Review on the Scientific and Technological Breakthroughs in Thermal Emission Engineering

The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded as one of the basic mechanisms of heat transfer, as a fundamental quantum phenomenon of photon production, or as the propagation of electrom...

Full description

Saved in:
Bibliographic Details
Published inACS applied optical materials Vol. 2; no. 6; pp. 898 - 927
Main Authors Vázquez-Lozano, J. Enrique, Liberal, Iñigo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.06.2024
Subjects
Online AccessGet full text
ISSN2771-9855
2771-9855
DOI10.1021/acsaom.4c00030

Cover

Loading…
Abstract The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded as one of the basic mechanisms of heat transfer, as a fundamental quantum phenomenon of photon production, or as the propagation of electromagnetic waves. However, unlike light emanating from conventional photonic sources, such as lasers or antennas, thermal radiation is characterized for being broadband, omnidirectional, and unpolarized. Due to these features, ultimately tied to its inherently incoherent nature, taming thermal radiation constitutes a challenging issue. Latest advances in the field of nanophotonics have led to a whole set of artificial platforms, ranging from spatially structured materials and, much more recently, to time-modulated media, offering promising avenues for enhancing the control and manipulation of electromagnetic waves, from far- to near-field regimes. Given the ongoing parallelism between the fields of nanophotonics and thermal emission, these recent developments have been harnessed to deal with radiative thermal processes, thereby forming the current basis of thermal emission engineering. In this review, we survey some of the main breakthroughs carried out in this burgeoning research field, from fundamental aspects to theoretical limits, the emergence of effects and phenomena, practical applications, challenges, and future prospects.
AbstractList The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded as one of the basic mechanisms of heat transfer, as a fundamental quantum phenomenon of photon production, or as the propagation of electromagnetic waves. However, unlike light emanating from conventional photonic sources, such as lasers or antennas, thermal radiation is characterized for being broadband, omnidirectional, and unpolarized. Due to these features, ultimately tied to its inherently incoherent nature, taming thermal radiation constitutes a challenging issue. Latest advances in the field of nanophotonics have led to a whole set of artificial platforms, ranging from spatially structured materials and, much more recently, to time-modulated media, offering promising avenues for enhancing the control and manipulation of electromagnetic waves, from far- to near-field regimes. Given the ongoing parallelism between the fields of nanophotonics and thermal emission, these recent developments have been harnessed to deal with radiative thermal processes, thereby forming the current basis of thermal emission engineering. In this review, we survey some of the main breakthroughs carried out in this burgeoning research field, from fundamental aspects to theoretical limits, the emergence of effects and phenomena, practical applications, challenges, and future prospects.
The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded as one of the basic mechanisms of heat transfer, as a fundamental quantum phenomenon of photon production, or as the propagation of electromagnetic waves. However, unlike light emanating from conventional photonic sources, such as lasers or antennas, thermal radiation is characterized for being broadband, omnidirectional, and unpolarized. Due to these features, ultimately tied to its inherently incoherent nature, taming thermal radiation constitutes a challenging issue. Latest advances in the field of nanophotonics have led to a whole set of artificial platforms, ranging from spatially structured materials and, much more recently, to time-modulated media, offering promising avenues for enhancing the control and manipulation of electromagnetic waves, from far- to near-field regimes. Given the ongoing parallelism between the fields of nanophotonics and thermal emission, these recent developments have been harnessed to deal with radiative thermal processes, thereby forming the current basis of thermal emission engineering. In this review, we survey some of the main breakthroughs carried out in this burgeoning research field, from fundamental aspects to theoretical limits, the emergence of effects and phenomena, practical applications, challenges, and future prospects.The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded as one of the basic mechanisms of heat transfer, as a fundamental quantum phenomenon of photon production, or as the propagation of electromagnetic waves. However, unlike light emanating from conventional photonic sources, such as lasers or antennas, thermal radiation is characterized for being broadband, omnidirectional, and unpolarized. Due to these features, ultimately tied to its inherently incoherent nature, taming thermal radiation constitutes a challenging issue. Latest advances in the field of nanophotonics have led to a whole set of artificial platforms, ranging from spatially structured materials and, much more recently, to time-modulated media, offering promising avenues for enhancing the control and manipulation of electromagnetic waves, from far- to near-field regimes. Given the ongoing parallelism between the fields of nanophotonics and thermal emission, these recent developments have been harnessed to deal with radiative thermal processes, thereby forming the current basis of thermal emission engineering. In this review, we survey some of the main breakthroughs carried out in this burgeoning research field, from fundamental aspects to theoretical limits, the emergence of effects and phenomena, practical applications, challenges, and future prospects.
The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded as one of the basic mechanisms of heat transfer, as a fundamental quantum phenomenon of photon production, or as the propagation of electromagnetic waves. However, unlike light emanating from conventional photonic sources, such as lasers or antennas, thermal radiation is characterized for being broadband, omnidirectional, and unpolarized. Due to these features, ultimately tied to its inherently incoherent nature, taming thermal radiation constitutes a challenging issue. Latest advances in the field of nanophotonics have led to a whole set of artificial platforms, ranging from spatially structured materials and, much more recently, to time-modulated media, offering promising avenues for enhancing the control and manipulation of electromagnetic waves, from far- to near-field regimes. Given the ongoing parallelism between the fields of nanophotonics and thermal emission, these recent developments have been harnessed to deal with radiative thermal processes, thereby forming the current basis of thermal emission engineering. In this review, we survey some of the main breakthroughs carried out in this burgeoning research field, from fundamental aspects to theoretical limits, the emergence of effects and phenomena, practical applications, challenges, and future prospects.
Author Vázquez-Lozano, J. Enrique
Liberal, Iñigo
AuthorAffiliation Department of Electrical, Electronic and Communications Engineering, Institute of Smart Cities (ISC)
AuthorAffiliation_xml – name: Department of Electrical, Electronic and Communications Engineering, Institute of Smart Cities (ISC)
Author_xml – sequence: 1
  givenname: J. Enrique
  surname: Vázquez-Lozano
  fullname: Vázquez-Lozano, J. Enrique
  email: enrique.vazquez@unavarra.es
– sequence: 2
  givenname: Iñigo
  surname: Liberal
  fullname: Liberal, Iñigo
  email: inigo.liberal@unavarra.es
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38962569$$D View this record in MEDLINE/PubMed
BookMark eNp1UctKxDAUDaL43rqULkWYMY8mbVeiw_gAQdAR3IVMettG20STVvHvjc4oKrhKyD2Pm3O20Kp1FhDaI3hMMCVHSgflunGqMcYMr6BNmmVkVOScr_64b6DdEB4-IbjAgq-jDZYXgnJRbKL7G3gx8Jo4m_QNJLfagO1NZXSibJnMQDfWta42WrXJqQf12DfeDXUTEmOTWQO-i4NpZ0IwUWJqa2MBvLH1DlqrVBtgd3luo7uz6WxyMbq6Pr-cnFyNVEpFP-IlKXRZqVTlwFWVlZkWlOW00HMAocqKCZIBwYJxSEmu55XQKc7njFPBc0rYNjpe6D4N8w5KHdf3qpVP3nTKv0mnjPw9saaRtXuRhFCSFfxD4WCp4N3zAKGX8Tsa2lZZcEOQDGc8w0zQIkL3f5p9u3zlGQHpAqC9C8FDJbXpVR-zid6mlQTLj-bkojm5bC7Sxn9oX8r_Eg4XhPguH9zgbcz4P_A7q5Wrqg
CitedBy_id crossref_primary_10_1364_OL_545236
crossref_primary_10_1063_5_0238282
crossref_primary_10_1103_PhysRevB_111_035441
crossref_primary_10_1038_s41598_025_92638_w
crossref_primary_10_1063_5_0207377
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126887
crossref_primary_10_1063_5_0223889
Cites_doi 10.1073/pnas.1402036111
10.1364/OPN.27.7.000026
10.1063/1.1666629
10.1088/0268-1242/18/5/303
10.1021/acsphotonics.2c01308
10.1109/MMM.2019.2963606
10.1126/sciadv.aat3163
10.1063/1.4896573
10.1063/1.2963195
10.1017/CBO9780511813993
10.1103/PhysRevB.91.115406
10.1021/acsphotonics.0c00782
10.1364/OE.21.009113
10.1038/ncomms9685
10.1115/1.1497490
10.1038/s41377-023-01119-0
10.1126/science.aac4360
10.1007/BF00688821
10.1063/1.4967384
10.1073/pnas.1701606114
10.1186/s43593-022-00025-z
10.1002/adma.201504525
10.1103/PhysRevLett.127.053603
10.1016/j.joule.2017.07.012
10.1038/ncomms13729
10.1103/PhysRevLett.130.096902
10.1103/PhysRevLett.116.084301
10.2150/jlve.18.2_5
10.1103/PhysRevA.89.050101
10.1088/0004-637X/707/2/916
10.1103/PhysRevD.11.790
10.1109/MAP.2023.3236275
10.1038/s41566-017-0051-x
10.1364/JOSAB.4.000481
10.1103/PhysRevB.95.125404
10.1103/PhysRevLett.118.133605
10.1021/acsphotonics.7b00089
10.1364/OE.21.011482
10.1063/1.4918599
10.1103/PhysRevApplied.11.054020
10.1103/PhysRevMaterials.1.062201
10.3847/1538-3881/aac88b
10.1002/3527608524
10.1063/1.4983679
10.3390/physics2010007
10.1126/science.aae0330
10.1515/nanoph-2020-0425
10.1021/acsnano.8b01645
10.1103/PhysRevLett.110.146103
10.1063/1.4919048
10.1364/JOSAB.30.001580
10.1103/PhysRevApplied.4.014023
10.1021/acsphotonics.9b00440
10.1103/PhysRevA.80.042102
10.1103/PhysRevB.83.201404
10.1126/science.aaq0459
10.1038/s41467-019-11287-6
10.1063/1.4890624
10.1038/s41566-022-01005-y
10.1063/1.4931365
10.1038/s41467-017-02678-8
10.1021/acsphotonics.0c01376
10.1007/978-1-4899-1570-2
10.1063/1.4800233
10.1038/s41467-018-06163-8
10.1038/s41467-019-11598-8
10.1021/nl500693x
10.1364/OL.28.001909
10.1038/s41586-019-1800-4
10.1038/s41377-023-01315-y
10.1103/PhysRevLett.106.094502
10.1119/1.13262
10.1126/science.1186756
10.1038/s41377-018-0038-5
10.1002/adom.201800169
10.1038/s41586-018-0480-9
10.1016/j.photonics.2014.12.005
10.1103/PhysRevB.87.085421
10.1038/s41598-020-60603-4
10.1038/nmat2658
10.1017/CBO9780511794193
10.1007/s00340-010-4096-5
10.1103/PhysRev.166.242
10.1016/j.pquantelec.2007.03.001
10.1007/978-3-642-20288-9
10.1103/PhysRevLett.109.123604
10.1364/OME.443129
10.1364/OPTICA.2.000027
10.1021/nl072369t
10.1103/PhysRevB.92.134202
10.1103/PhysRevLett.120.125501
10.1038/478191a
10.1103/PhysRevLett.107.114302
10.1016/1010-6030(91)87063-2
10.1016/j.mtener.2021.100776
10.1103/PhysRevLett.105.127404
10.1515/nanoph-2023-0754
10.1103/PhysRevA.82.063827
10.1103/PhysRevLett.94.085901
10.1103/PhysRevLett.105.013901
10.1103/PhysRevB.88.054305
10.1103/PhysRevB.92.035419
10.1364/OE.23.0A1120
10.1103/PhysRevA.11.230
10.1002/adom.201600455
10.1016/j.rser.2014.11.101
10.1088/1367-2630/12/3/033028
10.1063/1.4767646
10.1021/acsphotonics.1c00612
10.1103/PhysRevA.102.050203
10.1038/ncomms12900
10.1039/D0NH00609B
10.1103/PhysRevApplied.19.L051002
10.1038/nphoton.2009.188
10.1088/1367-2630/12/6/068002
10.1103/PhysRevE.85.046603
10.1002/adma.201301472
10.1021/nl503236k
10.1002/adom.201701292
10.1021/acsphotonics.8b01031
10.1103/PhysRevLett.99.053906
10.1364/OE.415232
10.1126/science.aac9788
10.1103/PhysRevApplied.6.024014
10.1364/OPTICA.4.000430
10.1007/s00339-009-5203-5
10.1103/PhysRevB.93.165405
10.1103/PhysRevB.79.033101
10.1002/lpor.201900162
10.1126/sciadv.1600499
10.1063/1.3125453
10.1088/1367-2630/11/3/033035
10.1117/1.AP.4.1.014002
10.1103/PhysRev.37.405
10.1103/PhysRevB.84.195459
10.1103/PhysRevB.85.165104
10.1126/science.adf1094
10.1142/S0217732320400131
10.1364/OE.21.014988
10.1063/1.4793650
10.1063/1.1922084
10.1063/1.3478214
10.1103/PhysRevLett.124.077402
10.1103/PhysRevX.8.021008
10.1103/PhysRevB.76.045427
10.1002/andp.19013090310
10.1103/PhysRev.138.B274
10.1063/1.5007712
10.1038/nenergy.2016.68
10.1088/1367-2630/16/6/063011
10.1103/PhysRevLett.109.104301
10.1080/10893950290053321
10.1021/acsphotonics.0c01487
10.1103/PhysRevLett.126.204101
10.1021/nl403653j
10.1016/j.joule.2019.07.010
10.1103/PhysRevLett.123.257401
10.1002/lpor.201700091
10.1002/adem.202000825
10.1051/0004-6361/201834032
10.1039/D3NR02079G
10.1364/OE.25.023356
10.1364/AO.4.001634
10.1103/PhysRevB.4.3303
10.1364/OL.44.001138
10.1021/cr60203a003
10.1103/PhysRevB.101.035408
10.1088/0953-8984/11/35/301
10.1080/15567265.2015.1027836
10.1038/s41567-023-01993-w
10.1038/s41467-020-19790-x
10.1038/nnano.2016.20
10.1103/PhysRevB.63.205404
10.1016/j.optcom.2013.10.042
10.1103/PhysRevB.91.235316
10.1119/1.5034785
10.1038/s41467-016-0013-x
10.1103/PhysRevApplied.11.014026
10.1038/nnano.2008.29
10.1103/PhysRevB.94.045406
10.1038/nature13883
10.1063/1.1526919
10.1103/PhysRevLett.78.5
10.1103/PhysRevB.97.045408
10.1063/5.0134951
10.1103/RevModPhys.20.51
10.1103/PhysRevApplied.20.L061003
10.1039/D2NA00633B
10.1103/PhysRevB.94.125431
10.1103/RevModPhys.84.1
10.1002/adom.201500119
10.1364/OPN.28.9.000034
10.1016/j.jqsrt.2009.05.010
10.1016/j.nanoen.2017.09.054
10.1021/acscentsci.8b00802
10.1103/PhysRevB.85.155422
10.1126/science.abc5381
10.1103/PhysRevA.106.052205
10.1103/PhysRevApplied.11.034056
10.1103/PhysRevLett.112.253601
10.1088/0034-4885/29/1/306
10.1615/AnnualRevHeatTransfer.2020032934
10.1063/1.2938716
10.1038/s41377-020-0296-x
10.1038/s41467-020-15682-2
10.1103/PhysRevB.92.144307
10.1364/OPN.26.7.000048
10.1063/1.4907392
10.1038/ncomms2765
10.1098/rspa.1963.0220
10.1038/s41377-022-00870-0
10.1021/acsphotonics.6b00991
10.1016/B978-0-08-057149-2.50010-2
10.1021/acs.nanolett.9b01234
10.1063/1.3600779
10.1002/aenm.201400334
10.1063/1.5087281
10.1063/1.1397759
10.1038/s41467-021-21752-w
10.1002/adma.201904154
10.1103/PhysRevA.59.4736
10.1364/OE.21.015014
10.1364/OE.21.000A96
10.1364/OL.42.001879
10.1103/PhysRevA.90.012515
10.1209/0295-5075/115/41002
10.1063/1.2906375
10.1073/pnas.1903001116
10.1103/PhysRevLett.105.234301
10.1063/1.4807174
10.1063/1.328187
10.1103/PhysRevX.11.021050
10.1103/PhysRevLett.112.044301
10.1021/acsphotonics.7b00408
10.1103/PhysRevApplied.20.054028
10.1088/1367-2630/11/3/033014
10.1038/s42254-020-0224-2
10.1364/OL.30.002623
10.1063/5.0109763
10.1016/j.solmat.2021.111554
10.1098/rstl.1800.0015
10.1109/PROC.1979.11270
10.1103/PhysRevApplied.12.044048
10.1002/adom.201300163
10.1103/PhysRevB.99.041403
10.1103/PhysRevApplied.18.054067
10.1038/072243d0
10.1103/PhysRevApplied.14.064013
10.1021/acsphotonics.8b00328
10.1063/1.3294606
10.1038/072293d0
10.1103/PhysRevB.94.104301
10.1038/ncomms14479
10.1088/1367-2630/18/1/013034
10.1126/science.1249799
10.1103/PhysRevB.68.245405
10.1063/1.3672809
10.1016/j.jqsrt.2007.08.017
10.1021/acs.nanolett.9b01086
10.1103/PhysRevB.70.125101
10.1364/OME.444308
10.1016/j.jqsrt.2013.01.002
10.1103/PhysRevB.87.205112
10.1021/acs.nanolett.0c04847
10.1002/smll.202100446
10.1038/nphoton.2015.229
10.1016/j.surfrep.2004.12.002
10.1021/acsphotonics.5b00140
10.1103/PhysRevLett.85.1548
10.1038/s41586-020-2717-7
10.1038/s41563-019-0363-y
10.1126/science.aau1217
10.1088/0022-3719/15/18/012
10.2478/v10155-010-0092-x
10.1103/PhysRev.38.2265
10.1038/nphoton.2013.243
10.1021/nl504505t
10.1364/OE.24.015101
10.1103/RevModPhys.71.1233
10.1103/PhysRevLett.108.230403
10.1016/B978-0-12-386944-9.50023-6
10.1103/PhysRevLett.105.113601
10.1103/PhysRevA.84.042102
10.1038/s41566-021-00921-9
10.1016/j.jqsrt.2014.11.013
10.1103/PhysRevLett.106.210404
10.1103/PhysRevApplied.7.044020
10.1063/1.3571442
10.1063/5.0142651
10.1063/5.0047308
10.1103/PhysRevLett.110.177403
10.1038/lsa.2016.194
10.1039/D2CP01070D
10.1063/1.4759055
10.1088/1367-2630/12/6/068001
10.1002/adma.201701275
10.1038/s41586-019-0918-8
10.1063/1.4932958
10.1103/PhysRev.182.1374
10.1021/acsphotonics.8b01585
10.1103/PhysRevB.99.235414
10.1126/science.1133268
10.1038/nnano.2013.286
10.1016/j.joule.2020.06.021
10.1038/s41467-018-06535-0
10.1017/CBO9781139644105
10.1038/nphoton.2017.13
10.1038/s41467-019-09378-5
10.1103/PhysRevB.92.024302
10.1103/PhysRev.32.110
10.1073/pnas.1120149109
10.1103/PhysRevA.94.042114
10.1126/science.aar5191
10.1088/1367-2630/13/6/068001
10.1038/nphoton.2012.146
10.1364/OE.24.029896
10.1021/acs.nanolett.6b03616
10.1016/0030-4018(82)90402-3
10.1002/adom.201600993
10.1103/PhysRevApplied.12.014053
10.1038/s41598-021-01282-7
10.1515/nanoph-2016-0011
10.1364/OE.26.00A729
10.1063/1.4832057
10.1002/adfm.201002436
10.1038/s41534-021-00495-y
10.1039/C6EE01372D
10.1103/PhysRev.86.702
10.1103/PhysRevLett.96.123903
10.1002/adma.202302478
10.1103/PhysRevLett.117.134303
10.1021/acsaem.0c03201
10.1103/PhysRevB.93.081402
10.1063/5.0186406
10.1021/nl903271d
10.1103/PhysRevB.86.115423
10.1103/PhysRevLett.82.1660
10.1002/adma.201701304
10.1021/nl504332t
10.1021/acs.nanolett.1c00550
10.1088/0268-1242/18/5/319
10.1016/j.joule.2018.10.009
10.1364/OE.23.00A299
10.1021/acs.nanolett.5b04090
10.1093/nsr/nwy005
10.1186/1556-276X-6-549
10.1103/PhysRevB.83.241407
10.1038/s41586-022-04473-y
10.1073/pnas.1509453112
10.1103/PhysRevB.90.220301
10.1103/PhysRevB.94.094307
10.1063/1.4931375
10.1021/acsami.1c23401
10.1021/acsphotonics.6b00644
10.1002/er.1607
10.1021/acsphotonics.5b00298
10.1103/PhysRevLett.120.063901
10.1021/acsenergylett.2c01075
10.1364/AO.37.003464
10.1038/nphoton.2011.154
10.1103/PhysRevA.69.022902
10.1364/OE.26.00A777
10.1002/andp.19113411106
10.1103/PhysRevB.81.165119
10.1016/j.progsurf.2013.07.001
10.1016/j.apenergy.2018.12.018
10.1063/1.4896525
10.1103/RevModPhys.79.1291
10.1119/1.10023
10.1103/PhysRevLett.107.045901
10.1021/acsphotonics.1c01350
10.1088/0953-8984/11/2/003
10.1103/PhysRevB.98.235416
10.1038/s41467-020-16197-6
10.1063/1.2010613
10.1364/OE.479367
10.1103/PhysRevB.55.10105
10.1364/OME.8.002312
10.1088/0953-8984/9/47/001
10.1038/srep34746
10.1038/ncomms3630
10.1038/s41566-023-01261-6
10.1364/JOSAB.35.000039
10.1073/pnas.1718264115
10.1002/andp.18601850205
10.1103/PhysRevLett.118.203901
10.1038/nphoton.2011.39
10.1073/pnas.1611924114
10.1021/nl204201g
10.1063/1.4899126
10.1103/PhysRevB.86.220302
10.1002/advs.201500360
10.1063/1.329270
10.1038/nnano.2015.309
10.1103/PhysRevX.9.011043
10.1002/adma.201502023
10.1103/PhysRev.130.2529
10.1103/PhysRevLett.123.120401
10.1063/1.4754616
10.1515/nanoph-2016-0010
10.1038/ncomms4892
10.1515/nanoph-2020-0414
10.1063/1.4904456
10.1063/1.4989522
10.1364/OE.18.00A314
10.1103/PhysRevB.89.245446
10.1103/PhysRevB.84.161413
10.1364/OE.19.014594
10.1016/j.solmat.2021.111556
10.1038/192254a0
10.1364/JOSAA.15.002735
10.1103/PhysRevLett.93.213905
10.1063/1.4825168
10.1063/5.0123232
10.1515/zna-2016-0358
10.1186/s43593-022-00015-1
10.1103/RevModPhys.37.231
10.1364/OE.17.015145
10.1103/PhysRevB.100.035414
10.1073/pnas.1809725115
10.1088/1367-2630/13/6/068002
10.1038/s41565-018-0172-5
10.1038/s41578-021-00283-2
10.1038/ncomms8032
10.1073/pnas.1517363113
10.1126/science.abb0971
10.1364/OE.479257
10.1021/acs.nanolett.1c04288
10.1021/nl204118h
10.1038/s41467-023-40281-2
10.1364/OPTICA.5.000175
10.1103/PhysRevB.92.125418
10.1021/nl3034784
10.1007/BF00901283
10.1038/nphoton.2009.144
10.1021/nl4004283
10.1021/acsphotonics.7b00838
10.1021/acs.nanolett.8b00846
10.1103/PhysRevB.93.155403
10.1103/PhysRevA.100.023830
10.1038/s41377-023-01287-z
10.1364/OME.7.000618
10.1007/978-94-015-8723-5
10.1063/1.4893742
10.1038/ncomms1528
10.1038/ncomms11809
10.1364/OPTICA.2.000893
10.1038/s41566-017-0069-0
10.1103/PhysRevA.83.033810
10.1063/1.4905132
10.1038/nphoton.2013.32
10.1119/1.1904623
10.1103/PhysRevLett.110.163601
10.1103/PhysRevB.72.075127
10.1038/nature16070
10.1063/1.2905286
10.1021/acsphotonics.3c00747
10.1103/PhysRevLett.125.127403
10.1038/nmat4043
10.1038/s41377-019-0158-6
10.1364/OE.27.011537
10.1038/nnano.2014.9
10.1103/PhysRevLett.117.190601
10.1021/acsphotonics.6b01025
10.1364/OE.26.015995
10.1103/PhysRevApplied.16.064022
10.1103/PhysRevB.85.155418
10.1021/nl901208v
10.1073/pnas.1717595115
10.1021/acs.nanolett.7b01422
10.1103/PhysRevB.87.115403
10.1021/acsphotonics.6b00022
10.1103/PhysRevB.95.235428
10.1103/PhysRevB.62.R2243
10.1021/nl402939t
10.1364/OME.1.000466
10.1103/PhysRevApplied.19.034013
10.1103/PhysRev.152.438
10.1109/TAP.2019.2944216
10.3367/UFNe.2016.12.038006
10.1038/s41377-019-0179-1
10.1103/PhysRevB.102.085401
10.1364/OL.44.004203
10.1038/nmat4792
10.1038/416061a
10.1364/OE.377278
10.1103/PhysRev.83.34
10.1103/RevModPhys.88.045003
10.1103/PhysRevE.74.016609
10.1038/072054c0
10.1126/sciadv.ade4203
10.1103/PhysRevX.3.041004
10.1364/OPTICA.1.000032
10.1103/PhysRevD.72.021301
10.1103/PhysRevLett.116.233901
10.1021/acs.nanolett.1c01396
10.1063/1.1736034
10.1364/OE.21.013691
10.1063/1.4941751
10.1093/oso/9780198501770.001.0001
10.1063/1.2834903
10.1021/acsphotonics.7b01223
10.1126/science.abo3324
10.1103/PhysRevLett.117.100402
10.1063/1.2435958
10.1103/PhysRevB.71.073306
10.1103/PhysRevLett.106.230602
10.1103/PhysRevLett.115.204302
10.1109/T-ED.1980.19950
10.1364/OME.5.002721
10.1103/PhysRevLett.115.174301
10.1109/TAP.2019.2944225
10.1038/s41566-020-0600-6
10.1038/s41377-020-0300-5
10.1063/1.1592614
10.1103/PhysRevB.91.134301
10.1038/s41377-022-01044-8
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society.
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society.
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1021/acsaom.4c00030
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2771-9855
EndPage 927
ExternalDocumentID PMC11217951
38962569
10_1021_acsaom_4c00030
a420898004
Genre Journal Article
Review
GroupedDBID ABQRX
ACS
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
EBS
GGK
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a426t-5d19cdfa4a8e5af7d7c623829cbee6adf3617e10635e418cbf6c408b352658213
IEDL.DBID ACS
ISSN 2771-9855
IngestDate Thu Aug 21 18:32:29 EDT 2025
Fri Jul 11 03:45:38 EDT 2025
Wed Feb 19 02:00:50 EST 2025
Tue Jul 01 03:07:56 EDT 2025
Thu Apr 24 23:11:19 EDT 2025
Mon Jul 01 06:34:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords nanophotonics
far-field
quantum theory
thermodynamics
radiative heat transfer
near-field
nanostructures
thermal radiation
Language English
License https://creativecommons.org/licenses/by/4.0
2024 The Authors. Published by American Chemical Society.
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a426t-5d19cdfa4a8e5af7d7c623829cbee6adf3617e10635e418cbf6c408b352658213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11217951
PMID 38962569
PQID 3075703629
PQPubID 23479
PageCount 30
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11217951
proquest_miscellaneous_3075703629
pubmed_primary_38962569
crossref_citationtrail_10_1021_acsaom_4c00030
crossref_primary_10_1021_acsaom_4c00030
acs_journals_10_1021_acsaom_4c00030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-28
PublicationDateYYYYMMDD 2024-06-28
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied optical materials
PublicationTitleAlternate ACS Appl. Opt. Mater
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Modest M. F. (ref26/cit26) 2013
ref332/cit332
ref476/cit476
ref406/cit406
ref472/cit472
ref402/cit402
ref185/cit185
ref23/cit23
ref259/cit259
ref181/cit181
ref111/cit111
ref255/cit255
ref399/cit399
ref329/cit329
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref93/cit93
ref251/cit251
ref325/cit325
ref483/cit483
ref321/cit321
ref178/cit178
ref122/cit122
ref61/cit61
Boriskina S. V. (ref117/cit117) 2017; 28
ref126/cit126
ref528/cit528
ref240/cit240
ref384/cit384
ref458/cit458
ref137/cit137
ref380/cit380
ref310/cit310
ref454/cit454
ref318/cit318
ref174/cit174
ref314/cit314
ref170/cit170
ref244/cit244
ref388/cit388
ref80/cit80
ref133/cit133
ref207/cit207
ref450/cit450
ref28/cit28
Novotny L. (ref8/cit8) 2012
ref203/cit203
ref520/cit520
ref461/cit461
ref535/cit535
ref233/cit233
ref148/cit148
ref307/cit307
ref391/cit391
ref55/cit55
ref531/cit531
ref144/cit144
ref303/cit303
ref218/cit218
ref395/cit395
ref469/cit469
ref167/cit167
ref465/cit465
ref539/cit539
ref163/cit163
ref237/cit237
ref66/cit66
ref87/cit87
ref140/cit140
ref214/cit214
ref98/cit98
ref210/cit210
ref222/cit222
ref366/cit366
ref63/cit63
ref295/cit295
ref155/cit155
ref229/cit229
ref156/cit156
ref85/cit85
ref501/cit501
ref509/cit509
ref34/cit34
ref221/cit221
ref292/cit292
ref432/cit432
ref506/cit506
ref361/cit361
ref435/cit435
ref17/cit17
ref219/cit219
ref82/cit82
ref232/cit232
ref306/cit306
ref377/cit377
ref145/cit145
ref166/cit166
ref350/cit350
ref424/cit424
ref491/cit491
ref284/cit284
ref443/cit443
ref358/cit358
ref517/cit517
ref499/cit499
ref211/cit211
ref36/cit36
ref79/cit79
ref317/cit317
ref270/cit270
ref200/cit200
ref344/cit344
ref418/cit418
ref57/cit57
Mahanty J. (ref281/cit281) 1976
ref413/cit413
ref278/cit278
ref134/cit134
ref208/cit208
ref273/cit273
ref347/cit347
ref320/cit320
ref289/cit289
ref15/cit15
ref180/cit180
ref494/cit494
ref58/cit58
ref104/cit104
ref262/cit262
ref421/cit421
ref177/cit177
ref336/cit336
ref123/cit123
ref196/cit196
ref355/cit355
ref429/cit429
ref45/cit45
ref405/cit405
ref477/cit477
ref471/cit471
ref401/cit401
ref52/cit52
ref258/cit258
ref186/cit186
ref116/cit116
ref110/cit110
ref182/cit182
ref328/cit328
ref112/cit112
ref390/cit390
ref536/cit536
ref532/cit532
ref89/cit89
ref460/cit460
ref412/cit412
ref538/cit538
ref96/cit96
ref466/cit466
ref394/cit394
ref191/cit191
ref339/cit339
ref13/cit13
ref193/cit193
ref407/cit407
ref105/cit105
ref335/cit335
ref263/cit263
ref197/cit197
ref90/cit90
ref269/cit269
ref383/cit383
ref527/cit527
ref171/cit171
ref97/cit97
ref101/cit101
ref319/cit319
ref241/cit241
Hecht E. (ref7/cit7) 2002
ref488/cit488
ref346/cit346
ref416/cit416
ref132/cit132
ref91/cit91
ref372/cit372
Boyd R. W. (ref449/cit449) 2019
ref252/cit252
ref12/cit12
ref423/cit423
ref121/cit121
Casimir H. B. G. (ref274/cit274) 1948; 51
ref175/cit175
Dalvit D. (ref276/cit276) 2011
ref357/cit357
ref516/cit516
ref44/cit44
ref427/cit427
ref9/cit9
ref225/cit225
ref296/cit296
ref226/cit226
ref154/cit154
ref439/cit439
ref367/cit367
ref159/cit159
ref92/cit92
ref504/cit504
ref505/cit505
ref290/cit290
ref220/cit220
ref291/cit291
ref438/cit438
ref433/cit433
ref88/cit88
ref362/cit362
ref160/cit160
ref143/cit143
ref302/cit302
ref373/cit373
ref53/cit53
Planck M. (ref243/cit243) 1959
ref149/cit149
ref308/cit308
ref46/cit46
ref236/cit236
Lummer O. (ref248/cit248) 1899; 1
ref49/cit49
ref422/cit422
ref493/cit493
ref356/cit356
ref515/cit515
Greiner W. (ref2/cit2) 1995
ref215/cit215
ref280/cit280
ref428/cit428
ref50/cit50
ref455/cit455
ref313/cit313
ref209/cit209
ref526/cit526
ref138/cit138
ref100/cit100
ref389/cit389
ref247/cit247
ref242/cit242
Chubb D. (ref42/cit42) 2007
ref487/cit487
ref417/cit417
ref340/cit340
ref51/cit51
ref94/cit94
ref204/cit204
ref521/cit521
ref378/cit378
ref537/cit537
ref231/cit231
ref165/cit165
ref324/cit324
ref482/cit482
ref95/cit95
ref192/cit192
ref351/cit351
ref510/cit510
ref47/cit47
ref127/cit127
ref285/cit285
ref444/cit444
Rytov S. M. (ref257/cit257) 1989
ref498/cit498
ref99/cit99
ref470/cit470
ref330/cit330
ref474/cit474
ref404/cit404
ref16/cit16
ref400/cit400
Jackson J. D. (ref5/cit5) 1998
ref187/cit187
ref327/cit327
ref113/cit113
ref183/cit183
ref48/cit48
ref35/cit35
ref481/cit481
ref253/cit253
ref323/cit323
ref120/cit120
ref478/cit478
ref176/cit176
ref67/cit67
ref128/cit128
Milonni P. W. (ref21/cit21) 1994
ref124/cit124
ref54/cit54
ref11/cit11
Vogel W. (ref20/cit20) 2006
ref102/cit102
ref29/cit29
ref86/cit86
ref271/cit271
ref345/cit345
ref489/cit489
ref419/cit419
ref341/cit341
ref485/cit485
ref415/cit415
ref43/cit43
ref279/cit279
Green M. A. (ref38/cit38) 2003
ref275/cit275
ref349/cit349
Loudon R. (ref19/cit19) 2000
ref411/cit411
ref264/cit264
ref338/cit338
ref22/cit22
ref496/cit496
ref260/cit260
ref334/cit334
ref408/cit408
ref492/cit492
ref106/cit106
ref190/cit190
ref198/cit198
ref194/cit194
ref268/cit268
ref153/cit153
ref297/cit297
ref227/cit227
ref150/cit150
ref294/cit294
ref368/cit368
ref224/cit224
ref56/cit56
Stefan J. (ref254/cit254) 1879; 79
ref158/cit158
ref503/cit503
ref59/cit59
ref500/cit500
ref363/cit363
ref437/cit437
ref37/cit37
ref360/cit360
ref60/cit60
ref434/cit434
ref508/cit508
ref147/cit147
ref519/cit519
Il’inskii Y. A. (ref130/cit130) 1994
ref230/cit230
Luque A. (ref39/cit39) 2011
ref304/cit304
ref238/cit238
ref379/cit379
ref164/cit164
ref352/cit352
ref511/cit511
ref213/cit213
ref286/cit286
ref371/cit371
ref445/cit445
ref426/cit426
ref497/cit497
ref78/cit78
ref382/cit382
ref312/cit312
ref456/cit456
ref525/cit525
ref83/cit83
ref139/cit139
ref172/cit172
ref246/cit246
ref385/cit385
ref459/cit459
Scully M. O. (ref18/cit18) 1997
ref14/cit14
ref169/cit169
ref486/cit486
ref522/cit522
ref451/cit451
ref131/cit131
ref205/cit205
ref161/cit161
ref142/cit142
ref216/cit216
ref301/cit301
ref374/cit374
ref533/cit533
ref448/cit448
Kaviany M. (ref25/cit25) 2002
ref235/cit235
ref309/cit309
ref62/cit62
ref393/cit393
ref467/cit467
ref41/cit41
ref84/cit84
ref440/cit440
ref514/cit514
ref331/cit331
ref475/cit475
ref333/cit333
ref473/cit473
ref403/cit403
ref184/cit184
ref114/cit114
ref398/cit398
ref256/cit256
ref77/cit77
ref71/cit71
Levin M. L. (ref115/cit115) 1967
ref188/cit188
ref118/cit118
ref462/cit462
ref534/cit534
ref410/cit410
ref468/cit468
ref396/cit396
ref392/cit392
ref107/cit107
ref337/cit337
ref265/cit265
ref109/cit109
ref261/cit261
ref409/cit409
ref199/cit199
ref530/cit530
ref267/cit267
ref195/cit195
ref64/cit64
ref311/cit311
ref81/cit81a
ref81/cit81b
ref457/cit457
ref136/cit136
ref453/cit453
ref65/cit65
ref245/cit245
ref315/cit315
ref76/cit76
ref387/cit387
ref32/cit32
ref272/cit272
ref202/cit202
ref168/cit168
ref484/cit484
ref342/cit342
ref206/cit206
ref523/cit523
ref376/cit376
ref287/cit287
ref446/cit446
ref326/cit326
ref322/cit322
ref480/cit480
ref179/cit179
ref33/cit33
ref249/cit249
ref283/cit283
ref442/cit442
ref129/cit129
ref353/cit353
ref512/cit512
ref70/cit70
ref125/cit125
Mandel L. (ref24/cit24) 1995
ref152/cit152
ref298/cit298
ref228/cit228
ref299/cit299
ref293/cit293
ref223/cit223
Mertens K. (ref40/cit40) 2018
ref151/cit151
de la Peña L. (ref464/cit464) 1996
ref157/cit157
Kittel C. (ref1/cit1) 1980
ref502/cit502
ref430/cit430
ref431/cit431
ref31/cit31
ref436/cit436
ref364/cit364
ref365/cit365
ref507/cit507
ref234/cit234
Howell J. R. (ref27/cit27) 2016
ref217/cit217
ref288/cit288
ref447/cit447
ref375/cit375
ref162/cit162
ref495/cit495
Goodman J. W. (ref369/cit369) 1988
ref420/cit420
ref75/cit75
ref141/cit141
ref300/cit300
ref354/cit354
ref513/cit513
ref282/cit282
ref441/cit441
Datas A. (ref3/cit3) 2021
ref529/cit529
ref452/cit452
ref381/cit381
ref173/cit173
ref103/cit103
Schwinger J. (ref6/cit6) 1998
ref72/cit72
ref386/cit386
ref316/cit316
ref343/cit343
ref201/cit201
ref414/cit414
ref277/cit277
ref135/cit135
ref68/cit68
ref348/cit348
ref146/cit146
ref305/cit305
ref463/cit463
ref73/cit73
ref69/cit69
Landau L. D. (ref4/cit4) 1960
ref239/cit239
ref397/cit397
ref250/cit250
ref108/cit108
ref266/cit266
ref425/cit425
ref490/cit490
ref479/cit479
Vázquez-Lozano J. E. (ref524/cit524) 2023; 34
ref30/cit30
ref212/cit212
ref370/cit370
ref359/cit359
ref518/cit518
References_xml – ident: ref83/cit83
  doi: 10.1073/pnas.1402036111
– ident: ref235/cit235
  doi: 10.1364/OPN.27.7.000026
– ident: ref368/cit368
  doi: 10.1063/1.1666629
– ident: ref55/cit55
  doi: 10.1088/0268-1242/18/5/303
– ident: ref67/cit67
  doi: 10.1021/acsphotonics.2c01308
– ident: ref520/cit520
  doi: 10.1109/MMM.2019.2963606
– ident: ref475/cit475
  doi: 10.1126/sciadv.aat3163
– ident: ref172/cit172
  doi: 10.1063/1.4896573
– ident: ref398/cit398
  doi: 10.1063/1.2963195
– volume-title: Quantum Optics
  year: 1997
  ident: ref18/cit18
  doi: 10.1017/CBO9780511813993
– ident: ref74/cit74
  doi: 10.1103/PhysRevB.91.115406
– ident: ref238/cit238
  doi: 10.1021/acsphotonics.0c00782
– ident: ref332/cit332
  doi: 10.1364/OE.21.009113
– ident: ref86/cit86
  doi: 10.1038/ncomms9685
– volume-title: Principles of Heat Transfer
  year: 2002
  ident: ref25/cit25
  doi: 10.1115/1.1497490
– ident: ref110/cit110
  doi: 10.1038/s41377-023-01119-0
– ident: ref12/cit12
  doi: 10.1126/science.aac4360
– ident: ref62/cit62
  doi: 10.1007/BF00688821
– ident: ref413/cit413
  doi: 10.1063/1.4967384
– ident: ref79/cit79
  doi: 10.1073/pnas.1701606114
– ident: ref357/cit357
  doi: 10.1186/s43593-022-00025-z
– ident: ref151/cit151
  doi: 10.1002/adma.201504525
– ident: ref469/cit469
  doi: 10.1103/PhysRevLett.127.053603
– ident: ref122/cit122
  doi: 10.1016/j.joule.2017.07.012
– ident: ref104/cit104
  doi: 10.1038/ncomms13729
– ident: ref522/cit522
  doi: 10.1103/PhysRevLett.130.096902
– ident: ref135/cit135
  doi: 10.1103/PhysRevLett.116.084301
– ident: ref370/cit370
  doi: 10.2150/jlve.18.2_5
– ident: ref299/cit299
  doi: 10.1103/PhysRevA.89.050101
– ident: ref103/cit103
  doi: 10.1088/0004-637X/707/2/916
– ident: ref463/cit463
  doi: 10.1103/PhysRevD.11.790
– ident: ref521/cit521
  doi: 10.1109/MAP.2023.3236275
– ident: ref460/cit460
  doi: 10.1038/s41566-017-0051-x
– ident: ref320/cit320
  doi: 10.1364/JOSAB.4.000481
– ident: ref213/cit213
  doi: 10.1103/PhysRevB.95.125404
– ident: ref308/cit308
  doi: 10.1103/PhysRevLett.118.133605
– ident: ref114/cit114
  doi: 10.1021/acsphotonics.7b00089
– ident: ref331/cit331
  doi: 10.1364/OE.21.011482
– ident: ref220/cit220
  doi: 10.1063/1.4918599
– ident: ref492/cit492
  doi: 10.1103/PhysRevApplied.11.054020
– ident: ref364/cit364
  doi: 10.1103/PhysRevMaterials.1.062201
– ident: ref251/cit251
  doi: 10.3847/1538-3881/aac88b
– volume-title: Quantum Optics
  year: 2006
  ident: ref20/cit20
  doi: 10.1002/3527608524
– ident: ref348/cit348
  doi: 10.1063/1.4983679
– ident: ref285/cit285
  doi: 10.3390/physics2010007
– ident: ref529/cit529
  doi: 10.1126/science.aae0330
– ident: ref280/cit280
  doi: 10.1515/nanoph-2020-0425
– ident: ref429/cit429
  doi: 10.1021/acsnano.8b01645
– ident: ref317/cit317
  doi: 10.1103/PhysRevLett.110.146103
– volume: 79
  start-page: 391
  year: 1879
  ident: ref254/cit254
  publication-title: Akad. Wissen.
– ident: ref420/cit420
  doi: 10.1063/1.4919048
– ident: ref153/cit153
  doi: 10.1364/JOSAB.30.001580
– ident: ref180/cit180
  doi: 10.1103/PhysRevApplied.4.014023
– ident: ref204/cit204
  doi: 10.1021/acsphotonics.9b00440
– ident: ref270/cit270
  doi: 10.1103/PhysRevA.80.042102
– ident: ref493/cit493
  doi: 10.1103/PhysRevB.83.201404
– ident: ref237/cit237
  doi: 10.1126/science.aaq0459
– ident: ref434/cit434
  doi: 10.1038/s41467-019-11287-6
– ident: ref333/cit333
  doi: 10.1063/1.4890624
– ident: ref247/cit247
  doi: 10.1038/s41566-022-01005-y
– ident: ref85/cit85
  doi: 10.1063/1.4931365
– volume-title: Photovoltaics: Fundamentals, Technology, and Practice
  year: 2018
  ident: ref40/cit40
– ident: ref184/cit184
  doi: 10.1038/s41467-017-02678-8
– ident: ref137/cit137
  doi: 10.1021/acsphotonics.0c01376
– volume-title: Electromagnetic Response of Material Media
  year: 1994
  ident: ref130/cit130
  doi: 10.1007/978-1-4899-1570-2
– ident: ref161/cit161
  doi: 10.1063/1.4800233
– ident: ref433/cit433
  doi: 10.1038/s41467-018-06163-8
– ident: ref482/cit482
  doi: 10.1038/s41467-019-11598-8
– ident: ref494/cit494
  doi: 10.1021/nl500693x
– ident: ref371/cit371
  doi: 10.1364/OL.28.001909
– ident: ref273/cit273
  doi: 10.1038/s41586-019-1800-4
– ident: ref106/cit106
  doi: 10.1038/s41377-023-01315-y
– ident: ref288/cit288
  doi: 10.1103/PhysRevLett.106.094502
– ident: ref445/cit445
  doi: 10.1119/1.13262
– ident: ref11/cit11
  doi: 10.1126/science.1186756
– ident: ref500/cit500
  doi: 10.1038/s41377-018-0038-5
– ident: ref185/cit185
  doi: 10.1002/adom.201800169
– ident: ref437/cit437
  doi: 10.1038/s41586-018-0480-9
– ident: ref143/cit143
  doi: 10.1016/j.photonics.2014.12.005
– ident: ref314/cit314
  doi: 10.1103/PhysRevB.87.085421
– ident: ref227/cit227
  doi: 10.1038/s41598-020-60603-4
– ident: ref9/cit9
  doi: 10.1038/nmat2658
– volume-title: Fundamentals of Thermophotovoltaic Energy Conversion
  year: 2007
  ident: ref42/cit42
– volume-title: Principles of Nano-Optics
  year: 2012
  ident: ref8/cit8
  doi: 10.1017/CBO9780511794193
– ident: ref311/cit311
  doi: 10.1007/s00340-010-4096-5
– ident: ref31/cit31
  doi: 10.1103/PhysRev.166.242
– ident: ref282/cit282
  doi: 10.1016/j.pquantelec.2007.03.001
– volume-title: Casimir Physics
  year: 2011
  ident: ref276/cit276
  doi: 10.1007/978-3-642-20288-9
– ident: ref307/cit307
  doi: 10.1103/PhysRevLett.109.123604
– ident: ref488/cit488
  doi: 10.1364/OME.443129
– ident: ref205/cit205
  doi: 10.1364/OPTICA.2.000027
– ident: ref250/cit250
  doi: 10.1021/nl072369t
– ident: ref120/cit120
  doi: 10.1103/PhysRevB.92.134202
– ident: ref72/cit72
  doi: 10.1103/PhysRevLett.120.125501
– ident: ref119/cit119
  doi: 10.1038/478191a
– ident: ref199/cit199
  doi: 10.1103/PhysRevLett.107.114302
– volume: 34
  start-page: 55
  year: 2023
  ident: ref524/cit524
  publication-title: Opt. Photonics News
– ident: ref451/cit451
  doi: 10.1016/1010-6030(91)87063-2
– ident: ref93/cit93
  doi: 10.1016/j.mtener.2021.100776
– ident: ref497/cit497
  doi: 10.1103/PhysRevLett.105.127404
– ident: ref189/cit189
  doi: 10.1515/nanoph-2023-0754
– ident: ref306/cit306
  doi: 10.1103/PhysRevA.82.063827
– ident: ref414/cit414
  doi: 10.1103/PhysRevLett.94.085901
– ident: ref444/cit444
  doi: 10.1103/PhysRevLett.105.013901
– ident: ref267/cit267
  doi: 10.1103/PhysRevB.88.054305
– ident: ref403/cit403
  doi: 10.1103/PhysRevB.92.035419
– ident: ref112/cit112
  doi: 10.1364/OE.23.0A1120
– ident: ref258/cit258
  doi: 10.1103/PhysRevA.11.230
– ident: ref338/cit338
  doi: 10.1002/adom.201600455
– ident: ref53/cit53
  doi: 10.1016/j.rser.2014.11.101
– ident: ref294/cit294
  doi: 10.1088/1367-2630/12/3/033028
– volume-title: Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion
  year: 2021
  ident: ref3/cit3
– ident: ref373/cit373
  doi: 10.1063/1.4767646
– ident: ref66/cit66
  doi: 10.1021/acsphotonics.1c00612
– ident: ref303/cit303
  doi: 10.1103/PhysRevA.102.050203
– ident: ref386/cit386
  doi: 10.1038/ncomms12900
– volume: 51
  start-page: 793
  year: 1948
  ident: ref274/cit274
  publication-title: Proc. Koninkl Ned. Akad. Wetenschap
– ident: ref421/cit421
  doi: 10.1039/D0NH00609B
– ident: ref504/cit504
  doi: 10.1103/PhysRevApplied.19.L051002
– ident: ref138/cit138
  doi: 10.1038/nphoton.2009.188
– ident: ref296/cit296
  doi: 10.1088/1367-2630/12/6/068002
– ident: ref440/cit440
  doi: 10.1103/PhysRevE.85.046603
– ident: ref472/cit472
  doi: 10.1002/adma.201301472
– ident: ref391/cit391
  doi: 10.1021/nl503236k
– ident: ref175/cit175
  doi: 10.1002/adom.201701292
– volume-title: Theory of Equilibrium Thermal Fluctuations in Electrodynamics
  year: 1967
  ident: ref115/cit115
– ident: ref125/cit125
  doi: 10.1021/acsphotonics.8b01031
– ident: ref372/cit372
  doi: 10.1103/PhysRevLett.99.053906
– ident: ref447/cit447
  doi: 10.1364/OE.415232
– ident: ref268/cit268
  doi: 10.1126/science.aac9788
– ident: ref99/cit99
  doi: 10.1103/PhysRevApplied.6.024014
– ident: ref152/cit152
  doi: 10.1364/OPTICA.4.000430
– ident: ref385/cit385
  doi: 10.1007/s00339-009-5203-5
– volume-title: Dispersion Forces
  year: 1976
  ident: ref281/cit281
– ident: ref435/cit435
  doi: 10.1103/PhysRevB.93.165405
– ident: ref376/cit376
  doi: 10.1103/PhysRevB.79.033101
– ident: ref503/cit503
  doi: 10.1002/lpor.201900162
– ident: ref337/cit337
  doi: 10.1126/sciadv.1600499
– ident: ref406/cit406
  doi: 10.1063/1.3125453
– ident: ref291/cit291
  doi: 10.1088/1367-2630/11/3/033035
– ident: ref14/cit14
  doi: 10.1117/1.AP.4.1.014002
– ident: ref81/cit81a
  doi: 10.1103/PhysRev.37.405
– ident: ref390/cit390
  doi: 10.1103/PhysRevB.84.195459
– ident: ref415/cit415
  doi: 10.1103/PhysRevB.85.165104
– ident: ref17/cit17
  doi: 10.1126/science.adf1094
– ident: ref471/cit471
  doi: 10.1142/S0217732320400131
– ident: ref169/cit169
  doi: 10.1364/OE.21.014988
– ident: ref473/cit473
  doi: 10.1063/1.4793650
– ident: ref209/cit209
  doi: 10.1063/1.1922084
– ident: ref478/cit478
  doi: 10.1063/1.3478214
– ident: ref525/cit525
  doi: 10.1103/PhysRevLett.124.077402
– ident: ref80/cit80
  doi: 10.1103/PhysRevX.8.021008
– ident: ref210/cit210
  doi: 10.1103/PhysRevB.76.045427
– ident: ref242/cit242
  doi: 10.1002/andp.19013090310
– ident: ref329/cit329
  doi: 10.1103/PhysRev.138.B274
– ident: ref100/cit100
  doi: 10.1063/1.5007712
– ident: ref47/cit47
  doi: 10.1038/nenergy.2016.68
– ident: ref289/cit289
  doi: 10.1088/1367-2630/16/6/063011
– ident: ref160/cit160
  doi: 10.1103/PhysRevLett.109.104301
– ident: ref325/cit325
  doi: 10.1080/10893950290053321
– ident: ref349/cit349
  doi: 10.1021/acsphotonics.0c01487
– volume-title: Classical Electrodynamics
  year: 1998
  ident: ref5/cit5
– ident: ref453/cit453
  doi: 10.1103/PhysRevLett.126.204101
– ident: ref50/cit50
  doi: 10.1021/nl403653j
– ident: ref90/cit90
  doi: 10.1016/j.joule.2019.07.010
– ident: ref446/cit446
  doi: 10.1103/PhysRevLett.123.257401
– ident: ref154/cit154
  doi: 10.1002/lpor.201700091
– ident: ref517/cit517
  doi: 10.1002/adem.202000825
– ident: ref252/cit252
  doi: 10.1051/0004-6361/201834032
– ident: ref443/cit443
  doi: 10.1039/D3NR02079G
– ident: ref233/cit233
  doi: 10.1364/OE.25.023356
– volume-title: Thermal Physics
  year: 1980
  ident: ref1/cit1
– ident: ref351/cit351
  doi: 10.1364/AO.4.001634
– ident: ref381/cit381
  doi: 10.1103/PhysRevB.4.3303
– ident: ref232/cit232
  doi: 10.1364/OL.44.001138
– ident: ref82/cit82
  doi: 10.1021/cr60203a003
– ident: ref419/cit419
  doi: 10.1103/PhysRevB.101.035408
– ident: ref382/cit382
  doi: 10.1088/0953-8984/11/35/301
– ident: ref145/cit145
  doi: 10.1080/15567265.2015.1027836
– ident: ref537/cit537
  doi: 10.1038/s41567-023-01993-w
– ident: ref92/cit92
  doi: 10.1038/s41467-020-19790-x
– ident: ref392/cit392
  doi: 10.1038/nnano.2016.20
– ident: ref383/cit383
  doi: 10.1103/PhysRevB.63.205404
– ident: ref51/cit51
  doi: 10.1016/j.optcom.2013.10.042
– ident: ref334/cit334
  doi: 10.1103/PhysRevB.91.235316
– ident: ref256/cit256
  doi: 10.1119/1.5034785
– ident: ref495/cit495
  doi: 10.1038/s41467-016-0013-x
– ident: ref132/cit132
  doi: 10.1103/PhysRevApplied.11.014026
– ident: ref249/cit249
  doi: 10.1038/nnano.2008.29
– ident: ref326/cit326
  doi: 10.1103/PhysRevB.94.045406
– ident: ref102/cit102
  doi: 10.1038/nature13883
– ident: ref191/cit191
  doi: 10.1063/1.1526919
– ident: ref275/cit275
  doi: 10.1103/PhysRevLett.78.5
– ident: ref438/cit438
  doi: 10.1103/PhysRevB.97.045408
– ident: ref129/cit129
  doi: 10.1063/5.0134951
– ident: ref28/cit28
  doi: 10.1103/RevModPhys.20.51
– ident: ref37/cit37
  doi: 10.1103/PhysRevApplied.20.L061003
– ident: ref241/cit241
  doi: 10.1039/D2NA00633B
– ident: ref181/cit181
  doi: 10.1103/PhysRevB.94.125431
– ident: ref283/cit283
  doi: 10.1103/RevModPhys.84.1
– ident: ref107/cit107
  doi: 10.1002/adom.201500119
– volume: 28
  start-page: 26
  year: 2017
  ident: ref117/cit117
  publication-title: Opt. Photonics News
  doi: 10.1364/OPN.28.9.000034
– ident: ref321/cit321
  doi: 10.1016/j.jqsrt.2009.05.010
– ident: ref422/cit422
  doi: 10.1016/j.nanoen.2017.09.054
– ident: ref342/cit342
  doi: 10.1021/acscentsci.8b00802
– ident: ref401/cit401
  doi: 10.1103/PhysRevB.85.155422
– ident: ref176/cit176
  doi: 10.1126/science.abc5381
– ident: ref304/cit304
  doi: 10.1103/PhysRevA.106.052205
– ident: ref226/cit226
  doi: 10.1103/PhysRevApplied.11.034056
– ident: ref467/cit467
  doi: 10.1103/PhysRevLett.112.253601
– volume-title: Electrodynamics of Continuous Media
  year: 1960
  ident: ref4/cit4
– volume-title: Nonlinear Optics
  year: 2019
  ident: ref449/cit449
– ident: ref263/cit263
  doi: 10.1088/0034-4885/29/1/306
– ident: ref96/cit96
  doi: 10.1615/AnnualRevHeatTransfer.2020032934
– ident: ref330/cit330
  doi: 10.1063/1.2938716
– ident: ref35/cit35
  doi: 10.1038/s41377-020-0296-x
– ident: ref533/cit533
  doi: 10.1038/s41467-020-15682-2
– ident: ref411/cit411
  doi: 10.1103/PhysRevB.92.144307
– ident: ref52/cit52
  doi: 10.1364/OPN.26.7.000048
– ident: ref34/cit34
  doi: 10.1063/1.4907392
– ident: ref142/cit142
  doi: 10.1038/ncomms2765
– ident: ref462/cit462
  doi: 10.1098/rspa.1963.0220
– ident: ref16/cit16
  doi: 10.1038/s41377-022-00870-0
– ident: ref109/cit109
  doi: 10.1021/acsphotonics.6b00991
– volume-title: The Quantum Vacuum: An Introduction to Quantum Electrodynamics
  year: 1994
  ident: ref21/cit21
  doi: 10.1016/B978-0-08-057149-2.50010-2
– ident: ref424/cit424
  doi: 10.1021/acs.nanolett.9b01234
– ident: ref148/cit148
  doi: 10.1063/1.3600779
– ident: ref374/cit374
  doi: 10.1002/aenm.201400334
– ident: ref88/cit88
  doi: 10.1063/1.5087281
– volume-title: Thermodynamics and statistical mechanics
  year: 1995
  ident: ref2/cit2
– ident: ref215/cit215
  doi: 10.1063/1.1397759
– ident: ref186/cit186
  doi: 10.1038/s41467-021-21752-w
– ident: ref363/cit363
  doi: 10.1002/adma.201904154
– ident: ref344/cit344
  doi: 10.1103/PhysRevA.59.4736
– ident: ref166/cit166
  doi: 10.1364/OE.21.015014
– ident: ref171/cit171
  doi: 10.1364/OE.21.000A96
– ident: ref375/cit375
  doi: 10.1364/OL.42.001879
– ident: ref310/cit310
  doi: 10.1103/PhysRevA.90.012515
– ident: ref367/cit367
  doi: 10.1209/0295-5075/115/41002
– ident: ref217/cit217
  doi: 10.1063/1.2906375
– ident: ref56/cit56
  doi: 10.1073/pnas.1903001116
– ident: ref410/cit410
  doi: 10.1103/PhysRevLett.105.234301
– ident: ref201/cit201
  doi: 10.1063/1.4807174
– ident: ref29/cit29
  doi: 10.1063/1.328187
– ident: ref187/cit187
  doi: 10.1103/PhysRevX.11.021050
– ident: ref430/cit430
  doi: 10.1103/PhysRevLett.112.044301
– ident: ref340/cit340
  doi: 10.1021/acsphotonics.7b00408
– ident: ref455/cit455
  doi: 10.1103/PhysRevApplied.20.054028
– ident: ref352/cit352
  doi: 10.1088/1367-2630/11/3/033014
– ident: ref465/cit465
  doi: 10.1038/s42254-020-0224-2
– ident: ref208/cit208
  doi: 10.1364/OL.30.002623
– ident: ref397/cit397
  doi: 10.1063/5.0109763
– ident: ref46/cit46
  doi: 10.1016/j.solmat.2021.111554
– ident: ref118/cit118
  doi: 10.1098/rstl.1800.0015
– volume-title: Optics
  year: 2002
  ident: ref7/cit7
– ident: ref41/cit41
  doi: 10.1109/PROC.1979.11270
– ident: ref159/cit159
  doi: 10.1103/PhysRevApplied.12.044048
– volume-title: Handbook of Photovoltaic Science and Engineering
  year: 2011
  ident: ref39/cit39
– ident: ref150/cit150
  doi: 10.1002/adom.201300163
– ident: ref416/cit416
  doi: 10.1103/PhysRevB.99.041403
– volume: 1
  start-page: 23
  year: 1899
  ident: ref248/cit248
  publication-title: Verh. Dtsch. Phys. Ges.
– ident: ref536/cit536
  doi: 10.1103/PhysRevApplied.18.054067
– ident: ref245/cit245
  doi: 10.1038/072243d0
– ident: ref442/cit442
  doi: 10.1103/PhysRevApplied.14.064013
– ident: ref439/cit439
  doi: 10.1021/acsphotonics.8b00328
– ident: ref313/cit313
  doi: 10.1063/1.3294606
– ident: ref246/cit246
  doi: 10.1038/072293d0
– ident: ref407/cit407
  doi: 10.1103/PhysRevB.94.104301
– ident: ref394/cit394
  doi: 10.1038/ncomms14479
– ident: ref436/cit436
  doi: 10.1088/1367-2630/18/1/013034
– ident: ref345/cit345
  doi: 10.1126/science.1249799
– ident: ref312/cit312
  doi: 10.1103/PhysRevB.68.245405
– ident: ref388/cit388
  doi: 10.1063/1.3672809
– ident: ref259/cit259
  doi: 10.1016/j.jqsrt.2007.08.017
– ident: ref506/cit506
  doi: 10.1021/acs.nanolett.9b01086
– ident: ref193/cit193
  doi: 10.1103/PhysRevB.70.125101
– ident: ref454/cit454
  doi: 10.1364/OME.444308
– ident: ref322/cit322
  doi: 10.1016/j.jqsrt.2013.01.002
– ident: ref177/cit177
  doi: 10.1103/PhysRevB.87.205112
– ident: ref426/cit426
  doi: 10.1021/acs.nanolett.0c04847
– ident: ref526/cit526
  doi: 10.1002/smll.202100446
– ident: ref95/cit95
  doi: 10.1038/nphoton.2015.229
– ident: ref269/cit269
  doi: 10.1016/j.surfrep.2004.12.002
– ident: ref508/cit508
  doi: 10.1021/acsphotonics.5b00140
– ident: ref324/cit324
  doi: 10.1103/PhysRevLett.85.1548
– ident: ref57/cit57
  doi: 10.1038/s41586-020-2717-7
– ident: ref124/cit124
  doi: 10.1038/s41563-019-0363-y
– ident: ref509/cit509
  doi: 10.1126/science.aau1217
– ident: ref450/cit450
  doi: 10.1088/0022-3719/15/18/012
– ident: ref461/cit461
  doi: 10.2478/v10155-010-0092-x
– ident: ref81/cit81b
  doi: 10.1103/PhysRev.38.2265
– ident: ref230/cit230
  doi: 10.1038/nphoton.2013.243
– ident: ref474/cit474
  doi: 10.1021/nl504505t
– ident: ref203/cit203
  doi: 10.1364/OE.24.015101
– ident: ref287/cit287
  doi: 10.1103/RevModPhys.71.1233
– ident: ref309/cit309
  doi: 10.1103/PhysRevLett.108.230403
– volume-title: Radiative Heat Transfer
  year: 2013
  ident: ref26/cit26
  doi: 10.1016/B978-0-12-386944-9.50023-6
– ident: ref305/cit305
  doi: 10.1103/PhysRevLett.105.113601
– ident: ref271/cit271
  doi: 10.1103/PhysRevA.84.042102
– ident: ref94/cit94
  doi: 10.1038/s41566-021-00921-9
– ident: ref163/cit163
  doi: 10.1016/j.jqsrt.2014.11.013
– ident: ref265/cit265
  doi: 10.1103/PhysRevLett.106.210404
– ident: ref347/cit347
  doi: 10.1103/PhysRevApplied.7.044020
– ident: ref353/cit353
  doi: 10.1063/1.3571442
– ident: ref127/cit127
  doi: 10.1063/5.0142651
– ident: ref343/cit343
  doi: 10.1063/5.0047308
– ident: ref479/cit479
  doi: 10.1103/PhysRevLett.110.177403
– ident: ref499/cit499
  doi: 10.1038/lsa.2016.194
– ident: ref157/cit157
  doi: 10.1039/D2CP01070D
– ident: ref362/cit362
  doi: 10.1063/1.4759055
– ident: ref295/cit295
  doi: 10.1088/1367-2630/12/6/068001
– ident: ref459/cit459
  doi: 10.1002/adma.201701275
– ident: ref136/cit136
  doi: 10.1038/s41586-019-0918-8
– ident: ref404/cit404
  doi: 10.1063/1.4932958
– ident: ref255/cit255
  doi: 10.1103/PhysRev.182.1374
– ident: ref505/cit505
  doi: 10.1021/acsphotonics.8b01585
– ident: ref409/cit409
  doi: 10.1103/PhysRevB.99.235414
– ident: ref428/cit428
  doi: 10.1126/science.1133268
– ident: ref523/cit523
– ident: ref140/cit140
  doi: 10.1038/nnano.2013.286
– ident: ref58/cit58
  doi: 10.1016/j.joule.2020.06.021
– ident: ref380/cit380
  doi: 10.1038/s41467-018-06535-0
– volume-title: Optical Coherence and Quantum Optics
  year: 1995
  ident: ref24/cit24
  doi: 10.1017/CBO9781139644105
– volume-title: Classical Electrodynamics
  year: 1998
  ident: ref6/cit6
– ident: ref236/cit236
  doi: 10.1038/nphoton.2017.13
– ident: ref441/cit441
  doi: 10.1038/s41467-019-09378-5
– ident: ref133/cit133
  doi: 10.1103/PhysRevB.92.024302
– ident: ref260/cit260
  doi: 10.1103/PhysRev.32.110
– ident: ref139/cit139
  doi: 10.1073/pnas.1120149109
– ident: ref300/cit300
  doi: 10.1103/PhysRevA.94.042114
– ident: ref486/cit486
  doi: 10.1126/science.aar5191
– ident: ref292/cit292
  doi: 10.1088/1367-2630/13/6/068001
– ident: ref200/cit200
  doi: 10.1038/nphoton.2012.146
– ident: ref214/cit214
  doi: 10.1364/OE.24.029896
– ident: ref225/cit225
  doi: 10.1021/acs.nanolett.6b03616
– ident: ref264/cit264
  doi: 10.1016/0030-4018(82)90402-3
– ident: ref485/cit485
  doi: 10.1002/adom.201600993
– ident: ref356/cit356
  doi: 10.1103/PhysRevApplied.12.014053
– ident: ref228/cit228
  doi: 10.1038/s41598-021-01282-7
– ident: ref45/cit45
  doi: 10.1515/nanoph-2016-0011
– ident: ref487/cit487
  doi: 10.1364/OE.26.00A729
– ident: ref168/cit168
  doi: 10.1063/1.4832057
– ident: ref431/cit431
  doi: 10.1002/adfm.201002436
– ident: ref284/cit284
  doi: 10.1038/s41534-021-00495-y
– ident: ref54/cit54
  doi: 10.1039/C6EE01372D
– ident: ref262/cit262
  doi: 10.1103/PhysRev.86.702
– ident: ref195/cit195
  doi: 10.1103/PhysRevLett.96.123903
– ident: ref188/cit188
  doi: 10.1002/adma.202302478
– ident: ref134/cit134
  doi: 10.1103/PhysRevLett.117.134303
– ident: ref361/cit361
  doi: 10.1021/acsaem.0c03201
– ident: ref408/cit408
  doi: 10.1103/PhysRevB.93.081402
– ident: ref128/cit128
  doi: 10.1063/5.0186406
– ident: ref221/cit221
  doi: 10.1021/nl903271d
– volume-title: Introduction to Fourier Optics
  year: 1988
  ident: ref369/cit369
– ident: ref272/cit272
  doi: 10.1103/PhysRevB.86.115423
– ident: ref323/cit323
  doi: 10.1103/PhysRevLett.82.1660
– ident: ref131/cit131
  doi: 10.1002/adma.201701304
– ident: ref170/cit170
  doi: 10.1021/nl504332t
– ident: ref534/cit534
  doi: 10.1021/acs.nanolett.1c00550
– ident: ref84/cit84
  doi: 10.1088/0268-1242/18/5/319
– ident: ref105/cit105
  doi: 10.1016/j.joule.2018.10.009
– ident: ref164/cit164
  doi: 10.1364/OE.23.00A299
– ident: ref511/cit511
  doi: 10.1021/acs.nanolett.5b04090
– ident: ref158/cit158
  doi: 10.1093/nsr/nwy005
– ident: ref223/cit223
  doi: 10.1186/1556-276X-6-549
– ident: ref412/cit412
  doi: 10.1103/PhysRevB.83.241407
– ident: ref59/cit59
  doi: 10.1038/s41586-022-04473-y
– ident: ref113/cit113
  doi: 10.1073/pnas.1509453112
– ident: ref69/cit69
  doi: 10.1103/PhysRevB.90.220301
– ident: ref211/cit211
  doi: 10.1103/PhysRevB.94.094307
– ident: ref335/cit335
  doi: 10.1063/1.4931375
– ident: ref514/cit514
  doi: 10.1021/acsami.1c23401
– ident: ref141/cit141
  doi: 10.1021/acsphotonics.6b00644
– ident: ref144/cit144
  doi: 10.1002/er.1607
– ident: ref179/cit179
  doi: 10.1021/acsphotonics.5b00298
– ident: ref387/cit387
  doi: 10.1103/PhysRevLett.120.063901
– ident: ref60/cit60
  doi: 10.1021/acsenergylett.2c01075
– ident: ref76/cit76
  doi: 10.1364/AO.37.003464
– ident: ref10/cit10
  doi: 10.1038/nphoton.2011.154
– ident: ref297/cit297
  doi: 10.1103/PhysRevA.69.022902
– ident: ref513/cit513
  doi: 10.1364/OE.26.00A777
– ident: ref253/cit253
  doi: 10.1002/andp.19113411106
– ident: ref146/cit146
  doi: 10.1103/PhysRevB.81.165119
– ident: ref316/cit316
  doi: 10.1016/j.progsurf.2013.07.001
– ident: ref89/cit89
  doi: 10.1016/j.apenergy.2018.12.018
– ident: ref156/cit156
  doi: 10.1063/1.4896525
– ident: ref298/cit298
  doi: 10.1103/RevModPhys.79.1291
– ident: ref61/cit61
  doi: 10.1119/1.10023
– ident: ref147/cit147
  doi: 10.1103/PhysRevLett.107.045901
– ident: ref366/cit366
  doi: 10.1021/acsphotonics.1c01350
– ident: ref286/cit286
  doi: 10.1088/0953-8984/11/2/003
– ident: ref355/cit355
  doi: 10.1103/PhysRevB.98.235416
– ident: ref425/cit425
  doi: 10.1038/s41467-020-16197-6
– ident: ref194/cit194
  doi: 10.1063/1.2010613
– ident: ref538/cit538
  doi: 10.1364/OE.479367
– ident: ref206/cit206
  doi: 10.1103/PhysRevB.55.10105
– ident: ref354/cit354
  doi: 10.1364/OME.8.002312
– ident: ref290/cit290
  doi: 10.1088/0953-8984/9/47/001
– ident: ref174/cit174
  doi: 10.1038/srep34746
– ident: ref202/cit202
  doi: 10.1038/ncomms3630
– ident: ref456/cit456
  doi: 10.1038/s41566-023-01261-6
– ident: ref183/cit183
  doi: 10.1364/JOSAB.35.000039
– ident: ref239/cit239
  doi: 10.1073/pnas.1718264115
– ident: ref75/cit75
  doi: 10.1002/andp.18601850205
– ident: ref182/cit182
  doi: 10.1103/PhysRevLett.118.203901
– ident: ref278/cit278
  doi: 10.1038/nphoton.2011.39
– ident: ref240/cit240
  doi: 10.1073/pnas.1611924114
– ident: ref315/cit315
  doi: 10.1021/nl204201g
– ident: ref231/cit231
  doi: 10.1063/1.4899126
– ident: ref266/cit266
  doi: 10.1103/PhysRevB.86.220302
– ident: ref87/cit87
  doi: 10.1002/advs.201500360
– ident: ref101/cit101
  doi: 10.1063/1.329270
– ident: ref121/cit121
  doi: 10.1038/nnano.2015.309
– ident: ref418/cit418
  doi: 10.1103/PhysRevX.9.011043
– ident: ref527/cit527
  doi: 10.1002/adma.201502023
– ident: ref22/cit22
  doi: 10.1103/PhysRev.130.2529
– ident: ref302/cit302
  doi: 10.1103/PhysRevLett.123.120401
– ident: ref165/cit165
  doi: 10.1063/1.4754616
– volume-title: Thermal Radiation Heat Transfer
  year: 2016
  ident: ref27/cit27
– ident: ref116/cit116
  doi: 10.1515/nanoph-2016-0010
– volume-title: The Theory of Heat Radiation
  year: 1959
  ident: ref243/cit243
– ident: ref224/cit224
  doi: 10.1038/ncomms4892
– ident: ref13/cit13
  doi: 10.1515/nanoph-2020-0414
– ident: ref484/cit484
  doi: 10.1063/1.4904456
– ident: ref379/cit379
  doi: 10.1063/1.4989522
– ident: ref48/cit48
  doi: 10.1364/OE.18.00A314
– ident: ref318/cit318
  doi: 10.1103/PhysRevB.89.245446
– ident: ref400/cit400
  doi: 10.1103/PhysRevB.84.161413
– ident: ref481/cit481
  doi: 10.1364/OE.19.014594
– ident: ref427/cit427
  doi: 10.1016/j.solmat.2021.111556
– ident: ref350/cit350
  doi: 10.1038/192254a0
– ident: ref77/cit77
  doi: 10.1364/JOSAA.15.002735
– ident: ref192/cit192
  doi: 10.1103/PhysRevLett.93.213905
– ident: ref515/cit515
  doi: 10.1063/1.4825168
– ident: ref405/cit405
  doi: 10.1063/5.0123232
– ident: ref432/cit432
  doi: 10.1515/zna-2016-0358
– ident: ref15/cit15
  doi: 10.1186/s43593-022-00015-1
– ident: ref23/cit23
  doi: 10.1103/RevModPhys.37.231
– ident: ref43/cit43
  doi: 10.1364/OE.17.015145
– ident: ref507/cit507
  doi: 10.1103/PhysRevB.100.035414
– ident: ref532/cit532
  doi: 10.1073/pnas.1809725115
– ident: ref293/cit293
  doi: 10.1088/1367-2630/13/6/068002
– ident: ref423/cit423
  doi: 10.1038/s41565-018-0172-5
– ident: ref126/cit126
  doi: 10.1038/s41578-021-00283-2
– ident: ref483/cit483
  doi: 10.1038/ncomms8032
– ident: ref78/cit78
  doi: 10.1073/pnas.1517363113
– ident: ref91/cit91
  doi: 10.1126/science.abb0971
– ident: ref539/cit539
  doi: 10.1364/OE.479257
– ident: ref68/cit68
  doi: 10.1021/acs.nanolett.1c04288
– ident: ref360/cit360
  doi: 10.1021/nl204118h
– ident: ref73/cit73
  doi: 10.1038/s41467-023-40281-2
– ident: ref496/cit496
  doi: 10.1364/OPTICA.5.000175
– ident: ref490/cit490
  doi: 10.1103/PhysRevB.92.125418
– ident: ref64/cit64
  doi: 10.1021/nl3034784
– ident: ref33/cit33
  doi: 10.1007/BF00901283
– ident: ref389/cit389
  doi: 10.1038/nphoton.2009.144
– ident: ref108/cit108
  doi: 10.1021/nl4004283
– ident: ref377/cit377
  doi: 10.1021/acsphotonics.7b00838
– ident: ref395/cit395
  doi: 10.1021/acs.nanolett.8b00846
– ident: ref212/cit212
  doi: 10.1103/PhysRevB.93.155403
– ident: ref468/cit468
  doi: 10.1103/PhysRevA.100.023830
– ident: ref512/cit512
  doi: 10.1038/s41377-023-01287-z
– ident: ref341/cit341
  doi: 10.1364/OME.7.000618
– volume-title: The Quantum Dice: An Introduction to Stochastic Electrodynamics
  year: 1996
  ident: ref464/cit464
  doi: 10.1007/978-94-015-8723-5
– ident: ref178/cit178
  doi: 10.1063/1.4893742
– ident: ref222/cit222
  doi: 10.1038/ncomms1528
– ident: ref173/cit173
  doi: 10.1038/ncomms11809
– ident: ref319/cit319
  doi: 10.1364/OPTICA.2.000893
– ident: ref531/cit531
  doi: 10.1038/s41566-017-0069-0
– ident: ref198/cit198
  doi: 10.1103/PhysRevA.83.033810
– ident: ref516/cit516
  doi: 10.1063/1.4905132
– ident: ref49/cit49
  doi: 10.1038/nphoton.2013.32
– ident: ref452/cit452
  doi: 10.1119/1.1904623
– ident: ref219/cit219
  doi: 10.1103/PhysRevLett.110.163601
– ident: ref216/cit216
  doi: 10.1103/PhysRevB.72.075127
– ident: ref393/cit393
  doi: 10.1038/nature16070
– volume-title: Principles of Statistical Radiophysics
  year: 1989
  ident: ref257/cit257
– ident: ref384/cit384
  doi: 10.1063/1.2905286
– ident: ref229/cit229
  doi: 10.1021/acsphotonics.3c00747
– ident: ref528/cit528
  doi: 10.1103/PhysRevLett.125.127403
– ident: ref458/cit458
  doi: 10.1038/nmat4043
– ident: ref477/cit477
  doi: 10.1038/s41377-019-0158-6
– ident: ref502/cit502
  doi: 10.1364/OE.27.011537
– ident: ref44/cit44
  doi: 10.1038/nnano.2014.9
– ident: ref65/cit65
  doi: 10.1103/PhysRevLett.117.190601
– ident: ref339/cit339
  doi: 10.1021/acsphotonics.6b01025
– ident: ref123/cit123
  doi: 10.1364/OE.26.015995
– volume-title: Third Generation Photovoltaics Advanced Solar Energy Conversion
  year: 2003
  ident: ref38/cit38
– ident: ref234/cit234
  doi: 10.1103/PhysRevApplied.16.064022
– ident: ref402/cit402
  doi: 10.1103/PhysRevB.85.155418
– ident: ref399/cit399
  doi: 10.1021/nl901208v
– ident: ref36/cit36
  doi: 10.1073/pnas.1717595115
– ident: ref457/cit457
  doi: 10.1021/acs.nanolett.7b01422
– ident: ref167/cit167
  doi: 10.1103/PhysRevB.87.115403
– ident: ref346/cit346
  doi: 10.1021/acsphotonics.6b00022
– ident: ref70/cit70
  doi: 10.1103/PhysRevB.95.235428
– ident: ref190/cit190
  doi: 10.1103/PhysRevB.62.R2243
– ident: ref480/cit480
  doi: 10.1021/nl402939t
– ident: ref149/cit149
  doi: 10.1364/OME.1.000466
– ident: ref328/cit328
  doi: 10.1103/PhysRevApplied.19.034013
– ident: ref466/cit466
  doi: 10.1103/PhysRev.152.438
– ident: ref519/cit519
  doi: 10.1109/TAP.2019.2944216
– ident: ref470/cit470
  doi: 10.3367/UFNe.2016.12.038006
– ident: ref476/cit476
  doi: 10.1038/s41377-019-0179-1
– ident: ref365/cit365
  doi: 10.1103/PhysRevB.102.085401
– ident: ref71/cit71
  doi: 10.1364/OL.44.004203
– ident: ref327/cit327
  doi: 10.1038/nmat4792
– ident: ref207/cit207
  doi: 10.1038/416061a
– ident: ref448/cit448
  doi: 10.1364/OE.377278
– ident: ref261/cit261
  doi: 10.1103/PhysRev.83.34
– ident: ref279/cit279
  doi: 10.1103/RevModPhys.88.045003
– ident: ref196/cit196
  doi: 10.1103/PhysRevE.74.016609
– ident: ref244/cit244
  doi: 10.1038/072054c0
– ident: ref359/cit359
  doi: 10.1126/sciadv.ade4203
– ident: ref155/cit155
  doi: 10.1103/PhysRevX.3.041004
– ident: ref111/cit111
  doi: 10.1364/OPTICA.1.000032
– ident: ref277/cit277
  doi: 10.1103/PhysRevD.72.021301
– ident: ref530/cit530
  doi: 10.1103/PhysRevLett.116.233901
– ident: ref501/cit501
  doi: 10.1021/acs.nanolett.1c01396
– ident: ref30/cit30
  doi: 10.1063/1.1736034
– ident: ref498/cit498
  doi: 10.1364/OE.21.013691
– ident: ref396/cit396
  doi: 10.1063/1.4941751
– volume-title: The Quantum Theory of Light
  year: 2000
  ident: ref19/cit19
  doi: 10.1093/oso/9780198501770.001.0001
– ident: ref218/cit218
  doi: 10.1063/1.2834903
– ident: ref491/cit491
  doi: 10.1021/acsphotonics.7b01223
– ident: ref535/cit535
  doi: 10.1126/science.abo3324
– ident: ref301/cit301
  doi: 10.1103/PhysRevLett.117.100402
– ident: ref197/cit197
  doi: 10.1063/1.2435958
– ident: ref489/cit489
  doi: 10.1103/PhysRevB.71.073306
– ident: ref63/cit63
  doi: 10.1103/PhysRevLett.106.230602
– ident: ref417/cit417
  doi: 10.1103/PhysRevLett.115.204302
– ident: ref32/cit32
  doi: 10.1109/T-ED.1980.19950
– ident: ref336/cit336
  doi: 10.1364/OME.5.002721
– ident: ref162/cit162
  doi: 10.1103/PhysRevLett.115.174301
– ident: ref518/cit518
  doi: 10.1109/TAP.2019.2944225
– ident: ref97/cit97
  doi: 10.1038/s41566-020-0600-6
– ident: ref510/cit510
  doi: 10.1038/s41377-020-0300-5
– ident: ref378/cit378
  doi: 10.1063/1.1592614
– ident: ref98/cit98
  doi: 10.1103/PhysRevB.91.134301
– ident: ref358/cit358
  doi: 10.1038/s41377-022-01044-8
SSID ssj0003009065
Score 2.3448944
SecondaryResourceType review_article
Snippet The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded...
The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 898
SubjectTerms Review
Title Review on the Scientific and Technological Breakthroughs in Thermal Emission Engineering
URI http://dx.doi.org/10.1021/acsaom.4c00030
https://www.ncbi.nlm.nih.gov/pubmed/38962569
https://www.proquest.com/docview/3075703629
https://pubmed.ncbi.nlm.nih.gov/PMC11217951
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXODAvpRNRiBxSomdzT5C1apCggtU6i2yHUdULQki7YWvZ-ykoYsQnDOy5PEsb-zJG4Ru3JQoJl3upMyDAsU0EEoqlBMqyMVQiqVCmB-Fn57DXt9_HASDn_uO5Rd8Su6EKkT-3vKVhe_raIOG4MEGBLVf6tsUD6CCa-dG0igiDmdBMGNoXFnC5CFVLOahFXC53CM5l3S6OyUDUmG5Ck2vyag1nciW-lplcvxzP7tou0Ke-L40lT20prN9tDXHR3iABuVLAc4zDLgQW7-3vURYZAmub-HNueIHQJujaspPgYcZBoODID_GHbAccwWH55Y-RP1u57Xdc6rRC46AlD1xgoRwlaTCF0wHIo2SSAFOYpQrqXUoktQD5KOhnPQC7ROmZBoq32XSsu0zSrwj1MjyTJ8g7EmeKDfSfphyX5gAIX1FoDSmHOCFq5voGlQSV65TxPZVnJK41FNc6amJnNlxxapiLzdDNMa_yt_W8h8lb8evklez049BQea9RGQ6nxYxhD_LT0Z5Ex2X1lCvBTgPKscQvrAFO6kFDG334pds-GbpuwHhQhQMyOm_Nn6GNingKNOdRtk5akw-p_oCcNBEXloX-AbXsQOi
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIAD78d4BoHEqaNJX-kRJtB4CgmQdquSNBUI6BDdLvx6nLQrGwgJro0VpY5jf06cLwAHbkYVl27sZNzDBMUUEEomlBMqjMWYimVCmIvC1zdh58G_6AbdCTga3oXBQRTYU2EP8b_YBegRfhO915avLIqfhClEIsyY9HH7rt5U8RAxuPb5SBZF1Il5EAyJGn90YcKRKsbD0Q-M-b1UciT2nM3DbT1qW3Ly3Br0ZUt9fCN0_MdvLcBchUPJcWk4izCh8yWYHWEnXIZueW5AejlBlEisF7CVRUTkKan35M0skxPEns_Vmz8FecoJmh-6_BdyinZkNuTISNcr8HB2et_uONVDDI7AAN53gpTGKs2EL7gORBalkULUxFmspNahSDMPcZDG5NILtE-5klmofJdLy73PGfVWoZH3cr0OxJNxqtxI-2EW-8K4C-kriokyixFsuLoJ-6iSpFpIRWLPyBlNSj0llZ6a4AxnLVEVl7l5UuPlV_nDWv6tZPH4VXJvaAQJKsicnohc9wZFgs7QspWxuAlrpVHUfSHqwzwyxBY-Zi61gCHxHm_Jnx4tmTfiXfSJAd3404_vwnTn_voquTq_udyEGYYIy9StMb4Fjf77QG8jQurLHbsqPgEhjAwD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BkRB7WHaBXQos6xVInFJi5-Ucy6NiXwiJIvUW2Y6trQop2rQXfj1jJ41aUCW4xtbIsccz33jGnwGOfUMVl37qGR5ggGILCCUTyosV-mIMxYwQ9qLw3-v46i78NYgG9T1uexcGB1GipNIl8e2ufsxNzTBAT_G7GD90QuWQ_Cqs2ZydVevu-W1zsBIgavDdE5IsSaiX8iiakTW-EmFdkioXXdIrnPmyXHLO__Q2od-M3JWdjDrTieyopxekju_8tU_wscajpFsp0GdY0cUWfJhjKdyGQZU_IOOCIFokzhq4CiMiipw0Z_N2tckZYtBR_fZPSYYFQTVE039PLlGf7MEcmRO9A3e9y_75lVc_yOAJdOQTL8ppqnIjQsF1JEySJwrRE2epklrHIjcB4iGNQWYQ6ZByJU2sQp9Lx8HPGQ2-QKsYF3oXSCDTXPmJDmOThsKaDRkqigEzSxF0-LoNRzglWb2hyszlyhnNqnnK6nlqgzdbuUzVnOb2aY37pf1Pmv6PFZvH0p4_ZoqQ4QTZLIoo9HhaZmgUHWsZS9vwtVKMRhaiP4wnY2zhCyrTdLBk3ostxfCfI_VG3Iu2MaJ7b_rx77B-c9HL_vy8_r0PGwyBli1fY_wAWpP_U_0NgdJEHrqN8Qy_yg6G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+the+Scientific+and+Technological+Breakthroughs+in+Thermal+Emission+Engineering&rft.jtitle=ACS+applied+optical+materials&rft.au=V%C3%A1zquez-Lozano%2C+J+Enrique&rft.au=Liberal%2C+I%C3%B1igo&rft.date=2024-06-28&rft.eissn=2771-9855&rft.volume=2&rft.issue=6&rft.spage=898&rft_id=info:doi/10.1021%2Facsaom.4c00030&rft_id=info%3Apmid%2F38962569&rft.externalDocID=38962569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9855&client=summon