Drug Delivery Systems for Localized Cancer Combination Therapy

With over 2 million cancer cases and over 600,000 cancer-associated deaths predicted in the U.S. for 2022, this life-debilitating disease continuously impacts the lives of people across the nation every day. Therapeutic treatment options for cancer have historically involved chemotherapies to eradic...

Full description

Saved in:
Bibliographic Details
Published inACS applied bio materials Vol. 6; no. 3; pp. 934 - 950
Main Authors Woodring, Ryan N., Gurysh, Elizabeth G., Bachelder, Eric M., Ainslie, Kristy M.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With over 2 million cancer cases and over 600,000 cancer-associated deaths predicted in the U.S. for 2022, this life-debilitating disease continuously impacts the lives of people across the nation every day. Therapeutic treatment options for cancer have historically involved chemotherapies to eradicate tumors with cytotoxic mechanisms which can negatively affect the efficacy versus toxicity ratio of treatment. With a need for more directed and therapeutically active options, targeted small-molecule inhibitors and immunotherapies have since emerged to mitigate treatment-associated toxicities. However, aggressive tumors can employ a wide range of defense mechanisms to evade monotherapy treatment altogether, resulting in the recurrence of therapeutically resistant tumors. Therefore, many clinical routines have included combination therapy in which anticancer agents are combined to provide a synergistic attack on tumors. Even with this approach, maximizing the efficacy of cancer treatment is contingent upon the dose of drug that reaches the site of the tumor, so often therapy is administered at the site of a tumor via localized delivery platforms. Commonly used platforms for localized drug delivery include polymeric wafers, nanofibrous scaffolds, and hydrogels where drug combinations can be loaded and delivered synchronously. Attaining synergistic activity from these localized systems is dependent on proper material selection and fabrication methods. Herein, we describe these important considerations for enhancing the efficacy of cancer combination therapy through biodegradable, localized delivery systems.
AbstractList With over 2 million cancer cases and over 600,000 cancer-associated deaths predicted in the U.S. for 2022, this life-debilitating disease continuously impacts the lives of people across the nation every day. Therapeutic treatment options for cancer have historically involved chemotherapies to eradicate tumors with cytotoxic mechanisms which can negatively affect the efficacy versus toxicity ratio of treatment. With a need for more directed and therapeutically active options, targeted small-molecule inhibitors and immunotherapies have since emerged to mitigate treatment-associated toxicities. However, aggressive tumors can employ a wide range of defense mechanisms to evade monotherapy treatment altogether, resulting in the recurrence of therapeutically resistant tumors. Therefore, many clinical routines have included combination therapy in which anticancer agents are combined to provide a synergistic attack on tumors. Even with this approach, maximizing the efficacy of cancer treatment is contingent upon the dose of drug that reaches the site of the tumor, so often therapy is administered at the site of a tumor via localized delivery platforms. Commonly used platforms for localized drug delivery include polymeric wafers, nanofibrous scaffolds, and hydrogels where drug combinations can be loaded and delivered synchronously. Attaining synergistic activity from these localized systems is dependent on proper material selection and fabrication methods. Herein, we describe these important considerations for enhancing the efficacy of cancer combination therapy through biodegradable, localized delivery systems.With over 2 million cancer cases and over 600,000 cancer-associated deaths predicted in the U.S. for 2022, this life-debilitating disease continuously impacts the lives of people across the nation every day. Therapeutic treatment options for cancer have historically involved chemotherapies to eradicate tumors with cytotoxic mechanisms which can negatively affect the efficacy versus toxicity ratio of treatment. With a need for more directed and therapeutically active options, targeted small-molecule inhibitors and immunotherapies have since emerged to mitigate treatment-associated toxicities. However, aggressive tumors can employ a wide range of defense mechanisms to evade monotherapy treatment altogether, resulting in the recurrence of therapeutically resistant tumors. Therefore, many clinical routines have included combination therapy in which anticancer agents are combined to provide a synergistic attack on tumors. Even with this approach, maximizing the efficacy of cancer treatment is contingent upon the dose of drug that reaches the site of the tumor, so often therapy is administered at the site of a tumor via localized delivery platforms. Commonly used platforms for localized drug delivery include polymeric wafers, nanofibrous scaffolds, and hydrogels where drug combinations can be loaded and delivered synchronously. Attaining synergistic activity from these localized systems is dependent on proper material selection and fabrication methods. Herein, we describe these important considerations for enhancing the efficacy of cancer combination therapy through biodegradable, localized delivery systems.
With over 2 million new cancer cases and over 600,000 cancer-associated deaths predicted in the U.S. for 2022, this life-debilitating disease continuously impacts the lives of people across the nation every day. Therapeutic treatment options for cancer have historically involved chemotherapies to eradicate tumors with cytotoxic mechanisms which can negatively affect the efficacy versus toxicity ratio of treatment. With a need for more directed and therapeutically active options, targeted small-molecule inhibitors and immunotherapies have since emerged to mitigate treatment-associated toxicities. However, aggressive tumors can employ a wide range of defense mechanisms to evade monotherapy treatment altogether, resulting in the recurrence of therapeutically resistant tumors. Therefore, many clinical routines have included combination therapy in which anti-cancer agents are combined to provide a synergistic attack on tumors. Even with approach, maximizing the efficacy of cancer treatment is contingent upon the dose of drug that reaches the site of the tumor, so often therapy is administered at the site of a tumor via localized delivery platforms. Commonly used platforms for localized drug delivery includes polymeric wafers, nanofibrous scaffolds, and hydrogels where drug combinations can be loaded and delivered synchronously. Attaining synergistic activity from these localized systems is dependent on proper material selection and fabrication methods. Herein, we describe these important considerations for enhancing the efficacy of cancer combination therapy through biodegradable, localized delivery systems.
With over 2 million cancer cases and over 600,000 cancer-associated deaths predicted in the U.S. for 2022, this life-debilitating disease continuously impacts the lives of people across the nation every day. Therapeutic treatment options for cancer have historically involved chemotherapies to eradicate tumors with cytotoxic mechanisms which can negatively affect the efficacy versus toxicity ratio of treatment. With a need for more directed and therapeutically active options, targeted small-molecule inhibitors and immunotherapies have since emerged to mitigate treatment-associated toxicities. However, aggressive tumors can employ a wide range of defense mechanisms to evade monotherapy treatment altogether, resulting in the recurrence of therapeutically resistant tumors. Therefore, many clinical routines have included combination therapy in which anticancer agents are combined to provide a synergistic attack on tumors. Even with this approach, maximizing the efficacy of cancer treatment is contingent upon the dose of drug that reaches the site of the tumor, so often therapy is administered at the site of a tumor via localized delivery platforms. Commonly used platforms for localized drug delivery include polymeric wafers, nanofibrous scaffolds, and hydrogels where drug combinations can be loaded and delivered synchronously. Attaining synergistic activity from these localized systems is dependent on proper material selection and fabrication methods. Herein, we describe these important considerations for enhancing the efficacy of cancer combination therapy through biodegradable, localized delivery systems.
Author Gurysh, Elizabeth G.
Ainslie, Kristy M.
Woodring, Ryan N.
Bachelder, Eric M.
AuthorAffiliation University of North Carolina at Chapel Hill and North Carolina State University
University of North Carolina at Chapel Hill
Department of Microbiology and Immunology
Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy
Joint Department of Biomedical Engineering
AuthorAffiliation_xml – name: University of North Carolina at Chapel Hill and North Carolina State University
– name: Department of Microbiology and Immunology
– name: Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy
– name: University of North Carolina at Chapel Hill
– name: Joint Department of Biomedical Engineering
– name: 2 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
– name: 1 Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
– name: 3 Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Author_xml – sequence: 1
  givenname: Ryan N.
  orcidid: 0000-0002-7818-8387
  surname: Woodring
  fullname: Woodring, Ryan N.
  organization: Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy
– sequence: 2
  givenname: Elizabeth G.
  orcidid: 0000-0002-2130-5706
  surname: Gurysh
  fullname: Gurysh, Elizabeth G.
  organization: Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy
– sequence: 3
  givenname: Eric M.
  orcidid: 0000-0002-8572-888X
  surname: Bachelder
  fullname: Bachelder, Eric M.
  organization: Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy
– sequence: 4
  givenname: Kristy M.
  orcidid: 0000-0002-1820-8382
  surname: Ainslie
  fullname: Ainslie, Kristy M.
  email: ainsliek@email.unc.edu
  organization: University of North Carolina at Chapel Hill
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36791273$$D View this record in MEDLINE/PubMed
BookMark eNp1UUtrGzEQFiWheTTXHsMeS8GOXrvyXlqCk7YBQw5xz2JWmk0UdiVX2jW4vz5K7ZQk4MtoGH0P-L4TcuCDR0I-MzpllLMLMAmafsoNpbUSH8gxL1U1qSTnB6_2I3KW0iOllFMq2Kz-SI5EpWrGlTgm367ieF9cYefWGDfF3SYN2KeiDbFYBAOd-4u2mIM3GIt56BvnYXDBF8sHjLDafCKHLXQJz3bvKfn943o5_zVZ3P68mV8uJiB5NUxUW4mylo2UpWFUAQMLlkpQVdsAbVVZc8GsRWG5RYWzeiZmJVOSlWBrkFacku9b3dXY9GgN-iFCp1fR9RA3OoDTb3-8e9D3Ya0ZFUpIQbPCl51CDH9GTIPuXTLYdeAxjElzpZSkedYZev7a7L_LS2oZILcAE0NKEVtt3PAvl-ztumyqn_vR2370rp9Mm76jvSjvJXzdEvJdP4Yx-pzxPvATO4mhdQ
CitedBy_id crossref_primary_10_1080_17568919_2025_2463884
crossref_primary_10_2174_0115672018279628231221105210
crossref_primary_10_1016_j_tibtech_2024_01_002
crossref_primary_10_3390_ijms242317099
crossref_primary_10_3892_mmr_2024_13265
crossref_primary_10_1016_j_ejphar_2023_176013
crossref_primary_10_1016_j_biopha_2024_116840
crossref_primary_10_1016_j_sapharm_2025_03_008
crossref_primary_10_1021_acsabm_4c01001
crossref_primary_10_1016_j_jsps_2024_102193
crossref_primary_10_1039_D4AN01082E
crossref_primary_10_1039_D4TB01571A
crossref_primary_10_3389_fphar_2025_1540217
crossref_primary_10_1002_cplu_202400323
crossref_primary_10_1016_j_biopha_2023_115049
crossref_primary_10_1016_j_ijbiomac_2024_134112
crossref_primary_10_1016_j_jcis_2024_08_185
crossref_primary_10_1016_j_ijpharm_2024_125108
crossref_primary_10_1021_acs_molpharmaceut_4c01277
crossref_primary_10_1039_D4NR01494D
crossref_primary_10_1080_17425247_2024_2323211
crossref_primary_10_1016_j_jtemb_2023_127292
crossref_primary_10_1208_s12248_023_00869_4
crossref_primary_10_3389_fbioe_2023_1272850
crossref_primary_10_3390_pharmaceutics15041134
crossref_primary_10_1039_D4MA00122B
crossref_primary_10_1016_j_tranon_2024_102142
crossref_primary_10_1039_D3QM00809F
crossref_primary_10_1016_j_ejmech_2025_117535
crossref_primary_10_1016_j_jddst_2024_106327
Cites_doi 10.3390/ijms222313160
10.1158/0008-5472.CAN-07-6611
10.1016/j.msec.2017.10.003
10.1038/srep33594
10.1038/s41598-020-70026-w
10.1081/DDC-120003853
10.1016/B978-0-12-817909-3.00011-X
10.1016/j.addr.2013.11.009
10.1007/s11864-016-0422-4
10.1038/s41392-021-00572-w
10.3390/molecules27072259
10.3109/02652048.2014.973073
10.3390/polym13040512
10.1039/C7RA00179G
10.1007/s10965-020-02187-1
10.1016/j.colsurfb.2013.08.049
10.1038/pj.2014.129
10.3389/fchem.2019.00675
10.3390/gels8040205
10.3390/cancers12061616
10.1016/j.cej.2021.129192
10.1038/s41467-022-35343-w
10.1007/s13770-017-0075-9
10.1016/j.mtchem.2018.05.002
10.1039/9781788012676-00133
10.1016/j.beth.2020.05.002
10.1007/s40204-018-0095-0
10.1016/j.biomaterials.2011.10.067
10.1016/j.jconrel.2022.09.067
10.1021/acs.jpcb.6b04309
10.3390/cancers12102751
10.1080/1061186X.2016.1184670
10.1016/j.drudis.2016.07.006
10.1016/j.jconrel.2011.11.031
10.1016/j.jconrel.2021.03.033
10.2147/IJN.S47186
10.1002/cplu.201900281
10.1002/3527600035.bpol9012
10.1177/1947601912440575
10.1016/j.ijpharm.2010.01.008
10.15171/apb.2017.064
10.1016/S0168-3659(99)00016-4
10.1080/10717544.2022.2070299
10.1016/j.hpb.2022.08.008
10.1021/acs.chemrev.5b00346
10.3390/polym10121379
10.1016/S1359-6446(03)02874-5
10.1186/s13045-022-01362-9
10.1039/C6RA15017A
10.1016/j.gendis.2022.02.007
10.1002/jbm.b.33469
10.1186/s40824-020-00190-7
10.3390/ph15030371
10.3390/cancers11060752
10.1007/s10924-019-01376-4
10.4103/0019-509X.76623
10.1016/j.plipres.2021.101096
10.1016/j.actbio.2021.05.006
10.1177/0883911512461108
10.1016/j.bioactmat.2021.12.033
10.1021/bm200373p
10.1021/acs.biomac.5b01255
10.1016/j.carbpol.2005.09.023
10.1007/s42765-022-00198-9
10.3390/pharmaceutics14030652
10.3390/polym3031377
10.1039/C8BM01246F
10.18632/oncotarget.16723
10.3390/molecules24030603
10.3389/fcell.2021.694363
10.3390/polym14050983
10.1016/j.jconrel.2018.12.048
10.1038/natrevmats.2016.71
10.1039/C5NR04831A
10.1016/j.actbio.2020.07.032
10.1016/j.addr.2009.04.010
10.3390/ijms222413516
10.3390/pharmaceutics14091908
10.3390/ma14092460
10.1007/s13346-020-00740-5
10.1002/adma.202202625
10.3390/ijms15033640
10.1016/j.biomaterials.2020.120579
10.3390/cancers13040669
10.1016/j.drudis.2012.05.010
10.1016/j.eursup.2010.08.004
10.1021/acs.biomac.8b00147
10.1016/j.ijbiomac.2021.11.075
10.1016/j.polymertesting.2020.106985
10.1039/D0BM00390E
10.1002/VIW.20200042
10.3389/fbioe.2019.00259
10.1016/j.ccell.2020.09.014
10.1002/wcms.1568
10.1038/s41428-019-0182-7
10.1016/j.apsb.2020.11.013
10.1021/ma00068a006
10.1016/B978-0-323-46143-6.00027-0
10.1023/A:1016035229961
10.1016/j.cej.2018.01.010
10.1016/j.msec.2019.110070
10.1038/s41598-020-76123-0
10.1021/acs.biomac.8b01644
10.1016/j.progpolymsci.2011.06.003
10.1007/3-540-58908-2_2
10.1126/sciadv.aaz8985
10.1016/j.biopha.2021.111333
10.1007/s10544-019-0389-6
10.1208/s12248-015-9814-9
10.1016/j.jconrel.2016.06.012
10.3390/polym13193256
10.1016/B978-0-444-53349-4.00240-5
10.1002/wnan.1391
10.1097/CAD.0b013e3283222c12
10.3390/bioengineering8120205
10.1186/s13046-019-1266-0
10.1002/app.31661
10.1016/j.coph.2014.06.007
10.1517/14796694.1.1.7
10.1021/ma0356358
10.1016/S0079-6700(02)00149-1
10.1021/acspolymersau.1c00049
10.1186/s13045-021-01164-5
10.1016/j.compbiomed.2020.103820
10.3390/molecules26113382
10.2174/1574888X12666170612102706
10.1515/pac-2013-0112
10.1016/0021-9797(87)90242-6
10.2165/00003088-200241060-00002
10.1016/j.ijpharm.2009.09.023
10.1016/j.ejpb.2020.12.005
10.1016/j.biomaterials.2014.02.029
10.1016/j.jconrel.2020.04.028
10.3389/fimmu.2021.832942
10.1016/j.addr.2021.113957
10.3389/fbioe.2022.855013
10.1002/smll.201804397
10.1039/C4RA05001K
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/acsabm.2c00973
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-6422
EndPage 950
ExternalDocumentID PMC10373430
36791273
10_1021_acsabm_2c00973
e45878325
Genre Journal Article
Review
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA257009
GroupedDBID 53G
ABFRP
ABQRX
ABUCX
ACS
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a426t-7f63594b445c107a1adad04a76fba0f759231dde3d2de7e89838517415ad9a4d3
IEDL.DBID ACS
ISSN 2576-6422
IngestDate Thu Aug 21 18:34:45 EDT 2025
Fri Jul 11 00:00:00 EDT 2025
Mon Jul 21 05:23:11 EDT 2025
Tue Jul 01 04:25:46 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Wed Mar 22 06:43:50 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Localized Drug Delivery
Combination Therapy
Polymer
Scaffold
Hydrogel
Wafer
Cancer
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a426t-7f63594b445c107a1adad04a76fba0f759231dde3d2de7e89838517415ad9a4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7818-8387
0000-0002-8572-888X
0000-0002-1820-8382
0000-0002-2130-5706
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10373430
PMID 36791273
PQID 2777402779
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10373430
proquest_miscellaneous_2777402779
pubmed_primary_36791273
crossref_citationtrail_10_1021_acsabm_2c00973
crossref_primary_10_1021_acsabm_2c00973
acs_journals_10_1021_acsabm_2c00973
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-20
PublicationDateYYYYMMDD 2023-03-20
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied bio materials
PublicationTitleAlternate ACS Appl. Bio Mater
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
Prabaharan M. (ref77/cit77) 2012
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref113/cit113
ref71/cit71
ref117/cit117
ref48/cit48
ref118/cit118
ref74/cit74
Murthy N. (ref69/cit69) 2012
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
Khair-ul-Bariyah S. (ref31/cit31) 2015; 24
ref107/cit107
ref120/cit120
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
Moul J. W. (ref26/cit26) 2001; 21
ref124/cit124
ref64/cit64
ref126/cit126
ref600/cit600
ref54/cit54
ref6/cit6
ref18/cit18
ref136/cit136
ref137/cit137
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref132/cit132
ref91/cit91
Ventola C. L. (ref109/cit109) 2017; 42
ref55/cit55
ref144/cit144
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref140/cit140
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref59/cit59
ref85/cit85
ref500/cit500
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
Bryant D. D. (ref24/cit24) 1987; 79
ref82/cit82
Cohen M. H. (ref5/cit5) 2002; 8
ref143/cit143
ref53/cit53
ref145/cit145
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref141/cit141
Matsumoto A. (ref98/cit98) 1995
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref138/cit138
Food & Drug Association (ref20/cit20) 2020
ref79/cit79
ref139/cit139
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
Soni V. (ref68/cit68) 2019
ref134/cit134
ref135/cit135
ref40/cit40
ref94/cit94
ref130/cit130
ref131/cit131
ref146/cit146
ref142/cit142
ref73/cit73
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.3390/ijms222313160
– ident: ref2/cit2
  doi: 10.1158/0008-5472.CAN-07-6611
– ident: ref83/cit83
  doi: 10.1016/j.msec.2017.10.003
– ident: ref130/cit130
  doi: 10.1038/srep33594
– ident: ref145/cit145
  doi: 10.1038/s41598-020-70026-w
– ident: ref44/cit44
  doi: 10.1081/DDC-120003853
– start-page: 401
  volume-title: Basic Fundamentals of Drug Delivery
  year: 2019
  ident: ref68/cit68
  doi: 10.1016/B978-0-12-817909-3.00011-X
– ident: ref125/cit125
  doi: 10.1016/j.addr.2013.11.009
– ident: ref73/cit73
  doi: 10.1007/s11864-016-0422-4
– ident: ref6/cit6
  doi: 10.1038/s41392-021-00572-w
– ident: ref7/cit7
  doi: 10.3390/molecules27072259
– ident: ref50/cit50
  doi: 10.3109/02652048.2014.973073
– ident: ref133/cit133
  doi: 10.3390/polym13040512
– volume: 8
  start-page: 935
  issue: 5
  year: 2002
  ident: ref5/cit5
  publication-title: Clin. Cancer Res.
– ident: ref84/cit84
  doi: 10.1039/C7RA00179G
– ident: ref55/cit55
  doi: 10.1007/s10965-020-02187-1
– ident: ref99/cit99
  doi: 10.1016/j.colsurfb.2013.08.049
– ident: ref67/cit67
  doi: 10.1038/pj.2014.129
– ident: ref90/cit90
  doi: 10.3389/fchem.2019.00675
– ident: ref95/cit95
  doi: 10.3390/gels8040205
– ident: ref105/cit105
  doi: 10.3390/cancers12061616
– ident: ref110/cit110
  doi: 10.1016/j.cej.2021.129192
– ident: ref143/cit143
  doi: 10.1038/s41467-022-35343-w
– ident: ref35/cit35
  doi: 10.1007/s13770-017-0075-9
– ident: ref76/cit76
  doi: 10.1016/j.mtchem.2018.05.002
– ident: ref116/cit116
  doi: 10.1039/9781788012676-00133
– ident: ref141/cit141
  doi: 10.1016/j.beth.2020.05.002
– ident: ref45/cit45
  doi: 10.1007/s40204-018-0095-0
– ident: ref97/cit97
  doi: 10.1016/j.biomaterials.2011.10.067
– ident: ref142/cit142
  doi: 10.1016/j.jconrel.2022.09.067
– ident: ref47/cit47
  doi: 10.1021/acs.jpcb.6b04309
– ident: ref4/cit4
  doi: 10.3390/cancers12102751
– ident: ref48/cit48
  doi: 10.1080/1061186X.2016.1184670
– ident: ref89/cit89
  doi: 10.1016/j.drudis.2016.07.006
– ident: ref17/cit17
  doi: 10.1016/j.jconrel.2011.11.031
– ident: ref86/cit86
  doi: 10.1016/j.jconrel.2021.03.033
– ident: ref33/cit33
  doi: 10.2147/IJN.S47186
– ident: ref79/cit79
  doi: 10.1002/cplu.201900281
– ident: ref59/cit59
  doi: 10.1002/3527600035.bpol9012
– ident: ref137/cit137
  doi: 10.1177/1947601912440575
– ident: ref75/cit75
  doi: 10.1016/j.ijpharm.2010.01.008
– ident: ref113/cit113
  doi: 10.15171/apb.2017.064
– ident: ref49/cit49
  doi: 10.1016/S0168-3659(99)00016-4
– ident: ref91/cit91
  doi: 10.1080/10717544.2022.2070299
– ident: ref25/cit25
  doi: 10.1016/j.hpb.2022.08.008
– ident: ref71/cit71
  doi: 10.1021/acs.chemrev.5b00346
– ident: ref22/cit22
  doi: 10.3390/polym10121379
– ident: ref128/cit128
  doi: 10.1016/S1359-6446(03)02874-5
– ident: ref13/cit13
  doi: 10.1186/s13045-022-01362-9
– ident: ref63/cit63
  doi: 10.1039/C6RA15017A
– ident: ref1/cit1
  doi: 10.1016/j.gendis.2022.02.007
– ident: ref60/cit60
  doi: 10.1002/jbm.b.33469
– ident: ref64/cit64
  doi: 10.1186/s40824-020-00190-7
– ident: ref115/cit115
  doi: 10.3390/ph15030371
– ident: ref500/cit500
  doi: 10.3390/cancers11060752
– ident: ref92/cit92
  doi: 10.1007/s10924-019-01376-4
– ident: ref30/cit30
  doi: 10.4103/0019-509X.76623
– ident: ref126/cit126
  doi: 10.1016/j.plipres.2021.101096
– ident: ref129/cit129
  doi: 10.1016/j.actbio.2021.05.006
– ident: ref65/cit65
  doi: 10.1177/0883911512461108
– ident: ref121/cit121
  doi: 10.1016/j.bioactmat.2021.12.033
– ident: ref38/cit38
  doi: 10.1021/bm200373p
– ident: ref39/cit39
  doi: 10.1021/acs.biomac.5b01255
– ident: ref42/cit42
  doi: 10.1016/j.carbpol.2005.09.023
– ident: ref88/cit88
  doi: 10.1007/s42765-022-00198-9
– ident: ref107/cit107
  doi: 10.3390/pharmaceutics14030652
– ident: ref58/cit58
  doi: 10.3390/polym3031377
– ident: ref114/cit114
  doi: 10.1039/C8BM01246F
– ident: ref16/cit16
  doi: 10.18632/oncotarget.16723
– ident: ref112/cit112
  doi: 10.3390/molecules24030603
– ident: ref3/cit3
  doi: 10.3389/fcell.2021.694363
– ident: ref34/cit34
  doi: 10.3390/polym14050983
– ident: ref72/cit72
  doi: 10.1016/j.jconrel.2018.12.048
– ident: ref102/cit102
  doi: 10.1038/natrevmats.2016.71
– ident: ref119/cit119
  doi: 10.1039/C5NR04831A
– ident: ref120/cit120
  doi: 10.1016/j.actbio.2020.07.032
– ident: ref118/cit118
  doi: 10.1016/j.addr.2009.04.010
– ident: ref111/cit111
  doi: 10.3390/ijms222413516
– ident: ref18/cit18
  doi: 10.3390/pharmaceutics14091908
– ident: ref53/cit53
  doi: 10.3390/ma14092460
– ident: ref138/cit138
  doi: 10.1007/s13346-020-00740-5
– ident: ref122/cit122
  doi: 10.1002/adma.202202625
– ident: ref57/cit57
  doi: 10.3390/ijms15033640
– ident: ref127/cit127
  doi: 10.1016/j.biomaterials.2020.120579
– ident: ref15/cit15
  doi: 10.3390/cancers13040669
– ident: ref123/cit123
  doi: 10.1016/j.drudis.2012.05.010
– ident: ref27/cit27
  doi: 10.1016/j.eursup.2010.08.004
– ident: ref36/cit36
  doi: 10.1021/acs.biomac.8b00147
– volume: 21
  start-page: 385
  issue: 6
  year: 2001
  ident: ref26/cit26
  publication-title: Urol. Nurs.
– ident: ref94/cit94
  doi: 10.1016/j.ijbiomac.2021.11.075
– ident: ref46/cit46
  doi: 10.1016/j.polymertesting.2020.106985
– ident: ref87/cit87
  doi: 10.1039/D0BM00390E
– ident: ref132/cit132
  doi: 10.1002/VIW.20200042
– volume-title: Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process
  year: 2020
  ident: ref20/cit20
– ident: ref52/cit52
  doi: 10.3389/fbioe.2019.00259
– volume: 79
  start-page: 305
  issue: 3
  year: 1987
  ident: ref24/cit24
  publication-title: J. Natl. Med. Assoc
– ident: ref144/cit144
  doi: 10.1016/j.ccell.2020.09.014
– ident: ref139/cit139
  doi: 10.1002/wcms.1568
– ident: ref56/cit56
  doi: 10.1038/s41428-019-0182-7
– ident: ref600/cit600
  doi: 10.1016/j.apsb.2020.11.013
– ident: ref12/cit12
  doi: 10.3390/molecules27072259
– ident: ref74/cit74
  doi: 10.1021/ma00068a006
– ident: ref136/cit136
  doi: 10.1016/B978-0-323-46143-6.00027-0
– ident: ref28/cit28
  doi: 10.1023/A:1016035229961
– ident: ref51/cit51
  doi: 10.1016/j.cej.2018.01.010
– ident: ref40/cit40
  doi: 10.1021/acs.biomac.5b01255
– ident: ref70/cit70
  doi: 10.1016/j.msec.2019.110070
– ident: ref124/cit124
  doi: 10.1016/j.biomaterials.2020.120579
– ident: ref146/cit146
  doi: 10.1038/s41598-020-76123-0
– ident: ref37/cit37
  doi: 10.1021/acs.biomac.8b01644
– ident: ref43/cit43
  doi: 10.1016/j.progpolymsci.2011.06.003
– start-page: 41
  volume-title: Synthesis and Photosynthesis
  year: 1995
  ident: ref98/cit98
  doi: 10.1007/3-540-58908-2_2
– ident: ref104/cit104
  doi: 10.1126/sciadv.aaz8985
– ident: ref108/cit108
  doi: 10.1016/j.biopha.2021.111333
– ident: ref19/cit19
  doi: 10.1007/s10544-019-0389-6
– ident: ref135/cit135
  doi: 10.1208/s12248-015-9814-9
– ident: ref11/cit11
  doi: 10.1016/j.jconrel.2016.06.012
– start-page: 241
  volume-title: Biomedical Applications of Polymeric Nanofibers
  year: 2012
  ident: ref77/cit77
– ident: ref41/cit41
  doi: 10.3390/polym13193256
– start-page: 547
  volume-title: Polymer Science: A Comprehensive Reference
  year: 2012
  ident: ref69/cit69
  doi: 10.1016/B978-0-444-53349-4.00240-5
– ident: ref80/cit80
  doi: 10.1002/wnan.1391
– ident: ref117/cit117
  doi: 10.1097/CAD.0b013e3283222c12
– ident: ref21/cit21
  doi: 10.3390/bioengineering8120205
– ident: ref9/cit9
  doi: 10.1186/s13046-019-1266-0
– ident: ref96/cit96
  doi: 10.1002/app.31661
– ident: ref8/cit8
  doi: 10.1016/j.coph.2014.06.007
– ident: ref106/cit106
  doi: 10.1517/14796694.1.1.7
– ident: ref61/cit61
  doi: 10.1021/ma0356358
– ident: ref62/cit62
  doi: 10.1016/S0079-6700(02)00149-1
– ident: ref93/cit93
  doi: 10.1021/acspolymersau.1c00049
– ident: ref14/cit14
  doi: 10.1186/s13045-021-01164-5
– ident: ref140/cit140
  doi: 10.1016/j.compbiomed.2020.103820
– ident: ref10/cit10
  doi: 10.3390/molecules26113382
– ident: ref101/cit101
  doi: 10.2174/1574888X12666170612102706
– volume: 42
  start-page: 452
  issue: 7
  year: 2017
  ident: ref109/cit109
  publication-title: P T
– ident: ref131/cit131
  doi: 10.1515/pac-2013-0112
– volume: 24
  start-page: 024
  year: 2015
  ident: ref31/cit31
  publication-title: International Journal of Research
– ident: ref82/cit82
  doi: 10.1016/0021-9797(87)90242-6
– ident: ref29/cit29
  doi: 10.2165/00003088-200241060-00002
– ident: ref54/cit54
  doi: 10.1016/j.ijpharm.2009.09.023
– ident: ref23/cit23
  doi: 10.1016/j.ejpb.2020.12.005
– ident: ref66/cit66
  doi: 10.1016/j.biomaterials.2014.02.029
– ident: ref78/cit78
  doi: 10.1016/j.jconrel.2020.04.028
– ident: ref103/cit103
  doi: 10.3389/fimmu.2021.832942
– ident: ref134/cit134
  doi: 10.1016/j.addr.2021.113957
– ident: ref100/cit100
  doi: 10.3389/fbioe.2022.855013
– ident: ref85/cit85
  doi: 10.1002/smll.201804397
– ident: ref81/cit81
  doi: 10.1039/C4RA05001K
SSID ssj0002003189
Score 2.3983788
SecondaryResourceType review_article
Snippet With over 2 million cancer cases and over 600,000 cancer-associated deaths predicted in the U.S. for 2022, this life-debilitating disease continuously impacts...
With over 2 million new cancer cases and over 600,000 cancer-associated deaths predicted in the U.S. for 2022, this life-debilitating disease continuously...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 934
SubjectTerms Antineoplastic Agents - pharmacology
Combined Modality Therapy
Drug Delivery Systems
Humans
Neoplasms - drug therapy
Neoplasms - pathology
Polymers
Title Drug Delivery Systems for Localized Cancer Combination Therapy
URI http://dx.doi.org/10.1021/acsabm.2c00973
https://www.ncbi.nlm.nih.gov/pubmed/36791273
https://www.proquest.com/docview/2777402779
https://pubmed.ncbi.nlm.nih.gov/PMC10373430
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI54XODA-zFeCgKJU0ebpk1zQUIbaELAhU3iVqVJChNQ0Lod4Ndjt93YQwjOdSMltuPPtfuZkFOpE5taKRyhJXO44h74HBNOEFjhMuX5qphacncftjr85jF4_PneMV3BZ9650rlK3upMF8wy82SRheDBCIIaD6OvKawwTsS6CKAdANVsyNA4swTGIZ1PxqEZcDndIzkWdK5XSwakvOAqxF6Tl_qgn9T11yyT45_7WSMrFfKkl6WprJM5m22Q5TE-wk1y0ewNnmjTvmKzxiet2Mwp4Fp6izGv-2UNbaCd9ChcJJBUF3ql7ZKaYIt0rq_ajZZTDVhwFATmviNSgBuSJ5wHGtJA5SmjjMuVCNNEuakIEP3B_ecbZqywkYz8CJmtvUAZqbjxt8lC9p7ZXUIjzVJpIDlJAaEZFiSRUmFidGq9FFJEUSMnsPG4cpA8LmrfzIvL04ir06gRZ6iUWFcc5Tgq4_VX-bOR_EfJzvGr5PFQxzE4EFZFVGbfB3nMBCBgrGTLGtkpdT5ayw-F9Bi-HU1Yw0gAybknn2Td54KkG_-_9Lnv7v1r4_tkCefYY3Mbcw_IQr83sIeAdvrJUWHo3zUu-hU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5Remg50BePpS11VaSesiSOs44vldBStG0XVIlF4hY5tgMICGize4Bf3xknm7IgJLgmE8v2jD2fM-NvALaUyV3hlAykUTwQWkS45rgMksTJkOso1r5qyf5Bb3Akfh8nxwuwPbsLg52osKXKB_H_swtE2_hM55ddbjzBzAt4iUiEk0nv9A_bnyrc2yhBXsLRAWJrPiNqfNAEuSNTzbujBxjzfqrkHd-z9wb-tr32KSfn3ekk75rbe4SOzxjWW1hucCjbqQ3nHSy48j0s3WEn_AA_dsfTE7brLih144Y13OYMUS4bkgc8u3WW9clqxgy3FTxiey2zUU1UsAJHez9H_UHQlFsINLrpSSALBB9K5EIkBg-FOtJW21Bo2StyHRYyISyIu2FsuXXSpSqNU-K5jhJtlRY2XoXF8qp068BSwwtl8ahSIF6zPMlTrXu5NYWLCjwwyg58w4FnzXKpMh8J51FWz0bWzEYHgpluMtMwllPhjItH5b-38tc1V8ejkl9nqs5wOVGMRJfualplXCIepri26sBarfq2rbgnVcTp63TOKFoBouqef1OenXrKbrqNGYs43HjSwL_Aq8Fof5gNfx38-QivqcI9pb3x8BMsTsZT9xlx0CTf9Lb_D3sdAoU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VKraQ6Hv5dG6aqWesiSOs44vSGiXFQWKKnWRuEWOHy0qDWizeyi_nhknG7EgpHJNJpYfM57PmfE3AF-UKZ13SkbSKB4JLRK0OS6jLHMy5jpJdaha8v14sH8iDk6z0_YeN92FwU7U2FIdgvhk1ZfWtwwDyTY-1-XfPjeBZOYxPKGYHan17vBn92OFBz0l2EtYOkJ8zRdkjXeaIJdk6mWXdAdn3k6XvOF_xqsw6Xoe0k7-9Oezsm-ubpE6PnBoa_CixaNst1Ggl_DIVa_g-Q2WwtewM5rOf7GRO6cUjn-s5ThniHbZEXnCsytn2ZC0Z8pwe8GjdlhtNmkIC97AyXhvMtyP2rILkUZ3PYukRxCiRClEZvBwqBNttY2FlgNf6tjLjDAh7oqp5dZJl6s8zYnvOsm0VVrY9C2sVBeVew8sN9wri0cWj7jN8qzMtR6U1niXeDw4yh58xoEXrdnURYiI86RoZqNoZ6MH0WJ9CtMyl1MBjfN75b928pcNZ8e9kp8Wy12gWVGsRFfuYl4XXCIupvi26sG7Zvm7ttKBVAmnr_MlxegEiLJ7-U119jtQd9OtzFSk8fp_DfwjPP0xGhdH344PN-AZFbqn7Dceb8LKbDp3WwiHZuWHoP7X1acFCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drug+Delivery+Systems+for+Localized+Cancer+Combination+Therapy&rft.jtitle=ACS+applied+bio+materials&rft.au=Woodring%2C+Ryan+N.&rft.au=Gurysh%2C+Elizabeth+G.&rft.au=Bachelder%2C+Eric+M.&rft.au=Ainslie%2C+Kristy+M.&rft.date=2023-03-20&rft.issn=2576-6422&rft.eissn=2576-6422&rft.volume=6&rft.issue=3&rft.spage=934&rft.epage=950&rft_id=info:doi/10.1021%2Facsabm.2c00973&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsabm_2c00973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon