Dielectric Characterization of Confined Water in Chiral Cellulose Nanocrystal Films
A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a profound effect on dispersion, wetting, interfacial adhesion, matrix crystallization, water uptake, and hydrothermal stability. To quantify and...
Saved in:
Published in | ACS applied materials & interfaces Vol. 9; no. 16; pp. 14222 - 14231 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a profound effect on dispersion, wetting, interfacial adhesion, matrix crystallization, water uptake, and hydrothermal stability. To quantify and control the hydration and confinement of absorbed water in CNCs, we studied sulfated-CNCs neutralized with sodium cations and CNCs functionalized with less hydrophilic methyl(triphenyl)phosphonium cations. Films were cast from water suspensions at 20 °C under controlled humidity and drying rate, yielding CNC materials with distinguishably different dielectric properties and cholesteric structures. By controlling the evaporation rate, we obtained self-assembled chiral CNC films with extended uniformity, having helical modulation length (nominal pitch) tunable from 1300 to 600 nm. SEM imaging and UV–vis–NIR total reflectance spectra revealed tighter and more uniform CNC packing in films cast at slow evaporation rates or having lower surface energy when modified with phosphonium. The dielectric constant was measured by a noncontact microwave cavity perturbation method and fitted to a classical mixing model employing randomly oriented ellipsoidal water inclusions. The dielectric constant of absorbed water was found to be significantly smaller than that for free liquid indicating a limited mobility due to binding with the CNC “matrix”. In the case of hydrophilic Na-modified CNCs, a decreasing pitch led to greater anisotropy in the shape of moisture inclusions (ellipsoidal to platelet-like) and greater confinement. In contrast, the structure of hydrophobic phosphonium-modified CNC films was found to have reduced pitch, yet the shape of confined water remained predominantly spherical. These results provide a useful perspective on the current state of understanding of CNC–water interactions as well as on CNC self-assembly mechanisms. More broadly, we believe that our results are beneficial for the realization of CNC-based functional materials and composites. |
---|---|
AbstractList | A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a profound effect on dispersion, wetting, interfacial adhesion, matrix crystallization, water uptake, and hydrothermal stability. To quantify and control the hydration and confinement of absorbed water in CNCs, we studied sulfated-CNCs neutralized with sodium cations and CNCs functionalized with less hydrophilic methyl(triphenyl)phosphonium cations. Films were cast from water suspensions at 20 °C under controlled humidity and drying rate, yielding CNC materials with distinguishably different dielectric properties and cholesteric structures. By controlling the evaporation rate, we obtained self-assembled chiral CNC films with extended uniformity, having helical modulation length (nominal pitch) tunable from 1300 to 600 nm. SEM imaging and UV–vis–NIR total reflectance spectra revealed tighter and more uniform CNC packing in films cast at slow evaporation rates or having lower surface energy when modified with phosphonium. The dielectric constant was measured by a noncontact microwave cavity perturbation method and fitted to a classical mixing model employing randomly oriented ellipsoidal water inclusions. The dielectric constant of absorbed water was found to be significantly smaller than that for free liquid indicating a limited mobility due to binding with the CNC “matrix”. In the case of hydrophilic Na-modified CNCs, a decreasing pitch led to greater anisotropy in the shape of moisture inclusions (ellipsoidal to platelet-like) and greater confinement. In contrast, the structure of hydrophobic phosphonium-modified CNC films was found to have reduced pitch, yet the shape of confined water remained predominantly spherical. These results provide a useful perspective on the current state of understanding of CNC–water interactions as well as on CNC self-assembly mechanisms. More broadly, we believe that our results are beneficial for the realization of CNC-based functional materials and composites. A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a profound effect on dispersion, wetting, interfacial adhesion, matrix crystallization, water uptake, and hydrothermal stability. To quantify and control the hydration and confinement of absorbed water in CNCs, we studied sulfated-CNCs neutralized with sodium cations and CNCs functionalized with less hydrophilic methyl(triphenyl)phosphonium cations. Films were cast from water suspensions at 20 °C under controlled humidity and drying rate, yielding CNC materials with distinguishably different dielectric properties and cholesteric structures. By controlling the evaporation rate, we obtained self-assembled chiral CNC films with extended uniformity, having helical modulation length (nominal pitch) tunable from 1300 to 600 nm. SEM imaging and UV–vis–NIR total reflectance spectra revealed tighter and more uniform CNC packing in films cast at slow evaporation rates or having lower surface energy when modified with phosphonium. The dielectric constant was measured by a noncontact microwave cavity perturbation method and fitted to a classical mixing model employing randomly oriented ellipsoidal water inclusions. The dielectric constant of absorbed water was found to be significantly smaller than that for free liquid indicating a limited mobility due to binding with the CNC “matrix”. In the case of hydrophilic Na-modified CNCs, a decreasing pitch led to greater anisotropy in the shape of moisture inclusions (ellipsoidal to platelet-like) and greater confinement. In contrast, the structure of hydrophobic phosphonium-modified CNC films was found to have reduced pitch, yet the shape of confined water remained predominantly spherical. These results provide a useful perspective on the current state of understanding of CNC–water interactions as well as on CNC self-assembly mechanisms. More broadly, we believe that our results are beneficial for the realization of CNC-based functional materials and composites. |
Author | Natarajan, Bharath Fox, Douglas M Douglas, Jack F Gilman, Jeffrey W Obrzut, Jan Emiroglu, Caglar Pazmino, Beatriz |
AuthorAffiliation | Department of Chemistry National Institute of Standards and Technology Georgetown University Material Measurement Laboratory American University Department of Physics |
AuthorAffiliation_xml | – name: Department of Physics – name: Department of Chemistry – name: American University – name: Material Measurement Laboratory – name: Georgetown University – name: National Institute of Standards and Technology – name: Department of Chemistry, American University, Washington, D.C. 20016, United States – name: Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States – name: Department of Physics, Georgetown University, Washington, D.C. 20057, United States |
Author_xml | – sequence: 1 givenname: Bharath orcidid: 0000-0002-0095-1610 surname: Natarajan fullname: Natarajan, Bharath organization: Georgetown University – sequence: 2 givenname: Caglar surname: Emiroglu fullname: Emiroglu, Caglar organization: Georgetown University – sequence: 3 givenname: Jan orcidid: 0000-0001-6667-9712 surname: Obrzut fullname: Obrzut, Jan email: jan.obrzut@nist.gov organization: National Institute of Standards and Technology – sequence: 4 givenname: Douglas M surname: Fox fullname: Fox, Douglas M organization: American University – sequence: 5 givenname: Beatriz surname: Pazmino fullname: Pazmino, Beatriz organization: National Institute of Standards and Technology – sequence: 6 givenname: Jack F surname: Douglas fullname: Douglas, Jack F organization: National Institute of Standards and Technology – sequence: 7 givenname: Jeffrey W surname: Gilman fullname: Gilman, Jeffrey W organization: National Institute of Standards and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28394559$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1LxDAQhoMofl89So8i7JqkSdNcBKmfIHpQ8Riy6UQjbaJJK-ivN7LrogdPE2aeeWcy7xZa9cEDQnsETwmm5EibpHs3FTNMKsFW0CaRjE1qyunq8s3YBtpK6QXjqqSYr6MNWpeScS430d2pgw7MEJ0pmmcdtRkguk89uOCLYIsmeOs8tMWjzoXC-Uy5qLuiga4bu5CguNE-mPiRhpw9d12fdtCa1V2C3UXcRg_nZ_fN5eT69uKqObmeaEb5MLEtKzFloGdaAqHSClkKKzC0VFNqcd0yIY3As5YaQaWBWlBiTStbXomMldvoeK77Os56aA34IW-mXqPrdfxQQTv1t-Lds3oK74pzXPOqygIHC4EY3kZIg-pdMvlj2kMYkyJ1XQlORfmNTueoiSGlCHY5hmD17YSaO6EWTuSG_d_LLfGf02fgcA7kRvUSxujzrf5T-wIb6Zcp |
CitedBy_id | crossref_primary_10_1021_acs_biomac_2c00417 crossref_primary_10_1002_adfm_202213820 crossref_primary_10_1007_s10570_023_05353_y crossref_primary_10_1016_j_carbpol_2023_121451 crossref_primary_10_1016_j_cej_2024_150713 crossref_primary_10_1016_j_advmem_2022_100032 crossref_primary_10_1021_acs_jpcb_9b11622 crossref_primary_10_26599_PBM_2019_9260015 crossref_primary_10_3390_polym14214781 crossref_primary_10_1016_j_carbpol_2022_120465 crossref_primary_10_1039_C8NA00232K crossref_primary_10_1016_j_carbpol_2022_120449 crossref_primary_10_1002_aelm_201700593 crossref_primary_10_1021_acsanm_8b00947 crossref_primary_10_1021_acsnano_3c03797 crossref_primary_10_1021_acsami_8b13808 crossref_primary_10_1016_j_carpta_2023_100367 crossref_primary_10_1016_j_jlumin_2023_120191 crossref_primary_10_1016_j_ijbiomac_2024_129544 crossref_primary_10_1016_j_matt_2021_07_012 crossref_primary_10_1021_acs_macromol_1c01155 crossref_primary_10_1063_5_0142483 crossref_primary_10_1002_marc_202100202 crossref_primary_10_1021_acssuschemeng_2c02109 crossref_primary_10_1088_2053_1591_abe974 crossref_primary_10_1016_j_polymer_2023_126117 crossref_primary_10_1021_acsapm_0c01073 crossref_primary_10_1115_1_4063271 crossref_primary_10_1021_acsami_1c19404 crossref_primary_10_1021_acsami_1c21906 crossref_primary_10_1002_adfm_201800032 crossref_primary_10_1002_macp_202200156 crossref_primary_10_1021_acs_langmuir_4c00247 crossref_primary_10_1098_rsta_2017_0050 crossref_primary_10_1016_j_cogsc_2018_03_010 crossref_primary_10_1080_02678292_2023_2168776 crossref_primary_10_1021_acs_chemrev_2c00836 crossref_primary_10_1007_s10965_021_02856_9 crossref_primary_10_1021_acs_biomac_1c00183 crossref_primary_10_1021_acs_chemrev_2c00611 crossref_primary_10_1007_s10570_018_2167_7 crossref_primary_10_1021_acs_chemrev_2c00477 crossref_primary_10_1016_j_progpolymsci_2023_101768 crossref_primary_10_32964_TJ17_09_501 |
Cites_doi | 10.1021/bm301674e 10.1007/s10570-012-9733-1 10.1021/la046797f 10.1021/ma001555h 10.1007/978-3-642-90850-7 10.1002/anie.201001273 10.1021/acs.langmuir.5b00924 10.1002/app.1969.070130815 10.1007/s10853-009-3874-0 10.1016/j.actbio.2015.04.039 10.1021/la900323n 10.1063/1.4904708 10.1029/RS016i006p00987 10.1007/s10570-006-9093-9 10.1049/PBEW047E 10.1021/am500359f 10.1049/pi-c.1960.0041 10.1007/s10570-016-1066-z 10.1021/acsami.6b06083 10.1007/s10570-015-0569-3 10.1080/00150193.2014.895216 10.1007/978-3-642-37614-6_2 10.1038/am.2013.69 10.1002/adom.201400112 10.1021/ma300463y 10.1021/la0102455 10.1039/c0cs00108b 10.1038/ncomms11515 10.1021/cr900339w 10.1021/acsnano.5b05074 10.1109/TMTT.2014.2336775 10.1039/C5SM00912J 10.1016/j.measurement.2016.03.020 10.1021/bm049291k 10.1021/mz400464d 10.1021/ma201649f 10.1021/acs.langmuir.5b04008 10.1007/s10570-013-9888-4 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acsami.7b01674 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 14231 |
ExternalDocumentID | 10_1021_acsami_7b01674 28394559 c379960971 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Intramural NIST DOC grantid: 9999-NIST |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH ABJNI ABQRX ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a425t-fd43024eaba9e129f7937f70ed2a22f08d479c70bd2c729ce8721fcd9d56770e3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Tue Sep 17 21:17:32 EDT 2024 Fri Aug 16 22:35:07 EDT 2024 Fri Aug 23 00:53:41 EDT 2024 Tue Oct 29 09:31:39 EDT 2024 Thu Aug 27 13:42:19 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | self-assembly chiral nematic structure water confinement dielectric properties cellulose nanocrystals |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a425t-fd43024eaba9e129f7937f70ed2a22f08d479c70bd2c729ce8721fcd9d56770e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ORCID Jan Obrzut: 0000-0001-6667-9712 |
ORCID | 0000-0001-6667-9712 0000-0002-0095-1610 |
OpenAccessLink | https://europepmc.org/articles/pmc5508566?pdf=render |
PMID | 28394559 |
PQID | 1886752736 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5508566 proquest_miscellaneous_1886752736 crossref_primary_10_1021_acsami_7b01674 pubmed_primary_28394559 acs_journals_10_1021_acsami_7b01674 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2017-04-26 |
PublicationDateYYYYMMDD | 2017-04-26 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 de Gennes P. G. (ref36/cit36) 1998 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 Sihvola A. H. (ref30/cit30) 1999 ref25/cit25 ref16/cit16 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 Hasted J. B. (ref32/cit32) 1973 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 Posner R. (ref11/cit11) 2013; 25 Landau L. D. (ref31/cit31) 2008 ref4/cit4 ref1/cit1 ref24/cit24 Kellogg O. D. (ref29/cit29) 1929 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref4/cit4 doi: 10.1021/bm301674e – ident: ref34/cit34 doi: 10.1007/s10570-012-9733-1 – ident: ref35/cit35 doi: 10.1021/la046797f – ident: ref14/cit14 doi: 10.1021/ma001555h – volume-title: Foundations of Potential Theory year: 1929 ident: ref29/cit29 doi: 10.1007/978-3-642-90850-7 contributor: fullname: Kellogg O. D. – ident: ref7/cit7 doi: 10.1002/anie.201001273 – ident: ref21/cit21 doi: 10.1021/acs.langmuir.5b00924 – ident: ref37/cit37 doi: 10.1002/app.1969.070130815 – ident: ref5/cit5 doi: 10.1007/s10853-009-3874-0 – ident: ref16/cit16 doi: 10.1016/j.actbio.2015.04.039 – ident: ref27/cit27 doi: 10.1021/la900323n – ident: ref12/cit12 doi: 10.1063/1.4904708 – ident: ref26/cit26 doi: 10.1029/RS016i006p00987 – ident: ref10/cit10 doi: 10.1007/s10570-006-9093-9 – volume-title: Electromagnetic Mixing Formulas and Applications year: 1999 ident: ref30/cit30 doi: 10.1049/PBEW047E contributor: fullname: Sihvola A. H. – ident: ref2/cit2 doi: 10.1021/am500359f – ident: ref25/cit25 doi: 10.1049/pi-c.1960.0041 – ident: ref40/cit40 doi: 10.1007/s10570-016-1066-z – ident: ref17/cit17 doi: 10.1021/acsami.6b06083 – ident: ref22/cit22 doi: 10.1007/s10570-015-0569-3 – ident: ref33/cit33 doi: 10.1080/00150193.2014.895216 – volume: 25 start-page: 21 volume-title: Design of Adhesive Joints Under Humid Conditions year: 2013 ident: ref11/cit11 doi: 10.1007/978-3-642-37614-6_2 contributor: fullname: Posner R. – ident: ref15/cit15 doi: 10.1038/am.2013.69 – ident: ref19/cit19 doi: 10.1002/adom.201400112 – ident: ref13/cit13 doi: 10.1021/ma300463y – ident: ref41/cit41 doi: 10.1021/la0102455 – ident: ref1/cit1 doi: 10.1039/c0cs00108b – ident: ref39/cit39 doi: 10.1038/ncomms11515 – ident: ref6/cit6 doi: 10.1021/cr900339w – ident: ref8/cit8 doi: 10.1021/acsnano.5b05074 – ident: ref24/cit24 doi: 10.1109/TMTT.2014.2336775 – volume-title: Aqueous Dielectrics year: 1973 ident: ref32/cit32 contributor: fullname: Hasted J. B. – ident: ref28/cit28 doi: 10.1039/C5SM00912J – ident: ref23/cit23 doi: 10.1016/j.measurement.2016.03.020 – ident: ref3/cit3 doi: 10.1021/bm049291k – ident: ref9/cit9 doi: 10.1021/mz400464d – ident: ref20/cit20 doi: 10.1021/ma201649f – volume-title: The Physics of Liquid Crystals year: 1998 ident: ref36/cit36 contributor: fullname: de Gennes P. G. – ident: ref38/cit38 doi: 10.1021/acs.langmuir.5b04008 – volume-title: Electrodynamics of Continuous Media year: 2008 ident: ref31/cit31 contributor: fullname: Landau L. D. – ident: ref18/cit18 doi: 10.1007/s10570-013-9888-4 |
SSID | ssj0063205 |
Score | 2.454032 |
Snippet | A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a... |
SourceID | pubmedcentral proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 14222 |
Title | Dielectric Characterization of Confined Water in Chiral Cellulose Nanocrystal Films |
URI | http://dx.doi.org/10.1021/acsami.7b01674 https://www.ncbi.nlm.nih.gov/pubmed/28394559 https://search.proquest.com/docview/1886752736 https://pubmed.ncbi.nlm.nih.gov/PMC5508566 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI54XODA-zFeCgKJU6BN06Y9ToNpQoLLmNitSvMQFaVF63aAX4_TboNtQnCuGzVxHH-unc8IXXJXeEw7kgAcpYQZ7RHhe5zQKBGhMTpwKjKdh8eg02P3fb___b9jPoNP3RshS9sKhydVwfwyWqXciWyThmarOzlzA49WxYoQkTMSgsea0DMuvG-dkCxnndACspwvkPzhcdqbNf1RWREV2kKT1-vRMLmWn4s0jn9OZgttjGEnbtb7ZBst6XwHrf8gI9xF3du07omTStya0jjXtzRxYbC9GwjSCj8DPB3gNAepFD4bt3SWjbKi1BiO6kIOPgBwZridZm_lHuq1755aHTJuuUAEGO-QGMU88NpaJCLSAAWMpc8z3NGKCkqNEyrGI8mdRFEJsFzqECJII1Wk_ICDmLePVvIi14cIeyCl3UQyIyKIimjkG4cJ7iutXOFL2kAXsBrx2GTKuMqGUzeulygeL1EDXU00Fb_X_Bu_Sp5PFBmDidi8h8h1MYKRwxDCIsBpQQMd1IqdjgXoKmIQVTUQn1H5VMDSb88-ydOXioYbYrsQwPDRv-ZxjNaoBQQOIzQ4QSvDwUifApwZJmfVTv4CyKHxgw |
link.rule.ids | 230,315,783,787,888,2774,27090,27938,27939,57072,57122 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4t9AAc2vLsthSMQOJkSBwnTo5o29XyFBIguEWOH2rUNKk2uwf49Z0km2UXhFSuydiyZ2zPN_L4G4AD4UqPG0dRhKOMcms8Kn1PUBYlMrTWBE5NpnN5FQzu-NmD_9CB4_YtDA6ixJ7K-hL_mV3APcZvVUUckdR58wvwwReOqEoWnPRu2qM38Fids4iBOachOq6WpfFV-8oXqXLeF70CmC_zJGccT_8TXE-HXOeb_D4aj5Ij9fSCzfEdc_oMHycglJw0q2YVOiZfg5UZasJ1uPmRNhVyUkV6U1Ln5s0mKSypXgqitCb3CFaHJM1RKsXRk57JsnFWlIbgwV2o4SPCz4z00-xPuQF3_Z-3vQGdFGCgErfyiFrNPfThRiYyMggMbEWmZ4VjNJOMWSfUXERKOIlmCkG6MiHGk1bpSPuBQDFvExbzIjdfgHgoZdxEcSsjjJFY5FuHS-Fro13pK9aFfdRGPNlAZVzfjTM3blQUT1TUhcPWYPHfho3jTcm91p4xbpjqFkTmphhjz2GIQRKitqALW419p30h1oo4xlhdEHOWnwpUZNzzf_L0V03KjZFeiND463_NYxeWBreXF_HF6dX5N1hmFVRwOGXBNiyOhmPzHYHOKNmpF_c_Gy357A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkFA58CiPbkuLq1biZEgcJ06OaOmK8hISILhFjh8iIk3QZvdAf33HSXbFgpDgmkys2OPxfCPPfAPwS_gy4MZTFOEoo9yagMowEJQlmYytNZHXkOmcnUdH1_z4Nrzt6rhdLQz-RI0j1c0lvrPqB207hgF_H5-7rjgia3LnP8BCKHzm2hYc9C8nx28UsCZvEYNzTmN0XhOmxhffO3-k6ll_9AJkPs-VfOJ8BitwNf3tJufkfm88yvbUv2eMju-c1yosd2CUHLS7Zw3mTPkJlp5QFK7D5WHedsrJFelPyZ3b2k1SWeIqBlFakxsErUOSlyiV4wxI3xTFuKhqQ_AAr9TwEWFoQQZ58bfegOvB76v-Ee0aMVCJJj2iVvMAfbmRmUwMAgTrSPWs8IxmkjHrxZqLRAkv00whWFcmxrjSKp3oMBIoFmzCfFmV5jOQAKWMnyluZYKxEktC63EpQm20L0PFevATVyPtDKlOmzty5qftEqXdEvVgd6K09KFl5XhV8sdEpykajrsNkaWpxjhyHGOwhOgt6sFWq-PpWIi5Eo6xVg_EjPanAo6Ue_ZNmd815NwY8cUIkb-8aR47sHhxOEhP_5yffIWPzCEGj1MWbcP8aDg23xDvjLLvzf7-Dw5e_GY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dielectric+Characterization+of+Confined+Water+in+Chiral+Cellulose+Nanocrystal+Films&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Natarajan%2C+Bharath&rft.au=Emiroglu%2C+Caglar&rft.au=Obrzut%2C+Jan&rft.au=Fox%2C+Douglas+M.&rft.date=2017-04-26&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=9&rft.issue=16&rft.spage=14222&rft.epage=14231&rft_id=info:doi/10.1021%2Facsami.7b01674&rft_id=info%3Apmid%2F28394559&rft.externalDBID=PMC5508566 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |