Dielectric Characterization of Confined Water in Chiral Cellulose Nanocrystal Films

A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a profound effect on dispersion, wetting, interfacial adhesion, matrix crystallization, water uptake, and hydrothermal stability. To quantify and...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 9; no. 16; pp. 14222 - 14231
Main Authors Natarajan, Bharath, Emiroglu, Caglar, Obrzut, Jan, Fox, Douglas M, Pazmino, Beatriz, Douglas, Jack F, Gilman, Jeffrey W
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a profound effect on dispersion, wetting, interfacial adhesion, matrix crystallization, water uptake, and hydrothermal stability. To quantify and control the hydration and confinement of absorbed water in CNCs, we studied sulfated-CNCs neutralized with sodium cations and CNCs functionalized with less hydrophilic methyl­(triphenyl)­phosphonium cations. Films were cast from water suspensions at 20 °C under controlled humidity and drying rate, yielding CNC materials with distinguishably different dielectric properties and cholesteric structures. By controlling the evaporation rate, we obtained self-assembled chiral CNC films with extended uniformity, having helical modulation length (nominal pitch) tunable from 1300 to 600 nm. SEM imaging and UV–vis–NIR total reflectance spectra revealed tighter and more uniform CNC packing in films cast at slow evaporation rates or having lower surface energy when modified with phosphonium. The dielectric constant was measured by a noncontact microwave cavity perturbation method and fitted to a classical mixing model employing randomly oriented ellipsoidal water inclusions. The dielectric constant of absorbed water was found to be significantly smaller than that for free liquid indicating a limited mobility due to binding with the CNC “matrix”. In the case of hydrophilic Na-modified CNCs, a decreasing pitch led to greater anisotropy in the shape of moisture inclusions (ellipsoidal to platelet-like) and greater confinement. In contrast, the structure of hydrophobic phosphonium-modified CNC films was found to have reduced pitch, yet the shape of confined water remained predominantly spherical. These results provide a useful perspective on the current state of understanding of CNC–water interactions as well as on CNC self-assembly mechanisms. More broadly, we believe that our results are beneficial for the realization of CNC-based functional materials and composites.
AbstractList A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a profound effect on dispersion, wetting, interfacial adhesion, matrix crystallization, water uptake, and hydrothermal stability. To quantify and control the hydration and confinement of absorbed water in CNCs, we studied sulfated-CNCs neutralized with sodium cations and CNCs functionalized with less hydrophilic methyl­(triphenyl)­phosphonium cations. Films were cast from water suspensions at 20 °C under controlled humidity and drying rate, yielding CNC materials with distinguishably different dielectric properties and cholesteric structures. By controlling the evaporation rate, we obtained self-assembled chiral CNC films with extended uniformity, having helical modulation length (nominal pitch) tunable from 1300 to 600 nm. SEM imaging and UV–vis–NIR total reflectance spectra revealed tighter and more uniform CNC packing in films cast at slow evaporation rates or having lower surface energy when modified with phosphonium. The dielectric constant was measured by a noncontact microwave cavity perturbation method and fitted to a classical mixing model employing randomly oriented ellipsoidal water inclusions. The dielectric constant of absorbed water was found to be significantly smaller than that for free liquid indicating a limited mobility due to binding with the CNC “matrix”. In the case of hydrophilic Na-modified CNCs, a decreasing pitch led to greater anisotropy in the shape of moisture inclusions (ellipsoidal to platelet-like) and greater confinement. In contrast, the structure of hydrophobic phosphonium-modified CNC films was found to have reduced pitch, yet the shape of confined water remained predominantly spherical. These results provide a useful perspective on the current state of understanding of CNC–water interactions as well as on CNC self-assembly mechanisms. More broadly, we believe that our results are beneficial for the realization of CNC-based functional materials and composites.
A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a profound effect on dispersion, wetting, interfacial adhesion, matrix crystallization, water uptake, and hydrothermal stability. To quantify and control the hydration and confinement of absorbed water in CNCs, we studied sulfated-CNCs neutralized with sodium cations and CNCs functionalized with less hydrophilic methyl(triphenyl)phosphonium cations. Films were cast from water suspensions at 20 °C under controlled humidity and drying rate, yielding CNC materials with distinguishably different dielectric properties and cholesteric structures. By controlling the evaporation rate, we obtained self-assembled chiral CNC films with extended uniformity, having helical modulation length (nominal pitch) tunable from 1300 to 600 nm. SEM imaging and UV–vis–NIR total reflectance spectra revealed tighter and more uniform CNC packing in films cast at slow evaporation rates or having lower surface energy when modified with phosphonium. The dielectric constant was measured by a noncontact microwave cavity perturbation method and fitted to a classical mixing model employing randomly oriented ellipsoidal water inclusions. The dielectric constant of absorbed water was found to be significantly smaller than that for free liquid indicating a limited mobility due to binding with the CNC “matrix”. In the case of hydrophilic Na-modified CNCs, a decreasing pitch led to greater anisotropy in the shape of moisture inclusions (ellipsoidal to platelet-like) and greater confinement. In contrast, the structure of hydrophobic phosphonium-modified CNC films was found to have reduced pitch, yet the shape of confined water remained predominantly spherical. These results provide a useful perspective on the current state of understanding of CNC–water interactions as well as on CNC self-assembly mechanisms. More broadly, we believe that our results are beneficial for the realization of CNC-based functional materials and composites.
Author Natarajan, Bharath
Fox, Douglas M
Douglas, Jack F
Gilman, Jeffrey W
Obrzut, Jan
Emiroglu, Caglar
Pazmino, Beatriz
AuthorAffiliation Department of Chemistry
National Institute of Standards and Technology
Georgetown University
Material Measurement Laboratory
American University
Department of Physics
AuthorAffiliation_xml – name: Department of Physics
– name: Department of Chemistry
– name: American University
– name: Material Measurement Laboratory
– name: Georgetown University
– name: National Institute of Standards and Technology
– name: Department of Chemistry, American University, Washington, D.C. 20016, United States
– name: Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
– name: Department of Physics, Georgetown University, Washington, D.C. 20057, United States
Author_xml – sequence: 1
  givenname: Bharath
  orcidid: 0000-0002-0095-1610
  surname: Natarajan
  fullname: Natarajan, Bharath
  organization: Georgetown University
– sequence: 2
  givenname: Caglar
  surname: Emiroglu
  fullname: Emiroglu, Caglar
  organization: Georgetown University
– sequence: 3
  givenname: Jan
  orcidid: 0000-0001-6667-9712
  surname: Obrzut
  fullname: Obrzut, Jan
  email: jan.obrzut@nist.gov
  organization: National Institute of Standards and Technology
– sequence: 4
  givenname: Douglas M
  surname: Fox
  fullname: Fox, Douglas M
  organization: American University
– sequence: 5
  givenname: Beatriz
  surname: Pazmino
  fullname: Pazmino, Beatriz
  organization: National Institute of Standards and Technology
– sequence: 6
  givenname: Jack F
  surname: Douglas
  fullname: Douglas, Jack F
  organization: National Institute of Standards and Technology
– sequence: 7
  givenname: Jeffrey W
  surname: Gilman
  fullname: Gilman, Jeffrey W
  organization: National Institute of Standards and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28394559$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1LxDAQhoMofl89So8i7JqkSdNcBKmfIHpQ8Riy6UQjbaJJK-ivN7LrogdPE2aeeWcy7xZa9cEDQnsETwmm5EibpHs3FTNMKsFW0CaRjE1qyunq8s3YBtpK6QXjqqSYr6MNWpeScS430d2pgw7MEJ0pmmcdtRkguk89uOCLYIsmeOs8tMWjzoXC-Uy5qLuiga4bu5CguNE-mPiRhpw9d12fdtCa1V2C3UXcRg_nZ_fN5eT69uKqObmeaEb5MLEtKzFloGdaAqHSClkKKzC0VFNqcd0yIY3As5YaQaWBWlBiTStbXomMldvoeK77Os56aA34IW-mXqPrdfxQQTv1t-Lds3oK74pzXPOqygIHC4EY3kZIg-pdMvlj2kMYkyJ1XQlORfmNTueoiSGlCHY5hmD17YSaO6EWTuSG_d_LLfGf02fgcA7kRvUSxujzrf5T-wIb6Zcp
CitedBy_id crossref_primary_10_1021_acs_biomac_2c00417
crossref_primary_10_1002_adfm_202213820
crossref_primary_10_1007_s10570_023_05353_y
crossref_primary_10_1016_j_carbpol_2023_121451
crossref_primary_10_1016_j_cej_2024_150713
crossref_primary_10_1016_j_advmem_2022_100032
crossref_primary_10_1021_acs_jpcb_9b11622
crossref_primary_10_26599_PBM_2019_9260015
crossref_primary_10_3390_polym14214781
crossref_primary_10_1016_j_carbpol_2022_120465
crossref_primary_10_1039_C8NA00232K
crossref_primary_10_1016_j_carbpol_2022_120449
crossref_primary_10_1002_aelm_201700593
crossref_primary_10_1021_acsanm_8b00947
crossref_primary_10_1021_acsnano_3c03797
crossref_primary_10_1021_acsami_8b13808
crossref_primary_10_1016_j_carpta_2023_100367
crossref_primary_10_1016_j_jlumin_2023_120191
crossref_primary_10_1016_j_ijbiomac_2024_129544
crossref_primary_10_1016_j_matt_2021_07_012
crossref_primary_10_1021_acs_macromol_1c01155
crossref_primary_10_1063_5_0142483
crossref_primary_10_1002_marc_202100202
crossref_primary_10_1021_acssuschemeng_2c02109
crossref_primary_10_1088_2053_1591_abe974
crossref_primary_10_1016_j_polymer_2023_126117
crossref_primary_10_1021_acsapm_0c01073
crossref_primary_10_1115_1_4063271
crossref_primary_10_1021_acsami_1c19404
crossref_primary_10_1021_acsami_1c21906
crossref_primary_10_1002_adfm_201800032
crossref_primary_10_1002_macp_202200156
crossref_primary_10_1021_acs_langmuir_4c00247
crossref_primary_10_1098_rsta_2017_0050
crossref_primary_10_1016_j_cogsc_2018_03_010
crossref_primary_10_1080_02678292_2023_2168776
crossref_primary_10_1021_acs_chemrev_2c00836
crossref_primary_10_1007_s10965_021_02856_9
crossref_primary_10_1021_acs_biomac_1c00183
crossref_primary_10_1021_acs_chemrev_2c00611
crossref_primary_10_1007_s10570_018_2167_7
crossref_primary_10_1021_acs_chemrev_2c00477
crossref_primary_10_1016_j_progpolymsci_2023_101768
crossref_primary_10_32964_TJ17_09_501
Cites_doi 10.1021/bm301674e
10.1007/s10570-012-9733-1
10.1021/la046797f
10.1021/ma001555h
10.1007/978-3-642-90850-7
10.1002/anie.201001273
10.1021/acs.langmuir.5b00924
10.1002/app.1969.070130815
10.1007/s10853-009-3874-0
10.1016/j.actbio.2015.04.039
10.1021/la900323n
10.1063/1.4904708
10.1029/RS016i006p00987
10.1007/s10570-006-9093-9
10.1049/PBEW047E
10.1021/am500359f
10.1049/pi-c.1960.0041
10.1007/s10570-016-1066-z
10.1021/acsami.6b06083
10.1007/s10570-015-0569-3
10.1080/00150193.2014.895216
10.1007/978-3-642-37614-6_2
10.1038/am.2013.69
10.1002/adom.201400112
10.1021/ma300463y
10.1021/la0102455
10.1039/c0cs00108b
10.1038/ncomms11515
10.1021/cr900339w
10.1021/acsnano.5b05074
10.1109/TMTT.2014.2336775
10.1039/C5SM00912J
10.1016/j.measurement.2016.03.020
10.1021/bm049291k
10.1021/mz400464d
10.1021/ma201649f
10.1021/acs.langmuir.5b04008
10.1007/s10570-013-9888-4
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsami.7b01674
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 14231
ExternalDocumentID 10_1021_acsami_7b01674
28394559
c379960971
Genre Journal Article
GrantInformation_xml – fundername: Intramural NIST DOC
  grantid: 9999-NIST
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a425t-fd43024eaba9e129f7937f70ed2a22f08d479c70bd2c729ce8721fcd9d56770e3
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Tue Sep 17 21:17:32 EDT 2024
Fri Aug 16 22:35:07 EDT 2024
Fri Aug 23 00:53:41 EDT 2024
Tue Oct 29 09:31:39 EDT 2024
Thu Aug 27 13:42:19 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords self-assembly
chiral nematic structure
water confinement
dielectric properties
cellulose nanocrystals
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a425t-fd43024eaba9e129f7937f70ed2a22f08d479c70bd2c729ce8721fcd9d56770e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID
Jan Obrzut: 0000-0001-6667-9712
ORCID 0000-0001-6667-9712
0000-0002-0095-1610
OpenAccessLink https://europepmc.org/articles/pmc5508566?pdf=render
PMID 28394559
PQID 1886752736
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5508566
proquest_miscellaneous_1886752736
crossref_primary_10_1021_acsami_7b01674
pubmed_primary_28394559
acs_journals_10_1021_acsami_7b01674
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2017-04-26
PublicationDateYYYYMMDD 2017-04-26
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
de Gennes P. G. (ref36/cit36) 1998
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
Sihvola A. H. (ref30/cit30) 1999
ref25/cit25
ref16/cit16
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
Hasted J. B. (ref32/cit32) 1973
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
Posner R. (ref11/cit11) 2013; 25
Landau L. D. (ref31/cit31) 2008
ref4/cit4
ref1/cit1
ref24/cit24
Kellogg O. D. (ref29/cit29) 1929
ref38/cit38
ref7/cit7
References_xml – ident: ref4/cit4
  doi: 10.1021/bm301674e
– ident: ref34/cit34
  doi: 10.1007/s10570-012-9733-1
– ident: ref35/cit35
  doi: 10.1021/la046797f
– ident: ref14/cit14
  doi: 10.1021/ma001555h
– volume-title: Foundations of Potential Theory
  year: 1929
  ident: ref29/cit29
  doi: 10.1007/978-3-642-90850-7
  contributor:
    fullname: Kellogg O. D.
– ident: ref7/cit7
  doi: 10.1002/anie.201001273
– ident: ref21/cit21
  doi: 10.1021/acs.langmuir.5b00924
– ident: ref37/cit37
  doi: 10.1002/app.1969.070130815
– ident: ref5/cit5
  doi: 10.1007/s10853-009-3874-0
– ident: ref16/cit16
  doi: 10.1016/j.actbio.2015.04.039
– ident: ref27/cit27
  doi: 10.1021/la900323n
– ident: ref12/cit12
  doi: 10.1063/1.4904708
– ident: ref26/cit26
  doi: 10.1029/RS016i006p00987
– ident: ref10/cit10
  doi: 10.1007/s10570-006-9093-9
– volume-title: Electromagnetic Mixing Formulas and Applications
  year: 1999
  ident: ref30/cit30
  doi: 10.1049/PBEW047E
  contributor:
    fullname: Sihvola A. H.
– ident: ref2/cit2
  doi: 10.1021/am500359f
– ident: ref25/cit25
  doi: 10.1049/pi-c.1960.0041
– ident: ref40/cit40
  doi: 10.1007/s10570-016-1066-z
– ident: ref17/cit17
  doi: 10.1021/acsami.6b06083
– ident: ref22/cit22
  doi: 10.1007/s10570-015-0569-3
– ident: ref33/cit33
  doi: 10.1080/00150193.2014.895216
– volume: 25
  start-page: 21
  volume-title: Design of Adhesive Joints Under Humid Conditions
  year: 2013
  ident: ref11/cit11
  doi: 10.1007/978-3-642-37614-6_2
  contributor:
    fullname: Posner R.
– ident: ref15/cit15
  doi: 10.1038/am.2013.69
– ident: ref19/cit19
  doi: 10.1002/adom.201400112
– ident: ref13/cit13
  doi: 10.1021/ma300463y
– ident: ref41/cit41
  doi: 10.1021/la0102455
– ident: ref1/cit1
  doi: 10.1039/c0cs00108b
– ident: ref39/cit39
  doi: 10.1038/ncomms11515
– ident: ref6/cit6
  doi: 10.1021/cr900339w
– ident: ref8/cit8
  doi: 10.1021/acsnano.5b05074
– ident: ref24/cit24
  doi: 10.1109/TMTT.2014.2336775
– volume-title: Aqueous Dielectrics
  year: 1973
  ident: ref32/cit32
  contributor:
    fullname: Hasted J. B.
– ident: ref28/cit28
  doi: 10.1039/C5SM00912J
– ident: ref23/cit23
  doi: 10.1016/j.measurement.2016.03.020
– ident: ref3/cit3
  doi: 10.1021/bm049291k
– ident: ref9/cit9
  doi: 10.1021/mz400464d
– ident: ref20/cit20
  doi: 10.1021/ma201649f
– volume-title: The Physics of Liquid Crystals
  year: 1998
  ident: ref36/cit36
  contributor:
    fullname: de Gennes P. G.
– ident: ref38/cit38
  doi: 10.1021/acs.langmuir.5b04008
– volume-title: Electrodynamics of Continuous Media
  year: 2008
  ident: ref31/cit31
  contributor:
    fullname: Landau L. D.
– ident: ref18/cit18
  doi: 10.1007/s10570-013-9888-4
SSID ssj0063205
Score 2.454032
Snippet A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 14222
Title Dielectric Characterization of Confined Water in Chiral Cellulose Nanocrystal Films
URI http://dx.doi.org/10.1021/acsami.7b01674
https://www.ncbi.nlm.nih.gov/pubmed/28394559
https://search.proquest.com/docview/1886752736
https://pubmed.ncbi.nlm.nih.gov/PMC5508566
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI54XODA-zFeCgKJU6BN06Y9ToNpQoLLmNitSvMQFaVF63aAX4_TboNtQnCuGzVxHH-unc8IXXJXeEw7kgAcpYQZ7RHhe5zQKBGhMTpwKjKdh8eg02P3fb___b9jPoNP3RshS9sKhydVwfwyWqXciWyThmarOzlzA49WxYoQkTMSgsea0DMuvG-dkCxnndACspwvkPzhcdqbNf1RWREV2kKT1-vRMLmWn4s0jn9OZgttjGEnbtb7ZBst6XwHrf8gI9xF3du07omTStya0jjXtzRxYbC9GwjSCj8DPB3gNAepFD4bt3SWjbKi1BiO6kIOPgBwZridZm_lHuq1755aHTJuuUAEGO-QGMU88NpaJCLSAAWMpc8z3NGKCkqNEyrGI8mdRFEJsFzqECJII1Wk_ICDmLePVvIi14cIeyCl3UQyIyKIimjkG4cJ7iutXOFL2kAXsBrx2GTKuMqGUzeulygeL1EDXU00Fb_X_Bu_Sp5PFBmDidi8h8h1MYKRwxDCIsBpQQMd1IqdjgXoKmIQVTUQn1H5VMDSb88-ydOXioYbYrsQwPDRv-ZxjNaoBQQOIzQ4QSvDwUifApwZJmfVTv4CyKHxgw
link.rule.ids 230,315,783,787,888,2774,27090,27938,27939,57072,57122
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4t9AAc2vLsthSMQOJkSBwnTo5o29XyFBIguEWOH2rUNKk2uwf49Z0km2UXhFSuydiyZ2zPN_L4G4AD4UqPG0dRhKOMcms8Kn1PUBYlMrTWBE5NpnN5FQzu-NmD_9CB4_YtDA6ixJ7K-hL_mV3APcZvVUUckdR58wvwwReOqEoWnPRu2qM38Fids4iBOachOq6WpfFV-8oXqXLeF70CmC_zJGccT_8TXE-HXOeb_D4aj5Ij9fSCzfEdc_oMHycglJw0q2YVOiZfg5UZasJ1uPmRNhVyUkV6U1Ln5s0mKSypXgqitCb3CFaHJM1RKsXRk57JsnFWlIbgwV2o4SPCz4z00-xPuQF3_Z-3vQGdFGCgErfyiFrNPfThRiYyMggMbEWmZ4VjNJOMWSfUXERKOIlmCkG6MiHGk1bpSPuBQDFvExbzIjdfgHgoZdxEcSsjjJFY5FuHS-Fro13pK9aFfdRGPNlAZVzfjTM3blQUT1TUhcPWYPHfho3jTcm91p4xbpjqFkTmphhjz2GIQRKitqALW419p30h1oo4xlhdEHOWnwpUZNzzf_L0V03KjZFeiND463_NYxeWBreXF_HF6dX5N1hmFVRwOGXBNiyOhmPzHYHOKNmpF_c_Gy357A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkFA58CiPbkuLq1biZEgcJ06OaOmK8hISILhFjh8iIk3QZvdAf33HSXbFgpDgmkys2OPxfCPPfAPwS_gy4MZTFOEoo9yagMowEJQlmYytNZHXkOmcnUdH1_z4Nrzt6rhdLQz-RI0j1c0lvrPqB207hgF_H5-7rjgia3LnP8BCKHzm2hYc9C8nx28UsCZvEYNzTmN0XhOmxhffO3-k6ll_9AJkPs-VfOJ8BitwNf3tJufkfm88yvbUv2eMju-c1yosd2CUHLS7Zw3mTPkJlp5QFK7D5WHedsrJFelPyZ3b2k1SWeIqBlFakxsErUOSlyiV4wxI3xTFuKhqQ_AAr9TwEWFoQQZ58bfegOvB76v-Ee0aMVCJJj2iVvMAfbmRmUwMAgTrSPWs8IxmkjHrxZqLRAkv00whWFcmxrjSKp3oMBIoFmzCfFmV5jOQAKWMnyluZYKxEktC63EpQm20L0PFevATVyPtDKlOmzty5qftEqXdEvVgd6K09KFl5XhV8sdEpykajrsNkaWpxjhyHGOwhOgt6sFWq-PpWIi5Eo6xVg_EjPanAo6Ue_ZNmd815NwY8cUIkb-8aR47sHhxOEhP_5yffIWPzCEGj1MWbcP8aDg23xDvjLLvzf7-Dw5e_GY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dielectric+Characterization+of+Confined+Water+in+Chiral+Cellulose+Nanocrystal+Films&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Natarajan%2C+Bharath&rft.au=Emiroglu%2C+Caglar&rft.au=Obrzut%2C+Jan&rft.au=Fox%2C+Douglas+M.&rft.date=2017-04-26&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=9&rft.issue=16&rft.spage=14222&rft.epage=14231&rft_id=info:doi/10.1021%2Facsami.7b01674&rft_id=info%3Apmid%2F28394559&rft.externalDBID=PMC5508566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon