhydrol.2011.06.002_b0095
  article-title: Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media
  publication-title: Transport Porous Med.
  doi: 10.1007/s11242-009-9368-3
– volume: 7
  start-page: 675
  issue: 7
  year: 1997
  ident: 10.1016/j.jhydrol.2011.06.002_b0035
  article-title: On the reduction of computational costs in eigenfunction expansions of multidimensional diffusion problems, Int
  publication-title: J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/09615539710185569
– volume: 48
  start-page: 703
  year: 1984
  ident: 10.1016/j.jhydrol.2011.06.002_b0105
  article-title: Boundary conditions for displacement experiments through short laboratory soil columns
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1984.03615995004800040002x
– volume: 34
  start-page: 365
  issue: 3
  year: 2011
  ident: 10.1016/j.jhydrol.2011.06.002_b0030
  article-title: Exact analytical solutions for two-dimensional advection–dispersion equation in cylindrical coordinates subject to third-type inlet boundary condition
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2010.12.008
– volume: 153
  start-page: 165
  issue: 3
  year: 1992
  ident: 10.1016/j.jhydrol.2011.06.002_b0080
  article-title: Exit condition for miscible displacement experiments in finite columns
  publication-title: Soil Sci.
  doi: 10.1097/00010694-199203000-00001
– volume: 328
  start-page: 614
  issue: 3–4
  year: 2006
  ident: 10.1016/j.jhydrol.2011.06.002_b0115
  article-title: An in situ method to measure the longitudinal and transverse dispersion coefficients of solute transport in soil
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.01.004
– volume: 45
  start-page: 339
  issue: 3
  year: 2007
  ident: 10.1016/j.jhydrol.2011.06.002_b0055
  article-title: A new method for laboratory estimation of the transverse dispersion coefficient
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2007.00301.x
– volume: 37
  start-page: 197
  year: 1973
  ident: 10.1016/j.jhydrol.2011.06.002_b0025
  article-title: Analytical solution of the convective–dispersive equation for cation adsorption in soils
  publication-title: Soil Sci. Soc. Am. Proc.
  doi: 10.2136/sssaj1973.03615995003700020014x
– ident: 10.1016/j.jhydrol.2011.06.002_b0110
– volume: 362
  start-page: 57
  issue: 1–2
  year: 2008
  ident: 10.1016/j.jhydrol.2011.06.002_b0040
  article-title: Estimation of laboratory-scale dispersivities using an annulus-and-core device
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.08.007
– year: 1972
  ident: 10.1016/j.jhydrol.2011.06.002_b0070
– volume: 23
  start-page: 299
  issue: 2
  year: 1996
  ident: 10.1016/j.jhydrol.2011.06.002_b0060
  article-title: Ordering rules for double and triple eigenseries in the solution of multidimensional heat and fluid flow problems
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/0735-1933(96)00015-2
– volume: 53
  start-page: 41
  issue: 1–2
  year: 2001
  ident: 10.1016/j.jhydrol.2011.06.002_b0075
  article-title: Analytical solutions of contaminant transport from finite one-, two, three-dimensional sources in a finite-thickness aquifer
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/S0169-7722(01)00136-X
– volume: 49
  start-page: 1325
  issue: 5
  year: 1985
  ident: 10.1016/j.jhydrol.2011.06.002_b0120
  article-title: Comments on boundary conditions for displacement experiments through short laboratory soil columns
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1985.03615995004900050051x
– volume: 390
  start-page: 57
  issue: 1–2
  year: 2010
  ident: 10.1016/j.jhydrol.2011.06.002_b0100
  article-title: Analytical solution for one-dimensional advection–dispersion transport equation with distance-dependent coefficients
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.06.030
– volume: 29
  start-page: 2881
  issue: 8
  year: 1993
  ident: 10.1016/j.jhydrol.2011.06.002_b0015
  article-title: A generalized two-dimensional analytical solute transport model in bounded media for flux-type finite multiple sources
  publication-title: Water Resour. Res.
  doi: 10.1029/93WR00977
SSID ssj0000334
Score 2.2544432
Snippet ► Analytical solutions for 2-D advection–dispersion equation in cylindrical coordinates in finite domain was derived. ► Significant discrepancy between...
This study presents exact analytical solutions to the two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to the...
This study presents exact analytical solutions to the two-dimensional advection-dispersion equation in cylindrical coordinates in finite domain subject to the...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 522
SubjectTerms Advection–dispersion equation
Analytical solution
Boundary conditions
Cylindrical coordinates
Earth sciences
Earth, ocean, space
equations
Exact sciences and technology
Finite domain
Finite Hankel transform technique
Generalized integral transform technique (GITT)
Hydrogeology
Hydrology. Hydrogeology
Inlets
Mathematical analysis
Mathematical models
Peclet number
simulation models
Transforms
Two dimensional
Title Analytical solutions to two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to first- and third-type inlet boundary conditions
URI https://dx.doi.org/10.1016/j.jhydrol.2011.06.002
https://www.proquest.com/docview/1365037697
https://www.proquest.com/docview/883046237
Volume 405
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPbRQSp90-1hU6FW7WkuytccQGrYtzamB3IysB-sltbe73oa9hP6H_I_8qPySzMj2htCWQI-2JEtoRqPxPL4h5KPj0hmeWqatnzIpFWdGaMsCqBpK88JPY27Vt-N0diK_nKrTPXLY58JgWGUn-1uZHqV192bc7eZ4WZaY45skE8zDnKB7K8OEXykz5PLRxW2YBxdC9ojh2Ps2i2e8GC3mW7eqzzokz3RnXfnL_fR4adawa6Etd_GH5I7X0dFT8qTTI-lBu9RnZM9Xz8nDrqT5fPuCXEW4kWippjv-ok1Nm_OaOcT0b_E4qHG_YjhWdf370pUIHI4N1P9sQcBpWVG7BWXURTARamv4XS0rVFGxKZSotFJX_zDwtN4UaNfBaUIJeiWjpnK0mZcrx9DYCyOAT2gRazmttvAx9Jjjyl6Sk6NP3w9nrCvOwIxMsoZJj1mpSgUDUiJ4ZYVJEguSE2gedOYTYQ03liujhZm4VCtloFfqtLLamUS8IvtVXfnXhGbKwF2ahSzIQgppjS-kUrbgQaSFC2FAZE-S3HbI5VhA4yzvQ9QWeUfJHCmZx1C9ZEBGu2HLFrrjvgG6p3d-hwdzuF7uGzq8wx-7CRHvEaToZEA-9AyTwwFGr4ypfL1Z5xhnyEHMT7MBof_oozU6sBORvfn_Jb4lj3p7OFfvyH6z2vj3oFA1xTCemCF5cPD56-z4BpV3KGA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEF7RcKBShfqrpqV0K_W6xNkfe3NEqCgUyAkkbqv1_iiOwE4Tp1VufYe-Rx-KJ2HHXgehtkLq0faOvfKMvx3PznyD0GebcKuT1BBp3IhwLhKimTTEB1dDyCR3o6a26nySji_51ytxtYWOuloYSKuM2N9ieoPW8cwgvs3BvCigxpfSIdRhDmF7K5NP0DawU4ke2j48OR1P7gGZMd6RhoPAfSHPYHYwm67torqOZJ7pJsDylyXq2Vwvw4vzbceLP8C7WZGOn6Pd6Eriw3a2L9CWK1-indjVfLp-hX43jCNNsBpvTAzXFa5_VMQCrX9LyYG1_d5kZJW3P3_ZArjD4QJ231oecFyU2KyDP2obPhFsqvDHWpTgpcIlX4Dfim11o8PRcpVDaAce44vgWhKsS4vrabGwBOK9QSKYCs6bdk6LdbgZbJrDzF6jy-MvF0djEvszEM1pVhPuoDBVCK8DUHgnDNOUmgCeQe1eZo4yoxNtEqEl00ObSiF0GJVaKYy0mrI3qFdWpXuLcCZ0WE4zn3mec8aNdjkXwuSJZ2luve8j3qlEmUheDj00rlWXpTZTUZMKNKmabD3aRwcbsXnL3vGYgOz0rR6YoQorzGOi-w_sY_NAoHwMQDrso0-dwajwDcPGjC5dtVoqSDVMAtKPsj7C_xgjJexhU5a9-_8pfkQ744vzM3V2Mjl9j5524fFE7KFevVi5D8G_qvP9-P3cAZDYKxE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+solutions+to+two-dimensional+advection%E2%80%93dispersion+equation+in+cylindrical+coordinates+in+finite+domain+subject+to+first-+and+third-type+inlet+boundary+conditions&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Chen%2C+Jui-Sheng&rft.au=Chen%2C+Juan-Tse&rft.au=Liu%2C+Chen-Wuing&rft.au=Liang%2C+Ching-Ping&rft.date=2011-08-05&rft.issn=0022-1694&rft.volume=405&rft.issue=3-4&rft.spage=522&rft.epage=531&rft_id=info:doi/10.1016%2Fj.jhydrol.2011.06.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2011_06_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon