Postmelting Encapsulation of Glass Microwires for Multipath Light Waveguiding within Phosphate Glasses

Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information processing, light generation, imaging, data storage, and sensing platforms. Up to date, the fabrication of glass waveguides relies mainly on dem...

Full description

Saved in:
Bibliographic Details
Published inACS applied optical materials Vol. 2; no. 8; pp. 1636 - 1643
Main Authors Konidakis, Ioannis, Dragosli, Foteini, Cheruvathoor Poulose, Aby, Kašlík, Josef, Bakandritsos, Aristides, Zbořil, Radek, Stratakis, Emmanuel
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.08.2024
Subjects
Online AccessGet full text
ISSN2771-9855
2771-9855
DOI10.1021/acsaom.4c00237

Cover

Loading…
Abstract Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information processing, light generation, imaging, data storage, and sensing platforms. Up to date, the fabrication of glass waveguides relies mainly on demanding chemical processes or on the employment of expensive ultrafast laser equipment. In this work, we demonstrate an advanced, simple, low-temperature, postmelting encapsulation procedure for the development of glass waveguides. Specifically, silver iodide phosphate glass microwires (MWs) are drawn from splat-quenched glasses. These MWs are then incorporated in a controlled manner within transparent silver phosphate glass matrices. The judicious selection of glass compositions ensures that the refractive index of the host phosphate glass is lower than that of the embedded MWs. This facilitates the propagation of light inside the encapsulated higher refractive index MWs, leading to the facile development of waveguides. Importantly, we substantially enhance the light transmission within the MWs by leveraging the plasmon resonance effects due to the presence of silver nanoparticles spontaneously generated owing to the silver iodide phosphate glass composition. Employing this innovative approach, we have successfully engineered waveguide devices incorporating either one or two MWs. Remarkably, the dual MW devices are capable of transmitting light of different colors and in multipath direction, rendering the developed waveguides outstanding candidates for extending the functionalities of diverse photonic and optoelectronic circuits, as well as in intelligent signaling applications in smart glass technologies.
AbstractList Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information processing, light generation, imaging, data storage, and sensing platforms. Up to date, the fabrication of glass waveguides relies mainly on demanding chemical processes or on the employment of expensive ultrafast laser equipment. In this work, we demonstrate an advanced, simple, low-temperature, postmelting encapsulation procedure for the development of glass waveguides. Specifically, silver iodide phosphate glass microwires (MWs) are drawn from splat-quenched glasses. These MWs are then incorporated in a controlled manner within transparent silver phosphate glass matrices. The judicious selection of glass compositions ensures that the refractive index of the host phosphate glass is lower than that of the embedded MWs. This facilitates the propagation of light inside the encapsulated higher refractive index MWs, leading to the facile development of waveguides. Importantly, we substantially enhance the light transmission within the MWs by leveraging the plasmon resonance effects due to the presence of silver nanoparticles spontaneously generated owing to the silver iodide phosphate glass composition. Employing this innovative approach, we have successfully engineered waveguide devices incorporating either one or two MWs. Remarkably, the dual MW devices are capable of transmitting light of different colors and in multipath direction, rendering the developed waveguides outstanding candidates for extending the functionalities of diverse photonic and optoelectronic circuits, as well as in intelligent signaling applications in smart glass technologies.
Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information processing, light generation, imaging, data storage, and sensing platforms. Up to date, the fabrication of glass waveguides relies mainly on demanding chemical processes or on the employment of expensive ultrafast laser equipment. In this work, we demonstrate an advanced, simple, low-temperature, postmelting encapsulation procedure for the development of glass waveguides. Specifically, silver iodide phosphate glass microwires (MWs) are drawn from splat-quenched glasses. These MWs are then incorporated in a controlled manner within transparent silver phosphate glass matrices. The judicious selection of glass compositions ensures that the refractive index of the host phosphate glass is lower than that of the embedded MWs. This facilitates the propagation of light inside the encapsulated higher refractive index MWs, leading to the facile development of waveguides. Importantly, we substantially enhance the light transmission within the MWs by leveraging the plasmon resonance effects due to the presence of silver nanoparticles spontaneously generated owing to the silver iodide phosphate glass composition. Employing this innovative approach, we have successfully engineered waveguide devices incorporating either one or two MWs. Remarkably, the dual MW devices are capable of transmitting light of different colors and in multipath direction, rendering the developed waveguides outstanding candidates for extending the functionalities of diverse photonic and optoelectronic circuits, as well as in intelligent signaling applications in smart glass technologies.
Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information processing, light generation, imaging, data storage, and sensing platforms. Up to date, the fabrication of glass waveguides relies mainly on demanding chemical processes or on the employment of expensive ultrafast laser equipment. In this work, we demonstrate an advanced, simple, low-temperature, postmelting encapsulation procedure for the development of glass waveguides. Specifically, silver iodide phosphate glass microwires (MWs) are drawn from splat-quenched glasses. These MWs are then incorporated in a controlled manner within transparent silver phosphate glass matrices. The judicious selection of glass compositions ensures that the refractive index of the host phosphate glass is lower than that of the embedded MWs. This facilitates the propagation of light inside the encapsulated higher refractive index MWs, leading to the facile development of waveguides. Importantly, we substantially enhance the light transmission within the MWs by leveraging the plasmon resonance effects due to the presence of silver nanoparticles spontaneously generated owing to the silver iodide phosphate glass composition. Employing this innovative approach, we have successfully engineered waveguide devices incorporating either one or two MWs. Remarkably, the dual MW devices are capable of transmitting light of different colors and in multipath direction, rendering the developed waveguides outstanding candidates for extending the functionalities of diverse photonic and optoelectronic circuits, as well as in intelligent signaling applications in smart glass technologies.Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information processing, light generation, imaging, data storage, and sensing platforms. Up to date, the fabrication of glass waveguides relies mainly on demanding chemical processes or on the employment of expensive ultrafast laser equipment. In this work, we demonstrate an advanced, simple, low-temperature, postmelting encapsulation procedure for the development of glass waveguides. Specifically, silver iodide phosphate glass microwires (MWs) are drawn from splat-quenched glasses. These MWs are then incorporated in a controlled manner within transparent silver phosphate glass matrices. The judicious selection of glass compositions ensures that the refractive index of the host phosphate glass is lower than that of the embedded MWs. This facilitates the propagation of light inside the encapsulated higher refractive index MWs, leading to the facile development of waveguides. Importantly, we substantially enhance the light transmission within the MWs by leveraging the plasmon resonance effects due to the presence of silver nanoparticles spontaneously generated owing to the silver iodide phosphate glass composition. Employing this innovative approach, we have successfully engineered waveguide devices incorporating either one or two MWs. Remarkably, the dual MW devices are capable of transmitting light of different colors and in multipath direction, rendering the developed waveguides outstanding candidates for extending the functionalities of diverse photonic and optoelectronic circuits, as well as in intelligent signaling applications in smart glass technologies.
Author Cheruvathoor Poulose, Aby
Zbořil, Radek
Stratakis, Emmanuel
Dragosli, Foteini
Bakandritsos, Aristides
Kašlík, Josef
Konidakis, Ioannis
AuthorAffiliation VŠB-Technical University of Ostrava
Foundation for Research and Technology-Hellas (FORTH)
Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)
Institute of Electronic Structure and Laser (IESL)
Nanotechnology Centre, Centre of Energy and Environmental Technologies
AuthorAffiliation_xml – name: Foundation for Research and Technology-Hellas (FORTH)
– name: Nanotechnology Centre, Centre of Energy and Environmental Technologies
– name: VŠB-Technical University of Ostrava
– name: Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)
– name: Institute of Electronic Structure and Laser (IESL)
Author_xml – sequence: 1
  givenname: Ioannis
  orcidid: 0000-0002-2600-2245
  surname: Konidakis
  fullname: Konidakis, Ioannis
  email: ikonid@iesl.forth.gr
  organization: Foundation for Research and Technology-Hellas (FORTH)
– sequence: 2
  givenname: Foteini
  surname: Dragosli
  fullname: Dragosli, Foteini
  organization: Foundation for Research and Technology-Hellas (FORTH)
– sequence: 3
  givenname: Aby
  orcidid: 0000-0002-4547-3931
  surname: Cheruvathoor Poulose
  fullname: Cheruvathoor Poulose, Aby
  organization: Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)
– sequence: 4
  givenname: Josef
  orcidid: 0000-0002-0916-9780
  surname: Kašlík
  fullname: Kašlík, Josef
  organization: Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN)
– sequence: 5
  givenname: Aristides
  orcidid: 0000-0003-4411-9348
  surname: Bakandritsos
  fullname: Bakandritsos, Aristides
  organization: VŠB-Technical University of Ostrava
– sequence: 6
  givenname: Radek
  orcidid: 0000-0002-3147-2196
  surname: Zbořil
  fullname: Zbořil, Radek
  organization: VŠB-Technical University of Ostrava
– sequence: 7
  givenname: Emmanuel
  orcidid: 0000-0002-1908-8618
  surname: Stratakis
  fullname: Stratakis, Emmanuel
  email: stratak@iesl.forth.gr
  organization: Foundation for Research and Technology-Hellas (FORTH)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39206346$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rHSEUxSWkJGmSbZfFZSm81-s4H89VKSFNCy80i5YsRZ07bwwzOlUnof99Tec1pIXgQtHfOVfOeU0OnXdIyBsGawYF-6BMVH5clwag4M0BOSmahq3EpqoOn52PyXmMdwDAAQTU1RE55qKAmpf1CelufEwjDsm6Hb10Rk1xHlSy3lHf0atBxUivrQn-wQaMtPOBXs-ZnlTq6dbu-kRv1T3uZts-OjzY1FtHb3ofp14lXBwwnpFXnRoinu_3U_Lj8-X3iy-r7berrxeftitVFnVaoVGVRqZ0qxtQ2rQGqoZzaBnCRmvciMYIVtSV4XVd1q3QqKE1RkHLmwoLfko-Lr7TrEdsDboU1CCnYEcVfkmvrPz3xdle7vy9ZIyXm5JBdni3dwj-54wxydFGg8OgHPo5Sg5CNHmJMqNvnw97mvI33QysFyDnF2PA7glhIB8blEuDct9gFpT_CYxNf9rIn7XDy7L3iyzfyzs_B5czfgn-De4ksqE
CitedBy_id crossref_primary_10_3390_nano14221782
crossref_primary_10_1016_j_optmat_2025_116952
crossref_primary_10_3390_jcs9030116
crossref_primary_10_1016_j_apmt_2024_102428
Cites_doi 10.1038/s41566-019-0519-y
10.1364/OL.34.003433
10.1039/D0NR03254A
10.3390/ma7085735
10.1002/lpor.201500061
10.1016/j.jmat.2022.12.006
10.1038/s41598-020-72899-3
10.1038/s41598-017-03939-8
10.1117/1.AP.3.2.024002
10.1016/j.solener.2016.10.023
10.1038/srep10391
10.1364/AO.37.002242
10.1038/s41467-022-31607-7
10.7452/lapl.201110101
10.3390/app11115222
10.1021/acsami.9b16059
10.1063/1.2936961
10.1016/S0040-6090(03)00310-9
10.3390/s90907398
10.1039/c3cp54846e
10.1038/srep04572
10.1038/srep43917
10.1063/1.1631753
10.1063/1.1489477
10.1002/lpor.200810050
10.1002/lpor.202200767
10.1364/AO.31.006133
10.3390/app7090940
10.1016/j.jlumin.2022.119252
10.1117/1.OE.53.7.071819
10.1002/lpor.202000455
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society.
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society.
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1021/acsaom.4c00237
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2771-9855
EndPage 1643
ExternalDocumentID PMC11348410
39206346
10_1021_acsaom_4c00237
c63177883
Genre Journal Article
GroupedDBID ABQRX
ACS
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
EBS
GGK
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a426t-eca5be1abdb70abcdc057330d1e08bbe897c91265c36646d9beb0dcca0d375e23
IEDL.DBID ACS
ISSN 2771-9855
IngestDate Thu Aug 21 18:32:04 EDT 2025
Fri Jul 11 09:52:34 EDT 2025
Wed Feb 19 02:04:43 EST 2025
Tue Jul 01 03:07:57 EDT 2025
Thu Apr 24 22:57:11 EDT 2025
Mon Aug 26 10:26:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords postglass melting encapsulation
phosphate glass
silver nanoparticles
multipath waveguides
glass microwires
Language English
License https://creativecommons.org/licenses/by/4.0
2024 The Authors. Published by American Chemical Society.
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a426t-eca5be1abdb70abcdc057330d1e08bbe897c91265c36646d9beb0dcca0d375e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2600-2245
0000-0002-3147-2196
0000-0002-4547-3931
0000-0002-1908-8618
0000-0002-0916-9780
0000-0003-4411-9348
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11348410
PMID 39206346
PQID 3099797994
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11348410
proquest_miscellaneous_3099797994
pubmed_primary_39206346
crossref_primary_10_1021_acsaom_4c00237
crossref_citationtrail_10_1021_acsaom_4c00237
acs_journals_10_1021_acsaom_4c00237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-23
PublicationDateYYYYMMDD 2024-08-23
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied optical materials
PublicationTitleAlternate ACS Appl. Opt. Mater
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Barnoski M. K. (ref28/cit28) 1981
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref1/cit1
  doi: 10.1038/s41566-019-0519-y
– ident: ref7/cit7
  doi: 10.1364/OL.34.003433
– ident: ref24/cit24
  doi: 10.1039/D0NR03254A
– ident: ref27/cit27
  doi: 10.3390/ma7085735
– ident: ref23/cit23
  doi: 10.1002/lpor.201500061
– ident: ref26/cit26
  doi: 10.1016/j.jmat.2022.12.006
– ident: ref25/cit25
  doi: 10.1038/s41598-020-72899-3
– ident: ref11/cit11
  doi: 10.1038/s41598-017-03939-8
– ident: ref2/cit2
  doi: 10.1117/1.AP.3.2.024002
– ident: ref31/cit31
  doi: 10.1016/j.solener.2016.10.023
– ident: ref9/cit9
  doi: 10.1038/srep10391
– ident: ref17/cit17
  doi: 10.1364/AO.37.002242
– ident: ref4/cit4
  doi: 10.1038/s41467-022-31607-7
– ident: ref14/cit14
  doi: 10.7452/lapl.201110101
– ident: ref21/cit21
  doi: 10.3390/app11115222
– ident: ref32/cit32
  doi: 10.1021/acsami.9b16059
– ident: ref20/cit20
  doi: 10.1063/1.2936961
– ident: ref13/cit13
  doi: 10.1016/S0040-6090(03)00310-9
– ident: ref15/cit15
  doi: 10.3390/s90907398
– ident: ref30/cit30
  doi: 10.1039/c3cp54846e
– ident: ref10/cit10
  doi: 10.1038/srep04572
– ident: ref29/cit29
  doi: 10.1038/srep43917
– ident: ref18/cit18
  doi: 10.1063/1.1631753
– ident: ref19/cit19
  doi: 10.1063/1.1489477
– ident: ref22/cit22
  doi: 10.1002/lpor.200810050
– ident: ref5/cit5
  doi: 10.1002/lpor.202200767
– ident: ref16/cit16
  doi: 10.1364/AO.31.006133
– volume-title: Fundamentals of Optical Fiber Communications
  year: 1981
  ident: ref28/cit28
– ident: ref8/cit8
  doi: 10.3390/app7090940
– ident: ref6/cit6
  doi: 10.1016/j.jlumin.2022.119252
– ident: ref12/cit12
  doi: 10.1117/1.OE.53.7.071819
– ident: ref3/cit3
  doi: 10.1002/lpor.202000455
SSID ssj0003009065
Score 2.3055208
Snippet Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information...
Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1636
Title Postmelting Encapsulation of Glass Microwires for Multipath Light Waveguiding within Phosphate Glasses
URI http://dx.doi.org/10.1021/acsaom.4c00237
https://www.ncbi.nlm.nih.gov/pubmed/39206346
https://www.proquest.com/docview/3099797994
https://pubmed.ncbi.nlm.nih.gov/PMC11348410
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELZaeqGH0pY-AqUyKhInp37tw0eEoKgqqFJBcFuNH0uiwi7qJj3w6_HsbgIhQu3ZI0u2P2s-z4y_IWTHCWEBRMJ87oHpCGFmErAMfKlcaXgcwzjk8Ul6dKa_XyQX9_GOxxl8Kb6Ca6C-HmqH7iV7Tl7INGIMSdD-r3k0RUWqwNu-kTLLBDN5kswUGpemQD_kmkU_tEQuH9dIPnA6h2udAlLTahVircnv4XRih-52Wcnxn-t5TV71zJPudVB5Q56F6i15-UCPcJ2U2Lr3OlxhKTQ9qBzEJ3RXK0frkn5Dok2PsYIPBY4bGvkubT_wYltj-gOf-fQc_obL6Rg9IsUY77iiP0d1czOKnLabITTvyNnhwen-EesbMTCIDnzCgoPEBgHW24yDdd61Morci8Bza0NuMmeETBOn0lSn3thguY_Y4F5lSZDqPVmp6ip8JBSc9FzrAOC1hlJZ49KIB66DMbqUbkC-xA0q-ovUFG2OXIqi27Wi37UBYbPDK1yvZY4tNa6etN-d2990Kh5PWm7PsFDEi4bZE6hCPW0KhX-MMQmqB-RDh435XJFkRqqn0wHJF1AzN0AR78WRajxqxbyFUDrXgm_818I3yaqMrAqD2lJ9IiuTP9OwFVnRxH5uL8QdKHIMqQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5Remh7oO-yfbpqpZ682InzOiIE3ba7CKmgcov8SncFJIjscuDXdybJpiwIqb3Go5HtjDWfZ8bfAHy2UhqtZcRd6jRXaMI8i7Th2hWhLTKBYxSHnOzHoyP1_Tg6XoOt5VsYnESNmuomif-XXUBu4TddnQ2VJS-T3IP7iEQC6tWwvfOzD6qEiBhE0z4ySBLJszSKlkSNt1SQO7L1qju6hTFvlkpe8z17j-Ggn3VTcnIyXMzN0F7dIHT8j2U9gY0Oh7Lt1nCewpovn8Gja-yEz6GgRr5n_pQKo9luaTVeqNvKOVYV7CvBbjahej6iO64Zol_WPOelJsdsTJd-9ktf-t-LGflHRhHfWckOplV9PkWE22rw9Qs42ts93Bnxri0D1-jO59xbHRkvtXEmEdpYZxtSReGkF6kxPs0Sm8kgjmwYxyp2mfFGOLQU4cIk8kH4EtbLqvSbwLQNnFDKa-2U0kVoMhujdQjls0wVgR3AJ9ygvDtWdd5kzAOZt7uWd7s2AL78h7ntmM2pwcbpnfJfevnzltPjTsmPS5PI8dhRLkWXvlrUeUgvjiklqgbwqjWRXhdCTgR-Kh5AumI8vQBReq-OlLNpQ-0tZahSJcXrf1r4B3gwOpyM8_G3_R9v4GGAeIvC3UH4FtbnFwv_DvHS3LxvzsgfNYEVCg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BkRB94D6W0wgknrLYsXP4sSpdCrRVJVrRt8hX2FXbZEV2eeDXM5Nko26rSvAajyzbGWs-z_ENwHsnhDVGJJHPvYkUqnCkE2Mj40vpSs1xjPyQ-wfp7rH6epKc9HXcVAuDi2hwpqYN4tOtnvuyZxgQH_G7qc_HypGlyW7CLYrZUb-Gre3vg2NFImrgbQvJOMtEpPMkWZE1XpmCTJJr1k3SFZx5OV3ygv2Z3IOjYeVt2snpeLmwY_fnEqnjf27tPtzt8Sjb6hToAdwI1UPYvMBS-AhKauh7Hs4oQZrtVM7gw7rLoGN1yT4T_Gb7lNdHtMcNQxTM2rJeanbM9ujxz36Y3-HnckZ2kpHnd1axw2ndzKeIdLsZQvMYjic7R9u7Ud-eITJo1hdRcCaxQRjrbcaNdd615Irci8Bza0OuM6dFnCZOpqlKvbbBco8aw73MkhDLJ7BR1VV4Bsy42HOlgjFeKVNKq12KWsJV0FqVsRvBOzygor9eTdFGzmNRdKdW9Kc2gmj1HwvXM5xTo42za-U_DPLzjtvjWsm3K7Uo8PpRTMVUoV42haTKYwqNqhE87dRkmAuhJwJAlY4gX1OgQYCovddHqtm0pfgWQqpcCf78nzb-Bm4ffpoUe18Ovr2AOzHCLvJ6x_IlbCx-LcMrhE0L-7q9Jn8B-L8XjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Postmelting+Encapsulation+of+Glass+Microwires+for+Multipath+Light+Waveguiding+within+Phosphate+Glasses&rft.jtitle=ACS+applied+optical+materials&rft.au=Konidakis%2C+Ioannis&rft.au=Dragosli%2C+Foteini&rft.au=Cheruvathoor+Poulose%2C+Aby&rft.au=Ka%C5%A1l%C3%ADk%2C+Josef&rft.date=2024-08-23&rft.pub=American+Chemical+Society&rft.eissn=2771-9855&rft.volume=2&rft.issue=8&rft.spage=1636&rft.epage=1643&rft_id=info:doi/10.1021%2Facsaom.4c00237&rft.externalDocID=PMC11348410
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9855&client=summon