Postmelting Encapsulation of Glass Microwires for Multipath Light Waveguiding within Phosphate Glasses
Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information processing, light generation, imaging, data storage, and sensing platforms. Up to date, the fabrication of glass waveguides relies mainly on dem...
Saved in:
Published in | ACS applied optical materials Vol. 2; no. 8; pp. 1636 - 1643 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
23.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2771-9855 2771-9855 |
DOI | 10.1021/acsaom.4c00237 |
Cover
Loading…
Abstract | Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information processing, light generation, imaging, data storage, and sensing platforms. Up to date, the fabrication of glass waveguides relies mainly on demanding chemical processes or on the employment of expensive ultrafast laser equipment. In this work, we demonstrate an advanced, simple, low-temperature, postmelting encapsulation procedure for the development of glass waveguides. Specifically, silver iodide phosphate glass microwires (MWs) are drawn from splat-quenched glasses. These MWs are then incorporated in a controlled manner within transparent silver phosphate glass matrices. The judicious selection of glass compositions ensures that the refractive index of the host phosphate glass is lower than that of the embedded MWs. This facilitates the propagation of light inside the encapsulated higher refractive index MWs, leading to the facile development of waveguides. Importantly, we substantially enhance the light transmission within the MWs by leveraging the plasmon resonance effects due to the presence of silver nanoparticles spontaneously generated owing to the silver iodide phosphate glass composition. Employing this innovative approach, we have successfully engineered waveguide devices incorporating either one or two MWs. Remarkably, the dual MW devices are capable of transmitting light of different colors and in multipath direction, rendering the developed waveguides outstanding candidates for extending the functionalities of diverse photonic and optoelectronic circuits, as well as in intelligent signaling applications in smart glass technologies. |
---|---|
AbstractList | Glass waveguides are the fundamental component of advanced
photonic
circuits and play a pivotal role in diverse applications, including
quantum information processing, light generation, imaging, data storage,
and sensing platforms. Up to date, the fabrication of glass waveguides
relies mainly on demanding chemical processes or on the employment
of expensive ultrafast laser equipment. In this work, we demonstrate
an advanced, simple, low-temperature, postmelting encapsulation procedure
for the development of glass waveguides. Specifically, silver iodide
phosphate glass microwires (MWs) are drawn from splat-quenched glasses.
These MWs are then incorporated in a controlled manner within transparent
silver phosphate glass matrices. The judicious selection of glass
compositions ensures that the refractive index of the host phosphate
glass is lower than that of the embedded MWs. This facilitates the
propagation of light inside the encapsulated higher refractive index
MWs, leading to the facile development of waveguides. Importantly,
we substantially enhance the light transmission within the MWs by
leveraging the plasmon resonance effects due to the presence of silver
nanoparticles spontaneously generated owing to the silver iodide phosphate
glass composition. Employing this innovative approach, we have successfully
engineered waveguide devices incorporating either one or two MWs.
Remarkably, the dual MW devices are capable of transmitting light
of different colors and in multipath direction, rendering the developed
waveguides outstanding candidates for extending the functionalities
of diverse photonic and optoelectronic circuits, as well as in intelligent
signaling applications in smart glass technologies. Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information processing, light generation, imaging, data storage, and sensing platforms. Up to date, the fabrication of glass waveguides relies mainly on demanding chemical processes or on the employment of expensive ultrafast laser equipment. In this work, we demonstrate an advanced, simple, low-temperature, postmelting encapsulation procedure for the development of glass waveguides. Specifically, silver iodide phosphate glass microwires (MWs) are drawn from splat-quenched glasses. These MWs are then incorporated in a controlled manner within transparent silver phosphate glass matrices. The judicious selection of glass compositions ensures that the refractive index of the host phosphate glass is lower than that of the embedded MWs. This facilitates the propagation of light inside the encapsulated higher refractive index MWs, leading to the facile development of waveguides. Importantly, we substantially enhance the light transmission within the MWs by leveraging the plasmon resonance effects due to the presence of silver nanoparticles spontaneously generated owing to the silver iodide phosphate glass composition. Employing this innovative approach, we have successfully engineered waveguide devices incorporating either one or two MWs. Remarkably, the dual MW devices are capable of transmitting light of different colors and in multipath direction, rendering the developed waveguides outstanding candidates for extending the functionalities of diverse photonic and optoelectronic circuits, as well as in intelligent signaling applications in smart glass technologies. Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information processing, light generation, imaging, data storage, and sensing platforms. Up to date, the fabrication of glass waveguides relies mainly on demanding chemical processes or on the employment of expensive ultrafast laser equipment. In this work, we demonstrate an advanced, simple, low-temperature, postmelting encapsulation procedure for the development of glass waveguides. Specifically, silver iodide phosphate glass microwires (MWs) are drawn from splat-quenched glasses. These MWs are then incorporated in a controlled manner within transparent silver phosphate glass matrices. The judicious selection of glass compositions ensures that the refractive index of the host phosphate glass is lower than that of the embedded MWs. This facilitates the propagation of light inside the encapsulated higher refractive index MWs, leading to the facile development of waveguides. Importantly, we substantially enhance the light transmission within the MWs by leveraging the plasmon resonance effects due to the presence of silver nanoparticles spontaneously generated owing to the silver iodide phosphate glass composition. Employing this innovative approach, we have successfully engineered waveguide devices incorporating either one or two MWs. Remarkably, the dual MW devices are capable of transmitting light of different colors and in multipath direction, rendering the developed waveguides outstanding candidates for extending the functionalities of diverse photonic and optoelectronic circuits, as well as in intelligent signaling applications in smart glass technologies.Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information processing, light generation, imaging, data storage, and sensing platforms. Up to date, the fabrication of glass waveguides relies mainly on demanding chemical processes or on the employment of expensive ultrafast laser equipment. In this work, we demonstrate an advanced, simple, low-temperature, postmelting encapsulation procedure for the development of glass waveguides. Specifically, silver iodide phosphate glass microwires (MWs) are drawn from splat-quenched glasses. These MWs are then incorporated in a controlled manner within transparent silver phosphate glass matrices. The judicious selection of glass compositions ensures that the refractive index of the host phosphate glass is lower than that of the embedded MWs. This facilitates the propagation of light inside the encapsulated higher refractive index MWs, leading to the facile development of waveguides. Importantly, we substantially enhance the light transmission within the MWs by leveraging the plasmon resonance effects due to the presence of silver nanoparticles spontaneously generated owing to the silver iodide phosphate glass composition. Employing this innovative approach, we have successfully engineered waveguide devices incorporating either one or two MWs. Remarkably, the dual MW devices are capable of transmitting light of different colors and in multipath direction, rendering the developed waveguides outstanding candidates for extending the functionalities of diverse photonic and optoelectronic circuits, as well as in intelligent signaling applications in smart glass technologies. |
Author | Cheruvathoor Poulose, Aby Zbořil, Radek Stratakis, Emmanuel Dragosli, Foteini Bakandritsos, Aristides Kašlík, Josef Konidakis, Ioannis |
AuthorAffiliation | VŠB-Technical University of Ostrava Foundation for Research and Technology-Hellas (FORTH) Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN) Institute of Electronic Structure and Laser (IESL) Nanotechnology Centre, Centre of Energy and Environmental Technologies |
AuthorAffiliation_xml | – name: Foundation for Research and Technology-Hellas (FORTH) – name: Nanotechnology Centre, Centre of Energy and Environmental Technologies – name: VŠB-Technical University of Ostrava – name: Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN) – name: Institute of Electronic Structure and Laser (IESL) |
Author_xml | – sequence: 1 givenname: Ioannis orcidid: 0000-0002-2600-2245 surname: Konidakis fullname: Konidakis, Ioannis email: ikonid@iesl.forth.gr organization: Foundation for Research and Technology-Hellas (FORTH) – sequence: 2 givenname: Foteini surname: Dragosli fullname: Dragosli, Foteini organization: Foundation for Research and Technology-Hellas (FORTH) – sequence: 3 givenname: Aby orcidid: 0000-0002-4547-3931 surname: Cheruvathoor Poulose fullname: Cheruvathoor Poulose, Aby organization: Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN) – sequence: 4 givenname: Josef orcidid: 0000-0002-0916-9780 surname: Kašlík fullname: Kašlík, Josef organization: Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN) – sequence: 5 givenname: Aristides orcidid: 0000-0003-4411-9348 surname: Bakandritsos fullname: Bakandritsos, Aristides organization: VŠB-Technical University of Ostrava – sequence: 6 givenname: Radek orcidid: 0000-0002-3147-2196 surname: Zbořil fullname: Zbořil, Radek organization: VŠB-Technical University of Ostrava – sequence: 7 givenname: Emmanuel orcidid: 0000-0002-1908-8618 surname: Stratakis fullname: Stratakis, Emmanuel email: stratak@iesl.forth.gr organization: Foundation for Research and Technology-Hellas (FORTH) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39206346$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rHSEUxSWkJGmSbZfFZSm81-s4H89VKSFNCy80i5YsRZ07bwwzOlUnof99Tec1pIXgQtHfOVfOeU0OnXdIyBsGawYF-6BMVH5clwag4M0BOSmahq3EpqoOn52PyXmMdwDAAQTU1RE55qKAmpf1CelufEwjDsm6Hb10Rk1xHlSy3lHf0atBxUivrQn-wQaMtPOBXs-ZnlTq6dbu-kRv1T3uZts-OjzY1FtHb3ofp14lXBwwnpFXnRoinu_3U_Lj8-X3iy-r7berrxeftitVFnVaoVGVRqZ0qxtQ2rQGqoZzaBnCRmvciMYIVtSV4XVd1q3QqKE1RkHLmwoLfko-Lr7TrEdsDboU1CCnYEcVfkmvrPz3xdle7vy9ZIyXm5JBdni3dwj-54wxydFGg8OgHPo5Sg5CNHmJMqNvnw97mvI33QysFyDnF2PA7glhIB8blEuDct9gFpT_CYxNf9rIn7XDy7L3iyzfyzs_B5czfgn-De4ksqE |
CitedBy_id | crossref_primary_10_3390_nano14221782 crossref_primary_10_1016_j_optmat_2025_116952 crossref_primary_10_3390_jcs9030116 crossref_primary_10_1016_j_apmt_2024_102428 |
Cites_doi | 10.1038/s41566-019-0519-y 10.1364/OL.34.003433 10.1039/D0NR03254A 10.3390/ma7085735 10.1002/lpor.201500061 10.1016/j.jmat.2022.12.006 10.1038/s41598-020-72899-3 10.1038/s41598-017-03939-8 10.1117/1.AP.3.2.024002 10.1016/j.solener.2016.10.023 10.1038/srep10391 10.1364/AO.37.002242 10.1038/s41467-022-31607-7 10.7452/lapl.201110101 10.3390/app11115222 10.1021/acsami.9b16059 10.1063/1.2936961 10.1016/S0040-6090(03)00310-9 10.3390/s90907398 10.1039/c3cp54846e 10.1038/srep04572 10.1038/srep43917 10.1063/1.1631753 10.1063/1.1489477 10.1002/lpor.200810050 10.1002/lpor.202200767 10.1364/AO.31.006133 10.3390/app7090940 10.1016/j.jlumin.2022.119252 10.1117/1.OE.53.7.071819 10.1002/lpor.202000455 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Published by American Chemical Society 2024 The Authors. Published by American Chemical Society. 2024 The Authors. Published by American Chemical Society 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society – notice: 2024 The Authors. Published by American Chemical Society. – notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1021/acsaom.4c00237 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2771-9855 |
EndPage | 1643 |
ExternalDocumentID | PMC11348410 39206346 10_1021_acsaom_4c00237 c63177883 |
Genre | Journal Article |
GroupedDBID | ABQRX ACS ALMA_UNASSIGNED_HOLDINGS BAANH CUPRZ EBS GGK VF5 VG9 AAYXX ABBLG ABJNI ABLBI CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-a426t-eca5be1abdb70abcdc057330d1e08bbe897c91265c36646d9beb0dcca0d375e23 |
IEDL.DBID | ACS |
ISSN | 2771-9855 |
IngestDate | Thu Aug 21 18:32:04 EDT 2025 Fri Jul 11 09:52:34 EDT 2025 Wed Feb 19 02:04:43 EST 2025 Tue Jul 01 03:07:57 EDT 2025 Thu Apr 24 22:57:11 EDT 2025 Mon Aug 26 10:26:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | postglass melting encapsulation phosphate glass silver nanoparticles multipath waveguides glass microwires |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2024 The Authors. Published by American Chemical Society. Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a426t-eca5be1abdb70abcdc057330d1e08bbe897c91265c36646d9beb0dcca0d375e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2600-2245 0000-0002-3147-2196 0000-0002-4547-3931 0000-0002-1908-8618 0000-0002-0916-9780 0000-0003-4411-9348 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11348410 |
PMID | 39206346 |
PQID | 3099797994 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11348410 proquest_miscellaneous_3099797994 pubmed_primary_39206346 crossref_primary_10_1021_acsaom_4c00237 crossref_citationtrail_10_1021_acsaom_4c00237 acs_journals_10_1021_acsaom_4c00237 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-23 |
PublicationDateYYYYMMDD | 2024-08-23 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied optical materials |
PublicationTitleAlternate | ACS Appl. Opt. Mater |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Barnoski M. K. (ref28/cit28) 1981 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref1/cit1 doi: 10.1038/s41566-019-0519-y – ident: ref7/cit7 doi: 10.1364/OL.34.003433 – ident: ref24/cit24 doi: 10.1039/D0NR03254A – ident: ref27/cit27 doi: 10.3390/ma7085735 – ident: ref23/cit23 doi: 10.1002/lpor.201500061 – ident: ref26/cit26 doi: 10.1016/j.jmat.2022.12.006 – ident: ref25/cit25 doi: 10.1038/s41598-020-72899-3 – ident: ref11/cit11 doi: 10.1038/s41598-017-03939-8 – ident: ref2/cit2 doi: 10.1117/1.AP.3.2.024002 – ident: ref31/cit31 doi: 10.1016/j.solener.2016.10.023 – ident: ref9/cit9 doi: 10.1038/srep10391 – ident: ref17/cit17 doi: 10.1364/AO.37.002242 – ident: ref4/cit4 doi: 10.1038/s41467-022-31607-7 – ident: ref14/cit14 doi: 10.7452/lapl.201110101 – ident: ref21/cit21 doi: 10.3390/app11115222 – ident: ref32/cit32 doi: 10.1021/acsami.9b16059 – ident: ref20/cit20 doi: 10.1063/1.2936961 – ident: ref13/cit13 doi: 10.1016/S0040-6090(03)00310-9 – ident: ref15/cit15 doi: 10.3390/s90907398 – ident: ref30/cit30 doi: 10.1039/c3cp54846e – ident: ref10/cit10 doi: 10.1038/srep04572 – ident: ref29/cit29 doi: 10.1038/srep43917 – ident: ref18/cit18 doi: 10.1063/1.1631753 – ident: ref19/cit19 doi: 10.1063/1.1489477 – ident: ref22/cit22 doi: 10.1002/lpor.200810050 – ident: ref5/cit5 doi: 10.1002/lpor.202200767 – ident: ref16/cit16 doi: 10.1364/AO.31.006133 – volume-title: Fundamentals of Optical Fiber Communications year: 1981 ident: ref28/cit28 – ident: ref8/cit8 doi: 10.3390/app7090940 – ident: ref6/cit6 doi: 10.1016/j.jlumin.2022.119252 – ident: ref12/cit12 doi: 10.1117/1.OE.53.7.071819 – ident: ref3/cit3 doi: 10.1002/lpor.202000455 |
SSID | ssj0003009065 |
Score | 2.3055208 |
Snippet | Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information... Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1636 |
Title | Postmelting Encapsulation of Glass Microwires for Multipath Light Waveguiding within Phosphate Glasses |
URI | http://dx.doi.org/10.1021/acsaom.4c00237 https://www.ncbi.nlm.nih.gov/pubmed/39206346 https://www.proquest.com/docview/3099797994 https://pubmed.ncbi.nlm.nih.gov/PMC11348410 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELZaeqGH0pY-AqUyKhInp37tw0eEoKgqqFJBcFuNH0uiwi7qJj3w6_HsbgIhQu3ZI0u2P2s-z4y_IWTHCWEBRMJ87oHpCGFmErAMfKlcaXgcwzjk8Ul6dKa_XyQX9_GOxxl8Kb6Ca6C-HmqH7iV7Tl7INGIMSdD-r3k0RUWqwNu-kTLLBDN5kswUGpemQD_kmkU_tEQuH9dIPnA6h2udAlLTahVircnv4XRih-52Wcnxn-t5TV71zJPudVB5Q56F6i15-UCPcJ2U2Lr3OlxhKTQ9qBzEJ3RXK0frkn5Dok2PsYIPBY4bGvkubT_wYltj-gOf-fQc_obL6Rg9IsUY77iiP0d1czOKnLabITTvyNnhwen-EesbMTCIDnzCgoPEBgHW24yDdd61Morci8Bza0NuMmeETBOn0lSn3thguY_Y4F5lSZDqPVmp6ip8JBSc9FzrAOC1hlJZ49KIB66DMbqUbkC-xA0q-ovUFG2OXIqi27Wi37UBYbPDK1yvZY4tNa6etN-d2990Kh5PWm7PsFDEi4bZE6hCPW0KhX-MMQmqB-RDh435XJFkRqqn0wHJF1AzN0AR78WRajxqxbyFUDrXgm_818I3yaqMrAqD2lJ9IiuTP9OwFVnRxH5uL8QdKHIMqQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5Remh7oO-yfbpqpZ682InzOiIE3ba7CKmgcov8SncFJIjscuDXdybJpiwIqb3Go5HtjDWfZ8bfAHy2UhqtZcRd6jRXaMI8i7Th2hWhLTKBYxSHnOzHoyP1_Tg6XoOt5VsYnESNmuomif-XXUBu4TddnQ2VJS-T3IP7iEQC6tWwvfOzD6qEiBhE0z4ySBLJszSKlkSNt1SQO7L1qju6hTFvlkpe8z17j-Ggn3VTcnIyXMzN0F7dIHT8j2U9gY0Oh7Lt1nCewpovn8Gja-yEz6GgRr5n_pQKo9luaTVeqNvKOVYV7CvBbjahej6iO64Zol_WPOelJsdsTJd-9ktf-t-LGflHRhHfWckOplV9PkWE22rw9Qs42ts93Bnxri0D1-jO59xbHRkvtXEmEdpYZxtSReGkF6kxPs0Sm8kgjmwYxyp2mfFGOLQU4cIk8kH4EtbLqvSbwLQNnFDKa-2U0kVoMhujdQjls0wVgR3AJ9ygvDtWdd5kzAOZt7uWd7s2AL78h7ntmM2pwcbpnfJfevnzltPjTsmPS5PI8dhRLkWXvlrUeUgvjiklqgbwqjWRXhdCTgR-Kh5AumI8vQBReq-OlLNpQ-0tZahSJcXrf1r4B3gwOpyM8_G3_R9v4GGAeIvC3UH4FtbnFwv_DvHS3LxvzsgfNYEVCg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BkRB94D6W0wgknrLYsXP4sSpdCrRVJVrRt8hX2FXbZEV2eeDXM5Nko26rSvAajyzbGWs-z_ENwHsnhDVGJJHPvYkUqnCkE2Mj40vpSs1xjPyQ-wfp7rH6epKc9HXcVAuDi2hwpqYN4tOtnvuyZxgQH_G7qc_HypGlyW7CLYrZUb-Gre3vg2NFImrgbQvJOMtEpPMkWZE1XpmCTJJr1k3SFZx5OV3ygv2Z3IOjYeVt2snpeLmwY_fnEqnjf27tPtzt8Sjb6hToAdwI1UPYvMBS-AhKauh7Hs4oQZrtVM7gw7rLoGN1yT4T_Gb7lNdHtMcNQxTM2rJeanbM9ujxz36Y3-HnckZ2kpHnd1axw2ndzKeIdLsZQvMYjic7R9u7Ud-eITJo1hdRcCaxQRjrbcaNdd615Irci8Bza0OuM6dFnCZOpqlKvbbBco8aw73MkhDLJ7BR1VV4Bsy42HOlgjFeKVNKq12KWsJV0FqVsRvBOzygor9eTdFGzmNRdKdW9Kc2gmj1HwvXM5xTo42za-U_DPLzjtvjWsm3K7Uo8PpRTMVUoV42haTKYwqNqhE87dRkmAuhJwJAlY4gX1OgQYCovddHqtm0pfgWQqpcCf78nzb-Bm4ffpoUe18Ovr2AOzHCLvJ6x_IlbCx-LcMrhE0L-7q9Jn8B-L8XjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Postmelting+Encapsulation+of+Glass+Microwires+for+Multipath+Light+Waveguiding+within+Phosphate+Glasses&rft.jtitle=ACS+applied+optical+materials&rft.au=Konidakis%2C+Ioannis&rft.au=Dragosli%2C+Foteini&rft.au=Cheruvathoor+Poulose%2C+Aby&rft.au=Ka%C5%A1l%C3%ADk%2C+Josef&rft.date=2024-08-23&rft.pub=American+Chemical+Society&rft.eissn=2771-9855&rft.volume=2&rft.issue=8&rft.spage=1636&rft.epage=1643&rft_id=info:doi/10.1021%2Facsaom.4c00237&rft.externalDocID=PMC11348410 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9855&client=summon |