Low-Frequency (Gigahertz to Terahertz) Depolarized Raman Scattering Off n‑Alkanes, Cycloalkanes, and Six-Membered Rings: A Physical Interpretation
Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless...
Saved in:
Published in | The journal of physical chemistry. B Vol. 124; no. 35; pp. 7611 - 7624 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
03.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. Ad hoc spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature n-alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids. |
---|---|
AbstractList | Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. Ad hoc spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature n-alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids. Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. Ad hoc spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature n-alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids.Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. Ad hoc spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature n-alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids. Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature -alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids. Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. Ad hoc spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature n -alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids. |
Author | Ramakrishnan, Gopakumar González-Jiménez, Mario Farrell, Andrew J Wynne, Klaas |
AuthorAffiliation | School of Chemistry |
AuthorAffiliation_xml | – name: School of Chemistry |
Author_xml | – sequence: 1 givenname: Andrew J surname: Farrell fullname: Farrell, Andrew J – sequence: 2 givenname: Mario orcidid: 0000-0002-8853-0588 surname: González-Jiménez fullname: González-Jiménez, Mario – sequence: 3 givenname: Gopakumar surname: Ramakrishnan fullname: Ramakrishnan, Gopakumar – sequence: 4 givenname: Klaas orcidid: 0000-0002-5305-5940 surname: Wynne fullname: Wynne, Klaas email: klaas.wynne@glasgow.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32790389$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstu1DAUjVARfcCeFfKySM1gx46dsKg0GmipNKiIlrXlODczLokd7AztdMUvIPGFfAkeMq0ACVhY11f3nKP7OPvJjnUWkuQpwROCM_JC6TC56nU1wRpTwcsHyR7JM5zGJ3a2f04w3032Q7jCOMuzgj9KdmkmSkyLci_5NnfX6YmHTyuweo0OT81CLcEPt2hw6BL8mDxHr6B3rfLmFmr0XnXKoguthgG8sQt03jTIfv_yddp-VBbCEZqtdevUXaZsjS7MTfoWugr8RiCSwks0Re-W62C0atGZjVK9h0ENxtnHycNGtQGebONB8uHk9eXsTTo_Pz2bTeepYhkbUg01rgirKyYKXnNCqlI0TcZzIFyTpqkYIaQACgWDmmiNeUlFXhOlcF6VlaAHyfGo26-qDmoNdvCqlb03nfJr6ZSRv1esWcqF-ywFExzTMgocbgW8ixsMg-xM0NC2cXC3CjLLBaOE0yL_P5RRxkRGeRahz35t676fu6tFAB4B2rsQPDT3EILlxhgyGkNujCG3xogU_gdFm3HZcTDT_ot4NBJ_VtzK23iRv8N_ANPx0ao |
CitedBy_id | crossref_primary_10_1039_D3CP01172K crossref_primary_10_1002_adom_202400343 crossref_primary_10_1063_5_0133511 crossref_primary_10_1021_acs_jpcb_2c01517 crossref_primary_10_1016_j_molliq_2021_117013 crossref_primary_10_1021_acs_jpcc_4c06002 crossref_primary_10_1038_s41467_023_35878_6 |
Cites_doi | 10.1063/1.465710 10.1039/b918196b 10.1103/PhysRevLett.120.085705 10.1021/ja01002a036 10.1017/CBO9780511535468 10.1103/PhysRevE.76.030502 10.1021/jp963706h 10.1021/j100178a029 10.1063/1.4890731 10.1103/PhysRevLett.97.055901 10.1021/acs.jpcb.9b10672 10.1063/1.1287737 10.1063/1.5096760 10.1039/C1FD00054C 10.1063/1.431008 10.1021/jp0375665 10.1016/0009-2614(93)85085-3 10.1038/nchem.1282 10.1021/jp103810r 10.1021/jp952073o 10.1021/acs.jpcb.6b06421 10.1021/jp047547a 10.1021/jp0637476 10.1063/1.1485070 10.1021/jp047415h 10.1016/j.molliq.2010.04.005 10.1039/c2cp40703e 10.1016/j.cplett.2010.07.085 10.1021/jp509968v 10.1016/0030-4018(91)90565-U 10.1080/01442350110092701 10.1063/1.441449 10.1021/ar00053a001 10.1103/PhysRevLett.65.1595 10.1063/1.465256 10.1021/acs.jpca.5b07930 10.1038/s41598-019-44517-4 10.1021/jp064811m 10.1021/jp044125s 10.1063/1.1675436 10.1103/PhysRevE.77.031506 10.1021/acs.jpclett.7b03207 10.1016/S0009-2614(89)87067-8 10.1038/ncomms11799 10.1103/PhysRevLett.92.105701 10.1063/1.467027 10.1063/1.3408288 10.1021/ja01202a069 10.1021/jp4121854 10.1016/j.cplett.2010.05.075 10.1021/jacs.7b03036 10.1021/jp973422c 10.1021/acs.jpcb.5b00460 10.1088/0022-3727/15/7/022 10.1021/jp055627o 10.1088/1367-2630/4/1/356 10.1039/b101175h 10.1038/ncomms4999 10.1021/jp5012457 10.3389/fphy.2018.00097 10.1021/acs.jpclett.7b01127 10.1063/1.2897432 10.1021/acs.jpcb.7b09751 10.1063/1.4817406 10.1063/1.1578056 10.1021/jp803535r 10.1063/1.1623747 10.1063/1.439027 10.1039/b616078f 10.1063/1.2192769 10.1021/jp807730u 10.1016/0009-2614(90)85331-6 10.1021/jp111764p 10.1002/bbpc.19710750325 10.1103/PhysRevE.48.207 10.1021/jp960317e 10.1021/jp106249t 10.1016/0009-2614(95)00492-M 10.1021/jp964047b 10.1039/C9CP06082K 10.1021/acs.jpcb.6b04997 10.1016/S0006-3495(03)74618-9 10.1016/S0022-2860(98)00871-0 10.1080/001075100181259 10.1021/ja00451a005 |
ContentType | Journal Article |
Copyright | Copyright © 2020 American Chemical Society 2020 American Chemical Society |
Copyright_xml | – notice: Copyright © 2020 American Chemical Society 2020 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.jpcb.0c03769 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 7624 |
ExternalDocumentID | PMC7476039 32790389 10_1021_acs_jpcb_0c03769 a335433545 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 123 29L 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F20 F5P GNL IH9 IHE JG JG~ K2 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI ZHY --- -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a424t-ced0b14db4786d611b97ff265e16c1ffb41118e3e84ed1cc069375d1aa05b9b73 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Thu Aug 21 18:22:20 EDT 2025 Fri Jul 11 08:49:29 EDT 2025 Fri Jul 11 15:04:42 EDT 2025 Thu Jan 02 22:46:39 EST 2025 Thu Apr 24 23:11:25 EDT 2025 Tue Jul 01 04:08:08 EDT 2025 Sun Sep 06 12:08:33 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a424t-ced0b14db4786d611b97ff265e16c1ffb41118e3e84ed1cc069375d1aa05b9b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Graphics labels were misrendered in the version published on August 21, 2020 and were correctly restored on August 22, 2020. |
ORCID | 0000-0002-8853-0588 0000-0002-5305-5940 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7476039 |
PMID | 32790389 |
PQID | 2434472362 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7476039 proquest_miscellaneous_2574316385 proquest_miscellaneous_2434472362 pubmed_primary_32790389 crossref_primary_10_1021_acs_jpcb_0c03769 crossref_citationtrail_10_1021_acs_jpcb_0c03769 acs_journals_10_1021_acs_jpcb_0c03769 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-03 |
PublicationDateYYYYMMDD | 2020-09-03 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 Buckingham R. A. (ref54/cit54) 1938; 168 ref52/cit52 ref23/cit23 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 Volterra B. V. (ref8/cit8) 1971; 75 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref32/cit32 doi: 10.1063/1.465710 – ident: ref38/cit38 doi: 10.1039/b918196b – ident: ref11/cit11 doi: 10.1103/PhysRevLett.120.085705 – ident: ref71/cit71 doi: 10.1021/ja01002a036 – ident: ref46/cit46 doi: 10.1017/CBO9780511535468 – ident: ref20/cit20 doi: 10.1103/PhysRevE.76.030502 – ident: ref6/cit6 doi: 10.1021/jp963706h – ident: ref33/cit33 doi: 10.1021/j100178a029 – ident: ref13/cit13 doi: 10.1063/1.4890731 – ident: ref65/cit65 doi: 10.1103/PhysRevLett.97.055901 – ident: ref58/cit58 doi: 10.1021/acs.jpcb.9b10672 – ident: ref76/cit76 doi: 10.1063/1.1287737 – ident: ref63/cit63 doi: 10.1063/1.5096760 – ident: ref60/cit60 doi: 10.1039/C1FD00054C – ident: ref82/cit82 doi: 10.1063/1.431008 – ident: ref3/cit3 doi: 10.1021/jp0375665 – ident: ref34/cit34 doi: 10.1016/0009-2614(93)85085-3 – ident: ref2/cit2 doi: 10.1038/nchem.1282 – ident: ref15/cit15 doi: 10.1021/jp103810r – ident: ref35/cit35 doi: 10.1021/jp952073o – ident: ref70/cit70 doi: 10.1021/acs.jpcb.6b06421 – ident: ref79/cit79 doi: 10.1021/jp047547a – ident: ref16/cit16 doi: 10.1021/jp0637476 – ident: ref25/cit25 doi: 10.1063/1.1485070 – ident: ref43/cit43 doi: 10.1021/jp047415h – ident: ref56/cit56 doi: 10.1016/j.molliq.2010.04.005 – ident: ref28/cit28 doi: 10.1039/c2cp40703e – ident: ref45/cit45 doi: 10.1016/j.cplett.2010.07.085 – ident: ref86/cit86 doi: 10.1021/jp509968v – ident: ref30/cit30 doi: 10.1016/0030-4018(91)90565-U – ident: ref24/cit24 doi: 10.1080/01442350110092701 – ident: ref80/cit80 doi: 10.1063/1.441449 – ident: ref4/cit4 doi: 10.1021/ar00053a001 – ident: ref67/cit67 doi: 10.1103/PhysRevLett.65.1595 – ident: ref29/cit29 doi: 10.1063/1.465256 – ident: ref74/cit74 doi: 10.1021/acs.jpca.5b07930 – ident: ref64/cit64 doi: 10.1038/s41598-019-44517-4 – ident: ref50/cit50 doi: 10.1021/jp064811m – ident: ref53/cit53 doi: 10.1021/jp044125s – ident: ref7/cit7 doi: 10.1063/1.1675436 – ident: ref19/cit19 doi: 10.1103/PhysRevE.77.031506 – ident: ref69/cit69 doi: 10.1021/acs.jpclett.7b03207 – ident: ref73/cit73 doi: 10.1016/S0009-2614(89)87067-8 – ident: ref21/cit21 doi: 10.1038/ncomms11799 – ident: ref17/cit17 doi: 10.1103/PhysRevLett.92.105701 – ident: ref5/cit5 doi: 10.1063/1.467027 – ident: ref78/cit78 doi: 10.1063/1.3408288 – ident: ref72/cit72 doi: 10.1021/ja01202a069 – ident: ref51/cit51 doi: 10.1021/jp4121854 – ident: ref52/cit52 doi: 10.1016/j.cplett.2010.05.075 – ident: ref27/cit27 doi: 10.1021/jacs.7b03036 – ident: ref48/cit48 doi: 10.1021/jp973422c – ident: ref85/cit85 doi: 10.1021/acs.jpcb.5b00460 – ident: ref49/cit49 doi: 10.1088/0022-3727/15/7/022 – ident: ref84/cit84 doi: 10.1021/jp055627o – ident: ref61/cit61 doi: 10.1088/1367-2630/4/1/356 – ident: ref81/cit81 doi: 10.1039/b101175h – ident: ref23/cit23 doi: 10.1038/ncomms4999 – ident: ref62/cit62 doi: 10.1021/jp5012457 – ident: ref18/cit18 doi: 10.3389/fphy.2018.00097 – ident: ref22/cit22 doi: 10.1021/acs.jpclett.7b01127 – ident: ref37/cit37 doi: 10.1063/1.2897432 – ident: ref44/cit44 doi: 10.1021/acs.jpcb.7b09751 – ident: ref14/cit14 doi: 10.1063/1.4817406 – ident: ref57/cit57 doi: 10.1063/1.1578056 – ident: ref47/cit47 doi: 10.1021/jp803535r – ident: ref55/cit55 doi: 10.1063/1.1623747 – ident: ref59/cit59 doi: 10.1063/1.439027 – ident: ref42/cit42 doi: 10.1039/b616078f – ident: ref66/cit66 doi: 10.1063/1.2192769 – ident: ref26/cit26 doi: 10.1021/jp807730u – ident: ref31/cit31 doi: 10.1016/0009-2614(90)85331-6 – ident: ref40/cit40 doi: 10.1021/jp111764p – volume: 168 start-page: 264 year: 1938 ident: ref54/cit54 publication-title: Proc. R. Soc. A – volume: 75 start-page: 309 year: 1971 ident: ref8/cit8 publication-title: Ber. Bunsenges. Phys. Chem. doi: 10.1002/bbpc.19710750325 – ident: ref68/cit68 doi: 10.1103/PhysRevE.48.207 – ident: ref1/cit1 doi: 10.1021/jp960317e – ident: ref36/cit36 doi: 10.1021/jp106249t – ident: ref77/cit77 doi: 10.1016/0009-2614(95)00492-M – ident: ref83/cit83 doi: 10.1021/jp964047b – ident: ref41/cit41 doi: 10.1039/C9CP06082K – ident: ref12/cit12 doi: 10.1021/acs.jpcb.6b04997 – ident: ref39/cit39 doi: 10.1016/S0006-3495(03)74618-9 – ident: ref9/cit9 doi: 10.1016/S0022-2860(98)00871-0 – ident: ref10/cit10 doi: 10.1080/001075100181259 – ident: ref75/cit75 doi: 10.1021/ja00451a005 |
SSID | ssj0025286 |
Score | 2.3783784 |
Snippet | Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow... Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7611 |
SubjectTerms | ambient temperature B: Liquids, Chemical and Dynamical Processes in Solution, Spectroscopy in Solution liquids methane physical chemistry propane van der Waals forces |
Title | Low-Frequency (Gigahertz to Terahertz) Depolarized Raman Scattering Off n‑Alkanes, Cycloalkanes, and Six-Membered Rings: A Physical Interpretation |
URI | http://dx.doi.org/10.1021/acs.jpcb.0c03769 https://www.ncbi.nlm.nih.gov/pubmed/32790389 https://www.proquest.com/docview/2434472362 https://www.proquest.com/docview/2574316385 https://pubmed.ncbi.nlm.nih.gov/PMC7476039 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELdgPMDLGP-2MkBGAolJuIsd22l4qwplQgwQ3aS9RbZjQ1lJpibVWJ_2FZD4hHwSzvlT6IaqPSaxHeV85_udz_kdQs-Ep-EyPUEEd4xwE6REKWkIuHatNWXMVDwF-x_k3iF_dySO_tLkXMzgM7qrTNH9dmJ0NzABWEN8Hd1gEmzYw6DBaBFcCVZVdQR35MOhoE1J_m8E74hMseyILqHLi4ck__E6w9t1-aKiIiv0h02Ou7NSd838MpXjFT5oA6034BP3a225g67Z7C66OWhrvt1Dv97np2Q4rY9Xn-EXb8dfFExqOcdljg_stL7Ywa8BtkNIPJ7bFH9W31WGR6Yi6gRHiD86h7Pf5z_7k2MFC-lLPDgzk1y1VypL8Wj8g-xbX4vED-A361_hPv7U6AxePgl5Hx0O3xwM9khTt4EoznhJjE0DTXmqedSTqaRUx5FzTApLpaHOaQ4LbM-GtsdtSo0JJGAkkVKlAqFjHYUP0FqWZ3YL4RSMWIWh_50WgJtUGsJRFysD8-2MjaMOeg7iTBq7K5Iqpc5oUt0EGSeNjDtot53sxDTk574Gx2RFj51Fj5Oa-GNF26et_iQwYT7lAhLNZ0XCuGdUZIASVrQRHsXBOig6aLPWucUbQxbFngKxg6IlbVw08Ozgy0-y8deKJRziRBmE8cMrSmgb3WJ-K8HnysJHaK2czuxjwFulflIZ2h9TZylK |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4ty2G58H6Up5FAYiXSjR07abhVhVKgXdC2K-0tsh0HypZk1aSC7Ym_gMQv5JcwTpNAF1TBMYntOOOx55uM_Q3AI2FpuHRHOIInzOHajR0pfe2gaVdKUcZ0yVMw2vcHh_z1kTjaAlqfhcFO5NhSXgbxf7EL0D177-OJVm1XuzgpwnNwHrEIs0rd7Y0bH0uwMrkjWiXrFbl1ZPJvLVh7pPN1e_QHyDy7V_I349O_BAdNt8s9J8ftRaHaenmG0fG_vusyXKygKOmudOcKbJn0Kuz06gxw1-D7MPvs9Oerzdan5MnL6XuJQ1wsSZGRiZmvLnbJcwTx6CBPlyYmB_KTTMlYl7SdaBbJ2yQh6Y-v37qzY4nL6lPSO9WzTNZXMo3JePrFGRmbmcQ2YH_dPyNd8q7SILK-L_I6HPZfTHoDp8ri4EjOeOFoE7uK8ljxoOPHPqUqDJKE-cJQX9MkURyX247xTIebmGrt-oiYREyldIUKVeDdgO00S80tIDFOael59nAtwjhfKnROk1BqHPZEmzBowWMUZ1TNwjwqA-yMRuVNlHFUybgFe_WYR7qiQrcZOWYbauw2NU5WNCAbyj6s1SjCAbMBGJRotsgjxi2_IkPMsKGMsJgOV0XRgpsr1Wve6LEgtISILQjWlLIpYLnC15-k0w8lZzh6jb7rhbf_UUIPYGcwGQ2j4av9N3fgArM_GWwUzbsL28V8Ye4hEivU_XLu_QSYXTGr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGkIAX7pdyNRJITFq62LGThreqowzYxkQ3tLfIVygrSdWkgvWJv4DEL-SXcJyb6EAVPMaxHef4HJ9zfOzvIPSEOxgu1eMeZ5Z6TPnaEyJUHqh2KSWhVJU4BXv74c4Re33Mj9cQb-7CwCBy6Ckvg_hOqqfa1ggDZMuVf5oq2fWVD4IRn0PnXdTOMXZ_MGr9LE7LBI-gmZxn5DfRyb_14HSSypd10h-G5tnzkr8poOEV9L4dennu5KQ7L2RXLc6gOv73v11Fl2uTFPcrHrqG1kx6HV0cNJngbqAfu9kXbzirDl2f4mcvxx8ETHWxwEWGD82setjA22DMg6M8XhiN34nPIsUjVcJ3gnrEb63F6c9v3_uTEwHL6yYenKpJJponkWo8Gn_19ozLUOI6cFv4z3EfH9SchJfPR95ER8MXh4Mdr87m4AlGWeEpo31JmJYs6oU6JETGkbU05IaEilgrGSy7PROYHjOaKOWHYDlxTYTwuYxlFNxC62mWmjsIaxBtEQTuki2Yc6GQ4KTaWCiYeqtMHHXQUyBnUktjnpSBdkqSshBonNQ07qCtZt4TVUOiu8wckxUtNtoW0woOZEXdxw0rJTBhLhADFM3meUKZw1mkYDusqMOdbQerI--g2xX7tV8MaBQ7YMQOipYYs63gMMOX36TjjyV2OHiPoR_Ed_-RQo_QhYPtYbL7av_NPXSJur0GF0wL7qP1YjY3D8AgK-TDUvx-ATrCNC4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Frequency+%28Gigahertz+to+Terahertz%29+Depolarized+Raman+Scattering+Off+n-Alkanes%2C+Cycloalkanes%2C+and+Six-Membered+Rings%3A+A+Physical+Interpretation&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Farrell%2C+Andrew+J.&rft.au=Gonz%C3%A1lez-Jim%C3%A9nez%2C+Mario&rft.au=Ramakrishnan%2C+Gopakumar&rft.au=Wynne%2C+Klaas&rft.date=2020-09-03&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=124&rft.issue=35&rft.spage=7611&rft.epage=7624&rft_id=info:doi/10.1021%2Facs.jpcb.0c03769&rft_id=info%3Apmid%2F32790389&rft.externalDocID=PMC7476039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |