Review on the Scientific and Technological Breakthroughs in Thermal Emission Engineering
The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded as one of the basic mechanisms of heat transfer, as a fundamental quantum phenomenon of photon production, or as the propagation of electrom...
Saved in:
Published in | ACS applied optical materials Vol. 2; no. 6; pp. 898 - 927 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2771-9855 2771-9855 |
DOI | 10.1021/acsaom.4c00030 |
Cover
Loading…
Abstract | The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded as one of the basic mechanisms of heat transfer, as a fundamental quantum phenomenon of photon production, or as the propagation of electromagnetic waves. However, unlike light emanating from conventional photonic sources, such as lasers or antennas, thermal radiation is characterized for being broadband, omnidirectional, and unpolarized. Due to these features, ultimately tied to its inherently incoherent nature, taming thermal radiation constitutes a challenging issue. Latest advances in the field of nanophotonics have led to a whole set of artificial platforms, ranging from spatially structured materials and, much more recently, to time-modulated media, offering promising avenues for enhancing the control and manipulation of electromagnetic waves, from far- to near-field regimes. Given the ongoing parallelism between the fields of nanophotonics and thermal emission, these recent developments have been harnessed to deal with radiative thermal processes, thereby forming the current basis of thermal emission engineering. In this review, we survey some of the main breakthroughs carried out in this burgeoning research field, from fundamental aspects to theoretical limits, the emergence of effects and phenomena, practical applications, challenges, and future prospects. |
---|---|
AbstractList | The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded as one of the basic mechanisms of heat transfer, as a fundamental quantum phenomenon of photon production, or as the propagation of electromagnetic waves. However, unlike light emanating from conventional photonic sources, such as lasers or antennas, thermal radiation is characterized for being broadband, omnidirectional, and unpolarized. Due to these features, ultimately tied to its inherently incoherent nature, taming thermal radiation constitutes a challenging issue. Latest advances in the field of nanophotonics have led to a whole set of artificial platforms, ranging from spatially structured materials and, much more recently, to time-modulated media, offering promising avenues for enhancing the control and manipulation of electromagnetic waves, from far- to near-field regimes. Given the ongoing parallelism between the fields of nanophotonics and thermal emission, these recent developments have been harnessed to deal with radiative thermal processes, thereby forming the current basis of thermal emission engineering. In this review, we survey some of the main breakthroughs carried out in this burgeoning research field, from fundamental aspects to theoretical limits, the emergence of effects and phenomena, practical applications, challenges, and future prospects. The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded as one of the basic mechanisms of heat transfer, as a fundamental quantum phenomenon of photon production, or as the propagation of electromagnetic waves. However, unlike light emanating from conventional photonic sources, such as lasers or antennas, thermal radiation is characterized for being broadband, omnidirectional, and unpolarized. Due to these features, ultimately tied to its inherently incoherent nature, taming thermal radiation constitutes a challenging issue. Latest advances in the field of nanophotonics have led to a whole set of artificial platforms, ranging from spatially structured materials and, much more recently, to time-modulated media, offering promising avenues for enhancing the control and manipulation of electromagnetic waves, from far- to near-field regimes. Given the ongoing parallelism between the fields of nanophotonics and thermal emission, these recent developments have been harnessed to deal with radiative thermal processes, thereby forming the current basis of thermal emission engineering. In this review, we survey some of the main breakthroughs carried out in this burgeoning research field, from fundamental aspects to theoretical limits, the emergence of effects and phenomena, practical applications, challenges, and future prospects.The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded as one of the basic mechanisms of heat transfer, as a fundamental quantum phenomenon of photon production, or as the propagation of electromagnetic waves. However, unlike light emanating from conventional photonic sources, such as lasers or antennas, thermal radiation is characterized for being broadband, omnidirectional, and unpolarized. Due to these features, ultimately tied to its inherently incoherent nature, taming thermal radiation constitutes a challenging issue. Latest advances in the field of nanophotonics have led to a whole set of artificial platforms, ranging from spatially structured materials and, much more recently, to time-modulated media, offering promising avenues for enhancing the control and manipulation of electromagnetic waves, from far- to near-field regimes. Given the ongoing parallelism between the fields of nanophotonics and thermal emission, these recent developments have been harnessed to deal with radiative thermal processes, thereby forming the current basis of thermal emission engineering. In this review, we survey some of the main breakthroughs carried out in this burgeoning research field, from fundamental aspects to theoretical limits, the emergence of effects and phenomena, practical applications, challenges, and future prospects. The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded as one of the basic mechanisms of heat transfer, as a fundamental quantum phenomenon of photon production, or as the propagation of electromagnetic waves. However, unlike light emanating from conventional photonic sources, such as lasers or antennas, thermal radiation is characterized for being broadband, omnidirectional, and unpolarized. Due to these features, ultimately tied to its inherently incoherent nature, taming thermal radiation constitutes a challenging issue. Latest advances in the field of nanophotonics have led to a whole set of artificial platforms, ranging from spatially structured materials and, much more recently, to time-modulated media, offering promising avenues for enhancing the control and manipulation of electromagnetic waves, from far- to near-field regimes. Given the ongoing parallelism between the fields of nanophotonics and thermal emission, these recent developments have been harnessed to deal with radiative thermal processes, thereby forming the current basis of thermal emission engineering. In this review, we survey some of the main breakthroughs carried out in this burgeoning research field, from fundamental aspects to theoretical limits, the emergence of effects and phenomena, practical applications, challenges, and future prospects. |
Author | Vázquez-Lozano, J. Enrique Liberal, Iñigo |
AuthorAffiliation | Department of Electrical, Electronic and Communications Engineering, Institute of Smart Cities (ISC) |
AuthorAffiliation_xml | – name: Department of Electrical, Electronic and Communications Engineering, Institute of Smart Cities (ISC) |
Author_xml | – sequence: 1 givenname: J. Enrique surname: Vázquez-Lozano fullname: Vázquez-Lozano, J. Enrique email: enrique.vazquez@unavarra.es – sequence: 2 givenname: Iñigo surname: Liberal fullname: Liberal, Iñigo email: inigo.liberal@unavarra.es |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38962569$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UctKxDAUDaL43rqULkWYMY8mbVeiw_gAQdAR3IVMettG20STVvHvjc4oKrhKyD2Pm3O20Kp1FhDaI3hMMCVHSgflunGqMcYMr6BNmmVkVOScr_64b6DdEB4-IbjAgq-jDZYXgnJRbKL7G3gx8Jo4m_QNJLfagO1NZXSibJnMQDfWta42WrXJqQf12DfeDXUTEmOTWQO-i4NpZ0IwUWJqa2MBvLH1DlqrVBtgd3luo7uz6WxyMbq6Pr-cnFyNVEpFP-IlKXRZqVTlwFWVlZkWlOW00HMAocqKCZIBwYJxSEmu55XQKc7njFPBc0rYNjpe6D4N8w5KHdf3qpVP3nTKv0mnjPw9saaRtXuRhFCSFfxD4WCp4N3zAKGX8Tsa2lZZcEOQDGc8w0zQIkL3f5p9u3zlGQHpAqC9C8FDJbXpVR-zid6mlQTLj-bkojm5bC7Sxn9oX8r_Eg4XhPguH9zgbcz4P_A7q5Wrqg |
CitedBy_id | crossref_primary_10_1364_OL_545236 crossref_primary_10_1063_5_0238282 crossref_primary_10_1103_PhysRevB_111_035441 crossref_primary_10_1038_s41598_025_92638_w crossref_primary_10_1063_5_0207377 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126887 crossref_primary_10_1063_5_0223889 |
Cites_doi | 10.1073/pnas.1402036111 10.1364/OPN.27.7.000026 10.1063/1.1666629 10.1088/0268-1242/18/5/303 10.1021/acsphotonics.2c01308 10.1109/MMM.2019.2963606 10.1126/sciadv.aat3163 10.1063/1.4896573 10.1063/1.2963195 10.1017/CBO9780511813993 10.1103/PhysRevB.91.115406 10.1021/acsphotonics.0c00782 10.1364/OE.21.009113 10.1038/ncomms9685 10.1115/1.1497490 10.1038/s41377-023-01119-0 10.1126/science.aac4360 10.1007/BF00688821 10.1063/1.4967384 10.1073/pnas.1701606114 10.1186/s43593-022-00025-z 10.1002/adma.201504525 10.1103/PhysRevLett.127.053603 10.1016/j.joule.2017.07.012 10.1038/ncomms13729 10.1103/PhysRevLett.130.096902 10.1103/PhysRevLett.116.084301 10.2150/jlve.18.2_5 10.1103/PhysRevA.89.050101 10.1088/0004-637X/707/2/916 10.1103/PhysRevD.11.790 10.1109/MAP.2023.3236275 10.1038/s41566-017-0051-x 10.1364/JOSAB.4.000481 10.1103/PhysRevB.95.125404 10.1103/PhysRevLett.118.133605 10.1021/acsphotonics.7b00089 10.1364/OE.21.011482 10.1063/1.4918599 10.1103/PhysRevApplied.11.054020 10.1103/PhysRevMaterials.1.062201 10.3847/1538-3881/aac88b 10.1002/3527608524 10.1063/1.4983679 10.3390/physics2010007 10.1126/science.aae0330 10.1515/nanoph-2020-0425 10.1021/acsnano.8b01645 10.1103/PhysRevLett.110.146103 10.1063/1.4919048 10.1364/JOSAB.30.001580 10.1103/PhysRevApplied.4.014023 10.1021/acsphotonics.9b00440 10.1103/PhysRevA.80.042102 10.1103/PhysRevB.83.201404 10.1126/science.aaq0459 10.1038/s41467-019-11287-6 10.1063/1.4890624 10.1038/s41566-022-01005-y 10.1063/1.4931365 10.1038/s41467-017-02678-8 10.1021/acsphotonics.0c01376 10.1007/978-1-4899-1570-2 10.1063/1.4800233 10.1038/s41467-018-06163-8 10.1038/s41467-019-11598-8 10.1021/nl500693x 10.1364/OL.28.001909 10.1038/s41586-019-1800-4 10.1038/s41377-023-01315-y 10.1103/PhysRevLett.106.094502 10.1119/1.13262 10.1126/science.1186756 10.1038/s41377-018-0038-5 10.1002/adom.201800169 10.1038/s41586-018-0480-9 10.1016/j.photonics.2014.12.005 10.1103/PhysRevB.87.085421 10.1038/s41598-020-60603-4 10.1038/nmat2658 10.1017/CBO9780511794193 10.1007/s00340-010-4096-5 10.1103/PhysRev.166.242 10.1016/j.pquantelec.2007.03.001 10.1007/978-3-642-20288-9 10.1103/PhysRevLett.109.123604 10.1364/OME.443129 10.1364/OPTICA.2.000027 10.1021/nl072369t 10.1103/PhysRevB.92.134202 10.1103/PhysRevLett.120.125501 10.1038/478191a 10.1103/PhysRevLett.107.114302 10.1016/1010-6030(91)87063-2 10.1016/j.mtener.2021.100776 10.1103/PhysRevLett.105.127404 10.1515/nanoph-2023-0754 10.1103/PhysRevA.82.063827 10.1103/PhysRevLett.94.085901 10.1103/PhysRevLett.105.013901 10.1103/PhysRevB.88.054305 10.1103/PhysRevB.92.035419 10.1364/OE.23.0A1120 10.1103/PhysRevA.11.230 10.1002/adom.201600455 10.1016/j.rser.2014.11.101 10.1088/1367-2630/12/3/033028 10.1063/1.4767646 10.1021/acsphotonics.1c00612 10.1103/PhysRevA.102.050203 10.1038/ncomms12900 10.1039/D0NH00609B 10.1103/PhysRevApplied.19.L051002 10.1038/nphoton.2009.188 10.1088/1367-2630/12/6/068002 10.1103/PhysRevE.85.046603 10.1002/adma.201301472 10.1021/nl503236k 10.1002/adom.201701292 10.1021/acsphotonics.8b01031 10.1103/PhysRevLett.99.053906 10.1364/OE.415232 10.1126/science.aac9788 10.1103/PhysRevApplied.6.024014 10.1364/OPTICA.4.000430 10.1007/s00339-009-5203-5 10.1103/PhysRevB.93.165405 10.1103/PhysRevB.79.033101 10.1002/lpor.201900162 10.1126/sciadv.1600499 10.1063/1.3125453 10.1088/1367-2630/11/3/033035 10.1117/1.AP.4.1.014002 10.1103/PhysRev.37.405 10.1103/PhysRevB.84.195459 10.1103/PhysRevB.85.165104 10.1126/science.adf1094 10.1142/S0217732320400131 10.1364/OE.21.014988 10.1063/1.4793650 10.1063/1.1922084 10.1063/1.3478214 10.1103/PhysRevLett.124.077402 10.1103/PhysRevX.8.021008 10.1103/PhysRevB.76.045427 10.1002/andp.19013090310 10.1103/PhysRev.138.B274 10.1063/1.5007712 10.1038/nenergy.2016.68 10.1088/1367-2630/16/6/063011 10.1103/PhysRevLett.109.104301 10.1080/10893950290053321 10.1021/acsphotonics.0c01487 10.1103/PhysRevLett.126.204101 10.1021/nl403653j 10.1016/j.joule.2019.07.010 10.1103/PhysRevLett.123.257401 10.1002/lpor.201700091 10.1002/adem.202000825 10.1051/0004-6361/201834032 10.1039/D3NR02079G 10.1364/OE.25.023356 10.1364/AO.4.001634 10.1103/PhysRevB.4.3303 10.1364/OL.44.001138 10.1021/cr60203a003 10.1103/PhysRevB.101.035408 10.1088/0953-8984/11/35/301 10.1080/15567265.2015.1027836 10.1038/s41567-023-01993-w 10.1038/s41467-020-19790-x 10.1038/nnano.2016.20 10.1103/PhysRevB.63.205404 10.1016/j.optcom.2013.10.042 10.1103/PhysRevB.91.235316 10.1119/1.5034785 10.1038/s41467-016-0013-x 10.1103/PhysRevApplied.11.014026 10.1038/nnano.2008.29 10.1103/PhysRevB.94.045406 10.1038/nature13883 10.1063/1.1526919 10.1103/PhysRevLett.78.5 10.1103/PhysRevB.97.045408 10.1063/5.0134951 10.1103/RevModPhys.20.51 10.1103/PhysRevApplied.20.L061003 10.1039/D2NA00633B 10.1103/PhysRevB.94.125431 10.1103/RevModPhys.84.1 10.1002/adom.201500119 10.1364/OPN.28.9.000034 10.1016/j.jqsrt.2009.05.010 10.1016/j.nanoen.2017.09.054 10.1021/acscentsci.8b00802 10.1103/PhysRevB.85.155422 10.1126/science.abc5381 10.1103/PhysRevA.106.052205 10.1103/PhysRevApplied.11.034056 10.1103/PhysRevLett.112.253601 10.1088/0034-4885/29/1/306 10.1615/AnnualRevHeatTransfer.2020032934 10.1063/1.2938716 10.1038/s41377-020-0296-x 10.1038/s41467-020-15682-2 10.1103/PhysRevB.92.144307 10.1364/OPN.26.7.000048 10.1063/1.4907392 10.1038/ncomms2765 10.1098/rspa.1963.0220 10.1038/s41377-022-00870-0 10.1021/acsphotonics.6b00991 10.1016/B978-0-08-057149-2.50010-2 10.1021/acs.nanolett.9b01234 10.1063/1.3600779 10.1002/aenm.201400334 10.1063/1.5087281 10.1063/1.1397759 10.1038/s41467-021-21752-w 10.1002/adma.201904154 10.1103/PhysRevA.59.4736 10.1364/OE.21.015014 10.1364/OE.21.000A96 10.1364/OL.42.001879 10.1103/PhysRevA.90.012515 10.1209/0295-5075/115/41002 10.1063/1.2906375 10.1073/pnas.1903001116 10.1103/PhysRevLett.105.234301 10.1063/1.4807174 10.1063/1.328187 10.1103/PhysRevX.11.021050 10.1103/PhysRevLett.112.044301 10.1021/acsphotonics.7b00408 10.1103/PhysRevApplied.20.054028 10.1088/1367-2630/11/3/033014 10.1038/s42254-020-0224-2 10.1364/OL.30.002623 10.1063/5.0109763 10.1016/j.solmat.2021.111554 10.1098/rstl.1800.0015 10.1109/PROC.1979.11270 10.1103/PhysRevApplied.12.044048 10.1002/adom.201300163 10.1103/PhysRevB.99.041403 10.1103/PhysRevApplied.18.054067 10.1038/072243d0 10.1103/PhysRevApplied.14.064013 10.1021/acsphotonics.8b00328 10.1063/1.3294606 10.1038/072293d0 10.1103/PhysRevB.94.104301 10.1038/ncomms14479 10.1088/1367-2630/18/1/013034 10.1126/science.1249799 10.1103/PhysRevB.68.245405 10.1063/1.3672809 10.1016/j.jqsrt.2007.08.017 10.1021/acs.nanolett.9b01086 10.1103/PhysRevB.70.125101 10.1364/OME.444308 10.1016/j.jqsrt.2013.01.002 10.1103/PhysRevB.87.205112 10.1021/acs.nanolett.0c04847 10.1002/smll.202100446 10.1038/nphoton.2015.229 10.1016/j.surfrep.2004.12.002 10.1021/acsphotonics.5b00140 10.1103/PhysRevLett.85.1548 10.1038/s41586-020-2717-7 10.1038/s41563-019-0363-y 10.1126/science.aau1217 10.1088/0022-3719/15/18/012 10.2478/v10155-010-0092-x 10.1103/PhysRev.38.2265 10.1038/nphoton.2013.243 10.1021/nl504505t 10.1364/OE.24.015101 10.1103/RevModPhys.71.1233 10.1103/PhysRevLett.108.230403 10.1016/B978-0-12-386944-9.50023-6 10.1103/PhysRevLett.105.113601 10.1103/PhysRevA.84.042102 10.1038/s41566-021-00921-9 10.1016/j.jqsrt.2014.11.013 10.1103/PhysRevLett.106.210404 10.1103/PhysRevApplied.7.044020 10.1063/1.3571442 10.1063/5.0142651 10.1063/5.0047308 10.1103/PhysRevLett.110.177403 10.1038/lsa.2016.194 10.1039/D2CP01070D 10.1063/1.4759055 10.1088/1367-2630/12/6/068001 10.1002/adma.201701275 10.1038/s41586-019-0918-8 10.1063/1.4932958 10.1103/PhysRev.182.1374 10.1021/acsphotonics.8b01585 10.1103/PhysRevB.99.235414 10.1126/science.1133268 10.1038/nnano.2013.286 10.1016/j.joule.2020.06.021 10.1038/s41467-018-06535-0 10.1017/CBO9781139644105 10.1038/nphoton.2017.13 10.1038/s41467-019-09378-5 10.1103/PhysRevB.92.024302 10.1103/PhysRev.32.110 10.1073/pnas.1120149109 10.1103/PhysRevA.94.042114 10.1126/science.aar5191 10.1088/1367-2630/13/6/068001 10.1038/nphoton.2012.146 10.1364/OE.24.029896 10.1021/acs.nanolett.6b03616 10.1016/0030-4018(82)90402-3 10.1002/adom.201600993 10.1103/PhysRevApplied.12.014053 10.1038/s41598-021-01282-7 10.1515/nanoph-2016-0011 10.1364/OE.26.00A729 10.1063/1.4832057 10.1002/adfm.201002436 10.1038/s41534-021-00495-y 10.1039/C6EE01372D 10.1103/PhysRev.86.702 10.1103/PhysRevLett.96.123903 10.1002/adma.202302478 10.1103/PhysRevLett.117.134303 10.1021/acsaem.0c03201 10.1103/PhysRevB.93.081402 10.1063/5.0186406 10.1021/nl903271d 10.1103/PhysRevB.86.115423 10.1103/PhysRevLett.82.1660 10.1002/adma.201701304 10.1021/nl504332t 10.1021/acs.nanolett.1c00550 10.1088/0268-1242/18/5/319 10.1016/j.joule.2018.10.009 10.1364/OE.23.00A299 10.1021/acs.nanolett.5b04090 10.1093/nsr/nwy005 10.1186/1556-276X-6-549 10.1103/PhysRevB.83.241407 10.1038/s41586-022-04473-y 10.1073/pnas.1509453112 10.1103/PhysRevB.90.220301 10.1103/PhysRevB.94.094307 10.1063/1.4931375 10.1021/acsami.1c23401 10.1021/acsphotonics.6b00644 10.1002/er.1607 10.1021/acsphotonics.5b00298 10.1103/PhysRevLett.120.063901 10.1021/acsenergylett.2c01075 10.1364/AO.37.003464 10.1038/nphoton.2011.154 10.1103/PhysRevA.69.022902 10.1364/OE.26.00A777 10.1002/andp.19113411106 10.1103/PhysRevB.81.165119 10.1016/j.progsurf.2013.07.001 10.1016/j.apenergy.2018.12.018 10.1063/1.4896525 10.1103/RevModPhys.79.1291 10.1119/1.10023 10.1103/PhysRevLett.107.045901 10.1021/acsphotonics.1c01350 10.1088/0953-8984/11/2/003 10.1103/PhysRevB.98.235416 10.1038/s41467-020-16197-6 10.1063/1.2010613 10.1364/OE.479367 10.1103/PhysRevB.55.10105 10.1364/OME.8.002312 10.1088/0953-8984/9/47/001 10.1038/srep34746 10.1038/ncomms3630 10.1038/s41566-023-01261-6 10.1364/JOSAB.35.000039 10.1073/pnas.1718264115 10.1002/andp.18601850205 10.1103/PhysRevLett.118.203901 10.1038/nphoton.2011.39 10.1073/pnas.1611924114 10.1021/nl204201g 10.1063/1.4899126 10.1103/PhysRevB.86.220302 10.1002/advs.201500360 10.1063/1.329270 10.1038/nnano.2015.309 10.1103/PhysRevX.9.011043 10.1002/adma.201502023 10.1103/PhysRev.130.2529 10.1103/PhysRevLett.123.120401 10.1063/1.4754616 10.1515/nanoph-2016-0010 10.1038/ncomms4892 10.1515/nanoph-2020-0414 10.1063/1.4904456 10.1063/1.4989522 10.1364/OE.18.00A314 10.1103/PhysRevB.89.245446 10.1103/PhysRevB.84.161413 10.1364/OE.19.014594 10.1016/j.solmat.2021.111556 10.1038/192254a0 10.1364/JOSAA.15.002735 10.1103/PhysRevLett.93.213905 10.1063/1.4825168 10.1063/5.0123232 10.1515/zna-2016-0358 10.1186/s43593-022-00015-1 10.1103/RevModPhys.37.231 10.1364/OE.17.015145 10.1103/PhysRevB.100.035414 10.1073/pnas.1809725115 10.1088/1367-2630/13/6/068002 10.1038/s41565-018-0172-5 10.1038/s41578-021-00283-2 10.1038/ncomms8032 10.1073/pnas.1517363113 10.1126/science.abb0971 10.1364/OE.479257 10.1021/acs.nanolett.1c04288 10.1021/nl204118h 10.1038/s41467-023-40281-2 10.1364/OPTICA.5.000175 10.1103/PhysRevB.92.125418 10.1021/nl3034784 10.1007/BF00901283 10.1038/nphoton.2009.144 10.1021/nl4004283 10.1021/acsphotonics.7b00838 10.1021/acs.nanolett.8b00846 10.1103/PhysRevB.93.155403 10.1103/PhysRevA.100.023830 10.1038/s41377-023-01287-z 10.1364/OME.7.000618 10.1007/978-94-015-8723-5 10.1063/1.4893742 10.1038/ncomms1528 10.1038/ncomms11809 10.1364/OPTICA.2.000893 10.1038/s41566-017-0069-0 10.1103/PhysRevA.83.033810 10.1063/1.4905132 10.1038/nphoton.2013.32 10.1119/1.1904623 10.1103/PhysRevLett.110.163601 10.1103/PhysRevB.72.075127 10.1038/nature16070 10.1063/1.2905286 10.1021/acsphotonics.3c00747 10.1103/PhysRevLett.125.127403 10.1038/nmat4043 10.1038/s41377-019-0158-6 10.1364/OE.27.011537 10.1038/nnano.2014.9 10.1103/PhysRevLett.117.190601 10.1021/acsphotonics.6b01025 10.1364/OE.26.015995 10.1103/PhysRevApplied.16.064022 10.1103/PhysRevB.85.155418 10.1021/nl901208v 10.1073/pnas.1717595115 10.1021/acs.nanolett.7b01422 10.1103/PhysRevB.87.115403 10.1021/acsphotonics.6b00022 10.1103/PhysRevB.95.235428 10.1103/PhysRevB.62.R2243 10.1021/nl402939t 10.1364/OME.1.000466 10.1103/PhysRevApplied.19.034013 10.1103/PhysRev.152.438 10.1109/TAP.2019.2944216 10.3367/UFNe.2016.12.038006 10.1038/s41377-019-0179-1 10.1103/PhysRevB.102.085401 10.1364/OL.44.004203 10.1038/nmat4792 10.1038/416061a 10.1364/OE.377278 10.1103/PhysRev.83.34 10.1103/RevModPhys.88.045003 10.1103/PhysRevE.74.016609 10.1038/072054c0 10.1126/sciadv.ade4203 10.1103/PhysRevX.3.041004 10.1364/OPTICA.1.000032 10.1103/PhysRevD.72.021301 10.1103/PhysRevLett.116.233901 10.1021/acs.nanolett.1c01396 10.1063/1.1736034 10.1364/OE.21.013691 10.1063/1.4941751 10.1093/oso/9780198501770.001.0001 10.1063/1.2834903 10.1021/acsphotonics.7b01223 10.1126/science.abo3324 10.1103/PhysRevLett.117.100402 10.1063/1.2435958 10.1103/PhysRevB.71.073306 10.1103/PhysRevLett.106.230602 10.1103/PhysRevLett.115.204302 10.1109/T-ED.1980.19950 10.1364/OME.5.002721 10.1103/PhysRevLett.115.174301 10.1109/TAP.2019.2944225 10.1038/s41566-020-0600-6 10.1038/s41377-020-0300-5 10.1063/1.1592614 10.1103/PhysRevB.91.134301 10.1038/s41377-022-01044-8 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Published by American Chemical Society 2024 The Authors. Published by American Chemical Society. 2024 The Authors. Published by American Chemical Society 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society – notice: 2024 The Authors. Published by American Chemical Society. – notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1021/acsaom.4c00030 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2771-9855 |
EndPage | 927 |
ExternalDocumentID | PMC11217951 38962569 10_1021_acsaom_4c00030 a420898004 |
Genre | Journal Article Review |
GroupedDBID | ABQRX ACS ALMA_UNASSIGNED_HOLDINGS BAANH CUPRZ EBS GGK VF5 VG9 AAYXX ABBLG ABJNI ABLBI CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-a426t-5d19cdfa4a8e5af7d7c623829cbee6adf3617e10635e418cbf6c408b352658213 |
IEDL.DBID | ACS |
ISSN | 2771-9855 |
IngestDate | Thu Aug 21 18:32:29 EDT 2025 Fri Jul 11 03:45:38 EDT 2025 Wed Feb 19 02:00:50 EST 2025 Tue Jul 01 03:07:56 EDT 2025 Thu Apr 24 23:11:19 EDT 2025 Mon Jul 01 06:34:24 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | nanophotonics far-field quantum theory thermodynamics radiative heat transfer near-field nanostructures thermal radiation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2024 The Authors. Published by American Chemical Society. Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a426t-5d19cdfa4a8e5af7d7c623829cbee6adf3617e10635e418cbf6c408b352658213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11217951 |
PMID | 38962569 |
PQID | 3075703629 |
PQPubID | 23479 |
PageCount | 30 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11217951 proquest_miscellaneous_3075703629 pubmed_primary_38962569 crossref_citationtrail_10_1021_acsaom_4c00030 crossref_primary_10_1021_acsaom_4c00030 acs_journals_10_1021_acsaom_4c00030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-28 |
PublicationDateYYYYMMDD | 2024-06-28 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied optical materials |
PublicationTitleAlternate | ACS Appl. Opt. Mater |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Modest M. F. (ref26/cit26) 2013 ref332/cit332 ref476/cit476 ref406/cit406 ref472/cit472 ref402/cit402 ref185/cit185 ref23/cit23 ref259/cit259 ref181/cit181 ref111/cit111 ref255/cit255 ref399/cit399 ref329/cit329 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref93/cit93 ref251/cit251 ref325/cit325 ref483/cit483 ref321/cit321 ref178/cit178 ref122/cit122 ref61/cit61 Boriskina S. V. (ref117/cit117) 2017; 28 ref126/cit126 ref528/cit528 ref240/cit240 ref384/cit384 ref458/cit458 ref137/cit137 ref380/cit380 ref310/cit310 ref454/cit454 ref318/cit318 ref174/cit174 ref314/cit314 ref170/cit170 ref244/cit244 ref388/cit388 ref80/cit80 ref133/cit133 ref207/cit207 ref450/cit450 ref28/cit28 Novotny L. (ref8/cit8) 2012 ref203/cit203 ref520/cit520 ref461/cit461 ref535/cit535 ref233/cit233 ref148/cit148 ref307/cit307 ref391/cit391 ref55/cit55 ref531/cit531 ref144/cit144 ref303/cit303 ref218/cit218 ref395/cit395 ref469/cit469 ref167/cit167 ref465/cit465 ref539/cit539 ref163/cit163 ref237/cit237 ref66/cit66 ref87/cit87 ref140/cit140 ref214/cit214 ref98/cit98 ref210/cit210 ref222/cit222 ref366/cit366 ref63/cit63 ref295/cit295 ref155/cit155 ref229/cit229 ref156/cit156 ref85/cit85 ref501/cit501 ref509/cit509 ref34/cit34 ref221/cit221 ref292/cit292 ref432/cit432 ref506/cit506 ref361/cit361 ref435/cit435 ref17/cit17 ref219/cit219 ref82/cit82 ref232/cit232 ref306/cit306 ref377/cit377 ref145/cit145 ref166/cit166 ref350/cit350 ref424/cit424 ref491/cit491 ref284/cit284 ref443/cit443 ref358/cit358 ref517/cit517 ref499/cit499 ref211/cit211 ref36/cit36 ref79/cit79 ref317/cit317 ref270/cit270 ref200/cit200 ref344/cit344 ref418/cit418 ref57/cit57 Mahanty J. (ref281/cit281) 1976 ref413/cit413 ref278/cit278 ref134/cit134 ref208/cit208 ref273/cit273 ref347/cit347 ref320/cit320 ref289/cit289 ref15/cit15 ref180/cit180 ref494/cit494 ref58/cit58 ref104/cit104 ref262/cit262 ref421/cit421 ref177/cit177 ref336/cit336 ref123/cit123 ref196/cit196 ref355/cit355 ref429/cit429 ref45/cit45 ref405/cit405 ref477/cit477 ref471/cit471 ref401/cit401 ref52/cit52 ref258/cit258 ref186/cit186 ref116/cit116 ref110/cit110 ref182/cit182 ref328/cit328 ref112/cit112 ref390/cit390 ref536/cit536 ref532/cit532 ref89/cit89 ref460/cit460 ref412/cit412 ref538/cit538 ref96/cit96 ref466/cit466 ref394/cit394 ref191/cit191 ref339/cit339 ref13/cit13 ref193/cit193 ref407/cit407 ref105/cit105 ref335/cit335 ref263/cit263 ref197/cit197 ref90/cit90 ref269/cit269 ref383/cit383 ref527/cit527 ref171/cit171 ref97/cit97 ref101/cit101 ref319/cit319 ref241/cit241 Hecht E. (ref7/cit7) 2002 ref488/cit488 ref346/cit346 ref416/cit416 ref132/cit132 ref91/cit91 ref372/cit372 Boyd R. W. (ref449/cit449) 2019 ref252/cit252 ref12/cit12 ref423/cit423 ref121/cit121 Casimir H. B. G. (ref274/cit274) 1948; 51 ref175/cit175 Dalvit D. (ref276/cit276) 2011 ref357/cit357 ref516/cit516 ref44/cit44 ref427/cit427 ref9/cit9 ref225/cit225 ref296/cit296 ref226/cit226 ref154/cit154 ref439/cit439 ref367/cit367 ref159/cit159 ref92/cit92 ref504/cit504 ref505/cit505 ref290/cit290 ref220/cit220 ref291/cit291 ref438/cit438 ref433/cit433 ref88/cit88 ref362/cit362 ref160/cit160 ref143/cit143 ref302/cit302 ref373/cit373 ref53/cit53 Planck M. (ref243/cit243) 1959 ref149/cit149 ref308/cit308 ref46/cit46 ref236/cit236 Lummer O. (ref248/cit248) 1899; 1 ref49/cit49 ref422/cit422 ref493/cit493 ref356/cit356 ref515/cit515 Greiner W. (ref2/cit2) 1995 ref215/cit215 ref280/cit280 ref428/cit428 ref50/cit50 ref455/cit455 ref313/cit313 ref209/cit209 ref526/cit526 ref138/cit138 ref100/cit100 ref389/cit389 ref247/cit247 ref242/cit242 Chubb D. (ref42/cit42) 2007 ref487/cit487 ref417/cit417 ref340/cit340 ref51/cit51 ref94/cit94 ref204/cit204 ref521/cit521 ref378/cit378 ref537/cit537 ref231/cit231 ref165/cit165 ref324/cit324 ref482/cit482 ref95/cit95 ref192/cit192 ref351/cit351 ref510/cit510 ref47/cit47 ref127/cit127 ref285/cit285 ref444/cit444 Rytov S. M. (ref257/cit257) 1989 ref498/cit498 ref99/cit99 ref470/cit470 ref330/cit330 ref474/cit474 ref404/cit404 ref16/cit16 ref400/cit400 Jackson J. D. (ref5/cit5) 1998 ref187/cit187 ref327/cit327 ref113/cit113 ref183/cit183 ref48/cit48 ref35/cit35 ref481/cit481 ref253/cit253 ref323/cit323 ref120/cit120 ref478/cit478 ref176/cit176 ref67/cit67 ref128/cit128 Milonni P. W. (ref21/cit21) 1994 ref124/cit124 ref54/cit54 ref11/cit11 Vogel W. (ref20/cit20) 2006 ref102/cit102 ref29/cit29 ref86/cit86 ref271/cit271 ref345/cit345 ref489/cit489 ref419/cit419 ref341/cit341 ref485/cit485 ref415/cit415 ref43/cit43 ref279/cit279 Green M. A. (ref38/cit38) 2003 ref275/cit275 ref349/cit349 Loudon R. (ref19/cit19) 2000 ref411/cit411 ref264/cit264 ref338/cit338 ref22/cit22 ref496/cit496 ref260/cit260 ref334/cit334 ref408/cit408 ref492/cit492 ref106/cit106 ref190/cit190 ref198/cit198 ref194/cit194 ref268/cit268 ref153/cit153 ref297/cit297 ref227/cit227 ref150/cit150 ref294/cit294 ref368/cit368 ref224/cit224 ref56/cit56 Stefan J. (ref254/cit254) 1879; 79 ref158/cit158 ref503/cit503 ref59/cit59 ref500/cit500 ref363/cit363 ref437/cit437 ref37/cit37 ref360/cit360 ref60/cit60 ref434/cit434 ref508/cit508 ref147/cit147 ref519/cit519 Il’inskii Y. A. (ref130/cit130) 1994 ref230/cit230 Luque A. (ref39/cit39) 2011 ref304/cit304 ref238/cit238 ref379/cit379 ref164/cit164 ref352/cit352 ref511/cit511 ref213/cit213 ref286/cit286 ref371/cit371 ref445/cit445 ref426/cit426 ref497/cit497 ref78/cit78 ref382/cit382 ref312/cit312 ref456/cit456 ref525/cit525 ref83/cit83 ref139/cit139 ref172/cit172 ref246/cit246 ref385/cit385 ref459/cit459 Scully M. O. (ref18/cit18) 1997 ref14/cit14 ref169/cit169 ref486/cit486 ref522/cit522 ref451/cit451 ref131/cit131 ref205/cit205 ref161/cit161 ref142/cit142 ref216/cit216 ref301/cit301 ref374/cit374 ref533/cit533 ref448/cit448 Kaviany M. (ref25/cit25) 2002 ref235/cit235 ref309/cit309 ref62/cit62 ref393/cit393 ref467/cit467 ref41/cit41 ref84/cit84 ref440/cit440 ref514/cit514 ref331/cit331 ref475/cit475 ref333/cit333 ref473/cit473 ref403/cit403 ref184/cit184 ref114/cit114 ref398/cit398 ref256/cit256 ref77/cit77 ref71/cit71 Levin M. L. (ref115/cit115) 1967 ref188/cit188 ref118/cit118 ref462/cit462 ref534/cit534 ref410/cit410 ref468/cit468 ref396/cit396 ref392/cit392 ref107/cit107 ref337/cit337 ref265/cit265 ref109/cit109 ref261/cit261 ref409/cit409 ref199/cit199 ref530/cit530 ref267/cit267 ref195/cit195 ref64/cit64 ref311/cit311 ref81/cit81a ref81/cit81b ref457/cit457 ref136/cit136 ref453/cit453 ref65/cit65 ref245/cit245 ref315/cit315 ref76/cit76 ref387/cit387 ref32/cit32 ref272/cit272 ref202/cit202 ref168/cit168 ref484/cit484 ref342/cit342 ref206/cit206 ref523/cit523 ref376/cit376 ref287/cit287 ref446/cit446 ref326/cit326 ref322/cit322 ref480/cit480 ref179/cit179 ref33/cit33 ref249/cit249 ref283/cit283 ref442/cit442 ref129/cit129 ref353/cit353 ref512/cit512 ref70/cit70 ref125/cit125 Mandel L. (ref24/cit24) 1995 ref152/cit152 ref298/cit298 ref228/cit228 ref299/cit299 ref293/cit293 ref223/cit223 Mertens K. (ref40/cit40) 2018 ref151/cit151 de la Peña L. (ref464/cit464) 1996 ref157/cit157 Kittel C. (ref1/cit1) 1980 ref502/cit502 ref430/cit430 ref431/cit431 ref31/cit31 ref436/cit436 ref364/cit364 ref365/cit365 ref507/cit507 ref234/cit234 Howell J. R. (ref27/cit27) 2016 ref217/cit217 ref288/cit288 ref447/cit447 ref375/cit375 ref162/cit162 ref495/cit495 Goodman J. W. (ref369/cit369) 1988 ref420/cit420 ref75/cit75 ref141/cit141 ref300/cit300 ref354/cit354 ref513/cit513 ref282/cit282 ref441/cit441 Datas A. (ref3/cit3) 2021 ref529/cit529 ref452/cit452 ref381/cit381 ref173/cit173 ref103/cit103 Schwinger J. (ref6/cit6) 1998 ref72/cit72 ref386/cit386 ref316/cit316 ref343/cit343 ref201/cit201 ref414/cit414 ref277/cit277 ref135/cit135 ref68/cit68 ref348/cit348 ref146/cit146 ref305/cit305 ref463/cit463 ref73/cit73 ref69/cit69 Landau L. D. (ref4/cit4) 1960 ref239/cit239 ref397/cit397 ref250/cit250 ref108/cit108 ref266/cit266 ref425/cit425 ref490/cit490 ref479/cit479 Vázquez-Lozano J. E. (ref524/cit524) 2023; 34 ref30/cit30 ref212/cit212 ref370/cit370 ref359/cit359 ref518/cit518 |
References_xml | – ident: ref83/cit83 doi: 10.1073/pnas.1402036111 – ident: ref235/cit235 doi: 10.1364/OPN.27.7.000026 – ident: ref368/cit368 doi: 10.1063/1.1666629 – ident: ref55/cit55 doi: 10.1088/0268-1242/18/5/303 – ident: ref67/cit67 doi: 10.1021/acsphotonics.2c01308 – ident: ref520/cit520 doi: 10.1109/MMM.2019.2963606 – ident: ref475/cit475 doi: 10.1126/sciadv.aat3163 – ident: ref172/cit172 doi: 10.1063/1.4896573 – ident: ref398/cit398 doi: 10.1063/1.2963195 – volume-title: Quantum Optics year: 1997 ident: ref18/cit18 doi: 10.1017/CBO9780511813993 – ident: ref74/cit74 doi: 10.1103/PhysRevB.91.115406 – ident: ref238/cit238 doi: 10.1021/acsphotonics.0c00782 – ident: ref332/cit332 doi: 10.1364/OE.21.009113 – ident: ref86/cit86 doi: 10.1038/ncomms9685 – volume-title: Principles of Heat Transfer year: 2002 ident: ref25/cit25 doi: 10.1115/1.1497490 – ident: ref110/cit110 doi: 10.1038/s41377-023-01119-0 – ident: ref12/cit12 doi: 10.1126/science.aac4360 – ident: ref62/cit62 doi: 10.1007/BF00688821 – ident: ref413/cit413 doi: 10.1063/1.4967384 – ident: ref79/cit79 doi: 10.1073/pnas.1701606114 – ident: ref357/cit357 doi: 10.1186/s43593-022-00025-z – ident: ref151/cit151 doi: 10.1002/adma.201504525 – ident: ref469/cit469 doi: 10.1103/PhysRevLett.127.053603 – ident: ref122/cit122 doi: 10.1016/j.joule.2017.07.012 – ident: ref104/cit104 doi: 10.1038/ncomms13729 – ident: ref522/cit522 doi: 10.1103/PhysRevLett.130.096902 – ident: ref135/cit135 doi: 10.1103/PhysRevLett.116.084301 – ident: ref370/cit370 doi: 10.2150/jlve.18.2_5 – ident: ref299/cit299 doi: 10.1103/PhysRevA.89.050101 – ident: ref103/cit103 doi: 10.1088/0004-637X/707/2/916 – ident: ref463/cit463 doi: 10.1103/PhysRevD.11.790 – ident: ref521/cit521 doi: 10.1109/MAP.2023.3236275 – ident: ref460/cit460 doi: 10.1038/s41566-017-0051-x – ident: ref320/cit320 doi: 10.1364/JOSAB.4.000481 – ident: ref213/cit213 doi: 10.1103/PhysRevB.95.125404 – ident: ref308/cit308 doi: 10.1103/PhysRevLett.118.133605 – ident: ref114/cit114 doi: 10.1021/acsphotonics.7b00089 – ident: ref331/cit331 doi: 10.1364/OE.21.011482 – ident: ref220/cit220 doi: 10.1063/1.4918599 – ident: ref492/cit492 doi: 10.1103/PhysRevApplied.11.054020 – ident: ref364/cit364 doi: 10.1103/PhysRevMaterials.1.062201 – ident: ref251/cit251 doi: 10.3847/1538-3881/aac88b – volume-title: Quantum Optics year: 2006 ident: ref20/cit20 doi: 10.1002/3527608524 – ident: ref348/cit348 doi: 10.1063/1.4983679 – ident: ref285/cit285 doi: 10.3390/physics2010007 – ident: ref529/cit529 doi: 10.1126/science.aae0330 – ident: ref280/cit280 doi: 10.1515/nanoph-2020-0425 – ident: ref429/cit429 doi: 10.1021/acsnano.8b01645 – ident: ref317/cit317 doi: 10.1103/PhysRevLett.110.146103 – volume: 79 start-page: 391 year: 1879 ident: ref254/cit254 publication-title: Akad. Wissen. – ident: ref420/cit420 doi: 10.1063/1.4919048 – ident: ref153/cit153 doi: 10.1364/JOSAB.30.001580 – ident: ref180/cit180 doi: 10.1103/PhysRevApplied.4.014023 – ident: ref204/cit204 doi: 10.1021/acsphotonics.9b00440 – ident: ref270/cit270 doi: 10.1103/PhysRevA.80.042102 – ident: ref493/cit493 doi: 10.1103/PhysRevB.83.201404 – ident: ref237/cit237 doi: 10.1126/science.aaq0459 – ident: ref434/cit434 doi: 10.1038/s41467-019-11287-6 – ident: ref333/cit333 doi: 10.1063/1.4890624 – ident: ref247/cit247 doi: 10.1038/s41566-022-01005-y – ident: ref85/cit85 doi: 10.1063/1.4931365 – volume-title: Photovoltaics: Fundamentals, Technology, and Practice year: 2018 ident: ref40/cit40 – ident: ref184/cit184 doi: 10.1038/s41467-017-02678-8 – ident: ref137/cit137 doi: 10.1021/acsphotonics.0c01376 – volume-title: Electromagnetic Response of Material Media year: 1994 ident: ref130/cit130 doi: 10.1007/978-1-4899-1570-2 – ident: ref161/cit161 doi: 10.1063/1.4800233 – ident: ref433/cit433 doi: 10.1038/s41467-018-06163-8 – ident: ref482/cit482 doi: 10.1038/s41467-019-11598-8 – ident: ref494/cit494 doi: 10.1021/nl500693x – ident: ref371/cit371 doi: 10.1364/OL.28.001909 – ident: ref273/cit273 doi: 10.1038/s41586-019-1800-4 – ident: ref106/cit106 doi: 10.1038/s41377-023-01315-y – ident: ref288/cit288 doi: 10.1103/PhysRevLett.106.094502 – ident: ref445/cit445 doi: 10.1119/1.13262 – ident: ref11/cit11 doi: 10.1126/science.1186756 – ident: ref500/cit500 doi: 10.1038/s41377-018-0038-5 – ident: ref185/cit185 doi: 10.1002/adom.201800169 – ident: ref437/cit437 doi: 10.1038/s41586-018-0480-9 – ident: ref143/cit143 doi: 10.1016/j.photonics.2014.12.005 – ident: ref314/cit314 doi: 10.1103/PhysRevB.87.085421 – ident: ref227/cit227 doi: 10.1038/s41598-020-60603-4 – ident: ref9/cit9 doi: 10.1038/nmat2658 – volume-title: Fundamentals of Thermophotovoltaic Energy Conversion year: 2007 ident: ref42/cit42 – volume-title: Principles of Nano-Optics year: 2012 ident: ref8/cit8 doi: 10.1017/CBO9780511794193 – ident: ref311/cit311 doi: 10.1007/s00340-010-4096-5 – ident: ref31/cit31 doi: 10.1103/PhysRev.166.242 – ident: ref282/cit282 doi: 10.1016/j.pquantelec.2007.03.001 – volume-title: Casimir Physics year: 2011 ident: ref276/cit276 doi: 10.1007/978-3-642-20288-9 – ident: ref307/cit307 doi: 10.1103/PhysRevLett.109.123604 – ident: ref488/cit488 doi: 10.1364/OME.443129 – ident: ref205/cit205 doi: 10.1364/OPTICA.2.000027 – ident: ref250/cit250 doi: 10.1021/nl072369t – ident: ref120/cit120 doi: 10.1103/PhysRevB.92.134202 – ident: ref72/cit72 doi: 10.1103/PhysRevLett.120.125501 – ident: ref119/cit119 doi: 10.1038/478191a – ident: ref199/cit199 doi: 10.1103/PhysRevLett.107.114302 – volume: 34 start-page: 55 year: 2023 ident: ref524/cit524 publication-title: Opt. Photonics News – ident: ref451/cit451 doi: 10.1016/1010-6030(91)87063-2 – ident: ref93/cit93 doi: 10.1016/j.mtener.2021.100776 – ident: ref497/cit497 doi: 10.1103/PhysRevLett.105.127404 – ident: ref189/cit189 doi: 10.1515/nanoph-2023-0754 – ident: ref306/cit306 doi: 10.1103/PhysRevA.82.063827 – ident: ref414/cit414 doi: 10.1103/PhysRevLett.94.085901 – ident: ref444/cit444 doi: 10.1103/PhysRevLett.105.013901 – ident: ref267/cit267 doi: 10.1103/PhysRevB.88.054305 – ident: ref403/cit403 doi: 10.1103/PhysRevB.92.035419 – ident: ref112/cit112 doi: 10.1364/OE.23.0A1120 – ident: ref258/cit258 doi: 10.1103/PhysRevA.11.230 – ident: ref338/cit338 doi: 10.1002/adom.201600455 – ident: ref53/cit53 doi: 10.1016/j.rser.2014.11.101 – ident: ref294/cit294 doi: 10.1088/1367-2630/12/3/033028 – volume-title: Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion year: 2021 ident: ref3/cit3 – ident: ref373/cit373 doi: 10.1063/1.4767646 – ident: ref66/cit66 doi: 10.1021/acsphotonics.1c00612 – ident: ref303/cit303 doi: 10.1103/PhysRevA.102.050203 – ident: ref386/cit386 doi: 10.1038/ncomms12900 – volume: 51 start-page: 793 year: 1948 ident: ref274/cit274 publication-title: Proc. Koninkl Ned. Akad. Wetenschap – ident: ref421/cit421 doi: 10.1039/D0NH00609B – ident: ref504/cit504 doi: 10.1103/PhysRevApplied.19.L051002 – ident: ref138/cit138 doi: 10.1038/nphoton.2009.188 – ident: ref296/cit296 doi: 10.1088/1367-2630/12/6/068002 – ident: ref440/cit440 doi: 10.1103/PhysRevE.85.046603 – ident: ref472/cit472 doi: 10.1002/adma.201301472 – ident: ref391/cit391 doi: 10.1021/nl503236k – ident: ref175/cit175 doi: 10.1002/adom.201701292 – volume-title: Theory of Equilibrium Thermal Fluctuations in Electrodynamics year: 1967 ident: ref115/cit115 – ident: ref125/cit125 doi: 10.1021/acsphotonics.8b01031 – ident: ref372/cit372 doi: 10.1103/PhysRevLett.99.053906 – ident: ref447/cit447 doi: 10.1364/OE.415232 – ident: ref268/cit268 doi: 10.1126/science.aac9788 – ident: ref99/cit99 doi: 10.1103/PhysRevApplied.6.024014 – ident: ref152/cit152 doi: 10.1364/OPTICA.4.000430 – ident: ref385/cit385 doi: 10.1007/s00339-009-5203-5 – volume-title: Dispersion Forces year: 1976 ident: ref281/cit281 – ident: ref435/cit435 doi: 10.1103/PhysRevB.93.165405 – ident: ref376/cit376 doi: 10.1103/PhysRevB.79.033101 – ident: ref503/cit503 doi: 10.1002/lpor.201900162 – ident: ref337/cit337 doi: 10.1126/sciadv.1600499 – ident: ref406/cit406 doi: 10.1063/1.3125453 – ident: ref291/cit291 doi: 10.1088/1367-2630/11/3/033035 – ident: ref14/cit14 doi: 10.1117/1.AP.4.1.014002 – ident: ref81/cit81a doi: 10.1103/PhysRev.37.405 – ident: ref390/cit390 doi: 10.1103/PhysRevB.84.195459 – ident: ref415/cit415 doi: 10.1103/PhysRevB.85.165104 – ident: ref17/cit17 doi: 10.1126/science.adf1094 – ident: ref471/cit471 doi: 10.1142/S0217732320400131 – ident: ref169/cit169 doi: 10.1364/OE.21.014988 – ident: ref473/cit473 doi: 10.1063/1.4793650 – ident: ref209/cit209 doi: 10.1063/1.1922084 – ident: ref478/cit478 doi: 10.1063/1.3478214 – ident: ref525/cit525 doi: 10.1103/PhysRevLett.124.077402 – ident: ref80/cit80 doi: 10.1103/PhysRevX.8.021008 – ident: ref210/cit210 doi: 10.1103/PhysRevB.76.045427 – ident: ref242/cit242 doi: 10.1002/andp.19013090310 – ident: ref329/cit329 doi: 10.1103/PhysRev.138.B274 – ident: ref100/cit100 doi: 10.1063/1.5007712 – ident: ref47/cit47 doi: 10.1038/nenergy.2016.68 – ident: ref289/cit289 doi: 10.1088/1367-2630/16/6/063011 – ident: ref160/cit160 doi: 10.1103/PhysRevLett.109.104301 – ident: ref325/cit325 doi: 10.1080/10893950290053321 – ident: ref349/cit349 doi: 10.1021/acsphotonics.0c01487 – volume-title: Classical Electrodynamics year: 1998 ident: ref5/cit5 – ident: ref453/cit453 doi: 10.1103/PhysRevLett.126.204101 – ident: ref50/cit50 doi: 10.1021/nl403653j – ident: ref90/cit90 doi: 10.1016/j.joule.2019.07.010 – ident: ref446/cit446 doi: 10.1103/PhysRevLett.123.257401 – ident: ref154/cit154 doi: 10.1002/lpor.201700091 – ident: ref517/cit517 doi: 10.1002/adem.202000825 – ident: ref252/cit252 doi: 10.1051/0004-6361/201834032 – ident: ref443/cit443 doi: 10.1039/D3NR02079G – ident: ref233/cit233 doi: 10.1364/OE.25.023356 – volume-title: Thermal Physics year: 1980 ident: ref1/cit1 – ident: ref351/cit351 doi: 10.1364/AO.4.001634 – ident: ref381/cit381 doi: 10.1103/PhysRevB.4.3303 – ident: ref232/cit232 doi: 10.1364/OL.44.001138 – ident: ref82/cit82 doi: 10.1021/cr60203a003 – ident: ref419/cit419 doi: 10.1103/PhysRevB.101.035408 – ident: ref382/cit382 doi: 10.1088/0953-8984/11/35/301 – ident: ref145/cit145 doi: 10.1080/15567265.2015.1027836 – ident: ref537/cit537 doi: 10.1038/s41567-023-01993-w – ident: ref92/cit92 doi: 10.1038/s41467-020-19790-x – ident: ref392/cit392 doi: 10.1038/nnano.2016.20 – ident: ref383/cit383 doi: 10.1103/PhysRevB.63.205404 – ident: ref51/cit51 doi: 10.1016/j.optcom.2013.10.042 – ident: ref334/cit334 doi: 10.1103/PhysRevB.91.235316 – ident: ref256/cit256 doi: 10.1119/1.5034785 – ident: ref495/cit495 doi: 10.1038/s41467-016-0013-x – ident: ref132/cit132 doi: 10.1103/PhysRevApplied.11.014026 – ident: ref249/cit249 doi: 10.1038/nnano.2008.29 – ident: ref326/cit326 doi: 10.1103/PhysRevB.94.045406 – ident: ref102/cit102 doi: 10.1038/nature13883 – ident: ref191/cit191 doi: 10.1063/1.1526919 – ident: ref275/cit275 doi: 10.1103/PhysRevLett.78.5 – ident: ref438/cit438 doi: 10.1103/PhysRevB.97.045408 – ident: ref129/cit129 doi: 10.1063/5.0134951 – ident: ref28/cit28 doi: 10.1103/RevModPhys.20.51 – ident: ref37/cit37 doi: 10.1103/PhysRevApplied.20.L061003 – ident: ref241/cit241 doi: 10.1039/D2NA00633B – ident: ref181/cit181 doi: 10.1103/PhysRevB.94.125431 – ident: ref283/cit283 doi: 10.1103/RevModPhys.84.1 – ident: ref107/cit107 doi: 10.1002/adom.201500119 – volume: 28 start-page: 26 year: 2017 ident: ref117/cit117 publication-title: Opt. Photonics News doi: 10.1364/OPN.28.9.000034 – ident: ref321/cit321 doi: 10.1016/j.jqsrt.2009.05.010 – ident: ref422/cit422 doi: 10.1016/j.nanoen.2017.09.054 – ident: ref342/cit342 doi: 10.1021/acscentsci.8b00802 – ident: ref401/cit401 doi: 10.1103/PhysRevB.85.155422 – ident: ref176/cit176 doi: 10.1126/science.abc5381 – ident: ref304/cit304 doi: 10.1103/PhysRevA.106.052205 – ident: ref226/cit226 doi: 10.1103/PhysRevApplied.11.034056 – ident: ref467/cit467 doi: 10.1103/PhysRevLett.112.253601 – volume-title: Electrodynamics of Continuous Media year: 1960 ident: ref4/cit4 – volume-title: Nonlinear Optics year: 2019 ident: ref449/cit449 – ident: ref263/cit263 doi: 10.1088/0034-4885/29/1/306 – ident: ref96/cit96 doi: 10.1615/AnnualRevHeatTransfer.2020032934 – ident: ref330/cit330 doi: 10.1063/1.2938716 – ident: ref35/cit35 doi: 10.1038/s41377-020-0296-x – ident: ref533/cit533 doi: 10.1038/s41467-020-15682-2 – ident: ref411/cit411 doi: 10.1103/PhysRevB.92.144307 – ident: ref52/cit52 doi: 10.1364/OPN.26.7.000048 – ident: ref34/cit34 doi: 10.1063/1.4907392 – ident: ref142/cit142 doi: 10.1038/ncomms2765 – ident: ref462/cit462 doi: 10.1098/rspa.1963.0220 – ident: ref16/cit16 doi: 10.1038/s41377-022-00870-0 – ident: ref109/cit109 doi: 10.1021/acsphotonics.6b00991 – volume-title: The Quantum Vacuum: An Introduction to Quantum Electrodynamics year: 1994 ident: ref21/cit21 doi: 10.1016/B978-0-08-057149-2.50010-2 – ident: ref424/cit424 doi: 10.1021/acs.nanolett.9b01234 – ident: ref148/cit148 doi: 10.1063/1.3600779 – ident: ref374/cit374 doi: 10.1002/aenm.201400334 – ident: ref88/cit88 doi: 10.1063/1.5087281 – volume-title: Thermodynamics and statistical mechanics year: 1995 ident: ref2/cit2 – ident: ref215/cit215 doi: 10.1063/1.1397759 – ident: ref186/cit186 doi: 10.1038/s41467-021-21752-w – ident: ref363/cit363 doi: 10.1002/adma.201904154 – ident: ref344/cit344 doi: 10.1103/PhysRevA.59.4736 – ident: ref166/cit166 doi: 10.1364/OE.21.015014 – ident: ref171/cit171 doi: 10.1364/OE.21.000A96 – ident: ref375/cit375 doi: 10.1364/OL.42.001879 – ident: ref310/cit310 doi: 10.1103/PhysRevA.90.012515 – ident: ref367/cit367 doi: 10.1209/0295-5075/115/41002 – ident: ref217/cit217 doi: 10.1063/1.2906375 – ident: ref56/cit56 doi: 10.1073/pnas.1903001116 – ident: ref410/cit410 doi: 10.1103/PhysRevLett.105.234301 – ident: ref201/cit201 doi: 10.1063/1.4807174 – ident: ref29/cit29 doi: 10.1063/1.328187 – ident: ref187/cit187 doi: 10.1103/PhysRevX.11.021050 – ident: ref430/cit430 doi: 10.1103/PhysRevLett.112.044301 – ident: ref340/cit340 doi: 10.1021/acsphotonics.7b00408 – ident: ref455/cit455 doi: 10.1103/PhysRevApplied.20.054028 – ident: ref352/cit352 doi: 10.1088/1367-2630/11/3/033014 – ident: ref465/cit465 doi: 10.1038/s42254-020-0224-2 – ident: ref208/cit208 doi: 10.1364/OL.30.002623 – ident: ref397/cit397 doi: 10.1063/5.0109763 – ident: ref46/cit46 doi: 10.1016/j.solmat.2021.111554 – ident: ref118/cit118 doi: 10.1098/rstl.1800.0015 – volume-title: Optics year: 2002 ident: ref7/cit7 – ident: ref41/cit41 doi: 10.1109/PROC.1979.11270 – ident: ref159/cit159 doi: 10.1103/PhysRevApplied.12.044048 – volume-title: Handbook of Photovoltaic Science and Engineering year: 2011 ident: ref39/cit39 – ident: ref150/cit150 doi: 10.1002/adom.201300163 – ident: ref416/cit416 doi: 10.1103/PhysRevB.99.041403 – volume: 1 start-page: 23 year: 1899 ident: ref248/cit248 publication-title: Verh. Dtsch. Phys. Ges. – ident: ref536/cit536 doi: 10.1103/PhysRevApplied.18.054067 – ident: ref245/cit245 doi: 10.1038/072243d0 – ident: ref442/cit442 doi: 10.1103/PhysRevApplied.14.064013 – ident: ref439/cit439 doi: 10.1021/acsphotonics.8b00328 – ident: ref313/cit313 doi: 10.1063/1.3294606 – ident: ref246/cit246 doi: 10.1038/072293d0 – ident: ref407/cit407 doi: 10.1103/PhysRevB.94.104301 – ident: ref394/cit394 doi: 10.1038/ncomms14479 – ident: ref436/cit436 doi: 10.1088/1367-2630/18/1/013034 – ident: ref345/cit345 doi: 10.1126/science.1249799 – ident: ref312/cit312 doi: 10.1103/PhysRevB.68.245405 – ident: ref388/cit388 doi: 10.1063/1.3672809 – ident: ref259/cit259 doi: 10.1016/j.jqsrt.2007.08.017 – ident: ref506/cit506 doi: 10.1021/acs.nanolett.9b01086 – ident: ref193/cit193 doi: 10.1103/PhysRevB.70.125101 – ident: ref454/cit454 doi: 10.1364/OME.444308 – ident: ref322/cit322 doi: 10.1016/j.jqsrt.2013.01.002 – ident: ref177/cit177 doi: 10.1103/PhysRevB.87.205112 – ident: ref426/cit426 doi: 10.1021/acs.nanolett.0c04847 – ident: ref526/cit526 doi: 10.1002/smll.202100446 – ident: ref95/cit95 doi: 10.1038/nphoton.2015.229 – ident: ref269/cit269 doi: 10.1016/j.surfrep.2004.12.002 – ident: ref508/cit508 doi: 10.1021/acsphotonics.5b00140 – ident: ref324/cit324 doi: 10.1103/PhysRevLett.85.1548 – ident: ref57/cit57 doi: 10.1038/s41586-020-2717-7 – ident: ref124/cit124 doi: 10.1038/s41563-019-0363-y – ident: ref509/cit509 doi: 10.1126/science.aau1217 – ident: ref450/cit450 doi: 10.1088/0022-3719/15/18/012 – ident: ref461/cit461 doi: 10.2478/v10155-010-0092-x – ident: ref81/cit81b doi: 10.1103/PhysRev.38.2265 – ident: ref230/cit230 doi: 10.1038/nphoton.2013.243 – ident: ref474/cit474 doi: 10.1021/nl504505t – ident: ref203/cit203 doi: 10.1364/OE.24.015101 – ident: ref287/cit287 doi: 10.1103/RevModPhys.71.1233 – ident: ref309/cit309 doi: 10.1103/PhysRevLett.108.230403 – volume-title: Radiative Heat Transfer year: 2013 ident: ref26/cit26 doi: 10.1016/B978-0-12-386944-9.50023-6 – ident: ref305/cit305 doi: 10.1103/PhysRevLett.105.113601 – ident: ref271/cit271 doi: 10.1103/PhysRevA.84.042102 – ident: ref94/cit94 doi: 10.1038/s41566-021-00921-9 – ident: ref163/cit163 doi: 10.1016/j.jqsrt.2014.11.013 – ident: ref265/cit265 doi: 10.1103/PhysRevLett.106.210404 – ident: ref347/cit347 doi: 10.1103/PhysRevApplied.7.044020 – ident: ref353/cit353 doi: 10.1063/1.3571442 – ident: ref127/cit127 doi: 10.1063/5.0142651 – ident: ref343/cit343 doi: 10.1063/5.0047308 – ident: ref479/cit479 doi: 10.1103/PhysRevLett.110.177403 – ident: ref499/cit499 doi: 10.1038/lsa.2016.194 – ident: ref157/cit157 doi: 10.1039/D2CP01070D – ident: ref362/cit362 doi: 10.1063/1.4759055 – ident: ref295/cit295 doi: 10.1088/1367-2630/12/6/068001 – ident: ref459/cit459 doi: 10.1002/adma.201701275 – ident: ref136/cit136 doi: 10.1038/s41586-019-0918-8 – ident: ref404/cit404 doi: 10.1063/1.4932958 – ident: ref255/cit255 doi: 10.1103/PhysRev.182.1374 – ident: ref505/cit505 doi: 10.1021/acsphotonics.8b01585 – ident: ref409/cit409 doi: 10.1103/PhysRevB.99.235414 – ident: ref428/cit428 doi: 10.1126/science.1133268 – ident: ref523/cit523 – ident: ref140/cit140 doi: 10.1038/nnano.2013.286 – ident: ref58/cit58 doi: 10.1016/j.joule.2020.06.021 – ident: ref380/cit380 doi: 10.1038/s41467-018-06535-0 – volume-title: Optical Coherence and Quantum Optics year: 1995 ident: ref24/cit24 doi: 10.1017/CBO9781139644105 – volume-title: Classical Electrodynamics year: 1998 ident: ref6/cit6 – ident: ref236/cit236 doi: 10.1038/nphoton.2017.13 – ident: ref441/cit441 doi: 10.1038/s41467-019-09378-5 – ident: ref133/cit133 doi: 10.1103/PhysRevB.92.024302 – ident: ref260/cit260 doi: 10.1103/PhysRev.32.110 – ident: ref139/cit139 doi: 10.1073/pnas.1120149109 – ident: ref300/cit300 doi: 10.1103/PhysRevA.94.042114 – ident: ref486/cit486 doi: 10.1126/science.aar5191 – ident: ref292/cit292 doi: 10.1088/1367-2630/13/6/068001 – ident: ref200/cit200 doi: 10.1038/nphoton.2012.146 – ident: ref214/cit214 doi: 10.1364/OE.24.029896 – ident: ref225/cit225 doi: 10.1021/acs.nanolett.6b03616 – ident: ref264/cit264 doi: 10.1016/0030-4018(82)90402-3 – ident: ref485/cit485 doi: 10.1002/adom.201600993 – ident: ref356/cit356 doi: 10.1103/PhysRevApplied.12.014053 – ident: ref228/cit228 doi: 10.1038/s41598-021-01282-7 – ident: ref45/cit45 doi: 10.1515/nanoph-2016-0011 – ident: ref487/cit487 doi: 10.1364/OE.26.00A729 – ident: ref168/cit168 doi: 10.1063/1.4832057 – ident: ref431/cit431 doi: 10.1002/adfm.201002436 – ident: ref284/cit284 doi: 10.1038/s41534-021-00495-y – ident: ref54/cit54 doi: 10.1039/C6EE01372D – ident: ref262/cit262 doi: 10.1103/PhysRev.86.702 – ident: ref195/cit195 doi: 10.1103/PhysRevLett.96.123903 – ident: ref188/cit188 doi: 10.1002/adma.202302478 – ident: ref134/cit134 doi: 10.1103/PhysRevLett.117.134303 – ident: ref361/cit361 doi: 10.1021/acsaem.0c03201 – ident: ref408/cit408 doi: 10.1103/PhysRevB.93.081402 – ident: ref128/cit128 doi: 10.1063/5.0186406 – ident: ref221/cit221 doi: 10.1021/nl903271d – volume-title: Introduction to Fourier Optics year: 1988 ident: ref369/cit369 – ident: ref272/cit272 doi: 10.1103/PhysRevB.86.115423 – ident: ref323/cit323 doi: 10.1103/PhysRevLett.82.1660 – ident: ref131/cit131 doi: 10.1002/adma.201701304 – ident: ref170/cit170 doi: 10.1021/nl504332t – ident: ref534/cit534 doi: 10.1021/acs.nanolett.1c00550 – ident: ref84/cit84 doi: 10.1088/0268-1242/18/5/319 – ident: ref105/cit105 doi: 10.1016/j.joule.2018.10.009 – ident: ref164/cit164 doi: 10.1364/OE.23.00A299 – ident: ref511/cit511 doi: 10.1021/acs.nanolett.5b04090 – ident: ref158/cit158 doi: 10.1093/nsr/nwy005 – ident: ref223/cit223 doi: 10.1186/1556-276X-6-549 – ident: ref412/cit412 doi: 10.1103/PhysRevB.83.241407 – ident: ref59/cit59 doi: 10.1038/s41586-022-04473-y – ident: ref113/cit113 doi: 10.1073/pnas.1509453112 – ident: ref69/cit69 doi: 10.1103/PhysRevB.90.220301 – ident: ref211/cit211 doi: 10.1103/PhysRevB.94.094307 – ident: ref335/cit335 doi: 10.1063/1.4931375 – ident: ref514/cit514 doi: 10.1021/acsami.1c23401 – ident: ref141/cit141 doi: 10.1021/acsphotonics.6b00644 – ident: ref144/cit144 doi: 10.1002/er.1607 – ident: ref179/cit179 doi: 10.1021/acsphotonics.5b00298 – ident: ref387/cit387 doi: 10.1103/PhysRevLett.120.063901 – ident: ref60/cit60 doi: 10.1021/acsenergylett.2c01075 – ident: ref76/cit76 doi: 10.1364/AO.37.003464 – ident: ref10/cit10 doi: 10.1038/nphoton.2011.154 – ident: ref297/cit297 doi: 10.1103/PhysRevA.69.022902 – ident: ref513/cit513 doi: 10.1364/OE.26.00A777 – ident: ref253/cit253 doi: 10.1002/andp.19113411106 – ident: ref146/cit146 doi: 10.1103/PhysRevB.81.165119 – ident: ref316/cit316 doi: 10.1016/j.progsurf.2013.07.001 – ident: ref89/cit89 doi: 10.1016/j.apenergy.2018.12.018 – ident: ref156/cit156 doi: 10.1063/1.4896525 – ident: ref298/cit298 doi: 10.1103/RevModPhys.79.1291 – ident: ref61/cit61 doi: 10.1119/1.10023 – ident: ref147/cit147 doi: 10.1103/PhysRevLett.107.045901 – ident: ref366/cit366 doi: 10.1021/acsphotonics.1c01350 – ident: ref286/cit286 doi: 10.1088/0953-8984/11/2/003 – ident: ref355/cit355 doi: 10.1103/PhysRevB.98.235416 – ident: ref425/cit425 doi: 10.1038/s41467-020-16197-6 – ident: ref194/cit194 doi: 10.1063/1.2010613 – ident: ref538/cit538 doi: 10.1364/OE.479367 – ident: ref206/cit206 doi: 10.1103/PhysRevB.55.10105 – ident: ref354/cit354 doi: 10.1364/OME.8.002312 – ident: ref290/cit290 doi: 10.1088/0953-8984/9/47/001 – ident: ref174/cit174 doi: 10.1038/srep34746 – ident: ref202/cit202 doi: 10.1038/ncomms3630 – ident: ref456/cit456 doi: 10.1038/s41566-023-01261-6 – ident: ref183/cit183 doi: 10.1364/JOSAB.35.000039 – ident: ref239/cit239 doi: 10.1073/pnas.1718264115 – ident: ref75/cit75 doi: 10.1002/andp.18601850205 – ident: ref182/cit182 doi: 10.1103/PhysRevLett.118.203901 – ident: ref278/cit278 doi: 10.1038/nphoton.2011.39 – ident: ref240/cit240 doi: 10.1073/pnas.1611924114 – ident: ref315/cit315 doi: 10.1021/nl204201g – ident: ref231/cit231 doi: 10.1063/1.4899126 – ident: ref266/cit266 doi: 10.1103/PhysRevB.86.220302 – ident: ref87/cit87 doi: 10.1002/advs.201500360 – ident: ref101/cit101 doi: 10.1063/1.329270 – ident: ref121/cit121 doi: 10.1038/nnano.2015.309 – ident: ref418/cit418 doi: 10.1103/PhysRevX.9.011043 – ident: ref527/cit527 doi: 10.1002/adma.201502023 – ident: ref22/cit22 doi: 10.1103/PhysRev.130.2529 – ident: ref302/cit302 doi: 10.1103/PhysRevLett.123.120401 – ident: ref165/cit165 doi: 10.1063/1.4754616 – volume-title: Thermal Radiation Heat Transfer year: 2016 ident: ref27/cit27 – ident: ref116/cit116 doi: 10.1515/nanoph-2016-0010 – volume-title: The Theory of Heat Radiation year: 1959 ident: ref243/cit243 – ident: ref224/cit224 doi: 10.1038/ncomms4892 – ident: ref13/cit13 doi: 10.1515/nanoph-2020-0414 – ident: ref484/cit484 doi: 10.1063/1.4904456 – ident: ref379/cit379 doi: 10.1063/1.4989522 – ident: ref48/cit48 doi: 10.1364/OE.18.00A314 – ident: ref318/cit318 doi: 10.1103/PhysRevB.89.245446 – ident: ref400/cit400 doi: 10.1103/PhysRevB.84.161413 – ident: ref481/cit481 doi: 10.1364/OE.19.014594 – ident: ref427/cit427 doi: 10.1016/j.solmat.2021.111556 – ident: ref350/cit350 doi: 10.1038/192254a0 – ident: ref77/cit77 doi: 10.1364/JOSAA.15.002735 – ident: ref192/cit192 doi: 10.1103/PhysRevLett.93.213905 – ident: ref515/cit515 doi: 10.1063/1.4825168 – ident: ref405/cit405 doi: 10.1063/5.0123232 – ident: ref432/cit432 doi: 10.1515/zna-2016-0358 – ident: ref15/cit15 doi: 10.1186/s43593-022-00015-1 – ident: ref23/cit23 doi: 10.1103/RevModPhys.37.231 – ident: ref43/cit43 doi: 10.1364/OE.17.015145 – ident: ref507/cit507 doi: 10.1103/PhysRevB.100.035414 – ident: ref532/cit532 doi: 10.1073/pnas.1809725115 – ident: ref293/cit293 doi: 10.1088/1367-2630/13/6/068002 – ident: ref423/cit423 doi: 10.1038/s41565-018-0172-5 – ident: ref126/cit126 doi: 10.1038/s41578-021-00283-2 – ident: ref483/cit483 doi: 10.1038/ncomms8032 – ident: ref78/cit78 doi: 10.1073/pnas.1517363113 – ident: ref91/cit91 doi: 10.1126/science.abb0971 – ident: ref539/cit539 doi: 10.1364/OE.479257 – ident: ref68/cit68 doi: 10.1021/acs.nanolett.1c04288 – ident: ref360/cit360 doi: 10.1021/nl204118h – ident: ref73/cit73 doi: 10.1038/s41467-023-40281-2 – ident: ref496/cit496 doi: 10.1364/OPTICA.5.000175 – ident: ref490/cit490 doi: 10.1103/PhysRevB.92.125418 – ident: ref64/cit64 doi: 10.1021/nl3034784 – ident: ref33/cit33 doi: 10.1007/BF00901283 – ident: ref389/cit389 doi: 10.1038/nphoton.2009.144 – ident: ref108/cit108 doi: 10.1021/nl4004283 – ident: ref377/cit377 doi: 10.1021/acsphotonics.7b00838 – ident: ref395/cit395 doi: 10.1021/acs.nanolett.8b00846 – ident: ref212/cit212 doi: 10.1103/PhysRevB.93.155403 – ident: ref468/cit468 doi: 10.1103/PhysRevA.100.023830 – ident: ref512/cit512 doi: 10.1038/s41377-023-01287-z – ident: ref341/cit341 doi: 10.1364/OME.7.000618 – volume-title: The Quantum Dice: An Introduction to Stochastic Electrodynamics year: 1996 ident: ref464/cit464 doi: 10.1007/978-94-015-8723-5 – ident: ref178/cit178 doi: 10.1063/1.4893742 – ident: ref222/cit222 doi: 10.1038/ncomms1528 – ident: ref173/cit173 doi: 10.1038/ncomms11809 – ident: ref319/cit319 doi: 10.1364/OPTICA.2.000893 – ident: ref531/cit531 doi: 10.1038/s41566-017-0069-0 – ident: ref198/cit198 doi: 10.1103/PhysRevA.83.033810 – ident: ref516/cit516 doi: 10.1063/1.4905132 – ident: ref49/cit49 doi: 10.1038/nphoton.2013.32 – ident: ref452/cit452 doi: 10.1119/1.1904623 – ident: ref219/cit219 doi: 10.1103/PhysRevLett.110.163601 – ident: ref216/cit216 doi: 10.1103/PhysRevB.72.075127 – ident: ref393/cit393 doi: 10.1038/nature16070 – volume-title: Principles of Statistical Radiophysics year: 1989 ident: ref257/cit257 – ident: ref384/cit384 doi: 10.1063/1.2905286 – ident: ref229/cit229 doi: 10.1021/acsphotonics.3c00747 – ident: ref528/cit528 doi: 10.1103/PhysRevLett.125.127403 – ident: ref458/cit458 doi: 10.1038/nmat4043 – ident: ref477/cit477 doi: 10.1038/s41377-019-0158-6 – ident: ref502/cit502 doi: 10.1364/OE.27.011537 – ident: ref44/cit44 doi: 10.1038/nnano.2014.9 – ident: ref65/cit65 doi: 10.1103/PhysRevLett.117.190601 – ident: ref339/cit339 doi: 10.1021/acsphotonics.6b01025 – ident: ref123/cit123 doi: 10.1364/OE.26.015995 – volume-title: Third Generation Photovoltaics Advanced Solar Energy Conversion year: 2003 ident: ref38/cit38 – ident: ref234/cit234 doi: 10.1103/PhysRevApplied.16.064022 – ident: ref402/cit402 doi: 10.1103/PhysRevB.85.155418 – ident: ref399/cit399 doi: 10.1021/nl901208v – ident: ref36/cit36 doi: 10.1073/pnas.1717595115 – ident: ref457/cit457 doi: 10.1021/acs.nanolett.7b01422 – ident: ref167/cit167 doi: 10.1103/PhysRevB.87.115403 – ident: ref346/cit346 doi: 10.1021/acsphotonics.6b00022 – ident: ref70/cit70 doi: 10.1103/PhysRevB.95.235428 – ident: ref190/cit190 doi: 10.1103/PhysRevB.62.R2243 – ident: ref480/cit480 doi: 10.1021/nl402939t – ident: ref149/cit149 doi: 10.1364/OME.1.000466 – ident: ref328/cit328 doi: 10.1103/PhysRevApplied.19.034013 – ident: ref466/cit466 doi: 10.1103/PhysRev.152.438 – ident: ref519/cit519 doi: 10.1109/TAP.2019.2944216 – ident: ref470/cit470 doi: 10.3367/UFNe.2016.12.038006 – ident: ref476/cit476 doi: 10.1038/s41377-019-0179-1 – ident: ref365/cit365 doi: 10.1103/PhysRevB.102.085401 – ident: ref71/cit71 doi: 10.1364/OL.44.004203 – ident: ref327/cit327 doi: 10.1038/nmat4792 – ident: ref207/cit207 doi: 10.1038/416061a – ident: ref448/cit448 doi: 10.1364/OE.377278 – ident: ref261/cit261 doi: 10.1103/PhysRev.83.34 – ident: ref279/cit279 doi: 10.1103/RevModPhys.88.045003 – ident: ref196/cit196 doi: 10.1103/PhysRevE.74.016609 – ident: ref244/cit244 doi: 10.1038/072054c0 – ident: ref359/cit359 doi: 10.1126/sciadv.ade4203 – ident: ref155/cit155 doi: 10.1103/PhysRevX.3.041004 – ident: ref111/cit111 doi: 10.1364/OPTICA.1.000032 – ident: ref277/cit277 doi: 10.1103/PhysRevD.72.021301 – ident: ref530/cit530 doi: 10.1103/PhysRevLett.116.233901 – ident: ref501/cit501 doi: 10.1021/acs.nanolett.1c01396 – ident: ref30/cit30 doi: 10.1063/1.1736034 – ident: ref498/cit498 doi: 10.1364/OE.21.013691 – ident: ref396/cit396 doi: 10.1063/1.4941751 – volume-title: The Quantum Theory of Light year: 2000 ident: ref19/cit19 doi: 10.1093/oso/9780198501770.001.0001 – ident: ref218/cit218 doi: 10.1063/1.2834903 – ident: ref491/cit491 doi: 10.1021/acsphotonics.7b01223 – ident: ref535/cit535 doi: 10.1126/science.abo3324 – ident: ref301/cit301 doi: 10.1103/PhysRevLett.117.100402 – ident: ref197/cit197 doi: 10.1063/1.2435958 – ident: ref489/cit489 doi: 10.1103/PhysRevB.71.073306 – ident: ref63/cit63 doi: 10.1103/PhysRevLett.106.230602 – ident: ref417/cit417 doi: 10.1103/PhysRevLett.115.204302 – ident: ref32/cit32 doi: 10.1109/T-ED.1980.19950 – ident: ref336/cit336 doi: 10.1364/OME.5.002721 – ident: ref162/cit162 doi: 10.1103/PhysRevLett.115.174301 – ident: ref518/cit518 doi: 10.1109/TAP.2019.2944225 – ident: ref97/cit97 doi: 10.1038/s41566-020-0600-6 – ident: ref510/cit510 doi: 10.1038/s41377-020-0300-5 – ident: ref378/cit378 doi: 10.1063/1.1592614 – ident: ref98/cit98 doi: 10.1103/PhysRevB.91.134301 – ident: ref358/cit358 doi: 10.1038/s41377-022-01044-8 |
SSID | ssj0003009065 |
Score | 2.3448944 |
SecondaryResourceType | review_article |
Snippet | The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded... The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 898 |
SubjectTerms | Review |
Title | Review on the Scientific and Technological Breakthroughs in Thermal Emission Engineering |
URI | http://dx.doi.org/10.1021/acsaom.4c00030 https://www.ncbi.nlm.nih.gov/pubmed/38962569 https://www.proquest.com/docview/3075703629 https://pubmed.ncbi.nlm.nih.gov/PMC11217951 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXODAvpRNRiBxSomdzT5C1apCggtU6i2yHUdULQki7YWvZ-ykoYsQnDOy5PEsb-zJG4Ru3JQoJl3upMyDAsU0EEoqlBMqyMVQiqVCmB-Fn57DXt9_HASDn_uO5Rd8Su6EKkT-3vKVhe_raIOG4MEGBLVf6tsUD6CCa-dG0igiDmdBMGNoXFnC5CFVLOahFXC53CM5l3S6OyUDUmG5Ck2vyag1nciW-lplcvxzP7tou0Ke-L40lT20prN9tDXHR3iABuVLAc4zDLgQW7-3vURYZAmub-HNueIHQJujaspPgYcZBoODID_GHbAccwWH55Y-RP1u57Xdc6rRC46AlD1xgoRwlaTCF0wHIo2SSAFOYpQrqXUoktQD5KOhnPQC7ROmZBoq32XSsu0zSrwj1MjyTJ8g7EmeKDfSfphyX5gAIX1FoDSmHOCFq5voGlQSV65TxPZVnJK41FNc6amJnNlxxapiLzdDNMa_yt_W8h8lb8evklez049BQea9RGQ6nxYxhD_LT0Z5Ex2X1lCvBTgPKscQvrAFO6kFDG334pds-GbpuwHhQhQMyOm_Nn6GNingKNOdRtk5akw-p_oCcNBEXloX-AbXsQOi |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIAD78d4BoHEqaNJX-kRJtB4CgmQdquSNBUI6BDdLvx6nLQrGwgJro0VpY5jf06cLwAHbkYVl27sZNzDBMUUEEomlBMqjMWYimVCmIvC1zdh58G_6AbdCTga3oXBQRTYU2EP8b_YBegRfhO915avLIqfhClEIsyY9HH7rt5U8RAxuPb5SBZF1Il5EAyJGn90YcKRKsbD0Q-M-b1UciT2nM3DbT1qW3Ly3Br0ZUt9fCN0_MdvLcBchUPJcWk4izCh8yWYHWEnXIZueW5AejlBlEisF7CVRUTkKan35M0skxPEns_Vmz8FecoJmh-6_BdyinZkNuTISNcr8HB2et_uONVDDI7AAN53gpTGKs2EL7gORBalkULUxFmspNahSDMPcZDG5NILtE-5klmofJdLy73PGfVWoZH3cr0OxJNxqtxI-2EW-8K4C-kriokyixFsuLoJ-6iSpFpIRWLPyBlNSj0llZ6a4AxnLVEVl7l5UuPlV_nDWv6tZPH4VXJvaAQJKsicnohc9wZFgs7QspWxuAlrpVHUfSHqwzwyxBY-Zi61gCHxHm_Jnx4tmTfiXfSJAd3404_vwnTn_voquTq_udyEGYYIy9StMb4Fjf77QG8jQurLHbsqPgEhjAwD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BkRB7WHaBXQos6xVInFJi5-Ucy6NiXwiJIvUW2Y6trQop2rQXfj1jJ41aUCW4xtbIsccz33jGnwGOfUMVl37qGR5ggGILCCUTyosV-mIMxYwQ9qLw3-v46i78NYgG9T1uexcGB1GipNIl8e2ufsxNzTBAT_G7GD90QuWQ_Cqs2ZydVevu-W1zsBIgavDdE5IsSaiX8iiakTW-EmFdkioXXdIrnPmyXHLO__Q2od-M3JWdjDrTieyopxekju_8tU_wscajpFsp0GdY0cUWfJhjKdyGQZU_IOOCIFokzhq4CiMiipw0Z_N2tckZYtBR_fZPSYYFQTVE039PLlGf7MEcmRO9A3e9y_75lVc_yOAJdOQTL8ppqnIjQsF1JEySJwrRE2epklrHIjcB4iGNQWYQ6ZByJU2sQp9Lx8HPGQ2-QKsYF3oXSCDTXPmJDmOThsKaDRkqigEzSxF0-LoNRzglWb2hyszlyhnNqnnK6nlqgzdbuUzVnOb2aY37pf1Pmv6PFZvH0p4_ZoqQ4QTZLIoo9HhaZmgUHWsZS9vwtVKMRhaiP4wnY2zhCyrTdLBk3ostxfCfI_VG3Iu2MaJ7b_rx77B-c9HL_vy8_r0PGwyBli1fY_wAWpP_U_0NgdJEHrqN8Qy_yg6G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+the+Scientific+and+Technological+Breakthroughs+in+Thermal+Emission+Engineering&rft.jtitle=ACS+applied+optical+materials&rft.au=V%C3%A1zquez-Lozano%2C+J+Enrique&rft.au=Liberal%2C+I%C3%B1igo&rft.date=2024-06-28&rft.eissn=2771-9855&rft.volume=2&rft.issue=6&rft.spage=898&rft_id=info:doi/10.1021%2Facsaom.4c00030&rft_id=info%3Apmid%2F38962569&rft.externalDocID=38962569 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9855&client=summon |