Novel Ferroelectric Polymers for High Energy Density and Low Loss Dielectrics

The state-of-the-art polymer dielectrics have been limited to nonpolar polymers with relatively low energy density but ultralow dielectric losses for the past decades. With the fast development of power electronics in pulsed power and power conditioning applications, there is a need for next-generat...

Full description

Saved in:
Bibliographic Details
Published inMacromolecules Vol. 45; no. 7; pp. 2937 - 2954
Main Authors Zhu, Lei, Wang, Qing
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 10.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The state-of-the-art polymer dielectrics have been limited to nonpolar polymers with relatively low energy density but ultralow dielectric losses for the past decades. With the fast development of power electronics in pulsed power and power conditioning applications, there is a need for next-generation dielectric capacitors in areas of high energy density/low loss and/or high temperature/low loss polymer dielectrics. Given limitations in further enhancing atomic and electronic polarizations for polymers, this Perspective focuses on a fundamental question: Can orientational polarization in polar polymers be utilized for high energy density and low loss dielectrics? Existing experimental and theoretical results have suggested the following perspectives. For amorphous polar polymers, high energy density and low loss can be achieved below their glass transition temperatures. For liquid crystalline side-chain polymers, dipole mobility is so high that they saturate at relatively low electric fields, and only limited electrical energy can be further stored after dipole saturation. Crystalline polar polymers are promising and can be divided into three categories: normal ferroelectric, paraelectric, and novel ferroelectric. For normal ferroelectric crystalline polymers, switching of a high spontaneous polarization results in a large hysteresis. To reduce the hysteresis, ultrafine crystallites or ferroelectric domains are desired to reduce the spontaneous polarization. For paraelectric crystalline polymers, dipoles have the potential to align in an external electric field. However, a high degree of dipole reversibility is required for the high energy density and low loss application. Novel ferroelectric behaviors include relaxor ferroelectric and antiferroelectric-like behaviors are highly desired because of their high degree of dipole reversibility. To achieve the relaxor ferroelectric behavior, structural defects such as bulky comonomers need to be introduced into the crystalline lattice to expand the lateral unit cell dimensions and speed up the mobility and reversibility of crystalline dipoles. So far, true antiferroelectric crystalline polymers have not yet been discovered. Nevertheless, the antiferroelectric-like behavior has been realized by reducing the compensation polarization via nanoconfinement. In the future, more research is needed to develop new paraelectric and novel ferroelectric polymers for high energy density and low loss dielectrics.
AbstractList The state-of-the-art polymer dielectrics have been limited to nonpolar polymers with relatively low energy density but ultralow dielectric losses for the past decades. With the fast development of power electronics in pulsed power and power conditioning applications, there is a need for next-generation dielectric capacitors in areas of high energy density/low loss and/or high temperature/low loss polymer dielectrics. Given limitations in further enhancing atomic and electronic polarizations for polymers, this Perspective focuses on a fundamental question: Can orientational polarization in polar polymers be utilized for high energy density and low loss dielectrics? Existing experimental and theoretical results have suggested the following perspectives. For amorphous polar polymers, high energy density and low loss can be achieved below their glass transition temperatures. For liquid crystalline side-chain polymers, dipole mobility is so high that they saturate at relatively low electric fields, and only limited electrical energy can be further stored after dipole saturation. Crystalline polar polymers are promising and can be divided into three categories: normal ferroelectric, paraelectric, and novel ferroelectric. For normal ferroelectric crystalline polymers, switching of a high spontaneous polarization results in a large hysteresis. To reduce the hysteresis, ultrafine crystallites or ferroelectric domains are desired to reduce the spontaneous polarization. For paraelectric crystalline polymers, dipoles have the potential to align in an external electric field. However, a high degree of dipole reversibility is required for the high energy density and low loss application. Novel ferroelectric behaviors include relaxor ferroelectric and antiferroelectric-like behaviors are highly desired because of their high degree of dipole reversibility. To achieve the relaxor ferroelectric behavior, structural defects such as bulky comonomers need to be introduced into the crystalline lattice to expand the lateral unit cell dimensions and speed up the mobility and reversibility of crystalline dipoles. So far, true antiferroelectric crystalline polymers have not yet been discovered. Nevertheless, the antiferroelectric-like behavior has been realized by reducing the compensation polarization via nanoconfinement. In the future, more research is needed to develop new paraelectric and novel ferroelectric polymers for high energy density and low loss dielectrics.
Author Zhu, Lei
Wang, Qing
AuthorAffiliation Case Western Reserve University
Pennsylvania State University
AuthorAffiliation_xml – name: Case Western Reserve University
– name: Pennsylvania State University
Author_xml – sequence: 1
  givenname: Lei
  surname: Zhu
  fullname: Zhu, Lei
  email: lxz121@case.edu, and wang@matse.psu.edu
– sequence: 2
  givenname: Qing
  surname: Wang
  fullname: Wang, Qing
  email: lxz121@case.edu, and wang@matse.psu.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25778273$$DView record in Pascal Francis
BookMark eNpt0D1PwzAQBmALFYm2MPAPvCDBEGo7dp2MqB8UqXwMMEeOcymuErvYKSj_nlQtHVAH66TTcyffO0A96ywgdE3JPSWMjmrFCONEyDPUp4KRSCSx6KE-6bpRylJ5gQYhrAmhVPC4j55f3DdUeA7eO6hAN95o_OaqtgYfcOk8XpjVJ55Z8KsWT8EG07RY2QIv3U_3QsBT8zcYLtF5qaoAV4c6RB_z2ftkES1fH58mD8tIcSaaiOc8SUHQMWiSx4qnpcwLWaRjUZScE5aLMRRpylWeQynKPAYJhBEhulYhYxoP0e1-78a7ry2EJqtN0FBVyoLbhoyRhJOEpHxHbw5UBa2q0iurTcg23tTKtxkTUiZMxp272zvtu6M8lEdCSbaLNjtG29nRP6tNoxrjbOOVqU5OHH6hdMjWbuttF88J9ws_0Yen
CODEN MAMOBX
CitedBy_id crossref_primary_10_1021_am504874f
crossref_primary_10_1016_j_jallcom_2016_10_250
crossref_primary_10_1063_5_0035539
crossref_primary_10_3390_polym12061370
crossref_primary_10_1002_adfm_202422354
crossref_primary_10_1016_j_progpolymsci_2017_04_004
crossref_primary_10_1039_C6RA03757G
crossref_primary_10_1039_D3SM00291H
crossref_primary_10_1002_app_54211
crossref_primary_10_1016_j_progpolymsci_2020_101254
crossref_primary_10_1002_adma_202203623
crossref_primary_10_1038_srep35763
crossref_primary_10_1016_j_jcis_2020_10_066
crossref_primary_10_1016_j_nanoen_2018_11_024
crossref_primary_10_1016_j_giant_2024_100305
crossref_primary_10_1007_s00396_022_04983_1
crossref_primary_10_1088_1361_6463_aaa39c
crossref_primary_10_1002_macp_201800299
crossref_primary_10_1016_j_carbon_2014_12_031
crossref_primary_10_1039_C2TC00431C
crossref_primary_10_3762_bjnano_12_93
crossref_primary_10_1007_s10853_017_1170_y
crossref_primary_10_1002_adfm_202208943
crossref_primary_10_1007_s10853_020_04828_8
crossref_primary_10_1016_j_reactfunctpolym_2021_104944
crossref_primary_10_1039_C7CP07990G
crossref_primary_10_1109_TDEI_2023_3299458
crossref_primary_10_1016_j_ceramint_2024_08_424
crossref_primary_10_1016_j_compositesa_2022_107325
crossref_primary_10_1016_j_colsurfa_2021_127763
crossref_primary_10_1016_j_mattod_2019_04_015
crossref_primary_10_1039_D1CP04040E
crossref_primary_10_1002_adem_201400451
crossref_primary_10_1007_s40820_022_00978_3
crossref_primary_10_1039_D4TA04534C
crossref_primary_10_1021_acs_macromol_3c00207
crossref_primary_10_1039_C4RA12221F
crossref_primary_10_1002_aisy_202400781
crossref_primary_10_1002_ente_201700901
crossref_primary_10_1088_0964_1726_23_4_045026
crossref_primary_10_1016_j_pmatsci_2022_100968
crossref_primary_10_1021_acs_macromol_0c00646
crossref_primary_10_1016_j_ceramint_2019_05_346
crossref_primary_10_1021_acs_chemrev_2c00231
crossref_primary_10_1002_smll_202205247
crossref_primary_10_1039_c4cp01004c
crossref_primary_10_1039_C5RA22617A
crossref_primary_10_1007_s10118_022_2728_y
crossref_primary_10_1002_solr_202300786
crossref_primary_10_1016_j_polymer_2020_123150
crossref_primary_10_1002_pola_27445
crossref_primary_10_1021_am504428u
crossref_primary_10_1002_adfm_201808567
crossref_primary_10_1016_j_polymer_2019_03_076
crossref_primary_10_1021_acsami_4c05096
crossref_primary_10_1021_am502002v
crossref_primary_10_1016_j_compositesb_2020_107908
crossref_primary_10_1021_jz501831q
crossref_primary_10_1002_app_53025
crossref_primary_10_1038_s41598_020_65893_2
crossref_primary_10_1021_acs_jpcb_6b02344
crossref_primary_10_1039_C9PY01622H
crossref_primary_10_1021_acsami_5b09368
crossref_primary_10_1063_1_4967223
crossref_primary_10_1088_1361_6528_ab0a50
crossref_primary_10_1002_marc_202300485
crossref_primary_10_1016_j_inoche_2024_112925
crossref_primary_10_1002_app_42794
crossref_primary_10_1016_j_nanoen_2019_05_044
crossref_primary_10_1007_s10853_021_06698_0
crossref_primary_10_1557_opl_2015_203
crossref_primary_10_1002_pola_27340
crossref_primary_10_1038_srep43071
crossref_primary_10_1021_acsami_0c11141
crossref_primary_10_1016_j_matt_2022_06_016
crossref_primary_10_1016_j_reactfunctpolym_2022_105391
crossref_primary_10_1039_C9TC04706A
crossref_primary_10_1111_ijac_13150
crossref_primary_10_1021_acsomega_1c05676
crossref_primary_10_1016_j_giant_2024_100340
crossref_primary_10_1021_acs_macromol_6b02308
crossref_primary_10_1007_s10118_021_2616_x
crossref_primary_10_1016_j_polymertesting_2023_107973
crossref_primary_10_1016_j_reactfunctpolym_2019_01_006
crossref_primary_10_1039_D1EE01960K
crossref_primary_10_1021_acs_macromol_9b01580
crossref_primary_10_1039_D4CC06080F
crossref_primary_10_1016_j_coco_2023_101522
crossref_primary_10_1039_C8TC00781K
crossref_primary_10_1007_s10854_025_14235_x
crossref_primary_10_1142_S1793292023500753
crossref_primary_10_1021_acsami_2c02327
crossref_primary_10_1002_admi_201600016
crossref_primary_10_1021_acsami_3c09622
crossref_primary_10_3390_ma18010198
crossref_primary_10_1039_D4SC05437G
crossref_primary_10_1039_C9TC00239A
crossref_primary_10_1021_acsami_4c11124
crossref_primary_10_1007_s10854_018_9123_z
crossref_primary_10_1016_j_nanoen_2015_06_021
crossref_primary_10_1016_j_radphyschem_2021_109729
crossref_primary_10_1002_marc_201700407
crossref_primary_10_1002_admt_201900762
crossref_primary_10_1021_acsaelm_2c00887
crossref_primary_10_1016_j_ceramint_2019_09_080
crossref_primary_10_1039_D1TA04504K
crossref_primary_10_1002_aelm_201901373
crossref_primary_10_1016_j_matchemphys_2019_03_055
crossref_primary_10_1016_j_apsusc_2017_01_121
crossref_primary_10_1021_acs_macromol_5b00931
crossref_primary_10_1002_adma_201401310
crossref_primary_10_1002_adma_201703678
crossref_primary_10_1021_ma400304u
crossref_primary_10_1039_C6PY01152G
crossref_primary_10_1080_03602559_2017_1326135
crossref_primary_10_1002_smll_202300526
crossref_primary_10_3390_chemengineering8040071
crossref_primary_10_1002_admi_201800096
crossref_primary_10_1002_mame_202100402
crossref_primary_10_1039_C9TC00569B
crossref_primary_10_1039_D4LP00234B
crossref_primary_10_1021_acs_macromol_8b00923
crossref_primary_10_3390_polym12091955
crossref_primary_10_1021_acs_chemrev_5b00495
crossref_primary_10_1063_1_4838237
crossref_primary_10_1109_TDEI_2017_006255
crossref_primary_10_1016_j_cej_2024_151856
crossref_primary_10_1039_C9RA04933A
crossref_primary_10_1021_acsaem_7b00211
crossref_primary_10_1021_acsami_3c08995
crossref_primary_10_1007_s40843_020_1588_3
crossref_primary_10_3390_polym15030590
crossref_primary_10_1126_sciadv_abn4880
crossref_primary_10_1039_C6PY00508J
crossref_primary_10_1016_j_tsf_2016_09_057
crossref_primary_10_1016_j_polymer_2015_02_011
crossref_primary_10_1088_0964_1726_23_10_105001
crossref_primary_10_1016_j_cej_2020_124443
crossref_primary_10_1063_5_0246289
crossref_primary_10_1002_adma_201602873
crossref_primary_10_1016_j_ceramint_2022_04_017
crossref_primary_10_3390_polym15112486
crossref_primary_10_1016_j_matlet_2017_05_033
crossref_primary_10_1021_acsami_8b17211
crossref_primary_10_1021_acs_macromol_5b01964
crossref_primary_10_1016_j_scib_2021_02_004
crossref_primary_10_1049_iet_nde_2018_0011
crossref_primary_10_1049_iet_nde_2018_0003
crossref_primary_10_1049_iet_nde_2018_0001
crossref_primary_10_1049_iet_nde_2018_0002
crossref_primary_10_1002_ange_201710474
crossref_primary_10_1002_app_45214
crossref_primary_10_1002_polb_23554
crossref_primary_10_1038_s41467_021_27090_1
crossref_primary_10_1039_C9PY00540D
crossref_primary_10_1063_1_5042751
crossref_primary_10_1021_acsaem_0c01508
crossref_primary_10_1021_acs_macromol_9b01403
crossref_primary_10_1016_j_ensm_2019_12_034
crossref_primary_10_1103_PhysRevB_92_024203
crossref_primary_10_1088_1742_6596_1913_1_012064
crossref_primary_10_1063_1_5067272
crossref_primary_10_1007_s10965_024_03979_5
crossref_primary_10_1002_app_50029
crossref_primary_10_1002_er_5284
crossref_primary_10_1557_mrs_2015_199
crossref_primary_10_1016_j_apsusc_2018_08_222
crossref_primary_10_1002_app_51232
crossref_primary_10_1002_ente_201700622
crossref_primary_10_1002_pc_25581
crossref_primary_10_1063_1_4768461
crossref_primary_10_1016_j_apsusc_2019_05_060
crossref_primary_10_1021_acsami_7b08664
crossref_primary_10_1016_j_polymer_2021_124127
crossref_primary_10_1016_j_ensm_2020_07_031
crossref_primary_10_1039_C7RA11309A
crossref_primary_10_1002_macp_202300204
crossref_primary_10_1038_s41467_025_56069_5
crossref_primary_10_1039_C7TC01051F
crossref_primary_10_3390_polym13213774
crossref_primary_10_1002_polb_23778
crossref_primary_10_1002_aisy_202100075
crossref_primary_10_1016_j_bprint_2023_e00288
crossref_primary_10_1142_S2010135X13300016
crossref_primary_10_1038_s41598_021_81925_x
crossref_primary_10_1080_00150193_2015_1072701
crossref_primary_10_1002_adma_201907927
crossref_primary_10_1039_C8TA11534F
crossref_primary_10_1039_C6PY01874B
crossref_primary_10_1016_j_ceramint_2018_07_161
crossref_primary_10_1021_acspolymersau_2c00014
crossref_primary_10_1039_D0TC02559C
crossref_primary_10_1016_j_surfin_2022_102546
crossref_primary_10_1021_acs_jpcc_6b02968
crossref_primary_10_1080_10601325_2021_1886587
crossref_primary_10_1021_acs_chemmater_8b03904
crossref_primary_10_3390_mi12111308
crossref_primary_10_1002_adma_202308670
crossref_primary_10_1063_5_0151215
crossref_primary_10_1002_aenm_201901826
crossref_primary_10_1039_D0NR04479B
crossref_primary_10_1016_j_matdes_2021_110193
crossref_primary_10_3390_nano9081090
crossref_primary_10_1002_adfm_201202469
crossref_primary_10_3103_S1062873822120164
crossref_primary_10_1016_j_nanoen_2024_110277
crossref_primary_10_1039_C4PY00690A
crossref_primary_10_1007_s10853_023_09016_y
crossref_primary_10_1002_mame_202200235
crossref_primary_10_1016_j_reactfunctpolym_2019_03_013
crossref_primary_10_1021_acs_chemmater_7b05042
crossref_primary_10_1021_acs_macromol_5b02739
crossref_primary_10_1049_mnl_2016_0300
crossref_primary_10_4028_www_scientific_net_AMR_815_93
crossref_primary_10_1016_j_est_2023_109585
crossref_primary_10_1109_TDEI_2015_004764
crossref_primary_10_1016_j_polymer_2020_122913
crossref_primary_10_1002_app_55626
crossref_primary_10_1039_D3TC00979C
crossref_primary_10_1021_acs_jpcc_5b09066
crossref_primary_10_1016_j_nanoen_2016_12_021
crossref_primary_10_1016_j_ceramint_2017_05_234
crossref_primary_10_3390_ma14174780
crossref_primary_10_1016_j_polymer_2013_01_035
crossref_primary_10_1021_acsami_0c15457
crossref_primary_10_1021_am508488w
crossref_primary_10_57634_RCR5037
crossref_primary_10_1155_2018_5161908
crossref_primary_10_1016_j_ssc_2018_02_004
crossref_primary_10_1039_C5RA21261H
crossref_primary_10_1021_acs_chemrev_1c00793
crossref_primary_10_1039_D0TC03763J
crossref_primary_10_1039_C4RA08427F
crossref_primary_10_1016_j_polymer_2022_125221
crossref_primary_10_1021_acsami_5b02944
crossref_primary_10_1071_CH14165
crossref_primary_10_1021_cr2002933
crossref_primary_10_1002_app_52367
crossref_primary_10_1038_s41428_019_0194_3
crossref_primary_10_1002_adma_202311739
crossref_primary_10_1016_j_rinp_2019_102800
crossref_primary_10_1063_1_4897337
crossref_primary_10_1002_aenm_202003771
crossref_primary_10_1021_acsapm_0c00351
crossref_primary_10_1039_C6PY02063A
crossref_primary_10_1002_adsr_202200080
crossref_primary_10_1111_jace_13774
crossref_primary_10_3389_fcell_2024_1401917
crossref_primary_10_1016_j_progpolymsci_2024_101870
crossref_primary_10_1080_15583724_2021_1917609
crossref_primary_10_1016_j_progpolymsci_2015_10_010
crossref_primary_10_1021_acsapm_9b00099
crossref_primary_10_1021_acssuschemeng_0c07802
crossref_primary_10_1016_j_matdes_2018_107556
crossref_primary_10_1021_acs_macromol_9b00508
crossref_primary_10_1021_acsaem_3c00518
crossref_primary_10_1016_j_nanoen_2021_106438
crossref_primary_10_1088_2053_1591_ab2d85
crossref_primary_10_1002_pol_20230296
crossref_primary_10_1007_s10854_021_07273_8
crossref_primary_10_1149_2162_8777_acbe17
crossref_primary_10_1021_acsami_6b04091
crossref_primary_10_7567_JJAP_53_09PC05
crossref_primary_10_1177_0954008318808570
crossref_primary_10_1016_j_compositesb_2021_109103
crossref_primary_10_1007_s11664_013_2764_z
crossref_primary_10_1002_adfm_201300736
crossref_primary_10_1002_adma_202110482
crossref_primary_10_1021_am502547h
crossref_primary_10_1016_j_polymer_2023_125982
crossref_primary_10_1002_app_46837
crossref_primary_10_1007_s10854_019_00812_4
crossref_primary_10_1021_acsaem_0c01403
crossref_primary_10_1021_acs_macromol_0c02083
crossref_primary_10_1016_j_materresbull_2015_01_038
crossref_primary_10_1038_ncomms5845
crossref_primary_10_1016_j_compscitech_2020_108594
crossref_primary_10_1063_5_0108674
crossref_primary_10_1016_j_mtener_2022_101217
crossref_primary_10_1021_acsanm_8b01443
crossref_primary_10_1002_adma_201704380
crossref_primary_10_1021_acs_macromol_4c01640
crossref_primary_10_1021_acs_jpcc_8b04918
crossref_primary_10_1002_mame_201800709
crossref_primary_10_1016_j_compscitech_2019_04_035
crossref_primary_10_1021_acs_macromol_7b02719
crossref_primary_10_1016_j_scib_2021_04_010
crossref_primary_10_7498_aps_72_20222012
crossref_primary_10_1088_2515_7655_ab0c50
crossref_primary_10_1021_acsami_0c16197
crossref_primary_10_1021_acsami_7b07963
crossref_primary_10_1016_j_mtbio_2024_101112
crossref_primary_10_1021_acs_macromol_8b01037
crossref_primary_10_1016_j_compscitech_2019_107912
crossref_primary_10_1021_acs_macromol_8b01155
crossref_primary_10_1039_C6TC04648G
crossref_primary_10_23919_IEN_2022_0008
crossref_primary_10_1021_am506247w
crossref_primary_10_1177_09544062211015763
crossref_primary_10_1021_acs_jpcc_7b02099
crossref_primary_10_1039_C7CP04741J
crossref_primary_10_1021_acs_macromol_5b02429
crossref_primary_10_7498_aps_69_20201209
crossref_primary_10_1021_acssuschemeng_7b04697
crossref_primary_10_1364_OE_25_028776
crossref_primary_10_1021_acsami_1c04991
crossref_primary_10_1007_s40820_023_01121_6
crossref_primary_10_1146_annurev_matsci_070317_124435
crossref_primary_10_1016_j_ceramint_2018_08_119
crossref_primary_10_1039_C5CC05307B
crossref_primary_10_1039_C7TA06750J
crossref_primary_10_7567_APEX_8_111601
crossref_primary_10_1021_acsami_5b05213
crossref_primary_10_1021_acsami_7b16409
crossref_primary_10_1002_macp_202400251
crossref_primary_10_1021_acsaelm_3c00537
crossref_primary_10_1021_acs_iecr_0c00497
crossref_primary_10_1021_acsomega_0c04112
crossref_primary_10_1021_ma500249p
crossref_primary_10_1002_advs_201801931
crossref_primary_10_1021_acsapm_4c01214
crossref_primary_10_1039_c3py21139h
crossref_primary_10_1016_j_polymer_2017_09_011
crossref_primary_10_1039_C8PY01706A
crossref_primary_10_1007_s10854_021_05837_2
crossref_primary_10_1039_C8TA11790J
crossref_primary_10_3390_membranes12030274
crossref_primary_10_1039_C8TA09111K
crossref_primary_10_3390_polym14091752
crossref_primary_10_1021_acsaem_9b02521
crossref_primary_10_1063_5_0039126
crossref_primary_10_1002_adfm_202006739
crossref_primary_10_1016_j_est_2021_103788
crossref_primary_10_31857_S0023476124060099
crossref_primary_10_1007_s11664_019_07840_0
crossref_primary_10_1016_j_compositesa_2021_106792
crossref_primary_10_1007_s10854_019_01895_9
crossref_primary_10_1002_polb_23125
crossref_primary_10_1021_acsapm_4c03621
crossref_primary_10_1109_TDEI_2022_3157923
crossref_primary_10_1016_j_reactfunctpolym_2021_105122
crossref_primary_10_1002_macp_202100017
crossref_primary_10_1039_C8PY01802B
crossref_primary_10_1002_aenm_201500767
crossref_primary_10_1002_pc_24867
crossref_primary_10_1021_acsami_5b06480
crossref_primary_10_1016_j_polymer_2020_122765
crossref_primary_10_1021_acs_iecr_3c02493
crossref_primary_10_1103_PhysRevB_90_220103
crossref_primary_10_1007_s00339_021_04287_1
crossref_primary_10_1021_acsmacrolett_3c00590
crossref_primary_10_1016_j_polymer_2013_11_042
crossref_primary_10_1002_apxr_202200038
crossref_primary_10_1016_j_polymer_2018_11_064
crossref_primary_10_1021_acsami_9b23074
crossref_primary_10_1016_j_ceramint_2019_01_230
crossref_primary_10_1016_j_polymer_2014_11_040
crossref_primary_10_1016_j_cclet_2022_06_038
crossref_primary_10_1021_ma301711g
crossref_primary_10_1021_acs_jpclett_4c02506
crossref_primary_10_1039_C8SM00268A
crossref_primary_10_1016_j_polymer_2015_12_006
crossref_primary_10_1016_j_progpolymsci_2018_01_003
crossref_primary_10_1039_C5RA10438F
crossref_primary_10_1021_acs_iecr_5b02819
crossref_primary_10_1016_j_polymer_2017_03_067
crossref_primary_10_1002_adem_202101770
crossref_primary_10_1002_macp_201500503
crossref_primary_10_1016_j_ceramint_2022_05_089
crossref_primary_10_1021_cm304057f
crossref_primary_10_1007_s10853_019_03574_w
crossref_primary_10_1021_am303162u
crossref_primary_10_1039_C7TA06005J
crossref_primary_10_3390_nano13212842
crossref_primary_10_1021_acs_macromol_7b01450
crossref_primary_10_1039_D3CE00691C
crossref_primary_10_1002_adfm_202301302
crossref_primary_10_3390_polym13244284
crossref_primary_10_1088_2053_1591_ab493f
crossref_primary_10_1002_adfm_201501070
crossref_primary_10_1039_D2NJ00002D
crossref_primary_10_1039_D4CE00467A
crossref_primary_10_1002_app_47535
crossref_primary_10_1016_j_mtener_2022_101165
crossref_primary_10_1002_marc_202300601
crossref_primary_10_1021_acs_macromol_7b01205
crossref_primary_10_1021_cm502341n
crossref_primary_10_1016_j_mtchem_2020_100304
crossref_primary_10_1039_D0CS00765J
crossref_primary_10_1039_C5RA17922J
crossref_primary_10_1021_cm4010486
crossref_primary_10_1021_ma501852x
crossref_primary_10_1039_C4TA03260H
crossref_primary_10_1039_D1RA08031H
crossref_primary_10_1063_1_4991079
crossref_primary_10_1002_pen_25940
crossref_primary_10_1002_admi_201400042
crossref_primary_10_1039_C7CP04096B
crossref_primary_10_1039_C4TC02291B
crossref_primary_10_1002_app_47883
crossref_primary_10_1021_acs_langmuir_8b02412
crossref_primary_10_1002_inf2_12043
crossref_primary_10_1016_j_compositesb_2020_108108
crossref_primary_10_1002_smtd_201700399
crossref_primary_10_1039_D0CP05233G
crossref_primary_10_1016_j_progpolymsci_2023_101723
crossref_primary_10_1088_2053_1591_1_4_045301
crossref_primary_10_1002_app_56351
crossref_primary_10_1021_acsanm_5c00006
crossref_primary_10_1021_acsami_6b15408
crossref_primary_10_1016_j_cclet_2017_08_053
crossref_primary_10_1002_pc_28064
crossref_primary_10_1021_acssuschemeng_9b01302
crossref_primary_10_1039_D0TA03540H
crossref_primary_10_1007_s10854_019_02459_7
crossref_primary_10_1039_C7SC03859C
crossref_primary_10_1039_D2PY00825D
crossref_primary_10_1039_D3CS00262D
crossref_primary_10_1080_00222348_2018_1452493
crossref_primary_10_3390_polym11101541
crossref_primary_10_1016_j_jeurceramsoc_2021_07_059
crossref_primary_10_1007_s00396_020_04691_8
crossref_primary_10_1063_1_4865931
crossref_primary_10_1016_j_polymer_2017_11_001
crossref_primary_10_1016_j_compscitech_2019_107759
crossref_primary_10_1039_c3ta15156e
crossref_primary_10_1039_C9CP01798D
crossref_primary_10_1016_j_ssi_2020_115441
crossref_primary_10_1021_acs_macromol_3c01700
crossref_primary_10_1016_j_giant_2024_100257
crossref_primary_10_1088_2053_1591_aa7109
crossref_primary_10_1016_j_eurpolymj_2020_109745
crossref_primary_10_1039_C5TA09949H
crossref_primary_10_1016_j_jallcom_2024_175578
crossref_primary_10_1039_C7TC03767H
crossref_primary_10_1007_s10853_023_08809_5
crossref_primary_10_1039_C6RA17977K
crossref_primary_10_1002_cplu_202400113
crossref_primary_10_1021_acssuschemeng_1c05597
crossref_primary_10_1002_polb_24068
crossref_primary_10_1016_j_est_2022_105163
crossref_primary_10_3390_polym11020317
crossref_primary_10_1021_acs_macromol_6b02010
crossref_primary_10_1007_s10965_022_02916_8
crossref_primary_10_1039_D0TC04310A
crossref_primary_10_1021_acsanm_3c02385
crossref_primary_10_3390_polym12020442
crossref_primary_10_1007_s10854_019_01614_4
crossref_primary_10_3390_polym12030574
crossref_primary_10_1021_acs_macromol_0c00370
crossref_primary_10_1002_smll_202411304
crossref_primary_10_1021_acs_macromol_5b00185
crossref_primary_10_1039_C8PY00742J
crossref_primary_10_1039_C9CC08648J
crossref_primary_10_1021_acs_macromol_3c01846
crossref_primary_10_1557_mrc_2015_20
crossref_primary_10_1021_ma401660k
crossref_primary_10_1016_j_compositesa_2018_12_007
crossref_primary_10_1039_D4LP00117F
crossref_primary_10_1021_am501968q
crossref_primary_10_1021_acs_macromol_7b00051
crossref_primary_10_1016_j_polymer_2013_12_069
crossref_primary_10_1088_1361_6528_ab52ac
crossref_primary_10_1103_PhysRevB_88_014104
crossref_primary_10_3390_polym14061160
crossref_primary_10_3390_nano11010006
crossref_primary_10_1002_app_49229
crossref_primary_10_1016_j_matchemphys_2018_04_013
crossref_primary_10_1021_acs_macromol_7b01137
crossref_primary_10_1016_j_ceramint_2024_05_262
crossref_primary_10_1039_C6RA04365H
crossref_primary_10_1007_s11705_020_1939_4
crossref_primary_10_1016_j_eurpolymj_2023_112543
crossref_primary_10_1021_acs_macromol_7b02243
crossref_primary_10_1021_acs_jpcc_5b09619
crossref_primary_10_1016_j_compscitech_2019_107968
crossref_primary_10_1016_j_cej_2019_122328
crossref_primary_10_1016_j_progpolymsci_2020_101210
crossref_primary_10_1073_pnas_1603792113
crossref_primary_10_3390_mi14081640
crossref_primary_10_1021_acsami_6b01287
crossref_primary_10_1021_jacsau_4c00833
crossref_primary_10_1016_j_matdes_2020_108486
crossref_primary_10_1002_macp_202200259
crossref_primary_10_1016_j_ijleo_2022_170001
crossref_primary_10_1002_pssr_201409349
crossref_primary_10_1016_j_matt_2025_102049
crossref_primary_10_1039_C6RA08750G
crossref_primary_10_1021_acs_chemrev_3c00196
crossref_primary_10_1016_j_nanoen_2020_104551
crossref_primary_10_1016_j_ensm_2021_12_009
crossref_primary_10_3390_polym9110562
crossref_primary_10_1016_j_polymer_2020_123203
crossref_primary_10_1021_am506773c
crossref_primary_10_1016_j_matdes_2020_109447
crossref_primary_10_1002_pola_26783
crossref_primary_10_1002_polb_24399
crossref_primary_10_1016_j_compositesa_2020_106032
crossref_primary_10_1021_acsaem_1c02072
crossref_primary_10_1063_1_4921404
crossref_primary_10_1134_S0965545X15040173
crossref_primary_10_1049_nde2_12054
crossref_primary_10_1002_advs_202002131
crossref_primary_10_1021_acs_jpcb_8b05972
crossref_primary_10_3390_polym16040555
crossref_primary_10_1016_j_apsusc_2018_11_150
crossref_primary_10_1021_acs_macromol_1c02653
crossref_primary_10_1016_j_compositesa_2020_106064
crossref_primary_10_1021_ma502326v
crossref_primary_10_1002_anie_201710474
crossref_primary_10_1016_j_molstruc_2021_131502
crossref_primary_10_1016_j_pmatsci_2023_101161
crossref_primary_10_1002_macp_201900273
crossref_primary_10_1016_j_polymer_2023_126145
crossref_primary_10_1002_polb_23296
crossref_primary_10_1007_s10854_020_04502_4
crossref_primary_10_1063_1_4962489
crossref_primary_10_1016_j_nanoen_2020_104536
crossref_primary_10_1021_acsami_1c00523
crossref_primary_10_1021_acs_iecr_1c03894
crossref_primary_10_1021_acs_macromol_7b02138
crossref_primary_10_1142_S1793292023500248
crossref_primary_10_1016_j_est_2023_107984
crossref_primary_10_1016_j_apmt_2023_101732
crossref_primary_10_1007_s10118_024_3079_7
crossref_primary_10_1088_1757_899X_859_1_012002
crossref_primary_10_1049_hve_2020_0076
crossref_primary_10_1155_2022_5970484
crossref_primary_10_1016_j_colsurfa_2019_03_006
crossref_primary_10_1016_j_pmatsci_2020_100670
crossref_primary_10_1080_15583724_2022_2129680
crossref_primary_10_1039_D0TA01380C
crossref_primary_10_1360_SSC_2024_0148
crossref_primary_10_1186_s11671_021_03492_4
crossref_primary_10_1039_D4CC05462H
crossref_primary_10_1063_1_5022650
crossref_primary_10_1016_j_nanoen_2023_108544
Cites_doi 10.1016/S0022-1139(01)00440-7
10.1063/1.3079332
10.1016/0032-3861(79)90253-2
10.1063/1.2838309
10.1063/1.328781
10.1103/PhysRevB.67.144103
10.1103/PhysRevB.63.184103
10.1016/0009-2614(96)00912-8
10.1080/026782997207902
10.1007/s100190050063
10.1002/adma.200900759
10.1016/j.cap.2009.12.015
10.1063/1.2169659
10.1364/OE.16.009595
10.1002/pola.22698
10.1021/jp802413g
10.1103/PhysRevLett.99.047801
10.1063/1.353789
10.1109/TDEI.2007.4339472
10.1002/9780470667057
10.1063/1.3123001
10.1021/ma961774w
10.1016/0032-3861(86)90122-9
10.1063/1.1715151
10.1080/07315170108202957
10.1063/1.327723
10.1201/9781482295450
10.1021/ma034745b
10.1021/ma00246a015
10.1063/1.1606853
10.1021/ma020504c
10.1109/58.883518
10.1002/adfm.201002015
10.1021/ja052488f
10.1080/00150190701454891
10.1038/nature01021
10.1007/s10853-005-5915-7
10.1002/polb.20524
10.1016/j.polymer.2007.02.035
10.1088/0957-0233/6/3/001
10.1016/S0022-3093(02)01084-0
10.1016/j.ssi.2011.05.019
10.1038/nmat2339
10.1109/5.931475
10.1021/ma061311i
10.1002/adma.200500313
10.1016/j.polymer.2005.06.128
10.1080/00150190600732926
10.1080/00150198408017528
10.1109/TDEI.2010.5539672
10.1016/0032-3861(90)90030-3
10.1063/1.119781
10.1021/ma060128m
10.1021/ma60044a013
10.1109/ISE.1991.167248
10.1002/pol.1986.140240106
10.1002/masy.200950508
10.1021/jp983968e
10.1021/ma60066a051
10.1002/marc.200900425
10.1134/S1063783408030281
10.1021/ma9919561
10.1109/TDMR.2005.860818
10.1021/ma101062j
10.1177/1045389X08098195
10.1109/TDEI.2007.4339492
10.1063/1.3077189
10.1016/j.polymer.2012.01.001
10.1143/JPSJ.79.011012
10.1109/TDEI.2011.5976130
10.1063/1.3551732
10.1007/s10118-010-1020-8
10.1021/nl9040719
10.1021/ma901921h
10.1016/S0001-8686(97)00017-1
10.1201/b11958
10.1039/jm9940400997
10.1201/9781439894972
10.1063/1.1757032
10.1016/0032-3861(87)90478-2
10.1109/TDEI.2006.247845
10.1063/1.3259375
10.1002/(SICI)1521-3935(20000501)201:8<902::AID-MACP902>3.0.CO;2-9
10.1007/s00339-003-2108-6
10.1007/978-3-0348-7551-6
10.1126/science.280.5372.2101
10.1143/JJAP.26.1039
10.1126/science.220.4602.1115
10.1021/ma102910v
10.1007/978-3-642-56120-7
10.1109/TEI.1986.348913
10.1063/1.334690
10.1021/ma034149h
10.1103/PhysRev.98.409
10.1080/00150193.2010.489836
10.1021/ma202267r
10.1016/j.jnoncrysol.2006.01.138
10.1007/BF00329962
10.1021/cm049598q
10.1021/ma00229a008
10.1002/(SICI)1521-3935(20000501)201:8<911::AID-MACP911>3.0.CO;2-9
10.1080/10587250108028251
10.1007/s10853-006-6081-2
10.1016/j.progpolymsci.2008.08.001
10.1002/polb.20830
10.1021/ja062306x
10.1021/ma0112265
10.1063/1.3624533
10.1063/1.3595325
10.1021/ma00146a024
10.1103/PhysRevB.81.214103
10.1021/ja063290d
10.1002/3527600655
10.1295/polymj.31.263
10.1080/02678299608032899
10.1126/science.1127798
10.1126/science.1159655
10.1021/ma00051a023
10.1109/27.736020
10.1109/TEI.1986.349103
10.1002/adma.200306036
10.1063/1.328783
10.1109/TUFFC.2009.1063
10.1016/S0014-3057(00)00130-0
10.1063/1.3267159
10.1063/1.2208307
10.1002/(SICI)1521-4095(199907)11:10<832::AID-ADMA832>3.0.CO;2-Z
10.1016/0009-2614(90)85071-J
10.1063/1.2335778
10.1016/0009-2614(90)87204-5
10.1063/1.1662158
10.1063/1.1518130
10.1002/adma.200802902
10.1038/nature03376
10.1016/j.mejo.2006.09.022
10.1002/9783527613588
10.1002/1521-4095(20021104)14:21<1574::AID-ADMA1574>3.0.CO;2-#
10.1103/PhysRevLett.94.047601
10.1016/S0032-3861(02)00680-8
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1021/ma2024057
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Applied Sciences
EISSN 1520-5835
EndPage 2954
ExternalDocumentID 25778273
10_1021_ma2024057
a58143700
GroupedDBID .K2
4.4
53G
55A
5GY
5VS
6XO
7~N
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
ROL
TN5
TWZ
UI2
VF5
VG9
W1F
WH7
X
YZZ
-~X
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
.GJ
1WB
6TJ
ABHMW
ACRPL
ADNMO
AETEA
AEYZD
AFFNX
AGQPQ
ANPPW
ANTXH
EJD
IQODW
MVM
RNS
YYP
7S9
L.6
ID FETCH-LOGICAL-a425t-4b489e516ec0b3a49f7bd7d965df4402b56ed994abbef5fb3e7e0205594ad7313
IEDL.DBID ACS
ISSN 0024-9297
1520-5835
IngestDate Fri Jul 11 04:08:50 EDT 2025
Mon Jul 21 09:12:49 EDT 2025
Tue Jul 01 03:46:09 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Sun Dec 06 13:24:35 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Structure effect
Polymer
State of the art
Ferroelectric materials
Ferroelectric properties
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a425t-4b489e516ec0b3a49f7bd7d965df4402b56ed994abbef5fb3e7e0205594ad7313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2084080941
PQPubID 24069
PageCount 18
ParticipantIDs proquest_miscellaneous_2084080941
pascalfrancis_primary_25778273
crossref_primary_10_1021_ma2024057
crossref_citationtrail_10_1021_ma2024057
acs_journals_10_1021_ma2024057
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-10
PublicationDateYYYYMMDD 2012-04-10
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-10
  day: 10
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Macromolecules
PublicationTitleAlternate Macromolecules
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Chu B. (ref126/cit126) 2006; 13
Erste A. (ref138/cit138) 2010; 81
Zhen H. (ref119/cit119) 2008; 16
Chu B. (ref125/cit125) 2006; 331
Solnyshkin A. V. (ref140/cit140) 2010; 398
Sarjeant W. J. (ref3/cit3) 1998; 26
Lu Y. (ref127/cit127) 2008; 112
Zhang S. (ref132/cit132) 2005; 17
Chen Q. X. (ref56/cit56) 1995; 6
Furukawa T. (ref54/cit54) 2010; 10
Lau S. T. (ref100/cit100) 2005; 80
Furukawa T. (ref31/cit31) 1991
Kobayashi M. (ref43/cit43) 1975; 8
Wang L. (ref106/cit106) 2006; 44
Yoon M. H. (ref158/cit158) 2006; 128
Suda K. (ref39/cit39) 2008; 46
Wunderlich B. (ref79/cit79) 1973; 1
Bao H. M. (ref137/cit137) 2008; 92
Hu Z. (ref52/cit52) 2009; 8
Soto-Bustamante E. A. (ref33/cit33) 1996; 260
Neese B. (ref128/cit128) 2008; 321
Chang C. (ref61/cit61) 2010; 10
Xia F. (ref102/cit102) 2002; 14
Kao K.-C. (ref1/cit1) 2004
Zhang S. (ref116/cit116) 2006; 41
Naegele D. (ref41/cit41) 1978; 11
Guo S. (ref103/cit103) 2004; 84
Zhang S. (ref117/cit117) 2006; 99
Wang Y. (ref120/cit120) 2009; 56
Lagerwall S. T. (ref87/cit87) 1999
Zhang Q. M. (ref88/cit88) 1998; 280
Hahn B. (ref69/cit69) 1985; 18
Zentel R. (ref38/cit38) 2007; 6
Izutsu K. O. (ref23/cit23) 2002
Nalwa H. S. (ref18/cit18) 1995
Cheng Z. Y. (ref94/cit94) 2002; 92
Guan F. (ref70/cit70) 2010; 43
Bharti V. (ref92/cit92) 2001; 63
Miyamoto T. (ref25/cit25) 1973; 44
Cheng Z. Y. (ref93/cit93) 2002; 35
Kaatze U. (ref19/cit19) 2002; 305
Kawanura J. (ref29/cit29) 2006
Soto-Bustamante E. A. (ref34/cit34) 1996; 21
Ang C. (ref114/cit114) 2004; 16
Mery S. (ref143/cit143) 1997; 23
Takahashi Y. (ref148/cit148) 1999; 31
Guo S. S. (ref95/cit95) 2003; 94
Bluhm H. (ref11/cit11) 2006
Yamada T. (ref145/cit145) 1981; 52
Teodorescu R. (ref10/cit10) 2011
Ohwada K. (ref86/cit86) 2010; 79
Furukawa T. (ref146/cit146) 1983; 16
Pruvost S. (ref124/cit124) 2011; 98
Guan F. (ref153/cit153) 2011; 21
Mittal K. L. (ref2/cit2) 1998
Riande E. (ref13/cit13) 2004
Ho J. (ref6/cit6) 2007; 14
Bobnar V. (ref96/cit96) 2003; 36
Lovinger A. J. (ref42/cit42) 1983; 220
Furukawa T. (ref67/cit67) 1981; 52
Lovinger A. J. (ref44/cit44) 1982; 15
Zhou X. (ref74/cit74) 2009; 94
Zhang S. (ref118/cit118) 2006; 100
Guan F. (ref84/cit84) 2011; 29
Koizumi N. (ref147/cit147) 1986; 21
Bharti V. (ref89/cit89) 1998; 2
Klein R. J. (ref113/cit113) 2003; 36
Brochu P. (ref58/cit58) 2010; 31
Meng X. J. (ref121/cit121) 2009; 106
Lu Y. (ref135/cit135) 2006; 39
Wang Y. (ref75/cit75) 2010; 17
Li X. (ref131/cit131) 2011; 99
Tashiro K. (ref82/cit82) 1986; 27
Gebhard E. (ref35/cit35) 2000; 201
Naber R. C. G. (ref53/cit53) 2010; 22
Lu S. G. (ref130/cit130) 2009; 21
ref154/cit154
Davies G. R. (ref40/cit40) 1979; 20
Furukawa T. (ref149/cit149) 2001; 264
Chua L. L. (ref156/cit156) 2005; 434
ref159/cit159
Zhou Y. (ref47/cit47) 2006; 100
Tang Y. (ref97/cit97) 2001; 37
Black C. T. (ref45/cit45) 1997; 71
Sessler G. H. (ref14/cit14) 1998
Imrie C. T. (ref26/cit26) 1999; 11
Hosoda S. (ref109/cit109) 2002; 43
Chu B. (ref72/cit72) 2006; 313
Ingram M. D. (ref30/cit30) 2011; 196
Mijovic J. (ref68/cit68) 1997; 30
Hosoda S. (ref108/cit108) 1990; 31
Lam T. Y. (ref101/cit101) 2005; 43
Fukuda A. (ref142/cit142) 1994; 4
Kremer F. (ref17/cit17) 2003
Feller F. (ref37/cit37) 2001; 357
Wang J. L. (ref123/cit123) 2011; 98
Samara G. A. (ref46/cit46) 2003; 15
Marcus M. A. (ref63/cit63) 1986; 21
Miyamoto Y. (ref62/cit62) 1980; 18
Setter N. (ref16/cit16) 1993
Lovinger A. J. (ref110/cit110) 1987; 28
Sarjeant W. J. (ref4/cit4) 2001; 89
Chen Q. (ref104/cit104) 2007; 354
Seguela R. (ref107/cit107) 1986; 24
Svensson M. (ref32/cit32) 1993; 31
Furukawa T. (ref144/cit144) 1980
Tashiro K. (ref81/cit81) 2006; 47
Ho J. (ref8/cit8) 2009
Jow T. R. (ref24/cit24) 1993; 73
Furukawa T. (ref66/cit66) 1988; 5
Starkweather J., H. W. (ref7/cit7) 1992; 25
Bokov A. A. (ref85/cit85) 2006; 41
Lu Y. (ref134/cit134) 2006; 128
Guan F. (ref152/cit152) 2009; 94
Hausler E. (ref59/cit59) 1984; 60
Aljishi R. (ref77/cit77) 1985; 57
Ranjan V. (ref141/cit141) 2007; 99
Guan F. (ref71/cit71) 2011; 18
Barthel J. (ref20/cit20) 1990; 167
Gebhard E. (ref36/cit36) 2000; 201
Husain I. (ref9/cit9) 2010
Furukawa T. (ref76/cit76) 1987; 26
Chung T. C. (ref111/cit111) 2001; 28
Yoon M. H. (ref157/cit157) 2005; 127
Lau S. T. (ref99/cit99) 2002; 273
Chung T. C. (ref112/cit112) 2002; 35
Li L. (ref15/cit15) 2007; 38
Furukawa T. (ref80/cit80) 1997; 71
Veres J. (ref155/cit155) 2004; 16
Ling Q. D. (ref51/cit51) 2008; 33
Mabboux P. Y. (ref105/cit105) 2002; 113
Xu H. (ref133/cit133) 2007; 48
Stephanovich V. A. (ref48/cit48) 2005; 94
Tan Q. (ref5/cit5) 2006; 126
Chiang Y.-M. (ref78/cit78) 1997
Ducharme S. (ref50/cit50) 2005; 5
Guan F. (ref150/cit150) 2011; 44
Orbakh D. (ref22/cit22) 1999
Su R. (ref83/cit83) 2012; 53
Jeong D. Y. (ref115/cit115) 2004; 96
Liu Y. (ref60/cit60) 2009; 20
Cheng Z. Y. (ref91/cit91) 2000; 47
Welter C. (ref98/cit98) 2003; 67
Gregorio R. (ref64/cit64) 1999; 34
Neese B. (ref129/cit129) 2009; 94
Meng X. J. (ref122/cit122) 2009; 106
Zhang M. (ref151/cit151) 2006; 39
Ingram M. D. (ref27/cit27) 1999; 103
Nakajima T. (ref55/cit55) 2009; 48
Guan F. (ref65/cit65) 2010; 43
Blythe A. R. (ref12/cit12) 2005
Solnyshkin A. V. (ref139/cit139) 2008; 50
Xu H. (ref90/cit90) 2000; 33
Zhao C. (ref136/cit136) 2009; 279
Zhang Q. M. (ref57/cit57) 2002; 419
Natesan B. (ref28/cit28) 2006; 352
Hooton J. A. (ref49/cit49) 1955; 98
Zhou X. (ref73/cit73) 2007; 14
Barthel J. (ref21/cit21) 1990; 165
References_xml – volume: 113
  start-page: 27
  year: 2002
  ident: ref105/cit105
  publication-title: J. Fluorine Chem.
  doi: 10.1016/S0022-1139(01)00440-7
– volume: 94
  start-page: 052907
  year: 2009
  ident: ref152/cit152
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3079332
– volume: 20
  start-page: 772
  year: 1979
  ident: ref40/cit40
  publication-title: Polymer
  doi: 10.1016/0032-3861(79)90253-2
– volume: 92
  start-page: 042903
  year: 2008
  ident: ref137/cit137
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2838309
– volume: 52
  start-page: 940
  year: 1981
  ident: ref67/cit67
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328781
– volume: 67
  start-page: 144103
  year: 2003
  ident: ref98/cit98
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.144103
– volume: 63
  start-page: 184103
  year: 2001
  ident: ref92/cit92
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.63.184103
– volume: 260
  start-page: 447
  year: 1996
  ident: ref33/cit33
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(96)00912-8
– volume: 23
  start-page: 629
  year: 1997
  ident: ref143/cit143
  publication-title: Liq. Cryst.
  doi: 10.1080/026782997207902
– volume: 2
  start-page: 57
  year: 1998
  ident: ref89/cit89
  publication-title: Mater. Res. Innovations
  doi: 10.1007/s100190050063
– volume: 22
  start-page: 933
  year: 2010
  ident: ref53/cit53
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900759
– volume: 10
  start-page: E62
  year: 2010
  ident: ref54/cit54
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2009.12.015
– volume: 99
  start-page: 044107
  year: 2006
  ident: ref117/cit117
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2169659
– volume: 16
  start-page: 9595
  year: 2008
  ident: ref119/cit119
  publication-title: Opt. Express
  doi: 10.1364/OE.16.009595
– volume: 46
  start-page: 3591
  year: 2008
  ident: ref39/cit39
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.22698
– volume-title: Nonaqueous Electrochemistry
  year: 1999
  ident: ref22/cit22
– volume: 112
  start-page: 10411
  year: 2008
  ident: ref127/cit127
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp802413g
– volume: 99
  start-page: 047801
  year: 2007
  ident: ref141/cit141
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.047801
– volume: 73
  start-page: 5147
  year: 1993
  ident: ref24/cit24
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.353789
– volume: 14
  start-page: 1133
  year: 2007
  ident: ref73/cit73
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2007.4339472
– volume-title: Grid Converters for Photovoltaic and Wind Power Systems
  year: 2011
  ident: ref10/cit10
  doi: 10.1002/9780470667057
– volume: 94
  start-page: 162901
  year: 2009
  ident: ref74/cit74
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3123001
– volume: 30
  start-page: 3042
  year: 1997
  ident: ref68/cit68
  publication-title: Macromolecules
  doi: 10.1021/ma961774w
– volume: 27
  start-page: 667
  year: 1986
  ident: ref82/cit82
  publication-title: Polymer
  doi: 10.1016/0032-3861(86)90122-9
– volume: 84
  start-page: 3349
  year: 2004
  ident: ref103/cit103
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1715151
– volume: 28
  start-page: 135
  year: 2001
  ident: ref111/cit111
  publication-title: Ferroelectr., Lett. Sect.
  doi: 10.1080/07315170108202957
– start-page: 1135
  year: 1980
  ident: ref144/cit144
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.327723
– volume-title: Ferroelectric Polymers: Chemistry, Physics, and Applications
  year: 1995
  ident: ref18/cit18
  doi: 10.1201/9781482295450
– volume: 36
  start-page: 7220
  year: 2003
  ident: ref113/cit113
  publication-title: Macromolecules
  doi: 10.1021/ma034745b
– volume: 16
  start-page: 1885
  year: 1983
  ident: ref146/cit146
  publication-title: Macromolecules
  doi: 10.1021/ma00246a015
– volume: 94
  start-page: 5566
  year: 2003
  ident: ref95/cit95
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1606853
– volume: 35
  start-page: 7678
  year: 2002
  ident: ref112/cit112
  publication-title: Macromolecules
  doi: 10.1021/ma020504c
– volume: 47
  start-page: 1296
  year: 2000
  ident: ref91/cit91
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.883518
– volume-title: Characterization of High Temperature Polymer Thin Films for Power Conditioning Capacitors
  year: 2009
  ident: ref8/cit8
– volume: 21
  start-page: 3176
  year: 2011
  ident: ref153/cit153
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201002015
– volume: 127
  start-page: 10388
  year: 2005
  ident: ref157/cit157
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja052488f
– volume: 354
  start-page: 178
  year: 2007
  ident: ref104/cit104
  publication-title: Ferroelectrics
  doi: 10.1080/00150190701454891
– volume: 48
  start-page: 09KE04
  year: 2009
  ident: ref55/cit55
  publication-title: Jpn. J. Appl. Phys.
– volume: 419
  start-page: 284
  year: 2002
  ident: ref57/cit57
  publication-title: Nature
  doi: 10.1038/nature01021
– volume: 41
  start-page: 31
  year: 2006
  ident: ref85/cit85
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-005-5915-7
– volume: 43
  start-page: 2334
  year: 2005
  ident: ref101/cit101
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.20524
– volume: 48
  start-page: 2124
  year: 2007
  ident: ref133/cit133
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.02.035
– volume: 126
  start-page: 1152
  year: 2006
  ident: ref5/cit5
  publication-title: IEEJ Trans. Fund. Mater.
– volume: 6
  start-page: 249
  year: 1995
  ident: ref56/cit56
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/6/3/001
– volume: 305
  start-page: 19
  year: 2002
  ident: ref19/cit19
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(02)01084-0
– volume: 196
  start-page: 9
  year: 2011
  ident: ref30/cit30
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2011.05.019
– volume: 8
  start-page: 62
  year: 2009
  ident: ref52/cit52
  publication-title: Nature Mater.
  doi: 10.1038/nmat2339
– volume: 89
  start-page: 846
  year: 2001
  ident: ref4/cit4
  publication-title: Proc. IEEE
  doi: 10.1109/5.931475
– volume: 39
  start-page: 6962
  year: 2006
  ident: ref135/cit135
  publication-title: Macromolecules
  doi: 10.1021/ma061311i
– volume: 17
  start-page: 1897
  year: 2005
  ident: ref132/cit132
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200500313
– volume: 47
  start-page: 5433
  year: 2006
  ident: ref81/cit81
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.06.128
– volume: 331
  start-page: 35
  year: 2006
  ident: ref125/cit125
  publication-title: Ferroelectrics
  doi: 10.1080/00150190600732926
– volume: 60
  start-page: 277
  year: 1984
  ident: ref59/cit59
  publication-title: Ferroelectrics
  doi: 10.1080/00150198408017528
– volume: 17
  start-page: 1036
  year: 2010
  ident: ref75/cit75
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2010.5539672
– volume: 31
  start-page: 1999
  year: 1990
  ident: ref108/cit108
  publication-title: Polymer
  doi: 10.1016/0032-3861(90)90030-3
– volume: 71
  start-page: 2041
  year: 1997
  ident: ref45/cit45
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.119781
– volume: 39
  start-page: 3531
  year: 2006
  ident: ref151/cit151
  publication-title: Macromolecules
  doi: 10.1021/ma060128m
– volume: 8
  start-page: 158
  year: 1975
  ident: ref43/cit43
  publication-title: Macromolecules
  doi: 10.1021/ma60044a013
– start-page: 421
  year: 1991
  ident: ref31/cit31
  publication-title: 7th Int. Symp. Electrets (ISE 7)
  doi: 10.1109/ISE.1991.167248
– volume: 24
  start-page: 29
  year: 1986
  ident: ref107/cit107
  publication-title: J. Polym. Sci., Part C: Polym. Lett.
  doi: 10.1002/pol.1986.140240106
– volume: 279
  start-page: 52
  year: 2009
  ident: ref136/cit136
  publication-title: Macromol. Symp.
  doi: 10.1002/masy.200950508
– volume-title: Electrets
  year: 1998
  ident: ref14/cit14
– volume: 103
  start-page: 4132
  year: 1999
  ident: ref27/cit27
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp983968e
– volume: 11
  start-page: 1297
  year: 1978
  ident: ref41/cit41
  publication-title: Macromolecules
  doi: 10.1021/ma60066a051
– volume: 31
  start-page: 10
  year: 2010
  ident: ref58/cit58
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.200900425
– volume: 50
  start-page: 562
  year: 2008
  ident: ref139/cit139
  publication-title: Phys. Solid State
  doi: 10.1134/S1063783408030281
– volume: 33
  start-page: 4125
  year: 2000
  ident: ref90/cit90
  publication-title: Macromolecules
  doi: 10.1021/ma9919561
– volume: 5
  start-page: 720
  year: 2005
  ident: ref50/cit50
  publication-title: IEEE Trans. Device Mater. Reliab.
  doi: 10.1109/TDMR.2005.860818
– volume: 43
  start-page: 6739
  year: 2010
  ident: ref70/cit70
  publication-title: Macromolecules
  doi: 10.1021/ma101062j
– volume: 6
  start-page: 251
  volume-title: Encyclopedia of Polymer Science and Technology
  year: 2007
  ident: ref38/cit38
– volume: 20
  start-page: 575
  year: 2009
  ident: ref60/cit60
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X08098195
– volume: 14
  start-page: 1295
  year: 2007
  ident: ref6/cit6
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2007.4339492
– volume: 94
  start-page: 042910
  year: 2009
  ident: ref129/cit129
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3077189
– volume: 53
  start-page: 728
  year: 2012
  ident: ref83/cit83
  publication-title: Polymer
  doi: 10.1016/j.polymer.2012.01.001
– volume: 18
  start-page: 597
  year: 1980
  ident: ref62/cit62
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 79
  start-page: 011012
  year: 2010
  ident: ref86/cit86
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.79.011012
– volume-title: Dielectric Phenomena in Solids: With Emphasis on Physical Concepts of Electronic Processes
  year: 2004
  ident: ref1/cit1
– volume: 15
  start-page: R367
  year: 2003
  ident: ref46/cit46
  publication-title: J. Phys.: Condens. Matter
– volume: 18
  start-page: 1293
  year: 2011
  ident: ref71/cit71
  publication-title: IEEE Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2011.5976130
– volume: 34
  start-page: 4489
  year: 1999
  ident: ref64/cit64
  publication-title: J. Mater. Sci., Lett.
– volume: 98
  start-page: 052906
  year: 2011
  ident: ref123/cit123
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3551732
– volume: 29
  start-page: 65
  year: 2011
  ident: ref84/cit84
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-010-1020-8
– volume: 10
  start-page: 726
  year: 2010
  ident: ref61/cit61
  publication-title: Nano Lett.
  doi: 10.1021/nl9040719
– volume: 43
  start-page: 384
  year: 2010
  ident: ref65/cit65
  publication-title: Macromolecules
  doi: 10.1021/ma901921h
– volume: 71
  start-page: 183
  year: 1997
  ident: ref80/cit80
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(97)00017-1
– volume-title: Metallized Plastics: Fundamentals and Applications
  year: 1998
  ident: ref2/cit2
  doi: 10.1201/b11958
– volume: 4
  start-page: 997
  year: 1994
  ident: ref142/cit142
  publication-title: J. Mater. Chem.
  doi: 10.1039/jm9940400997
– volume-title: Electric and Hybrid Vehicles: Design Fundamentals
  year: 2010
  ident: ref9/cit9
  doi: 10.1201/9781439894972
– volume: 96
  start-page: 316
  year: 2004
  ident: ref115/cit115
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1757032
– volume: 264
  start-page: 1739
  year: 2001
  ident: ref149/cit149
  publication-title: Ferroelectrics
– volume: 28
  start-page: 617
  year: 1987
  ident: ref110/cit110
  publication-title: Polymer
  doi: 10.1016/0032-3861(87)90478-2
– volume: 13
  start-page: 1162
  year: 2006
  ident: ref126/cit126
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2006.247845
– volume: 106
  start-page: 104102
  year: 2009
  ident: ref121/cit121
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3259375
– volume: 201
  start-page: 902
  year: 2000
  ident: ref35/cit35
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/(SICI)1521-3935(20000501)201:8<902::AID-MACP902>3.0.CO;2-9
– volume: 80
  start-page: 289
  year: 2005
  ident: ref100/cit100
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s00339-003-2108-6
– volume-title: Ferroelectric Ceramics: Tutorial Reviews, Theory, Processing, and Applications
  year: 1993
  ident: ref16/cit16
  doi: 10.1007/978-3-0348-7551-6
– volume: 280
  start-page: 2101
  year: 1998
  ident: ref88/cit88
  publication-title: Science
  doi: 10.1126/science.280.5372.2101
– volume: 26
  start-page: 1039
  year: 1987
  ident: ref76/cit76
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.26.1039
– volume: 220
  start-page: 1115
  year: 1983
  ident: ref42/cit42
  publication-title: Science
  doi: 10.1126/science.220.4602.1115
– volume: 44
  start-page: 2190
  year: 2011
  ident: ref150/cit150
  publication-title: Macromolecules
  doi: 10.1021/ma102910v
– volume-title: Broadband Dielectric Spectroscopy
  year: 2003
  ident: ref17/cit17
  doi: 10.1007/978-3-642-56120-7
– volume: 21
  start-page: 543
  year: 1986
  ident: ref147/cit147
  publication-title: IEEE Trans. Electr. Insul.
  doi: 10.1109/TEI.1986.348913
– volume: 57
  start-page: 902
  year: 1985
  ident: ref77/cit77
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.334690
– volume: 36
  start-page: 4436
  year: 2003
  ident: ref96/cit96
  publication-title: Macromolecules
  doi: 10.1021/ma034149h
– volume: 98
  start-page: 409
  year: 1955
  ident: ref49/cit49
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.98.409
– volume: 398
  start-page: 77
  year: 2010
  ident: ref140/cit140
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2010.489836
– volume: 1
  volume-title: Macromolecular Physics
  year: 1973
  ident: ref79/cit79
– ident: ref159/cit159
  doi: 10.1021/ma202267r
– volume-title: Electrical Properties of Polymers
  year: 2005
  ident: ref12/cit12
– volume: 352
  start-page: 5205
  year: 2006
  ident: ref28/cit28
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2006.01.138
– volume: 31
  start-page: 167
  year: 1993
  ident: ref32/cit32
  publication-title: Polym. Bull.
  doi: 10.1007/BF00329962
– volume: 16
  start-page: 4543
  year: 2004
  ident: ref155/cit155
  publication-title: Chem. Mater.
  doi: 10.1021/cm049598q
– volume: 15
  start-page: 40
  year: 1982
  ident: ref44/cit44
  publication-title: Macromolecules
  doi: 10.1021/ma00229a008
– volume: 201
  start-page: 911
  year: 2000
  ident: ref36/cit36
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/(SICI)1521-3935(20000501)201:8<911::AID-MACP911>3.0.CO;2-9
– volume: 357
  start-page: 167
  year: 2001
  ident: ref37/cit37
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/10587250108028251
– volume: 41
  start-page: 271
  year: 2006
  ident: ref116/cit116
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-6081-2
– volume: 33
  start-page: 917
  year: 2008
  ident: ref51/cit51
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2008.08.001
– volume: 44
  start-page: 1714
  year: 2006
  ident: ref106/cit106
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.20830
– volume: 128
  start-page: 8120
  year: 2006
  ident: ref134/cit134
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja062306x
– volume: 35
  start-page: 664
  year: 2002
  ident: ref93/cit93
  publication-title: Macromolecules
  doi: 10.1021/ma0112265
– volume: 99
  start-page: 052907
  year: 2011
  ident: ref131/cit131
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3624533
– volume: 98
  start-page: 222901
  year: 2011
  ident: ref124/cit124
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3595325
– volume: 18
  start-page: 718
  year: 1985
  ident: ref69/cit69
  publication-title: Macromolecules
  doi: 10.1021/ma00146a024
– volume: 81
  start-page: 214103
  year: 2010
  ident: ref138/cit138
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.214103
– volume: 128
  start-page: 12851
  year: 2006
  ident: ref158/cit158
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063290d
– volume-title: Electrochemistry in Nonaqueous Solutions
  year: 2002
  ident: ref23/cit23
  doi: 10.1002/3527600655
– volume: 31
  start-page: 263
  year: 1999
  ident: ref148/cit148
  publication-title: Polym. J.
  doi: 10.1295/polymj.31.263
– ident: ref154/cit154
– volume: 21
  start-page: 829
  year: 1996
  ident: ref34/cit34
  publication-title: Liq. Cryst.
  doi: 10.1080/02678299608032899
– volume: 313
  start-page: 334
  year: 2006
  ident: ref72/cit72
  publication-title: Science
  doi: 10.1126/science.1127798
– volume: 321
  start-page: 821
  year: 2008
  ident: ref128/cit128
  publication-title: Science
  doi: 10.1126/science.1159655
– volume: 25
  start-page: 6871
  year: 1992
  ident: ref7/cit7
  publication-title: Macromolecules
  doi: 10.1021/ma00051a023
– volume: 26
  start-page: 1368
  year: 1998
  ident: ref3/cit3
  publication-title: IEEE Trans. Plasm. Sci.
  doi: 10.1109/27.736020
– volume: 21
  start-page: 519
  year: 1986
  ident: ref63/cit63
  publication-title: IEEE Trans. Electr. Insul.
  doi: 10.1109/TEI.1986.349103
– volume: 16
  start-page: 979
  year: 2004
  ident: ref114/cit114
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306036
– volume: 52
  start-page: 948
  year: 1981
  ident: ref145/cit145
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328783
– volume: 5
  start-page: 66
  volume-title: The Applications of Ferroelectric Polymers
  year: 1988
  ident: ref66/cit66
– volume-title: Physical Ceramics: Principles for Ceramic Science and Engineering
  year: 1997
  ident: ref78/cit78
– volume: 56
  start-page: 444
  year: 2009
  ident: ref120/cit120
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2009.1063
– volume: 37
  start-page: 471
  year: 2001
  ident: ref97/cit97
  publication-title: Eur. Polym. J.
  doi: 10.1016/S0014-3057(00)00130-0
– volume: 106
  start-page: 114106
  year: 2009
  ident: ref122/cit122
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3267159
– volume: 100
  start-page: 024101
  year: 2006
  ident: ref47/cit47
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2208307
– volume: 11
  start-page: 832
  year: 1999
  ident: ref26/cit26
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199907)11:10<832::AID-ADMA832>3.0.CO;2-Z
– volume-title: Pulsed Power Systems: Principles and Applications
  year: 2006
  ident: ref11/cit11
– volume: 167
  start-page: 62
  year: 1990
  ident: ref20/cit20
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(90)85071-J
– volume: 100
  start-page: 044113
  year: 2006
  ident: ref118/cit118
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2335778
– volume: 165
  start-page: 369
  year: 1990
  ident: ref21/cit21
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(90)87204-5
– volume: 44
  start-page: 5372
  year: 1973
  ident: ref25/cit25
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1662158
– volume: 92
  start-page: 6749
  year: 2002
  ident: ref94/cit94
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1518130
– volume: 21
  start-page: 1983
  year: 2009
  ident: ref130/cit130
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802902
– start-page: 193
  volume-title: Physics of Solid State Ionics
  year: 2006
  ident: ref29/cit29
– volume: 434
  start-page: 194
  year: 2005
  ident: ref156/cit156
  publication-title: Nature
  doi: 10.1038/nature03376
– volume: 38
  start-page: 47
  year: 2007
  ident: ref15/cit15
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2006.09.022
– volume-title: Ferroelectric and Antiferroelectric Liquid Crystals
  year: 1999
  ident: ref87/cit87
  doi: 10.1002/9783527613588
– volume: 273
  start-page: 2387
  year: 2002
  ident: ref99/cit99
  publication-title: Ferroelectrics
– volume: 14
  start-page: 1574
  year: 2002
  ident: ref102/cit102
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(20021104)14:21<1574::AID-ADMA1574>3.0.CO;2-#
– volume: 94
  start-page: 047601
  year: 2005
  ident: ref48/cit48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.047601
– volume-title: Electrical Properties of Polymers
  year: 2004
  ident: ref13/cit13
– volume: 43
  start-page: 7451
  year: 2002
  ident: ref109/cit109
  publication-title: Polymer
  doi: 10.1016/S0032-3861(02)00680-8
SSID ssj0011543
Score 2.577063
SecondaryResourceType review_article
Snippet The state-of-the-art polymer dielectrics have been limited to nonpolar polymers with relatively low energy density but ultralow dielectric losses for the past...
SourceID proquest
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2937
SubjectTerms Applied sciences
crystallites
dielectrics
electric field
electric power
electrical equipment
Electrical, magnetic and optical properties
electronics
energy density
Exact sciences and technology
glass transition temperature
hysteresis
liquids
Organic polymers
Physicochemistry of polymers
polymers
Properties and characterization
Title Novel Ferroelectric Polymers for High Energy Density and Low Loss Dielectrics
URI http://dx.doi.org/10.1021/ma2024057
https://www.proquest.com/docview/2084080941
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LaxsxEB6c5NBAaNNHiNvGqI9DL-ustNI-jsUPTKhNoTX4tkhaCUKcXeNdt7i_viOv18Q4bQ57G4GY0Wi-2dF8A_A5Q5jrS5p4BoOnG2FmPWkF85jlsbBSx8p3_c7jSTia8puZmLXg0z8q-Ixe30vmeLhEdAQnLETndfin92NXKkAMUJeRGfcw1kcNfdDDpS706HIv9JwtZIlasPX4ioObeBNehi-g3zTp1K9K7rqrSnX1n0POxv_t_Byeb-El-Vqfh5fQMvkreNZrprq9hvGk-GXmZGiWy6IegXOryfdivnb_rwkiWOJefpDBpiWQ9N3z9mpNZJ6Rb8Vv_MqS9G-bheUbmA4HP3sjbztSwZPonJXHFY8TI2hotK8CyRMbqSzKklBklmMqqURosiThUiljhVWBiQwCSkw7uMyigAYXcJwXubkEwnRiJUuMspiSZIxLqhXlOnaMdREVsg0d1Hm6dYky3VS7GU13WmnDl8Ycqd4Skru5GPPHRD_uRBc1C8djQp09m-4k8VZCHBQFbfjQGDlFrbvKiMxNsSpT5mOeG2OmS98-tet3cIqYibmCEvXfw3G1XJkrxCWV6mzO5V_IYtom
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELe27oFJCDYYonx0HtoDL4HasZvkEZVWHWurSSsSb5Ht2FJFSao6BcFfzzkf5VPaHvJ2jpw72_e73Pl3CP1MAOa2BYk8Dc7TtTAznjCcetSwkBuhQtl2951H487gkl1c8auKJsfdhYFJWHiTLZL4T-wC5PRGUEfHxYOP6BOAEOpW81n37ypjAFCgzCZT5oHLD2oWoedDnQdS9oUHWp8LC8owZReLNwdy4WX6m2W7omJ-RXHJ9ckylyfq4RV14_99wBe0UYFNfFaujq_og0630Fq37vG2jUbj7FbPcF8vFlnZEGeq8J9sdu_-ZmPAs9jVgeBecUEQn7ti9_weizTBw-wOHmvx-bQeaL-hy35v0h14VYMFT8BWzT0mWRhpTjpataUvWGQCmQRJ1OGJYRBYSt7RSRQxIaU23EhfBxrgJQQhTCSBT_wd1EizVO8iTFVkBI20NBCgJJQJoiRhKnT8dQHhoolaoJS42iA2LnLflMQrrTTRcW2VWFX05K5Lxuw90aOV6Lzk5HhPqPXCtCtJOKMAFQV-E_2obR2D1l2eRKQ6W9qYtiHqDSHuJXv_mvV3tDaYjIbx8Nf49z76DGiKFmU99AA18sVSHwJiyWWrWKqPxy3iiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkQAJlbdYWhaDOHBJGzv2JjlWu10VaJdKUKm3yE-pYklW6yyo_HrGeamFSnDIbRw548d8k8_-BuCdQZgbS5pHFoNnKGHmIukEi5jjmXBSZyoO951PFpOjM_7xXJx3iWK4C4Od8Pgm35D4YVWvjOsUBuj-d8mCJJdIb8OdQNeFGX0w_TKwBggHWkaZ8QjDftorCV1tGqKQ9tei0IOV9OgQ11ay-GtTbiLN_CF8HvrYHDD5trep1Z7-9Yd84_9_xCPY7kAnOWhnyWO4ZcsncG_a13p7CieL6oddkrldr6u2MM6FJqfV8jL81SaIa0k4D0IOm4uCZBYOvdeXRJaGHFc_8fGezC76hv4ZnM0Pv06Poq7QQiRxydYRVzzLraATq2OVSJ67VJnU5BNhHMcEU4mJNXnOpVLWCacSm1qEmZiMcGnShCbPYausSvsCCNO5kyy3ymGiYhiXVCvKdRZ07FIq5AjG6JiiWyi-aDhwRovBKyN4349MoTuZ8lAtY3mT6dvBdNVqc9xkNL42vIMl7lWIjtJkBG_68S7Q64EvkaWtNr5gMWa_Gea_9OW_ev0a7p7O5sXxh8WnHbiPoIoFxonGu7BVrzf2FQKXWo2b2fobT7rlCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Ferroelectric+Polymers+for+High+Energy+Density+and+Low+Loss+Dielectrics&rft.jtitle=Macromolecules&rft.au=Zhu%2C+Lei&rft.au=Wang%2C+Qing&rft.date=2012-04-10&rft.issn=0024-9297&rft.eissn=1520-5835&rft.volume=45&rft.issue=7&rft.spage=2937&rft.epage=2954&rft_id=info:doi/10.1021%2Fma2024057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_ma2024057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-9297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-9297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-9297&client=summon