Bacteria-Inspired Nanomedicine
The natural world has provided a host of materials and inspiration for the field of nanomedicine. By taking design cues from naturally occurring systems, the nanoengineering of advanced biomimetic platforms has significantly accelerated over the past decade. In particular, the biomimicry of bacteria...
Saved in:
Published in | ACS applied bio materials Vol. 4; no. 5; pp. 3830 - 3848 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2576-6422 2576-6422 |
DOI | 10.1021/acsabm.0c01072 |
Cover
Loading…
Abstract | The natural world has provided a host of materials and inspiration for the field of nanomedicine. By taking design cues from naturally occurring systems, the nanoengineering of advanced biomimetic platforms has significantly accelerated over the past decade. In particular, the biomimicry of bacteria, with their motility, taxis, immunomodulation, and overall dynamic host interactions, has elicited substantial interest and opened up exciting avenues of research. More recently, advancements in genetic engineering have given way to more complex and elegant systems with tunable control characteristics. Furthermore, bacterial derivatives such as membrane ghosts, extracellular vesicles, spores, and toxins have proven advantageous for use in nanotherapeutic applications, as they preserve many of the features from the original bacteria while also offering distinct advantages. Overall, bacteria-inspired nanomedicines can be employed in a range of therapeutic settings, from payload delivery to immunotherapy, and have proven successful in combatting both cancer and infectious disease. |
---|---|
AbstractList | The natural world has provided a host of materials and inspiration for the field of nanomedicine. By taking design cues from naturally occurring systems, the nanoengineering of advanced biomimetic platforms has significantly accelerated over the past decade. In particular, the biomimicry of bacteria, with their motility, taxis, immunomodulation, and overall dynamic host interactions, has elicited substantial interest and opened up exciting avenues of research. More recently, advancements in genetic engineering have given way to more complex and elegant systems with tunable control characteristics. Furthermore, bacterial derivatives such as membrane ghosts, extracellular vesicles, spores, and toxins have proven advantageous for use in nanotherapeutic applications, as they preserve many of the features from the original bacteria while also offering distinct advantages. Overall, bacteria-inspired nanomedicines can be employed in a range of therapeutic settings, from payload delivery to immunotherapy, and have proven successful in combatting both cancer and infectious disease. The natural world has provided a host of materials and inspiration for the field of nanomedicine. By taking design cues from naturally occurring systems, the nanoengineering of advanced biomimetic platforms has significantly accelerated over the past decade. In particular, the biomimicry of bacteria, with their motility, taxis, immunomodulation, and overall dynamic host interactions, has elicited substantial interest and opened up exciting avenues of research. More recently, advancements in genetic engineering have given way to more complex and elegant systems with tunable control characteristics. Furthermore, bacterial derivatives such as membrane ghosts, extracellular vesicles, spores, and toxins have proven advantageous for use in nanotherapeutic applications, as they preserve many of the features from the original bacteria while also offering distinct advantages. Overall, bacteria-inspired nanomedicines can be employed in a range of therapeutic settings, from payload delivery to immunotherapy, and have proven successful in combatting both cancer and infectious disease.The natural world has provided a host of materials and inspiration for the field of nanomedicine. By taking design cues from naturally occurring systems, the nanoengineering of advanced biomimetic platforms has significantly accelerated over the past decade. In particular, the biomimicry of bacteria, with their motility, taxis, immunomodulation, and overall dynamic host interactions, has elicited substantial interest and opened up exciting avenues of research. More recently, advancements in genetic engineering have given way to more complex and elegant systems with tunable control characteristics. Furthermore, bacterial derivatives such as membrane ghosts, extracellular vesicles, spores, and toxins have proven advantageous for use in nanotherapeutic applications, as they preserve many of the features from the original bacteria while also offering distinct advantages. Overall, bacteria-inspired nanomedicines can be employed in a range of therapeutic settings, from payload delivery to immunotherapy, and have proven successful in combatting both cancer and infectious disease. |
Author | Guo, Zhongyuan Fang, Ronnie H Zhang, Liangfang Holay, Maya Pihl, Jessica Heo, Jiyoung Park, Joon Ho |
AuthorAffiliation | Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center |
AuthorAffiliation_xml | – name: Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center |
Author_xml | – sequence: 1 givenname: Maya surname: Holay fullname: Holay, Maya – sequence: 2 givenname: Zhongyuan surname: Guo fullname: Guo, Zhongyuan – sequence: 3 givenname: Jessica surname: Pihl fullname: Pihl, Jessica – sequence: 4 givenname: Jiyoung surname: Heo fullname: Heo, Jiyoung – sequence: 5 givenname: Joon Ho surname: Park fullname: Park, Joon Ho – sequence: 6 givenname: Ronnie H orcidid: 0000-0001-6373-3189 surname: Fang fullname: Fang, Ronnie H email: rhfang@ucsd.edu – sequence: 7 givenname: Liangfang orcidid: 0000-0003-0637-0654 surname: Zhang fullname: Zhang, Liangfang email: zhang@ucsd.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34368643$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM1LAzEQxYNUbK29eiweRdia791eBBW_oOhFz2E2O6sp26QmW8H_3pXWokJPEya_997wDknPB4-EHDM6YZSzc7AJysWEWspozvfIgKtcZ1py3vv17pNRSnNKKadUsGJ6QPpCCl1oKQZkfAW2xegge_Bp6SJWJ4_gwwIrZ53HI7JfQ5NwtJlD8nJ783x9n82e7h6uL2cZSK7aDAslFaesFEwWOWfAa1lVtq4QakHRIpSQA5SqZhVyqyl0mERbF1Ohaa3EkFysfZerssu26NsIjVlGt4D4aQI48_fHuzfzGj5MIYTWuegMTjcGMbyvMLVm4ZLFpgGPYZUMV2qqNdeKd-j4d9Y25KeUDpisARtDShHrLcKo-S7erIs3m-I7gfwnsK6F1oXvW12zW3a2lnV7Mw-r6LuKd8FfWfSWUw |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2023_132504 crossref_primary_10_1016_j_nantod_2024_102165 crossref_primary_10_3389_fbioe_2023_1286502 crossref_primary_10_3390_pharmaceutics13111892 crossref_primary_10_1002_advs_202306480 crossref_primary_10_1002_smll_202401631 crossref_primary_10_1016_j_biomaterials_2022_121582 crossref_primary_10_1002_smtd_202300252 crossref_primary_10_1016_j_tim_2023_05_007 crossref_primary_10_1039_D2NR00152G crossref_primary_10_1016_j_bioactmat_2024_05_006 crossref_primary_10_1016_j_phanu_2025_100435 crossref_primary_10_3390_pharmaceutics14040784 crossref_primary_10_1002_adma_202103505 crossref_primary_10_1002_EXP_20210217 crossref_primary_10_1002_smll_202302702 crossref_primary_10_1021_acsnano_3c00363 crossref_primary_10_1016_j_addr_2021_114006 crossref_primary_10_1002_adhm_202203026 crossref_primary_10_3389_fbioe_2024_1447176 crossref_primary_10_1080_17425247_2023_2168640 crossref_primary_10_1002_adma_202405075 crossref_primary_10_1002_adfm_202405304 crossref_primary_10_52679_tabcj_2023_0011 crossref_primary_10_3390_ma14123167 crossref_primary_10_1016_j_colsurfb_2024_114372 crossref_primary_10_52679__tabcj_2023_0011 crossref_primary_10_1186_s13045_024_01574_1 crossref_primary_10_3390_pharmaceutics15071821 crossref_primary_10_1016_j_biopha_2024_117766 crossref_primary_10_1016_j_biomaterials_2021_121124 crossref_primary_10_3390_jfb13040169 crossref_primary_10_1093_femsml_uqad029 crossref_primary_10_1002_SMMD_20220041 crossref_primary_10_1021_acsbiomaterials_3c01480 crossref_primary_10_1002_adma_202313953 crossref_primary_10_1038_s41571_022_00699_x crossref_primary_10_1016_j_addr_2022_114295 crossref_primary_10_1016_j_addr_2022_114294 crossref_primary_10_3390_ph16010096 |
Cites_doi | 10.1016/j.jim.2008.05.009 10.1002/adma.201902626 10.1038/nature14095 10.3389/fonc.2018.00136 10.1002/adma.201908185 10.1099/mic.0.060343-0 10.1016/j.vaccine.2016.01.019 10.3390/cancers11091314 10.1128/JB.178.10.2767-2774.1996 10.1002/adma.201901255 10.1016/j.ejpb.2016.05.013 10.1002/adfm.201904093 10.1126/sciadv.aau1532 10.1007/s11095-019-2589-4 10.1186/s40425-018-0381-3 10.1038/mt.2014.36 10.1038/s41467-017-00729-8 10.1093/clinids/3.2.323 10.1038/ncomms15480 10.1038/nrd4363 10.1016/j.immuni.2016.06.001 10.1016/j.jconrel.2013.05.005 10.1038/s12276-019-0297-0 10.1126/scitranslmed.aak9537 10.3390/vaccines3040940 10.1128/IAI.38.1.21-26.1982 10.1111/j.1349-7006.2011.02147.x 10.1021/acs.nanolett.9b02182 10.1038/s41568-018-0070-z 10.1021/sb500258b 10.1016/j.jconrel.2015.06.005 10.1586/14760584.2013.836914 10.1186/s12934-016-0468-9 10.1002/adma.201706759 10.1128/CMR.00046-08 10.1093/annonc/mdx755 10.4068/cmj.2016.52.3.173 10.1039/C9NH00291J 10.1038/nrmicro3525 10.1586/erv.11.60 10.1002/adma.201802233 10.1186/s40169-017-0175-0 10.1002/advs.201700083 10.1002/jps.22763 10.1128/JB.180.20.5478-5483.1998 10.1021/acs.nanolett.6b00262 10.2147/IJN.S143264 10.1038/s41551-017-0181-y 10.1016/j.vaccine.2014.08.072 10.3389/fimmu.2019.01377 10.1126/scitranslmed.3008982 10.1186/s13567-017-0442-5 10.3390/toxins9080236 10.3402/jev.v3.24015 10.1038/nature15373 10.1016/j.jconrel.2015.10.052 10.1124/mi.2.3.158 10.1038/nature14121 10.1016/j.biotechadv.2018.02.016 10.1111/j.1462-2920.2010.02383.x 10.1039/c2ib00091a 10.1016/j.vaccine.2018.06.016 10.4161/hv.18500 10.1529/biophysj.106.087429 10.1016/S0022-2143(99)90182-8 10.1016/j.jconrel.2015.10.054 10.1002/adma.201808278 10.1128/JB.178.9.2479-2488.1996 10.1007/s00253-013-4926-6 10.1002/adfm.201505231 10.1002/adma.201404444 10.4049/jimmunol.1002320 10.4049/jimmunol.114.2_Part_2.770 10.3390/vaccines6030048 10.1128/IAI.01139-10 10.1002/adfm.201901437 10.4049/jimmunol.1000866 10.1016/j.biomaterials.2017.02.041 10.1038/nchembio.2233 10.1021/nn405724x 10.1073/pnas.0406242101 10.1021/acsinfecdis.8b00212 10.3816/CLM.2002.n.003 10.1056/NEJMoa1807315 10.1002/anie.201706570 10.1038/418244a 10.1016/j.vaccine.2009.04.071 10.1038/emm.2017.172 10.1016/j.vaccine.2010.04.082 10.1021/acs.nanolett.8b05051 10.7150/jca.24577 10.1073/pnas.1105771109 10.1074/mcp.M700295-MCP200 10.1073/pnas.1710776114 10.1038/s41591-019-0498-z 10.1038/sj.gt.3302105 10.1016/j.vaccine.2013.05.020 10.1016/j.nantod.2014.06.001 10.1186/s40425-018-0316-z 10.1097/00000658-189112000-00015 10.1002/smll.201400384 10.1038/natrevmats.2015.8 10.1021/acs.bioconjchem.6b00569 10.1016/j.addr.2015.04.001 10.1016/j.immuni.2012.09.017 10.1016/j.virol.2015.03.032 10.1002/adma.201903793 10.1038/s41565-018-0254-4 10.1126/scitranslmed.aax0876 10.1126/sciadv.aaz6108 10.1021/acsnano.7b04128 10.1038/nnano.2007.149 10.1002/adma.201103818 10.1021/acsnano.8b02235 10.1002/adma.201402996 10.1158/0008-5472.CAN-06-2618 10.4161/bbug.1.6.13146 10.1073/pnas.1400472111 10.1016/j.biomaterials.2019.119226 10.1002/btm2.10004 10.1016/j.vaccine.2010.12.039 10.1002/cbic.201402290 10.1016/j.maturitas.2018.03.012 10.3390/vaccines3040814 10.1159/000100515 10.3390/pharmaceutics11030129 10.1021/acs.nanolett.6b04523 10.3390/antib8010013 10.1002/wnan.1523 10.1126/science.288.5473.2051 10.1002/eji.201344130 10.1038/nnano.2016.137 10.1126/sciadv.aav4803 10.1158/0008-5472.CAN-07-0098 10.1126/science.1130651 10.1002/smll.201501284 10.18632/oncotarget.1761 10.1016/j.jconrel.2020.04.031 10.1016/0264-410X(93)90160-Y 10.1155/2016/1459394 10.1073/pnas.0805532107 10.4161/bbug.1.5.12540 10.1016/j.coi.2019.03.006 10.1016/j.drudis.2006.08.005 10.1128/mBio.00909-14 10.3390/vaccines8010011 10.1016/j.addr.2016.09.007 10.1002/adma.201701644 10.1016/j.imlet.2017.07.015 10.1016/j.micinf.2007.09.002 10.1021/acschembio.6b00169 10.1021/nl500618u 10.1016/j.cyto.2016.01.002 10.1186/s13756-019-0533-3 10.1016/j.bcp.2017.04.009 10.1016/j.addr.2017.09.015 10.1590/S1678-91992012000100006 10.1016/j.clim.2014.06.004 10.1038/nri3399 10.1038/nrmicro.2017.172 10.1139/cjm-2017-0466 10.1021/acs.nanolett.0c02278 10.1016/j.imlet.2018.03.006 10.1016/j.vaccine.2010.07.020 10.1002/adma.202001808 10.1038/sj.cgt.7700777 10.1021/acs.nanolett.9b01844 10.1016/j.snb.2014.01.099 10.1080/14760584.2017.1383159 10.1038/nature24624 10.1074/jbc.M110.185744 10.1021/nl504798g 10.1038/nri3837 10.1155/2016/5678702 10.1038/nbt1211 10.3389/fcimb.2012.00043 10.1099/mic.0.066712-0 10.1038/ncomms9533 10.1371/journal.pone.0144397 10.1099/ijs.0.038927-0 10.1111/cas.12075 10.1158/1078-0432.CCR-11-0487 10.3389/fimmu.2019.02737 10.1002/adfm.201908283 10.1038/nnano.2013.254 10.1002/adbi.201800219 10.1021/acs.nanolett.7b05323 10.1016/j.nano.2019.102148 10.1073/pnas.1714267114 10.1038/nrc2934 10.1111/imm.12320 10.1007/s00262-016-1932-4 10.1038/srep37242 10.1002/anie.201906280 10.1111/j.1365-2567.2005.02180.x 10.1021/acs.bioconjchem.7b00692 10.1016/j.mee.2018.04.003 10.1038/ncomms13193 10.1002/jgm.626 |
ContentType | Journal Article |
Copyright | 2020 American Chemical
Society |
Copyright_xml | – notice: 2020 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/acsabm.0c01072 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-6422 |
EndPage | 3848 |
ExternalDocumentID | PMC8336673 34368643 10_1021_acsabm_0c01072 h87115597 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA200574 – fundername: NCI NIH HHS grantid: T32 CA153915 |
GroupedDBID | ABFRP ABUCX ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 53G AAYXX ABBLG ABJNI ABLBI ABQRX BAANH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a425t-e8545201b3148721a2f4ddcfdeaf30eceaba7aab5f1de2c60a4874ecf89360f53 |
IEDL.DBID | ACS |
ISSN | 2576-6422 |
IngestDate | Thu Aug 21 18:06:02 EDT 2025 Fri Jul 11 15:40:33 EDT 2025 Wed Feb 19 02:26:31 EST 2025 Tue Jul 01 04:25:35 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Wed May 19 03:20:51 EDT 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | nanomedicine drug delivery immune modulation biomimetic therapeutic bacteria Nanomedicine |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a425t-e8545201b3148721a2f4ddcfdeaf30eceaba7aab5f1de2c60a4874ecf89360f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6373-3189 0000-0003-0637-0654 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8336673 |
PMID | 34368643 |
PQID | 2559662652 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8336673 proquest_miscellaneous_2559662652 pubmed_primary_34368643 crossref_primary_10_1021_acsabm_0c01072 crossref_citationtrail_10_1021_acsabm_0c01072 acs_journals_10_1021_acsabm_0c01072 |
ProviderPackageCode | ABFRP ACS VG9 ABUCX GGK VF5 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-17 |
PublicationDateYYYYMMDD | 2021-05-17 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied bio materials |
PublicationTitleAlternate | ACS Appl. Bio Mater |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref187/cit187 ref181/cit181 ref111/cit111 ref113/cit113 ref183/cit183 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref42/cit42 ref120/cit120 ref178/cit178 ref122/cit122 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref137/cit137 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref86/cit86 ref170/cit170 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref148/cit148 ref55/cit55 ref144/cit144 ref167/cit167 ref163/cit163 ref66/cit66 ref22/cit22 ref87/cit87 ref106/cit106 ref190/cit190 Fox M. E. (ref85/cit85) 1996; 3 ref140/cit140 ref198/cit198 ref194/cit194 ref98/cit98 ref153/cit153 ref150/cit150 ref63/cit63 ref56/cit56 ref155/cit155 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref34/cit34 ref37/cit37 ref60/cit60 ref17/cit17 ref82/cit82 ref145/cit145 ref21/cit21 ref166/cit166 ref164/cit164 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref200/cit200 ref14/cit14 ref57/cit57 ref169/cit169 ref134/cit134 ref40/cit40 ref131/cit131 ref161/cit161 ref142/cit142 ref15/cit15 ref180/cit180 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref7/cit7 ref45/cit45 ref52/cit52 ref184/cit184 ref114/cit114 ref186/cit186 ref116/cit116 ref110/cit110 ref182/cit182 ref2/cit2 ref112/cit112 ref77/cit77 ref71/cit71 Lindberg A. A. (ref147/cit147) 1995; 84 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref191/cit191 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref195/cit195 ref64/cit64 ref6/cit6 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref76/cit76 ref32/cit32 ref39/cit39 ref202/cit202 ref168/cit168 ref132/cit132 ref91/cit91 ref12/cit12 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref154/cit154 ref27/cit27 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 ref31/cit31 Skidmore B. J. (ref18/cit18) 1975; 114 ref160/cit160 ref143/cit143 ref53/cit53 ref149/cit149 ref162/cit162 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref72/cit72 ref201/cit201 ref51/cit51 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref146/cit146 ref26/cit26 ref73/cit73 ref69/cit69 ref165/cit165 Malmgren R. A. (ref88/cit88) 1955; 15 ref95/cit95 ref108/cit108 ref192/cit192 ref4/cit4 ref30/cit30 ref47/cit47 ref127/cit127 |
References_xml | – ident: ref179/cit179 doi: 10.1016/j.jim.2008.05.009 – ident: ref139/cit139 doi: 10.1002/adma.201902626 – ident: ref202/cit202 doi: 10.1038/nature14095 – ident: ref2/cit2 doi: 10.3389/fonc.2018.00136 – ident: ref138/cit138 doi: 10.1002/adma.201908185 – ident: ref65/cit65 doi: 10.1099/mic.0.060343-0 – ident: ref170/cit170 doi: 10.1016/j.vaccine.2016.01.019 – ident: ref136/cit136 doi: 10.3390/cancers11091314 – ident: ref62/cit62 doi: 10.1128/JB.178.10.2767-2774.1996 – ident: ref107/cit107 doi: 10.1002/adma.201901255 – ident: ref182/cit182 doi: 10.1016/j.ejpb.2016.05.013 – ident: ref55/cit55 doi: 10.1002/adfm.201904093 – ident: ref101/cit101 doi: 10.1126/sciadv.aau1532 – ident: ref92/cit92 doi: 10.1007/s11095-019-2589-4 – ident: ref113/cit113 doi: 10.1186/s40425-018-0381-3 – ident: ref11/cit11 doi: 10.1038/mt.2014.36 – ident: ref125/cit125 doi: 10.1038/s41467-017-00729-8 – ident: ref94/cit94 doi: 10.1093/clinids/3.2.323 – ident: ref156/cit156 doi: 10.1038/ncomms15480 – ident: ref77/cit77 doi: 10.1038/nrd4363 – ident: ref112/cit112 doi: 10.1016/j.immuni.2016.06.001 – ident: ref54/cit54 doi: 10.1016/j.jconrel.2013.05.005 – ident: ref6/cit6 doi: 10.1038/s12276-019-0297-0 – ident: ref104/cit104 doi: 10.1126/scitranslmed.aak9537 – ident: ref7/cit7 doi: 10.3390/vaccines3040940 – ident: ref178/cit178 doi: 10.1128/IAI.38.1.21-26.1982 – ident: ref12/cit12 doi: 10.1111/j.1349-7006.2011.02147.x – ident: ref126/cit126 doi: 10.1021/acs.nanolett.9b02182 – ident: ref3/cit3 doi: 10.1038/s41568-018-0070-z – ident: ref90/cit90 doi: 10.1021/sb500258b – ident: ref91/cit91 doi: 10.1016/j.jconrel.2015.06.005 – ident: ref124/cit124 doi: 10.1586/14760584.2013.836914 – ident: ref130/cit130 doi: 10.1186/s12934-016-0468-9 – ident: ref69/cit69 doi: 10.1002/adma.201706759 – ident: ref103/cit103 doi: 10.1128/CMR.00046-08 – ident: ref109/cit109 doi: 10.1093/annonc/mdx755 – ident: ref120/cit120 doi: 10.4068/cmj.2016.52.3.173 – ident: ref22/cit22 doi: 10.1039/C9NH00291J – ident: ref162/cit162 doi: 10.1038/nrmicro3525 – ident: ref177/cit177 doi: 10.1586/erv.11.60 – ident: ref199/cit199 doi: 10.1002/adma.201802233 – ident: ref24/cit24 doi: 10.1186/s40169-017-0175-0 – ident: ref132/cit132 doi: 10.1002/advs.201700083 – ident: ref183/cit183 doi: 10.1002/jps.22763 – ident: ref66/cit66 doi: 10.1128/JB.180.20.5478-5483.1998 – ident: ref89/cit89 doi: 10.1021/acs.nanolett.6b00262 – ident: ref137/cit137 doi: 10.2147/IJN.S143264 – ident: ref57/cit57 doi: 10.1038/s41551-017-0181-y – ident: ref157/cit157 doi: 10.1016/j.vaccine.2014.08.072 – ident: ref160/cit160 doi: 10.3389/fimmu.2019.01377 – ident: ref121/cit121 doi: 10.1126/scitranslmed.3008982 – ident: ref159/cit159 doi: 10.1186/s13567-017-0442-5 – ident: ref82/cit82 doi: 10.3390/toxins9080236 – ident: ref171/cit171 doi: 10.3402/jev.v3.24015 – ident: ref196/cit196 doi: 10.1038/nature15373 – ident: ref93/cit93 doi: 10.1016/j.jconrel.2015.10.052 – volume: 84 start-page: 211 year: 1995 ident: ref147/cit147 publication-title: Dev. Biol. Stand. – ident: ref46/cit46 doi: 10.1124/mi.2.3.158 – ident: ref201/cit201 doi: 10.1038/nature14121 – ident: ref58/cit58 doi: 10.1016/j.biotechadv.2018.02.016 – ident: ref14/cit14 doi: 10.1111/j.1462-2920.2010.02383.x – ident: ref13/cit13 doi: 10.1039/c2ib00091a – ident: ref135/cit135 doi: 10.1016/j.vaccine.2018.06.016 – ident: ref164/cit164 doi: 10.4161/hv.18500 – ident: ref50/cit50 doi: 10.1529/biophysj.106.087429 – ident: ref95/cit95 doi: 10.1016/S0022-2143(99)90182-8 – ident: ref80/cit80 doi: 10.1016/j.jconrel.2015.10.054 – ident: ref56/cit56 doi: 10.1002/adma.201808278 – ident: ref61/cit61 doi: 10.1128/JB.178.9.2479-2488.1996 – ident: ref37/cit37 doi: 10.1007/s00253-013-4926-6 – ident: ref187/cit187 doi: 10.1002/adfm.201505231 – ident: ref99/cit99 doi: 10.1002/adma.201404444 – ident: ref119/cit119 doi: 10.4049/jimmunol.1002320 – volume: 114 start-page: 770 issue: 2 year: 1975 ident: ref18/cit18 publication-title: J. Immunol. doi: 10.4049/jimmunol.114.2_Part_2.770 – ident: ref131/cit131 doi: 10.3390/vaccines6030048 – ident: ref154/cit154 doi: 10.1128/IAI.01139-10 – ident: ref128/cit128 doi: 10.1002/adfm.201901437 – ident: ref96/cit96 doi: 10.4049/jimmunol.1000866 – ident: ref68/cit68 doi: 10.1016/j.biomaterials.2017.02.041 – ident: ref200/cit200 doi: 10.1038/nchembio.2233 – ident: ref67/cit67 doi: 10.1021/nn405724x – ident: ref32/cit32 doi: 10.1073/pnas.0406242101 – ident: ref74/cit74 doi: 10.1021/acsinfecdis.8b00212 – ident: ref83/cit83 doi: 10.3816/CLM.2002.n.003 – ident: ref143/cit143 doi: 10.1056/NEJMoa1807315 – ident: ref72/cit72 doi: 10.1002/anie.201706570 – ident: ref44/cit44 doi: 10.1038/418244a – ident: ref165/cit165 doi: 10.1016/j.vaccine.2009.04.071 – ident: ref17/cit17 doi: 10.1038/emm.2017.172 – ident: ref166/cit166 doi: 10.1016/j.vaccine.2010.04.082 – ident: ref190/cit190 doi: 10.1021/acs.nanolett.8b05051 – ident: ref110/cit110 doi: 10.7150/jca.24577 – ident: ref19/cit19 doi: 10.1073/pnas.1105771109 – ident: ref163/cit163 doi: 10.1074/mcp.M700295-MCP200 – ident: ref144/cit144 doi: 10.1073/pnas.1710776114 – ident: ref145/cit145 doi: 10.1038/s41591-019-0498-z – ident: ref123/cit123 doi: 10.1038/sj.gt.3302105 – ident: ref172/cit172 doi: 10.1016/j.vaccine.2013.05.020 – ident: ref186/cit186 doi: 10.1016/j.nantod.2014.06.001 – ident: ref111/cit111 doi: 10.1186/s40425-018-0316-z – ident: ref1/cit1 doi: 10.1097/00000658-189112000-00015 – ident: ref49/cit49 doi: 10.1002/smll.201400384 – ident: ref153/cit153 doi: 10.1038/natrevmats.2015.8 – ident: ref193/cit193 doi: 10.1021/acs.bioconjchem.6b00569 – ident: ref185/cit185 doi: 10.1016/j.addr.2015.04.001 – ident: ref116/cit116 doi: 10.1016/j.immuni.2012.09.017 – ident: ref148/cit148 doi: 10.1016/j.virol.2015.03.032 – ident: ref87/cit87 doi: 10.1002/adma.201903793 – ident: ref194/cit194 doi: 10.1038/s41565-018-0254-4 – ident: ref141/cit141 doi: 10.1126/scitranslmed.aax0876 – ident: ref23/cit23 doi: 10.1126/sciadv.aaz6108 – ident: ref53/cit53 doi: 10.1021/acsnano.7b04128 – ident: ref26/cit26 doi: 10.1038/nnano.2007.149 – ident: ref97/cit97 doi: 10.1002/adma.201103818 – ident: ref29/cit29 doi: 10.1021/acsnano.8b02235 – ident: ref30/cit30 doi: 10.1002/adma.201402996 – ident: ref15/cit15 doi: 10.1158/0008-5472.CAN-06-2618 – ident: ref40/cit40 doi: 10.4161/bbug.1.6.13146 – ident: ref150/cit150 doi: 10.1073/pnas.1400472111 – ident: ref34/cit34 doi: 10.1016/j.biomaterials.2019.119226 – ident: ref21/cit21 doi: 10.1002/btm2.10004 – ident: ref167/cit167 doi: 10.1016/j.vaccine.2010.12.039 – ident: ref79/cit79 doi: 10.1002/cbic.201402290 – volume: 3 start-page: 173 issue: 2 year: 1996 ident: ref85/cit85 publication-title: Gene Ther. – ident: ref122/cit122 doi: 10.1016/j.maturitas.2018.03.012 – ident: ref174/cit174 doi: 10.3390/vaccines3040814 – ident: ref149/cit149 doi: 10.1159/000100515 – ident: ref35/cit35 doi: 10.3390/pharmaceutics11030129 – ident: ref38/cit38 doi: 10.1021/acs.nanolett.6b04523 – ident: ref140/cit140 doi: 10.3390/antib8010013 – ident: ref59/cit59 doi: 10.1002/wnan.1523 – ident: ref142/cit142 doi: 10.1126/science.288.5473.2051 – ident: ref118/cit118 doi: 10.1002/eji.201344130 – ident: ref51/cit51 doi: 10.1038/nnano.2016.137 – ident: ref102/cit102 doi: 10.1126/sciadv.aav4803 – ident: ref47/cit47 doi: 10.1158/0008-5472.CAN-07-0098 – ident: ref33/cit33 doi: 10.1126/science.1130651 – ident: ref106/cit106 doi: 10.1002/smll.201501284 – ident: ref86/cit86 doi: 10.18632/oncotarget.1761 – ident: ref176/cit176 doi: 10.1016/j.jconrel.2020.04.031 – ident: ref152/cit152 doi: 10.1016/0264-410X(93)90160-Y – ident: ref10/cit10 doi: 10.1155/2016/1459394 – ident: ref168/cit168 doi: 10.1073/pnas.0805532107 – ident: ref133/cit133 doi: 10.4161/bbug.1.5.12540 – ident: ref151/cit151 doi: 10.1016/j.coi.2019.03.006 – ident: ref36/cit36 doi: 10.1016/j.drudis.2006.08.005 – ident: ref64/cit64 doi: 10.1128/mBio.00909-14 – ident: ref173/cit173 doi: 10.3390/vaccines8010011 – ident: ref27/cit27 doi: 10.1016/j.addr.2016.09.007 – ident: ref188/cit188 doi: 10.1002/adma.201701644 – ident: ref20/cit20 doi: 10.1016/j.imlet.2017.07.015 – ident: ref76/cit76 doi: 10.1016/j.micinf.2007.09.002 – ident: ref81/cit81 doi: 10.1021/acschembio.6b00169 – ident: ref197/cit197 doi: 10.1021/nl500618u – ident: ref127/cit127 doi: 10.1016/j.cyto.2016.01.002 – ident: ref52/cit52 doi: 10.1186/s13756-019-0533-3 – ident: ref78/cit78 doi: 10.1016/j.bcp.2017.04.009 – ident: ref25/cit25 doi: 10.1016/j.addr.2017.09.015 – ident: ref181/cit181 doi: 10.1590/S1678-91992012000100006 – ident: ref114/cit114 doi: 10.1016/j.clim.2014.06.004 – ident: ref73/cit73 doi: 10.1038/nri3399 – ident: ref5/cit5 doi: 10.1038/nrmicro.2017.172 – ident: ref60/cit60 doi: 10.1139/cjm-2017-0466 – ident: ref198/cit198 doi: 10.1021/acs.nanolett.0c02278 – ident: ref129/cit129 doi: 10.1016/j.imlet.2018.03.006 – ident: ref105/cit105 doi: 10.1016/j.vaccine.2010.07.020 – ident: ref192/cit192 doi: 10.1002/adma.202001808 – ident: ref42/cit42 doi: 10.1038/sj.cgt.7700777 – ident: ref189/cit189 doi: 10.1021/acs.nanolett.9b01844 – volume: 15 start-page: 473 issue: 7 year: 1955 ident: ref88/cit88 publication-title: Cancer Res. – ident: ref98/cit98 doi: 10.1016/j.snb.2014.01.099 – ident: ref146/cit146 doi: 10.1080/14760584.2017.1383159 – ident: ref9/cit9 doi: 10.1038/nature24624 – ident: ref63/cit63 doi: 10.1074/jbc.M110.185744 – ident: ref71/cit71 doi: 10.1021/nl504798g – ident: ref8/cit8 doi: 10.1038/nri3837 – ident: ref28/cit28 doi: 10.1155/2016/5678702 – ident: ref45/cit45 doi: 10.1038/nbt1211 – ident: ref75/cit75 doi: 10.3389/fcimb.2012.00043 – ident: ref180/cit180 doi: 10.1099/mic.0.066712-0 – ident: ref155/cit155 doi: 10.1038/ncomms9533 – ident: ref158/cit158 doi: 10.1371/journal.pone.0144397 – ident: ref48/cit48 doi: 10.1099/ijs.0.038927-0 – ident: ref4/cit4 doi: 10.1111/cas.12075 – ident: ref84/cit84 doi: 10.1158/1078-0432.CCR-11-0487 – ident: ref161/cit161 doi: 10.3389/fimmu.2019.02737 – ident: ref16/cit16 doi: 10.1002/adfm.201908283 – ident: ref184/cit184 doi: 10.1038/nnano.2013.254 – ident: ref108/cit108 doi: 10.1002/adbi.201800219 – ident: ref39/cit39 doi: 10.1021/acs.nanolett.7b05323 – ident: ref175/cit175 doi: 10.1016/j.nano.2019.102148 – ident: ref195/cit195 doi: 10.1073/pnas.1714267114 – ident: ref41/cit41 doi: 10.1038/nrc2934 – ident: ref115/cit115 doi: 10.1111/imm.12320 – ident: ref134/cit134 doi: 10.1007/s00262-016-1932-4 – ident: ref169/cit169 doi: 10.1038/srep37242 – ident: ref70/cit70 doi: 10.1002/anie.201906280 – ident: ref117/cit117 doi: 10.1111/j.1365-2567.2005.02180.x – ident: ref191/cit191 doi: 10.1021/acs.bioconjchem.7b00692 – ident: ref100/cit100 doi: 10.1016/j.mee.2018.04.003 – ident: ref31/cit31 doi: 10.1038/ncomms13193 – ident: ref43/cit43 doi: 10.1002/jgm.626 |
SSID | ssj0002003189 |
Score | 2.3658361 |
SecondaryResourceType | review_article |
Snippet | The natural world has provided a host of materials and inspiration for the field of nanomedicine. By taking design cues from naturally occurring systems, the... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3830 |
SubjectTerms | Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Bacteria - drug effects Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Humans Materials Testing Microbial Sensitivity Tests Nanomedicine Particle Size |
Title | Bacteria-Inspired Nanomedicine |
URI | http://dx.doi.org/10.1021/acsabm.0c01072 https://www.ncbi.nlm.nih.gov/pubmed/34368643 https://www.proquest.com/docview/2559662652 https://pubmed.ncbi.nlm.nih.gov/PMC8336673 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5SL1584Ks-SkXBU-puso_2qMVSBb1oobdl8kJRt-K2F3-9M_vStoiedwjMziT5vkzyDWNnvdAD51vBI2liHmgJHMJQYkB0JKwExLD0GvnuPhqOgttxOP4-71is4Av_AnQG6q3jaWQOMS62qyLCGUwgqP9Qn6aIPDkJ6xKA5giqRaXQuDQE7UM6m9-HlsDl4h3JH5vOYKNQQMpyrUK6a_LSmU1VR38uKzn-6c8mWy-RZ_uySJUttmLTbda6KtSagd-kVHO3po3r7aSquO-w0eD6sT_kZcsEDjj5ptx2qWe45yuJNAfJHQgXGKOdseCkZ7UFBTGACp1vrNCRB2gWWO0QtkSeC-Uua6ST1O6ztlDac0Z3hQ1NEBsDpEyHhEf1kNEpFzfZKbqSlCmfJXk1W_hJ4V9S-tdkvPrNiS5Vx6n5xeuv9ue1_Xuht_Gr5UkVtQSnBNU5ILWTWZYQS4qQqIVos1dEsR5LkuI-orAmi-fiWxuQ3Pb8l_T5KZfd7kpJPVIP_uX3IVsTdPuFdF7jI9aYfszsMcKXqWrlmfsF6kzqOA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4IHvTiI77wgRhNPBV2233AEYkEFIiJkHDb9BmNuhh3ufjrne5LgZDodXfSdHam7Tc7028Qum65FtO2Itij0seOoAwz16VgEOERRRlgWHMbeTjyehPnfupOS6iR34WBSUQwUpQk8X_YBewGPGP8vW4JCCB82HM3AIkQ49LtzlPxU4UkPmogr8HRGLA1yYkaV4Ywx5GIFo-jFYy5XCr56-zp7qDHYtZJyclrfR7zuvhaInT8h1q7aDvDobV26jh7qKTCfVS9TbmbGe6HJgOvZA1231mefz9Ak-7duNPDWQMFzGApxlg1TQdxy-YUgh4I9RjRjpRCS8U0tZRQjDOfMe5qWyoiPIuBmKOEBhDjWdqlh6gczkJ1jGqEC0tL0STKlY4vJTM8dRD-8BbEd1z7FXQFqgTZAoiCJLdN7CDVL8j0qyCcf-1AZBzkphXG21r5m0L-I2XfWCt5mRsvgAVish4sVLN5FJiYyYOwzQWZo9SYxVjU8O8DJqsgf8HMhYAh3158E748JyTcTUpNx9STP-l9gTZ74-EgGPRHD6doi5i6GMMA65-hcvw5V-cAbGJeTZz5G3Gd8pk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF5EQXzxwKsetaLg09ZkN0f7WKul9SiCLfQt7ImipsW0L_56Z5I02JaCvibDspOZ2f0ms_sNIZd13xHWNYwGXIfUU1xQ4fscDKICZrgADIu3kZ-6Qbvv3Q_8QX6PG-_CwCQSGClJi_gY1SNtc4YB9xqeC_lZdRQkESGsu2tYs0O3bjRfih8rLPVThL2IpSngazYla1wYArcklcxuSQs4c_645K_9p7VFesXM02Mn79XJWFbV9xyp4z9V2yabOR6tNDIH2iErJt4l5ZuMw1nQToyVeKMrsAoPp3X4PdJv3fWabZo3UqACQnJMTQ07iTuu5JD8QMonmPW0VlYbYbljlBFShEJI37raMBU4AsQ8oyyAmcCxPt8nq_EwNoekwqRyrFY1ZnzthVoL5KuDNEjWIc-TNiyRC1AlygMhidIaN3OjTL8o169E6PSLRyrnIseWGB9L5a8K-VHGwrFU8nxqwAgCBasfIjbDSRJh7hRA-uaDzEFm0GIsjjz8gM1KJJwxdSGAJNyzb-K315SMu8Y5dk49-pPeZ2T9-bYVPXa6D8dkg-HxGCSCDU_I6vhrYk4B34xlOfXnH1Wh9Rw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacteria-Inspired+Nanomedicine&rft.jtitle=ACS+applied+bio+materials&rft.au=Holay%2C+Maya&rft.au=Guo%2C+Zhongyuan&rft.au=Pihl%2C+Jessica&rft.au=Heo%2C+Jiyoung&rft.date=2021-05-17&rft.pub=American+Chemical+Society&rft.issn=2576-6422&rft.eissn=2576-6422&rft.volume=4&rft.issue=5&rft.spage=3830&rft.epage=3848&rft_id=info:doi/10.1021%2Facsabm.0c01072&rft.externalDocID=h87115597 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon |