Low-Frequency (Gigahertz to Terahertz) Depolarized Raman Scattering Off n‑Alkanes, Cycloalkanes, and Six-Membered Rings: A Physical Interpretation

Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 124; no. 35; pp. 7611 - 7624
Main Authors Farrell, Andrew J, González-Jiménez, Mario, Ramakrishnan, Gopakumar, Wynne, Klaas
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. Ad hoc spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature n-alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids.
AbstractList Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. Ad hoc spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature n-alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids.
Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. Ad hoc spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature n-alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids.Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. Ad hoc spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature n-alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids.
Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature -alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids.
Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. Ad hoc spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature n -alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids.
Author Ramakrishnan, Gopakumar
González-Jiménez, Mario
Farrell, Andrew J
Wynne, Klaas
AuthorAffiliation School of Chemistry
AuthorAffiliation_xml – name: School of Chemistry
Author_xml – sequence: 1
  givenname: Andrew J
  surname: Farrell
  fullname: Farrell, Andrew J
– sequence: 2
  givenname: Mario
  orcidid: 0000-0002-8853-0588
  surname: González-Jiménez
  fullname: González-Jiménez, Mario
– sequence: 3
  givenname: Gopakumar
  surname: Ramakrishnan
  fullname: Ramakrishnan, Gopakumar
– sequence: 4
  givenname: Klaas
  orcidid: 0000-0002-5305-5940
  surname: Wynne
  fullname: Wynne, Klaas
  email: klaas.wynne@glasgow.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32790389$$D View this record in MEDLINE/PubMed
BookMark eNqFUstu1DAUjVARfcCeFfKySM1gx46dsKg0GmipNKiIlrXlODczLokd7AztdMUvIPGFfAkeMq0ACVhY11f3nKP7OPvJjnUWkuQpwROCM_JC6TC56nU1wRpTwcsHyR7JM5zGJ3a2f04w3032Q7jCOMuzgj9KdmkmSkyLci_5NnfX6YmHTyuweo0OT81CLcEPt2hw6BL8mDxHr6B3rfLmFmr0XnXKoguthgG8sQt03jTIfv_yddp-VBbCEZqtdevUXaZsjS7MTfoWugr8RiCSwks0Re-W62C0atGZjVK9h0ENxtnHycNGtQGebONB8uHk9eXsTTo_Pz2bTeepYhkbUg01rgirKyYKXnNCqlI0TcZzIFyTpqkYIaQACgWDmmiNeUlFXhOlcF6VlaAHyfGo26-qDmoNdvCqlb03nfJr6ZSRv1esWcqF-ywFExzTMgocbgW8ixsMg-xM0NC2cXC3CjLLBaOE0yL_P5RRxkRGeRahz35t676fu6tFAB4B2rsQPDT3EILlxhgyGkNujCG3xogU_gdFm3HZcTDT_ot4NBJ_VtzK23iRv8N_ANPx0ao
CitedBy_id crossref_primary_10_1039_D3CP01172K
crossref_primary_10_1002_adom_202400343
crossref_primary_10_1063_5_0133511
crossref_primary_10_1021_acs_jpcb_2c01517
crossref_primary_10_1016_j_molliq_2021_117013
crossref_primary_10_1021_acs_jpcc_4c06002
crossref_primary_10_1038_s41467_023_35878_6
Cites_doi 10.1063/1.465710
10.1039/b918196b
10.1103/PhysRevLett.120.085705
10.1021/ja01002a036
10.1017/CBO9780511535468
10.1103/PhysRevE.76.030502
10.1021/jp963706h
10.1021/j100178a029
10.1063/1.4890731
10.1103/PhysRevLett.97.055901
10.1021/acs.jpcb.9b10672
10.1063/1.1287737
10.1063/1.5096760
10.1039/C1FD00054C
10.1063/1.431008
10.1021/jp0375665
10.1016/0009-2614(93)85085-3
10.1038/nchem.1282
10.1021/jp103810r
10.1021/jp952073o
10.1021/acs.jpcb.6b06421
10.1021/jp047547a
10.1021/jp0637476
10.1063/1.1485070
10.1021/jp047415h
10.1016/j.molliq.2010.04.005
10.1039/c2cp40703e
10.1016/j.cplett.2010.07.085
10.1021/jp509968v
10.1016/0030-4018(91)90565-U
10.1080/01442350110092701
10.1063/1.441449
10.1021/ar00053a001
10.1103/PhysRevLett.65.1595
10.1063/1.465256
10.1021/acs.jpca.5b07930
10.1038/s41598-019-44517-4
10.1021/jp064811m
10.1021/jp044125s
10.1063/1.1675436
10.1103/PhysRevE.77.031506
10.1021/acs.jpclett.7b03207
10.1016/S0009-2614(89)87067-8
10.1038/ncomms11799
10.1103/PhysRevLett.92.105701
10.1063/1.467027
10.1063/1.3408288
10.1021/ja01202a069
10.1021/jp4121854
10.1016/j.cplett.2010.05.075
10.1021/jacs.7b03036
10.1021/jp973422c
10.1021/acs.jpcb.5b00460
10.1088/0022-3727/15/7/022
10.1021/jp055627o
10.1088/1367-2630/4/1/356
10.1039/b101175h
10.1038/ncomms4999
10.1021/jp5012457
10.3389/fphy.2018.00097
10.1021/acs.jpclett.7b01127
10.1063/1.2897432
10.1021/acs.jpcb.7b09751
10.1063/1.4817406
10.1063/1.1578056
10.1021/jp803535r
10.1063/1.1623747
10.1063/1.439027
10.1039/b616078f
10.1063/1.2192769
10.1021/jp807730u
10.1016/0009-2614(90)85331-6
10.1021/jp111764p
10.1002/bbpc.19710750325
10.1103/PhysRevE.48.207
10.1021/jp960317e
10.1021/jp106249t
10.1016/0009-2614(95)00492-M
10.1021/jp964047b
10.1039/C9CP06082K
10.1021/acs.jpcb.6b04997
10.1016/S0006-3495(03)74618-9
10.1016/S0022-2860(98)00871-0
10.1080/001075100181259
10.1021/ja00451a005
ContentType Journal Article
Copyright Copyright © 2020 American Chemical Society 2020 American Chemical Society
Copyright_xml – notice: Copyright © 2020 American Chemical Society 2020 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/acs.jpcb.0c03769
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 7624
ExternalDocumentID PMC7476039
32790389
10_1021_acs_jpcb_0c03769
a335433545
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
123
29L
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
ZHY
---
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a424t-ced0b14db4786d611b97ff265e16c1ffb41118e3e84ed1cc069375d1aa05b9b73
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Thu Aug 21 18:22:20 EDT 2025
Fri Jul 11 08:49:29 EDT 2025
Fri Jul 11 15:04:42 EDT 2025
Thu Jan 02 22:46:39 EST 2025
Thu Apr 24 23:11:25 EDT 2025
Tue Jul 01 04:08:08 EDT 2025
Sun Sep 06 12:08:33 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a424t-ced0b14db4786d611b97ff265e16c1ffb41118e3e84ed1cc069375d1aa05b9b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Graphics labels were misrendered in the version published on August 21, 2020 and were correctly restored on August 22, 2020.
ORCID 0000-0002-8853-0588
0000-0002-5305-5940
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7476039
PMID 32790389
PQID 2434472362
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7476039
proquest_miscellaneous_2574316385
proquest_miscellaneous_2434472362
pubmed_primary_32790389
crossref_primary_10_1021_acs_jpcb_0c03769
crossref_citationtrail_10_1021_acs_jpcb_0c03769
acs_journals_10_1021_acs_jpcb_0c03769
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-03
PublicationDateYYYYMMDD 2020-09-03
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
Buckingham R. A. (ref54/cit54) 1938; 168
ref52/cit52
ref23/cit23
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
Volterra B. V. (ref8/cit8) 1971; 75
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1063/1.465710
– ident: ref38/cit38
  doi: 10.1039/b918196b
– ident: ref11/cit11
  doi: 10.1103/PhysRevLett.120.085705
– ident: ref71/cit71
  doi: 10.1021/ja01002a036
– ident: ref46/cit46
  doi: 10.1017/CBO9780511535468
– ident: ref20/cit20
  doi: 10.1103/PhysRevE.76.030502
– ident: ref6/cit6
  doi: 10.1021/jp963706h
– ident: ref33/cit33
  doi: 10.1021/j100178a029
– ident: ref13/cit13
  doi: 10.1063/1.4890731
– ident: ref65/cit65
  doi: 10.1103/PhysRevLett.97.055901
– ident: ref58/cit58
  doi: 10.1021/acs.jpcb.9b10672
– ident: ref76/cit76
  doi: 10.1063/1.1287737
– ident: ref63/cit63
  doi: 10.1063/1.5096760
– ident: ref60/cit60
  doi: 10.1039/C1FD00054C
– ident: ref82/cit82
  doi: 10.1063/1.431008
– ident: ref3/cit3
  doi: 10.1021/jp0375665
– ident: ref34/cit34
  doi: 10.1016/0009-2614(93)85085-3
– ident: ref2/cit2
  doi: 10.1038/nchem.1282
– ident: ref15/cit15
  doi: 10.1021/jp103810r
– ident: ref35/cit35
  doi: 10.1021/jp952073o
– ident: ref70/cit70
  doi: 10.1021/acs.jpcb.6b06421
– ident: ref79/cit79
  doi: 10.1021/jp047547a
– ident: ref16/cit16
  doi: 10.1021/jp0637476
– ident: ref25/cit25
  doi: 10.1063/1.1485070
– ident: ref43/cit43
  doi: 10.1021/jp047415h
– ident: ref56/cit56
  doi: 10.1016/j.molliq.2010.04.005
– ident: ref28/cit28
  doi: 10.1039/c2cp40703e
– ident: ref45/cit45
  doi: 10.1016/j.cplett.2010.07.085
– ident: ref86/cit86
  doi: 10.1021/jp509968v
– ident: ref30/cit30
  doi: 10.1016/0030-4018(91)90565-U
– ident: ref24/cit24
  doi: 10.1080/01442350110092701
– ident: ref80/cit80
  doi: 10.1063/1.441449
– ident: ref4/cit4
  doi: 10.1021/ar00053a001
– ident: ref67/cit67
  doi: 10.1103/PhysRevLett.65.1595
– ident: ref29/cit29
  doi: 10.1063/1.465256
– ident: ref74/cit74
  doi: 10.1021/acs.jpca.5b07930
– ident: ref64/cit64
  doi: 10.1038/s41598-019-44517-4
– ident: ref50/cit50
  doi: 10.1021/jp064811m
– ident: ref53/cit53
  doi: 10.1021/jp044125s
– ident: ref7/cit7
  doi: 10.1063/1.1675436
– ident: ref19/cit19
  doi: 10.1103/PhysRevE.77.031506
– ident: ref69/cit69
  doi: 10.1021/acs.jpclett.7b03207
– ident: ref73/cit73
  doi: 10.1016/S0009-2614(89)87067-8
– ident: ref21/cit21
  doi: 10.1038/ncomms11799
– ident: ref17/cit17
  doi: 10.1103/PhysRevLett.92.105701
– ident: ref5/cit5
  doi: 10.1063/1.467027
– ident: ref78/cit78
  doi: 10.1063/1.3408288
– ident: ref72/cit72
  doi: 10.1021/ja01202a069
– ident: ref51/cit51
  doi: 10.1021/jp4121854
– ident: ref52/cit52
  doi: 10.1016/j.cplett.2010.05.075
– ident: ref27/cit27
  doi: 10.1021/jacs.7b03036
– ident: ref48/cit48
  doi: 10.1021/jp973422c
– ident: ref85/cit85
  doi: 10.1021/acs.jpcb.5b00460
– ident: ref49/cit49
  doi: 10.1088/0022-3727/15/7/022
– ident: ref84/cit84
  doi: 10.1021/jp055627o
– ident: ref61/cit61
  doi: 10.1088/1367-2630/4/1/356
– ident: ref81/cit81
  doi: 10.1039/b101175h
– ident: ref23/cit23
  doi: 10.1038/ncomms4999
– ident: ref62/cit62
  doi: 10.1021/jp5012457
– ident: ref18/cit18
  doi: 10.3389/fphy.2018.00097
– ident: ref22/cit22
  doi: 10.1021/acs.jpclett.7b01127
– ident: ref37/cit37
  doi: 10.1063/1.2897432
– ident: ref44/cit44
  doi: 10.1021/acs.jpcb.7b09751
– ident: ref14/cit14
  doi: 10.1063/1.4817406
– ident: ref57/cit57
  doi: 10.1063/1.1578056
– ident: ref47/cit47
  doi: 10.1021/jp803535r
– ident: ref55/cit55
  doi: 10.1063/1.1623747
– ident: ref59/cit59
  doi: 10.1063/1.439027
– ident: ref42/cit42
  doi: 10.1039/b616078f
– ident: ref66/cit66
  doi: 10.1063/1.2192769
– ident: ref26/cit26
  doi: 10.1021/jp807730u
– ident: ref31/cit31
  doi: 10.1016/0009-2614(90)85331-6
– ident: ref40/cit40
  doi: 10.1021/jp111764p
– volume: 168
  start-page: 264
  year: 1938
  ident: ref54/cit54
  publication-title: Proc. R. Soc. A
– volume: 75
  start-page: 309
  year: 1971
  ident: ref8/cit8
  publication-title: Ber. Bunsenges. Phys. Chem.
  doi: 10.1002/bbpc.19710750325
– ident: ref68/cit68
  doi: 10.1103/PhysRevE.48.207
– ident: ref1/cit1
  doi: 10.1021/jp960317e
– ident: ref36/cit36
  doi: 10.1021/jp106249t
– ident: ref77/cit77
  doi: 10.1016/0009-2614(95)00492-M
– ident: ref83/cit83
  doi: 10.1021/jp964047b
– ident: ref41/cit41
  doi: 10.1039/C9CP06082K
– ident: ref12/cit12
  doi: 10.1021/acs.jpcb.6b04997
– ident: ref39/cit39
  doi: 10.1016/S0006-3495(03)74618-9
– ident: ref9/cit9
  doi: 10.1016/S0022-2860(98)00871-0
– ident: ref10/cit10
  doi: 10.1080/001075100181259
– ident: ref75/cit75
  doi: 10.1021/ja00451a005
SSID ssj0025286
Score 2.3783784
Snippet Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow...
Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7611
SubjectTerms ambient temperature
B: Liquids, Chemical and Dynamical Processes in Solution, Spectroscopy in Solution
liquids
methane
physical chemistry
propane
van der Waals forces
Title Low-Frequency (Gigahertz to Terahertz) Depolarized Raman Scattering Off n‑Alkanes, Cycloalkanes, and Six-Membered Rings: A Physical Interpretation
URI http://dx.doi.org/10.1021/acs.jpcb.0c03769
https://www.ncbi.nlm.nih.gov/pubmed/32790389
https://www.proquest.com/docview/2434472362
https://www.proquest.com/docview/2574316385
https://pubmed.ncbi.nlm.nih.gov/PMC7476039
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELdgPMDLGP-2MkBGAolJuIsd22l4qwplQgwQ3aS9RbZjQ1lJpibVWJ_2FZD4hHwSzvlT6IaqPSaxHeV85_udz_kdQs-Ep-EyPUEEd4xwE6REKWkIuHatNWXMVDwF-x_k3iF_dySO_tLkXMzgM7qrTNH9dmJ0NzABWEN8Hd1gEmzYw6DBaBFcCVZVdQR35MOhoE1J_m8E74hMseyILqHLi4ck__E6w9t1-aKiIiv0h02Ou7NSd838MpXjFT5oA6034BP3a225g67Z7C66OWhrvt1Dv97np2Q4rY9Xn-EXb8dfFExqOcdljg_stL7Ywa8BtkNIPJ7bFH9W31WGR6Yi6gRHiD86h7Pf5z_7k2MFC-lLPDgzk1y1VypL8Wj8g-xbX4vED-A361_hPv7U6AxePgl5Hx0O3xwM9khTt4EoznhJjE0DTXmqedSTqaRUx5FzTApLpaHOaQ4LbM-GtsdtSo0JJGAkkVKlAqFjHYUP0FqWZ3YL4RSMWIWh_50WgJtUGsJRFysD8-2MjaMOeg7iTBq7K5Iqpc5oUt0EGSeNjDtot53sxDTk574Gx2RFj51Fj5Oa-GNF26et_iQwYT7lAhLNZ0XCuGdUZIASVrQRHsXBOig6aLPWucUbQxbFngKxg6IlbVw08Ozgy0-y8deKJRziRBmE8cMrSmgb3WJ-K8HnysJHaK2czuxjwFulflIZ2h9TZylK
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4ty2G58H6Up5FAYiXSjR07abhVhVKgXdC2K-0tsh0HypZk1aSC7Ym_gMQv5JcwTpNAF1TBMYntOOOx55uM_Q3AI2FpuHRHOIInzOHajR0pfe2gaVdKUcZ0yVMw2vcHh_z1kTjaAlqfhcFO5NhSXgbxf7EL0D177-OJVm1XuzgpwnNwHrEIs0rd7Y0bH0uwMrkjWiXrFbl1ZPJvLVh7pPN1e_QHyDy7V_I349O_BAdNt8s9J8ftRaHaenmG0fG_vusyXKygKOmudOcKbJn0Kuz06gxw1-D7MPvs9Oerzdan5MnL6XuJQ1wsSZGRiZmvLnbJcwTx6CBPlyYmB_KTTMlYl7SdaBbJ2yQh6Y-v37qzY4nL6lPSO9WzTNZXMo3JePrFGRmbmcQ2YH_dPyNd8q7SILK-L_I6HPZfTHoDp8ri4EjOeOFoE7uK8ljxoOPHPqUqDJKE-cJQX9MkURyX247xTIebmGrt-oiYREyldIUKVeDdgO00S80tIDFOael59nAtwjhfKnROk1BqHPZEmzBowWMUZ1TNwjwqA-yMRuVNlHFUybgFe_WYR7qiQrcZOWYbauw2NU5WNCAbyj6s1SjCAbMBGJRotsgjxi2_IkPMsKGMsJgOV0XRgpsr1Wve6LEgtISILQjWlLIpYLnC15-k0w8lZzh6jb7rhbf_UUIPYGcwGQ2j4av9N3fgArM_GWwUzbsL28V8Ye4hEivU_XLu_QSYXTGr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGkIAX7pdyNRJITFq62LGThreqowzYxkQ3tLfIVygrSdWkgvWJv4DEL-SXcJyb6EAVPMaxHef4HJ9zfOzvIPSEOxgu1eMeZ5Z6TPnaEyJUHqh2KSWhVJU4BXv74c4Re33Mj9cQb-7CwCBy6Ckvg_hOqqfa1ggDZMuVf5oq2fWVD4IRn0PnXdTOMXZ_MGr9LE7LBI-gmZxn5DfRyb_14HSSypd10h-G5tnzkr8poOEV9L4dennu5KQ7L2RXLc6gOv73v11Fl2uTFPcrHrqG1kx6HV0cNJngbqAfu9kXbzirDl2f4mcvxx8ETHWxwEWGD82setjA22DMg6M8XhiN34nPIsUjVcJ3gnrEb63F6c9v3_uTEwHL6yYenKpJJponkWo8Gn_19ozLUOI6cFv4z3EfH9SchJfPR95ER8MXh4Mdr87m4AlGWeEpo31JmJYs6oU6JETGkbU05IaEilgrGSy7PROYHjOaKOWHYDlxTYTwuYxlFNxC62mWmjsIaxBtEQTuki2Yc6GQ4KTaWCiYeqtMHHXQUyBnUktjnpSBdkqSshBonNQ07qCtZt4TVUOiu8wckxUtNtoW0woOZEXdxw0rJTBhLhADFM3meUKZw1mkYDusqMOdbQerI--g2xX7tV8MaBQ7YMQOipYYs63gMMOX36TjjyV2OHiPoR_Ed_-RQo_QhYPtYbL7av_NPXSJur0GF0wL7qP1YjY3D8AgK-TDUvx-ATrCNC4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Frequency+%28Gigahertz+to+Terahertz%29+Depolarized+Raman+Scattering+Off+n-Alkanes%2C+Cycloalkanes%2C+and+Six-Membered+Rings%3A+A+Physical+Interpretation&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Farrell%2C+Andrew+J.&rft.au=Gonz%C3%A1lez-Jim%C3%A9nez%2C+Mario&rft.au=Ramakrishnan%2C+Gopakumar&rft.au=Wynne%2C+Klaas&rft.date=2020-09-03&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=124&rft.issue=35&rft.spage=7611&rft.epage=7624&rft_id=info:doi/10.1021%2Facs.jpcb.0c03769&rft_id=info%3Apmid%2F32790389&rft.externalDocID=PMC7476039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon