Antifrosting Performance of a Superhydrophobic Surface by Optimizing the Surface Morphology

Improving the antifrosting ability of stainless steel is crucial. In previous reports, many efforts have been dedicated to enhancing the antifrosting performance of superhydrophobic surface by fabricating different surface morphology. However, no researchers have proposed what kind of surface morpho...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 36; no. 34; pp. 10156 - 10165
Main Authors Jiang, Shuyue, Zhang, Haifeng, Jiang, Chunfeng, Liu, Xiaowei
Format Journal Article
LanguageEnglish
Published American Chemical Society 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Improving the antifrosting ability of stainless steel is crucial. In previous reports, many efforts have been dedicated to enhancing the antifrosting performance of superhydrophobic surface by fabricating different surface morphology. However, no researchers have proposed what kind of surface morphology can effectively prevent the frost based on the theory of superhydrophobic surfaces. In this article, we build a simulation model to study the effects of different surface morphology on antifrosting based on the Cassie model. We find that the higher the proportion of air between the droplet and the substrate, the better the antifrosting performance of the superhydrophobic surface. Therefore, we propose one superhydrophobic surface (denoted as sample #R) fabricated by selective growth. It can contain more air between the droplet and the surface. Further frosting experiments at a low temperature of −21 °C and a humidity of 75% show that 15% frost coverage on sample #R can be delayed to 63 h, as compared to less than 3 h for untreated stainless steel. In addition, the preparation method is generally applicable to other metals. Therefore, this work provides new insights into the rational design of a superhydrophobic surface with antifrosting in a harsh environment.
AbstractList Improving the antifrosting ability of stainless steel is crucial. In previous reports, many efforts have been dedicated to enhancing the antifrosting performance of superhydrophobic surface by fabricating different surface morphology. However, no researchers have proposed what kind of surface morphology can effectively prevent the frost based on the theory of superhydrophobic surfaces. In this article, we build a simulation model to study the effects of different surface morphology on antifrosting based on the Cassie model. We find that the higher the proportion of air between the droplet and the substrate, the better the antifrosting performance of the superhydrophobic surface. Therefore, we propose one superhydrophobic surface (denoted as sample #R) fabricated by selective growth. It can contain more air between the droplet and the surface. Further frosting experiments at a low temperature of -21 °C and a humidity of 75% show that 15% frost coverage on sample #R can be delayed to 63 h, as compared to less than 3 h for untreated stainless steel. In addition, the preparation method is generally applicable to other metals. Therefore, this work provides new insights into the rational design of a superhydrophobic surface with antifrosting in a harsh environment.Improving the antifrosting ability of stainless steel is crucial. In previous reports, many efforts have been dedicated to enhancing the antifrosting performance of superhydrophobic surface by fabricating different surface morphology. However, no researchers have proposed what kind of surface morphology can effectively prevent the frost based on the theory of superhydrophobic surfaces. In this article, we build a simulation model to study the effects of different surface morphology on antifrosting based on the Cassie model. We find that the higher the proportion of air between the droplet and the substrate, the better the antifrosting performance of the superhydrophobic surface. Therefore, we propose one superhydrophobic surface (denoted as sample #R) fabricated by selective growth. It can contain more air between the droplet and the surface. Further frosting experiments at a low temperature of -21 °C and a humidity of 75% show that 15% frost coverage on sample #R can be delayed to 63 h, as compared to less than 3 h for untreated stainless steel. In addition, the preparation method is generally applicable to other metals. Therefore, this work provides new insights into the rational design of a superhydrophobic surface with antifrosting in a harsh environment.
Improving the antifrosting ability of stainless steel is crucial. In previous reports, many efforts have been dedicated to enhancing the antifrosting performance of superhydrophobic surface by fabricating different surface morphology. However, no researchers have proposed what kind of surface morphology can effectively prevent the frost based on the theory of superhydrophobic surfaces. In this article, we build a simulation model to study the effects of different surface morphology on antifrosting based on the Cassie model. We find that the higher the proportion of air between the droplet and the substrate, the better the antifrosting performance of the superhydrophobic surface. Therefore, we propose one superhydrophobic surface (denoted as sample #R) fabricated by selective growth. It can contain more air between the droplet and the surface. Further frosting experiments at a low temperature of −21 °C and a humidity of 75% show that 15% frost coverage on sample #R can be delayed to 63 h, as compared to less than 3 h for untreated stainless steel. In addition, the preparation method is generally applicable to other metals. Therefore, this work provides new insights into the rational design of a superhydrophobic surface with antifrosting in a harsh environment.
Author Liu, Xiaowei
Jiang, Shuyue
Zhang, Haifeng
Jiang, Chunfeng
AuthorAffiliation MEMS Center
State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology
AuthorAffiliation_xml – name: State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology
– name: MEMS Center
Author_xml – sequence: 1
  givenname: Shuyue
  surname: Jiang
  fullname: Jiang, Shuyue
  organization: MEMS Center
– sequence: 2
  givenname: Haifeng
  orcidid: 0000-0002-4917-746X
  surname: Zhang
  fullname: Zhang, Haifeng
  email: zhanghf@hit.edu.cn
  organization: State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology
– sequence: 3
  givenname: Chunfeng
  surname: Jiang
  fullname: Jiang, Chunfeng
  organization: MEMS Center
– sequence: 4
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
  organization: State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology
BookMark eNqFkD1PwzAURS0EEm3hHzBkZEnxZxKzVRVfUlGRgIkhchy7dZXEwXaG8utx1cLAQKcnvXvPe9IZg9POdgqAKwSnCGJ0I6SfNqJbtYNxUyghylBxAkaIYZiyAuenYARzStKcZuQcjL3fQAg5oXwEPmZdMNpZH0y3Sl6U09a1opMqsToRyevQK7fe1s72a1sZGRdOi5hW22TZB9Oarx0X1uo3ebYudhu72l6AMy0ary4PcwLe7-_e5o_pYvnwNJ8tUkExDSniRV5XWkGCqOZK5IxRzoqcSSZUhaUkkmcqhzWklWaZYIpXTMG6zjDGPMNkAq73d3tnPwflQ9kaL1UTlSg7-BLzIqM5ic-OVynJKKSoYLF6u6_KaMc7pUtpggjGdsEJ05QIljv5ZZRf_sgvD_IjTP_AvTOtcNtjGNxju3RjB9dFb_8j30I1oTA
CitedBy_id crossref_primary_10_1615_JEnhHeatTransf_2022042325
crossref_primary_10_1021_acs_langmuir_2c00916
crossref_primary_10_1016_j_rinma_2022_100274
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125035
crossref_primary_10_1016_j_molliq_2024_125139
crossref_primary_10_3389_fbioe_2022_887902
crossref_primary_10_1016_j_colsurfa_2024_133294
crossref_primary_10_1016_j_jiec_2022_10_039
crossref_primary_10_1021_acs_langmuir_1c01684
crossref_primary_10_1021_acs_cgd_1c00449
crossref_primary_10_1021_acs_langmuir_1c00676
crossref_primary_10_1016_j_expthermflusci_2023_110878
crossref_primary_10_3389_fbioe_2022_1033514
Cites_doi 10.1021/am502607e
10.1021/nl303835d
10.1016/j.apenergy.2015.11.036
10.1016/j.apsusc.2015.02.051
10.1016/j.applthermaleng.2017.01.049
10.1016/j.applthermaleng.2016.08.145
10.1016/j.pmatsci.2013.12.003
10.1021/jp9085415
10.1016/j.scriptamat.2016.03.015
10.1007/978-1-4419-6247-8_5262
10.1016/j.pmatsci.2014.10.003
10.1016/j.expthermflusci.2014.09.003
10.1002/admi.201900244
10.1021/acsami.9b21704
10.1021/am501252u
10.1007/s00339-017-1509-x
10.1016/j.ijrefrig.2015.02.005
10.1063/1.3524513
10.1016/j.expthermflusci.2006.11.002
10.1038/nmat924
10.1016/j.rser.2013.10.038
10.1007/978-1-4684-4916-7_20
10.1021/acs.langmuir.7b01418
10.1038/nature10447
10.1016/j.rser.2017.08.046
10.1016/j.pmatsci.2012.11.001
10.1016/B978-044453021-9/50005-1
10.1016/j.apsusc.2015.08.027
10.1016/j.enconman.2015.11.028
10.1063/1.4752436
10.1038/natrevmats.2015.3
10.1021/nn406522n
10.1016/j.applthermaleng.2020.114967
10.1021/ar040224c
10.1039/tf9444000546
ContentType Journal Article
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1021/acs.langmuir.0c01618
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 10165
ExternalDocumentID 10_1021_acs_langmuir_0c01618
a864063349
GroupedDBID -
.K2
02
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
YQT
~02
7X8
7S9
L.6
ID FETCH-LOGICAL-a424t-1987dbfe0314f9ea755495875c5aeb2cc3c96e70d04bf56a5e9b5e0dd62229623
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Fri Jul 11 12:24:36 EDT 2025
Fri Jul 11 13:46:12 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
Tue Jul 01 03:59:02 EDT 2025
Thu Sep 03 06:07:35 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a424t-1987dbfe0314f9ea755495875c5aeb2cc3c96e70d04bf56a5e9b5e0dd62229623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4917-746X
PQID 2436404185
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2986473424
proquest_miscellaneous_2436404185
crossref_citationtrail_10_1021_acs_langmuir_0c01618
crossref_primary_10_1021_acs_langmuir_0c01618
acs_journals_10_1021_acs_langmuir_0c01618
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
Chen Z. S. (ref27/cit27) 1992; 22
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref11/cit11
  doi: 10.1021/am502607e
– ident: ref12/cit12
  doi: 10.1021/nl303835d
– ident: ref5/cit5
  doi: 10.1016/j.apenergy.2015.11.036
– ident: ref16/cit16
  doi: 10.1016/j.apsusc.2015.02.051
– ident: ref3/cit3
  doi: 10.1016/j.applthermaleng.2017.01.049
– ident: ref20/cit20
  doi: 10.1016/j.applthermaleng.2016.08.145
– ident: ref30/cit30
  doi: 10.1016/j.pmatsci.2013.12.003
– ident: ref35/cit35
  doi: 10.1021/jp9085415
– ident: ref8/cit8
  doi: 10.1016/j.scriptamat.2016.03.015
– ident: ref26/cit26
  doi: 10.1007/978-1-4419-6247-8_5262
– ident: ref29/cit29
  doi: 10.1016/j.pmatsci.2014.10.003
– volume: 22
  start-page: 416
  year: 1992
  ident: ref27/cit27
  publication-title: Journal of China University of Science and Technology (In Chinese)
– ident: ref19/cit19
  doi: 10.1016/j.expthermflusci.2014.09.003
– ident: ref17/cit17
  doi: 10.1002/admi.201900244
– ident: ref13/cit13
  doi: 10.1021/acsami.9b21704
– ident: ref18/cit18
  doi: 10.1021/am501252u
– ident: ref23/cit23
  doi: 10.1007/s00339-017-1509-x
– ident: ref2/cit2
  doi: 10.1016/j.ijrefrig.2015.02.005
– ident: ref24/cit24
  doi: 10.1063/1.3524513
– ident: ref6/cit6
  doi: 10.1016/j.expthermflusci.2006.11.002
– ident: ref36/cit36
  doi: 10.1038/nmat924
– ident: ref33/cit33
  doi: 10.1007/978-1-4419-6247-8_5262
– ident: ref1/cit1
  doi: 10.1016/j.rser.2013.10.038
– ident: ref31/cit31
  doi: 10.1007/978-1-4684-4916-7_20
– ident: ref22/cit22
  doi: 10.1021/acs.langmuir.7b01418
– ident: ref15/cit15
  doi: 10.1038/nature10447
– ident: ref10/cit10
  doi: 10.1016/j.rser.2017.08.046
– ident: ref28/cit28
  doi: 10.1016/j.pmatsci.2012.11.001
– ident: ref32/cit32
  doi: 10.1016/B978-044453021-9/50005-1
– ident: ref21/cit21
  doi: 10.1016/j.apsusc.2015.08.027
– ident: ref4/cit4
  doi: 10.1016/j.enconman.2015.11.028
– ident: ref25/cit25
  doi: 10.1063/1.4752436
– ident: ref9/cit9
  doi: 10.1038/natrevmats.2015.3
– ident: ref7/cit7
  doi: 10.1021/nn406522n
– ident: ref14/cit14
  doi: 10.1016/j.applthermaleng.2020.114967
– ident: ref37/cit37
  doi: 10.1021/ar040224c
– ident: ref34/cit34
  doi: 10.1039/tf9444000546
SSID ssj0009349
Score 2.4134665
Snippet Improving the antifrosting ability of stainless steel is crucial. In previous reports, many efforts have been dedicated to enhancing the antifrosting...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10156
SubjectTerms air
droplets
frost
humidity
hydrophobicity
simulation models
stainless steel
temperature
Title Antifrosting Performance of a Superhydrophobic Surface by Optimizing the Surface Morphology
URI http://dx.doi.org/10.1021/acs.langmuir.0c01618
https://www.proquest.com/docview/2436404185
https://www.proquest.com/docview/2986473424
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HvTiW3wTwYuH1Dx2N8mxFEsRaoVaKHgIu5MNLWpT0ubQ_np30qSlilav-wjJzGbnm9mdbwi5lWAL6tu26bMITOrEtikswbSXYgcSJI39CBOcW0-82aWPPdZbOopfT_Ad-17AuIqxu49skFYtyBneN8mWw30Pna1avbMk2XXncBdpNz3K3TJV7oenoEGC8apBWt2PcyPT2CPtMlVnfrfkrZpNZBVm35kb__j--2S3wJtGbb5ADsiGGh6S7XpZ5u2IvNbwuhDmfmgjZjwv8wiMJDaE0clGKu1PozQZ9RM5AN2QxkL3yqnR1tvNx2CG8zSMXPS0Eq27PFp_TLqNh5d60ywqLpiCOnRiYgQikrFCTvs4UMLTYCNg2qUBJrQLDuBCwJVnRRaVMeOCqUAyZUURx7LgGkmdkMowGapTYnDKhUZvjgsCqGuBzxgARk8UE3Yk2Rm505IJiz9mHOaH4Y4dYmMprrAQ1xlxSxWFUFCXYwWN9zWzzMWs0Zy6Y834m1L7odYBHpyIoUqycehQl1MLaX5-GYM8956rxXj-jy-7IDsOOvD5pbVLUpmkmbrSKGcir_Ol_Ql2tfvV
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtswDCaK7tBd9j-s--k8YDvs4MyWJSU-7BBkK9K16Qa0BQrs4Em0jAZd48COMaTv01fpc5V07AQdsBU7FNhVsgxJpERSJD8CvLUYGtkLQ7-nUvSlyELfBEaRlRLGFq3MeiknOI_29fBIfjlWx2tw0ebC0CRK-lNZO_FX6ALhB27jJ7yzalx0AqyB3ptYyl03_0WWWvlx5xOR9Z0Q258PB0O_KSbgGynkzGfjOrWZY7j2LHamS3I0VqStozJkXSJGGGvXDdJA2kxpo1xslQvSVHPFa834BnTT3yH9R7CN1x8crLB9o4WWzWifXamjNkPvD7NmOYjldTl4XQzUsm37Plwud6UOaTntVDPbwfPfACP_-217APca7drrL47DQ1hzk0ewMWiL2j2G730OjuJMFxLZ3rdV1oSXZ57xDqqpK07maZFPT3I7RmooMkO9du59pcv1bHzO40hpXvaMcuLU2jfxBI5uZW1PYX2ST9wz8LTUhnRVEaFBGQXYUwqR34qcMmFq1Sa8J0okzf1QJrXrX4QJN7bkSRrybELUckaCDVA71wv5ecMofzlqugAqueH7Ny3TJUQDdhOZicurMhEy0jJgUKO_fMOo_t2ItvH5P6zsNWwMD0d7yd7O_u4LuCv46aIO13sJ67Oicq9Iv5vZrfp0efDjtvnyCuPAXlA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9swDCaKDth22bNDu1c9YDvs4MwPSYkPPQRpgz7WrkBboMAOnkTJaLA1DuwYQ_qP9lf6q0Y6dooOWIsdethVsgxJpERSJD8CvDcYatELQ78nLfoiykJfB1qSlRImBo3IepYTnPcP1PaJ2D2Vp0vwq82FoUmU9KeyduLzqZ7YrEEYCD9xOz_jnVejohNgDfbexFPuudlPstbKjZ1NIu2HKBpuHQ-2_aaggK9FJKY-G9jWZI4h27PE6S7J0kSSxo5Sk4WJGGOiXDewgTCZVFq6xEgXWKu46rVijAO67e-xp5DtvP7g6ArfN55r2oz42RUqbrP0_jJrloVYXpeF10VBLd-Gj-FysTN1WMv3TjU1Hbz4AzTyv9i6J_Co0bK9_vxYPIUlN34GDwZtcbvn8LXPQVKc8UKi2zu8yp7w8szT3lE1ccXZzBb55Cw3I6SGItPUa2beF7pkz0cXPI6U50XPfk4cW_soVuDkTtb2ApbH-ditgqeE0qSzRjFqFHGAPSkR-c3ISR1aI9fgI1Eibe6JMq1DAKIw5caWPGlDnjWIW-5IsQFs57ohP24Z5S9GTeaAJbd8_65lvJRowO4iPXZ5VaaRiJUIGNzohm8Y3b8b0za-_IeVrcP9w81h-nnnYO8VPIz4BaOO2nsNy9Oicm9IzZuat_UB8-DbXbPlb0_5YNM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antifrosting+Performance+of+a+Superhydrophobic+Surface+by+Optimizing+the+Surface+Morphology&rft.jtitle=Langmuir&rft.au=Jiang%2C+Shuyue&rft.au=Zhang%2C+Haifeng&rft.au=Jiang%2C+Chunfeng&rft.au=Liu%2C+Xiaowei&rft.date=2020-09-01&rft.issn=1520-5827&rft.volume=36&rft.issue=34+p.10156-10165&rft.spage=10156&rft.epage=10165&rft_id=info:doi/10.1021%2Facs.langmuir.0c01618&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon