Adverse Interactions of Luminescent Semiconductor Quantum Dots with Liposomes and Shewanella oneidensis

Cadmium-containing luminescent quantum dots (QD) are increasingly used in display, bioimaging, and energy technologies; however, significant concerns have been raised about their potentially adverse impact on human health and the environment. This study makes use of a broad toolkit of analytical met...

Full description

Saved in:
Bibliographic Details
Published inACS applied nano materials Vol. 1; no. 9; pp. 4788 - 4800
Main Authors Williams, Denise N, Pramanik, Sunipa, Brown, Richard P, Zhi, Bo, McIntire, Eileen, Hudson-Smith, Natalie V, Haynes, Christy L, Rosenzweig, Zeev
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cadmium-containing luminescent quantum dots (QD) are increasingly used in display, bioimaging, and energy technologies; however, significant concerns have been raised about their potentially adverse impact on human health and the environment. This study makes use of a broad toolkit of analytical methods to investigate and increase our understanding of the interactions of luminescent cadmium-containing (CdSe) and cadmium-free (ZnSe) QD, with and without a passivating higher bandgap energy ZnS shell, with phospholipid vesicles (liposomes), which model bacterial membranes, and with Shewanella oneidensis MR-1, an environmentally relevant bacteria. A unique feature of this study is that all QD types have the same surface chemistry, being capped with uncharged poly­(ethylene glycol) ligands. This enables focusing the study on the impact of the QD core on liposomes and bacterial cells. The study reveals that QD association with liposome and bacterial cell membranes is imperative for their adverse impact on liposomes and bacterial cells. The QD' concentration-dependent association with liposomes and bacterial cells destabilizes the membranes mechanically, which leads to membrane disruption and lysis in liposomes and to bacterial cell death. The study also shows that cadmium-containing QD exhibit a higher level of membrane disruption in bacterial cells than cadmium-free QD. ZnSe QD have low membrane impact, and coating them with a ZnS shell decreases their membrane disruption activity. In contrast, CdSe QD exhibit a high level of membrane impact, and coating them with a ZnS shell does not decrease, but in fact further increases, their membrane disruption activity. This behavior might be attributed to higher affinity and association of CdSe/ZnS QD with liposomes and bacterial cells and to a contribution of dissolved zinc ions from the ZnS shell to increased membrane disruption activity.
AbstractList Cadmium-containing luminescent quantum dots (QD) are increasingly used in display, bioimaging, and energy technologies; however, significant concerns have been raised about their potentially adverse impact on human health and the environment. This study makes use of a broad toolkit of analytical methods to investigate and increase our understanding of the interactions of luminescent cadmium-containing (CdSe) and cadmium-free (ZnSe) QD, with and without a passivating higher bandgap energy ZnS shell, with phospholipid vesicles (liposomes), which model bacterial membranes, and with Shewanella oneidensis MR-1, an environmentally relevant bacteria. A unique feature of this study is that all QD types have the same surface chemistry, being capped with uncharged poly­(ethylene glycol) ligands. This enables focusing the study on the impact of the QD core on liposomes and bacterial cells. The study reveals that QD association with liposome and bacterial cell membranes is imperative for their adverse impact on liposomes and bacterial cells. The QD' concentration-dependent association with liposomes and bacterial cells destabilizes the membranes mechanically, which leads to membrane disruption and lysis in liposomes and to bacterial cell death. The study also shows that cadmium-containing QD exhibit a higher level of membrane disruption in bacterial cells than cadmium-free QD. ZnSe QD have low membrane impact, and coating them with a ZnS shell decreases their membrane disruption activity. In contrast, CdSe QD exhibit a high level of membrane impact, and coating them with a ZnS shell does not decrease, but in fact further increases, their membrane disruption activity. This behavior might be attributed to higher affinity and association of CdSe/ZnS QD with liposomes and bacterial cells and to a contribution of dissolved zinc ions from the ZnS shell to increased membrane disruption activity.
Cadmium-containing luminescent quantum dots (QD) are increasingly used in display, bioimaging, and energy technologies; however, significant concerns have been raised about their potentially adverse impact on human health and the environment. This study makes use of a broad toolkit of analytical methods to investigate and increase our understanding of the interactions of luminescent cadmium-containing (CdSe) and cadmium-free (ZnSe) QD, with and without a passivating higher bandgap energy ZnS shell, with phospholipid vesicles (liposomes), which model bacterial membranes, and with Shewanella oneidensis MR-1, an environmentally relevant bacteria. A unique feature of this study is that all QD types have the same surface chemistry, being capped with uncharged poly(ethylene glycol) ligands. This enables focusing the study on the impact of the QD core on liposomes and bacterial cells. The study reveals that QD association with liposome and bacterial cell membranes is imperative for their adverse impact on liposomes and bacterial cells. The QD’ concentration-dependent association with liposomes and bacterial cells destabilizes the membranes mechanically, which leads to membrane disruption and lysis in liposomes and to bacterial cell death. The study also shows that cadmium-containing QD exhibit a higher level of membrane disruption in bacterial cells than cadmium-free QD. ZnSe QD have low membrane impact, and coating them with a ZnS shell decreases their membrane disruption activity. In contrast, CdSe QD exhibit a high level of membrane impact, and coating them with a ZnS shell does not decrease, but in fact further increases, their membrane disruption activity. This behavior might be attributed to higher affinity and association of CdSe/ZnS QD with liposomes and bacterial cells and to a contribution of dissolved zinc ions from the ZnS shell to increased membrane disruption activity.
Cadmium-containing luminescent quantum dots (QD) are increasingly used in display, bioimaging, and energy technologies; however, significant concerns have been raised about their potentially adverse impact on human health and the environment. This study makes use of a broad toolkit of analytical methods to investigate and increase our understanding of the interactions of luminescent cadmium-containing (CdSe) and cadmium-free (ZnSe) QD, with and without a passivating higher bandgap energy ZnS shell, with phospholipid vesicles (liposomes), which model bacterial membranes, and with MR-1, an environmentally relevant bacteria. A unique feature of this study is that all QD types have the same surface chemistry, being capped with uncharged poly(ethylene glycol) ligands. This enables focusing the study on the impact of the QD core on liposomes and bacterial cells. The study reveals that QD association with liposome and bacterial cell membranes is imperative for their adverse impact on liposomes and bacterial cells. The QD' concentration-dependent association with liposomes and bacterial cells destabilizes the membranes mechanically, which leads to membrane disruption and lysis in liposomes and to bacterial cell death. The study also shows that cadmium-containing QD exhibit a higher level of membrane disruption in bacterial cells than cadmium-free QD. ZnSe QD have low membrane impact, and coating them with a ZnS shell decreases their membrane disruption activity. In contrast, CdSe QD exhibit a high level of membrane impact, and coating them with a ZnS shell does not decrease, but in fact further increases, their membrane disruption activity. This behavior might be attributed to higher affinity and association of CdSe/ZnS QD with liposomes and bacterial cells and to a contribution of dissolved zinc ions from the ZnS shell to increased membrane disruption activity.
Author Pramanik, Sunipa
Haynes, Christy L
Rosenzweig, Zeev
McIntire, Eileen
Hudson-Smith, Natalie V
Brown, Richard P
Zhi, Bo
Williams, Denise N
AuthorAffiliation Department of Chemistry
Department of Chemistry and Biochemistry
AuthorAffiliation_xml – name: Department of Chemistry
– name: Department of Chemistry and Biochemistry
– name: Department of Chemistry, University of Minnesota, Minneapolis 55455, Minnesota, United States
– name: Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore 21250, Maryland, United States
Author_xml – sequence: 1
  givenname: Denise N
  orcidid: 0000-0002-6314-2052
  surname: Williams
  fullname: Williams, Denise N
  organization: Department of Chemistry and Biochemistry
– sequence: 2
  givenname: Sunipa
  orcidid: 0000-0001-6450-2593
  surname: Pramanik
  fullname: Pramanik, Sunipa
  organization: Department of Chemistry
– sequence: 3
  givenname: Richard P
  orcidid: 0000-0001-5145-5425
  surname: Brown
  fullname: Brown, Richard P
  organization: Department of Chemistry and Biochemistry
– sequence: 4
  givenname: Bo
  orcidid: 0000-0002-1918-5012
  surname: Zhi
  fullname: Zhi, Bo
  organization: Department of Chemistry
– sequence: 5
  givenname: Eileen
  orcidid: 0000-0001-8034-7087
  surname: McIntire
  fullname: McIntire, Eileen
  organization: Department of Chemistry
– sequence: 6
  givenname: Natalie V
  orcidid: 0000-0002-2642-0711
  surname: Hudson-Smith
  fullname: Hudson-Smith, Natalie V
  organization: Department of Chemistry
– sequence: 7
  givenname: Christy L
  orcidid: 0000-0002-5420-5867
  surname: Haynes
  fullname: Haynes, Christy L
  organization: Department of Chemistry
– sequence: 8
  givenname: Zeev
  orcidid: 0000-0001-6098-3932
  surname: Rosenzweig
  fullname: Rosenzweig, Zeev
  email: zrosenzw@umbc.edu
  organization: Department of Chemistry and Biochemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30931431$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1LXDEQxUNR6kd97aPksQi7TnK_9r4URFsVFkqxfQ5zk4kb2ZusSa7S_76RXcU-9CkD-c2ZM3OO2J4Pnhj7LGAuQIpz1An9OF8MIADgAzuUTVfPoO9g7119wE5SeiiA6EVbAXxkBxX0lagrccjuL8wTxUT81meKqLMLPvFg-XIanaekyWd-R6PTwZtJ5xD5zwl9nkZ-FXLizy6v-NJtQgojJY7e8LsVPaOn9Rp5sesM-eTSJ7ZvcZ3oZPces9_fv_26vJktf1zfXl4sZ1jLJs-0bHCQgx2ERdlawNriAGjBLHDRCoOm64y2nYGm17CQBgY0FQFKY4YGdXXMvm51N9MwknmxH3GtNtGNGP-ogE79--PdSt2HJ9XWVVNBVwS-7ARieJwoZTW6coWyjacwJSUliE70Xd8WdL5FdQwpRbJvYwSol4DUNiC1C6g0nL4394a_xlGAsy1QGtVDmKIvt_qf2l8Sy6GD
CitedBy_id crossref_primary_10_1007_s12551_020_00653_0
crossref_primary_10_1021_acsami_2c02551
crossref_primary_10_1016_j_radphyschem_2022_110731
crossref_primary_10_1016_j_jphotochem_2024_115757
crossref_primary_10_1073_pnas_2004736117
crossref_primary_10_2174_2405461507666220304204152
crossref_primary_10_3390_coatings13010212
crossref_primary_10_1021_acsanm_9b00525
crossref_primary_10_1007_s11033_020_05522_3
crossref_primary_10_1021_acs_jpcc_0c01195
crossref_primary_10_1021_jacs_2c13403
crossref_primary_10_1016_j_cclet_2023_108689
crossref_primary_10_1039_C8CC06473C
crossref_primary_10_1016_j_ecoenv_2021_112459
crossref_primary_10_1016_j_impact_2021_100318
crossref_primary_10_1021_acsanm_0c01386
crossref_primary_10_1021_acs_jpca_3c07462
crossref_primary_10_1039_D3EN00382E
crossref_primary_10_1063_1_5128608
crossref_primary_10_1063_5_0017229
crossref_primary_10_1021_acs_accounts_9b00053
Cites_doi 10.1021/acs.jpclett.6b00077
10.1021/acs.langmuir.7b01924
10.1021/nl048245n
10.1021/nl0347334
10.1021/nn700319z
10.1021/acs.chemrev.6b00290
10.1021/cm9027995
10.1002/cphc.201500837
10.1021/acs.jpclett.5b02153
10.1021/nl5048779
10.1063/1.4901428
10.1021/ac303636s
10.1038/nbt749
10.1021/jp906827m
10.1021/acs.langmuir.7b00173
10.1021/la704075r
10.1038/nprot.2008.243
10.1016/j.jallcom.2015.02.102
10.1289/ehp.8284
10.1002/smll.200800841
10.1021/nn8008933
10.1021/acs.langmuir.6b04400
10.1016/j.brainresbull.2013.10.012
10.1021/jf0348368
10.1016/j.spjpm.2015.11.003
10.1039/C5SC00792E
10.3390/ma11020243
10.1039/b810488c
10.1021/ja042939g
10.1021/acs.langmuir.7b04285
10.1063/1.4817086
10.1021/es8023385
10.1021/nn1025934
10.1007/s00253-017-8140-9
10.1016/j.orgel.2013.11.003
10.1155/2015/298614
10.1021/es802806n
10.1002/jbio.201300067
10.1002/smll.201402698
10.1039/C4TX00123K
10.1039/b413175d
10.1093/toxsci/kfv002
10.1021/ja076363h
10.1021/acs.chemmater.5b04505
10.1088/0022-3727/38/13/001
10.1002/jemt.22637
10.1039/C3NJ00998J
10.1016/j.jfda.2014.01.005
10.1038/nmat1390
10.1007/4243_2012_43
10.1002/jbio.201400051
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/acsanm.8b01000
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2574-0970
EndPage 4800
ExternalDocumentID 10_1021_acsanm_8b01000
30931431
c014173050
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R25 GM055036
– fundername: NIGMS NIH HHS
  grantid: T32 GM066706
GroupedDBID ABUCX
ACGFS
ACS
AFEFF
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
VF5
VG9
W1F
ABQRX
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a425t-c25ab2bfb1fa26f0a4fab0af0d8a861dad77dcf7d059c082d0bad3e0a2ddb5ac3
IEDL.DBID ACS
ISSN 2574-0970
IngestDate Tue Sep 17 21:22:25 EDT 2024
Sat Aug 17 00:35:51 EDT 2024
Fri Aug 23 02:20:41 EDT 2024
Sat Sep 28 08:30:45 EDT 2024
Thu Aug 27 13:42:28 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords quantum dots
Shewanella oneidensis MR-1
membrane disruption
membrane association
liposomes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a425t-c25ab2bfb1fa26f0a4fab0af0d8a861dad77dcf7d059c082d0bad3e0a2ddb5ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
ORCID 0000-0001-6450-2593
0000-0001-6098-3932
0000-0001-5145-5425
0000-0002-6314-2052
0000-0002-5420-5867
0000-0001-8034-7087
0000-0002-1918-5012
0000-0002-2642-0711
OpenAccessLink https://europepmc.org/articles/pmc6435307?pdf=render
PMID 30931431
PQID 2201719796
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6435307
proquest_miscellaneous_2201719796
crossref_primary_10_1021_acsanm_8b01000
pubmed_primary_30931431
acs_journals_10_1021_acsanm_8b01000
ProviderPackageCode ACS
VG9
ABUCX
AFEFF
VF5
W1F
PublicationCentury 2000
PublicationDate 2018-09-28
PublicationDateYYYYMMDD 2018-09-28
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied nano materials
PublicationTitleAlternate ACS Appl. Nano Mater
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
Haldar S. (ref42/cit42) 2012; 13
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref1/cit1
  doi: 10.1021/acs.jpclett.6b00077
– ident: ref37/cit37
  doi: 10.1021/acs.langmuir.7b01924
– ident: ref52/cit52
  doi: 10.1021/nl048245n
– ident: ref21/cit21
  doi: 10.1021/nl0347334
– ident: ref17/cit17
  doi: 10.1021/nn700319z
– ident: ref3/cit3
  doi: 10.1021/acs.chemrev.6b00290
– ident: ref6/cit6
  doi: 10.1021/cm9027995
– ident: ref18/cit18
  doi: 10.1002/cphc.201500837
– ident: ref5/cit5
  doi: 10.1021/acs.jpclett.5b02153
– ident: ref10/cit10
  doi: 10.1021/nl5048779
– ident: ref51/cit51
  doi: 10.1063/1.4901428
– ident: ref19/cit19
  doi: 10.1021/ac303636s
– ident: ref31/cit31
  doi: 10.1038/nbt749
– ident: ref35/cit35
  doi: 10.1021/jp906827m
– ident: ref22/cit22
  doi: 10.1021/acs.langmuir.7b00173
– ident: ref23/cit23
  doi: 10.1021/la704075r
– ident: ref33/cit33
  doi: 10.1038/nprot.2008.243
– ident: ref8/cit8
  doi: 10.1016/j.jallcom.2015.02.102
– ident: ref26/cit26
  doi: 10.1289/ehp.8284
– ident: ref9/cit9
  doi: 10.1002/smll.200800841
– ident: ref27/cit27
  doi: 10.1021/nn8008933
– ident: ref44/cit44
  doi: 10.1021/acs.langmuir.6b04400
– ident: ref46/cit46
  doi: 10.1016/j.brainresbull.2013.10.012
– ident: ref45/cit45
  doi: 10.1021/jf0348368
– ident: ref13/cit13
  doi: 10.1016/j.spjpm.2015.11.003
– ident: ref43/cit43
  doi: 10.1039/C5SC00792E
– ident: ref49/cit49
  doi: 10.3390/ma11020243
– ident: ref34/cit34
  doi: 10.1039/b810488c
– ident: ref36/cit36
  doi: 10.1021/ja042939g
– ident: ref40/cit40
  doi: 10.1021/acs.langmuir.7b04285
– ident: ref7/cit7
  doi: 10.1063/1.4817086
– ident: ref30/cit30
  doi: 10.1021/es8023385
– ident: ref39/cit39
  doi: 10.1021/nn1025934
– ident: ref28/cit28
  doi: 10.1007/s00253-017-8140-9
– ident: ref14/cit14
  doi: 10.1016/j.orgel.2013.11.003
– ident: ref11/cit11
  doi: 10.1155/2015/298614
– ident: ref20/cit20
  doi: 10.1021/es802806n
– ident: ref47/cit47
  doi: 10.1002/jbio.201300067
– ident: ref2/cit2
  doi: 10.1002/smll.201402698
– ident: ref16/cit16
  doi: 10.1039/C4TX00123K
– ident: ref24/cit24
  doi: 10.1039/b413175d
– ident: ref25/cit25
  doi: 10.1093/toxsci/kfv002
– ident: ref15/cit15
  doi: 10.1021/ja076363h
– ident: ref32/cit32
  doi: 10.1021/acs.chemmater.5b04505
– ident: ref4/cit4
  doi: 10.1088/0022-3727/38/13/001
– ident: ref50/cit50
  doi: 10.1002/jemt.22637
– ident: ref38/cit38
  doi: 10.1039/C3NJ00998J
– ident: ref41/cit41
– ident: ref12/cit12
  doi: 10.1016/j.jfda.2014.01.005
– ident: ref29/cit29
  doi: 10.1038/nmat1390
– volume: 13
  volume-title: Fluorescent Methods to Study Biological Membranes
  year: 2012
  ident: ref42/cit42
  doi: 10.1007/4243_2012_43
  contributor:
    fullname: Haldar S.
– ident: ref48/cit48
  doi: 10.1002/jbio.201400051
SSID ssj0001916300
Score 2.242079
Snippet Cadmium-containing luminescent quantum dots (QD) are increasingly used in display, bioimaging, and energy technologies; however, significant concerns have been...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4788
Title Adverse Interactions of Luminescent Semiconductor Quantum Dots with Liposomes and Shewanella oneidensis
URI http://dx.doi.org/10.1021/acsanm.8b01000
https://www.ncbi.nlm.nih.gov/pubmed/30931431
https://search.proquest.com/docview/2201719796
https://pubmed.ncbi.nlm.nih.gov/PMC6435307
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZb99KXdWPrmrUbGh3syZms-Ofj6FbKyAolK-TN3ElWG0bsUtkU-tf3zk6aJmFszxb6dSfr4-67T0J8zmNrTY5RkKc5BFGZlwEmqQ3QKQXxyMYYcXHyr_Pk7DL6OY2nq3jHZgZfh1_BeKjmwwwVh6Kfixea6YMMgk4mq2gKoZxRV29CLhgFKk_VUqFxqwu-h4xfv4e2wOUmR_LJpXO61ysg-U6rkLkmf4Ztg0Nzv63k-M_1vBIvF8hTfutd5bV4VlZvxFX3ILMvZRcZ7IscvKydHLdzJsTzvOSECfR1xcqw9a28aMkY7Vx-rxsvOYwrx7Ob2tfz0kuorJxcl3fA5BmQdcUqWpWf-bfi8vTH75OzYPH2QgB0ipvA6BhQo8PQgU6cgsgBKnDKZpAloQWbpta41BI8MwQjrEKwo1KBthZjMKN9sVPRKAdC5oTAyGKZCTGLQutQ2SRxDpGwIAuEDcQx7UmxODu-6NLiOiz6jSoWGzUQX5b2Km56IY6_tvy0NGdBZ4UTILTquvWF1qwORF6ZDMS73ryPfXFGmLBjOBDpmuEfG7AO9_qXanbd6XETqIvpV_n-v9ZxKHZpFh3lRGdHYqe5bcsPhGsa_Ni59AP4Gvel
link.rule.ids 230,315,786,790,891,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BPdBLaVVoF_owKhKnLE42z2NFi7ZlQUULErdoJo7LqtoE4URI_HrGzu7SBVUq18Syx55x_GUenwH2skipIqPQy5IMvbDMSo_iRHmkpcRooCIKbXHyyWk8vAh_XkaXK3Awr4VhIQz3ZFwQ_4FdwD_gZ1hN-ylJ65FehRdRwj_jFgsdjh-cKgx2Bq7shC0x9GSWyDlR45Mu7HFUmOXj6AnGfJwq-dfZc7QBvxZSu5STP_22oX5x94jQ8RnTeg2vZjhUfO0M5w2slNVb-O2uZzalcH7CruTBiFqLUTu16fFWPDG26fR1ZXli6xtx1rJq2qn4VjdGWKeuGE2ua1NPSyOwUmJ8Vd6iTaVBUVeWU6syE7MJF0ffzw-H3uwmBg95TzdeEURIAWnyNQaxlhhqJIlaqhTT2FeokkQVOlEM1goGFUoSqkEpMVCKIiwGW7BW8SjvQWSMx3yZpYVPaegrTVLFsdZEjAwtXVgPvvCa5LOdZHIXJA_8vFuofLZQPdifqy2_7mg5_tlyd67VnHeODYfwrOvW5EFguYLYRuMevOu0vOjLxocZSfo9SJb0v2hgWbmX31STK8fOzRAv4g_n9n_N4zOsD89PRvnox-nxDrxkiVwySpB-gLXmpi0_MuJp6JOz8nvR-gAf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-0gviiFT96atuVCj7l3OTy-VjaHlWvRbkW-hZmM9n2KJcc3QTBv96ZTe7qtQj1NVk2szsz2R_z8VshPmURYpHp0MuSDLywzEpPxwl62igF0QgjHXJz8slpfHwefruILvo-bu6FISEszWRdEp-9eoGmZxjwv9BzqObDVCuOSj8WTyK-vZvx0MH0NrBCgGfkWk_IGkNPZYlakjXem4KPpMKuH0n3cObdcsm_zp_xC3G2ktyVnVwP20YPi993SB3_c2mb4nmPR-V-Z0AvxaOyeiUu3TXNtpQuXti1PlhZGzlp51wmzyLKKZfV1xXzxdY38mdLKmrn8rBurOTgrpzMFrWt56WVUKGcXpW_gEtqQNYVc2tVdmZfi_Px0dnBsdffyOAB-XbjFUEEOtBG-waC2CgIDWgFRmEKaewjYJJgYRIk0FYQuEClAUelggBRR1CM3oiNir6yJWRGuMxXWVr4Og19NFphHBujNSFEpg0biD3ak7z3KJu7ZHng591G5f1GDcTnperyRUfP8c-RH5eazcmDOC1Cq65bmwcBcwaRrcYD8bbT9GouzhOTifkDkazZwGoAs3Ovv6lmV46lm6BeRD_Qdw9ax654-uNwnE--nn5_L56RQK4mJUg_iI3mpi23Cfg0escZ-h_c5gKZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adverse+Interactions+of+Luminescent+Semiconductor+Quantum+Dots+with+Liposomes+and+Shewanella+oneidensis&rft.jtitle=ACS+applied+nano+materials&rft.au=Williams%2C+Denise+N.&rft.au=Pramanik%2C+Sunipa&rft.au=Brown%2C+Richard+P.&rft.au=Zhi%2C+Bo&rft.date=2018-09-28&rft.issn=2574-0970&rft.eissn=2574-0970&rft.volume=1&rft.issue=9&rft.spage=4788&rft.epage=4800&rft_id=info:doi/10.1021%2Facsanm.8b01000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsanm_8b01000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0970&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0970&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0970&client=summon