Antifrosting Performance of a Superhydrophobic Surface by Optimizing the Surface Morphology
Improving the antifrosting ability of stainless steel is crucial. In previous reports, many efforts have been dedicated to enhancing the antifrosting performance of superhydrophobic surface by fabricating different surface morphology. However, no researchers have proposed what kind of surface morpho...
Saved in:
Published in | Langmuir Vol. 36; no. 34; pp. 10156 - 10165 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Improving the antifrosting ability of stainless steel is crucial. In previous reports, many efforts have been dedicated to enhancing the antifrosting performance of superhydrophobic surface by fabricating different surface morphology. However, no researchers have proposed what kind of surface morphology can effectively prevent the frost based on the theory of superhydrophobic surfaces. In this article, we build a simulation model to study the effects of different surface morphology on antifrosting based on the Cassie model. We find that the higher the proportion of air between the droplet and the substrate, the better the antifrosting performance of the superhydrophobic surface. Therefore, we propose one superhydrophobic surface (denoted as sample #R) fabricated by selective growth. It can contain more air between the droplet and the surface. Further frosting experiments at a low temperature of −21 °C and a humidity of 75% show that 15% frost coverage on sample #R can be delayed to 63 h, as compared to less than 3 h for untreated stainless steel. In addition, the preparation method is generally applicable to other metals. Therefore, this work provides new insights into the rational design of a superhydrophobic surface with antifrosting in a harsh environment. |
---|---|
AbstractList | Improving the antifrosting ability of stainless steel is crucial. In previous reports, many efforts have been dedicated to enhancing the antifrosting performance of superhydrophobic surface by fabricating different surface morphology. However, no researchers have proposed what kind of surface morphology can effectively prevent the frost based on the theory of superhydrophobic surfaces. In this article, we build a simulation model to study the effects of different surface morphology on antifrosting based on the Cassie model. We find that the higher the proportion of air between the droplet and the substrate, the better the antifrosting performance of the superhydrophobic surface. Therefore, we propose one superhydrophobic surface (denoted as sample #R) fabricated by selective growth. It can contain more air between the droplet and the surface. Further frosting experiments at a low temperature of -21 °C and a humidity of 75% show that 15% frost coverage on sample #R can be delayed to 63 h, as compared to less than 3 h for untreated stainless steel. In addition, the preparation method is generally applicable to other metals. Therefore, this work provides new insights into the rational design of a superhydrophobic surface with antifrosting in a harsh environment.Improving the antifrosting ability of stainless steel is crucial. In previous reports, many efforts have been dedicated to enhancing the antifrosting performance of superhydrophobic surface by fabricating different surface morphology. However, no researchers have proposed what kind of surface morphology can effectively prevent the frost based on the theory of superhydrophobic surfaces. In this article, we build a simulation model to study the effects of different surface morphology on antifrosting based on the Cassie model. We find that the higher the proportion of air between the droplet and the substrate, the better the antifrosting performance of the superhydrophobic surface. Therefore, we propose one superhydrophobic surface (denoted as sample #R) fabricated by selective growth. It can contain more air between the droplet and the surface. Further frosting experiments at a low temperature of -21 °C and a humidity of 75% show that 15% frost coverage on sample #R can be delayed to 63 h, as compared to less than 3 h for untreated stainless steel. In addition, the preparation method is generally applicable to other metals. Therefore, this work provides new insights into the rational design of a superhydrophobic surface with antifrosting in a harsh environment. Improving the antifrosting ability of stainless steel is crucial. In previous reports, many efforts have been dedicated to enhancing the antifrosting performance of superhydrophobic surface by fabricating different surface morphology. However, no researchers have proposed what kind of surface morphology can effectively prevent the frost based on the theory of superhydrophobic surfaces. In this article, we build a simulation model to study the effects of different surface morphology on antifrosting based on the Cassie model. We find that the higher the proportion of air between the droplet and the substrate, the better the antifrosting performance of the superhydrophobic surface. Therefore, we propose one superhydrophobic surface (denoted as sample #R) fabricated by selective growth. It can contain more air between the droplet and the surface. Further frosting experiments at a low temperature of −21 °C and a humidity of 75% show that 15% frost coverage on sample #R can be delayed to 63 h, as compared to less than 3 h for untreated stainless steel. In addition, the preparation method is generally applicable to other metals. Therefore, this work provides new insights into the rational design of a superhydrophobic surface with antifrosting in a harsh environment. |
Author | Liu, Xiaowei Jiang, Shuyue Zhang, Haifeng Jiang, Chunfeng |
AuthorAffiliation | MEMS Center State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology |
AuthorAffiliation_xml | – name: State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology – name: MEMS Center |
Author_xml | – sequence: 1 givenname: Shuyue surname: Jiang fullname: Jiang, Shuyue organization: MEMS Center – sequence: 2 givenname: Haifeng orcidid: 0000-0002-4917-746X surname: Zhang fullname: Zhang, Haifeng email: zhanghf@hit.edu.cn organization: State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology – sequence: 3 givenname: Chunfeng surname: Jiang fullname: Jiang, Chunfeng organization: MEMS Center – sequence: 4 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei organization: State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology |
BookMark | eNqFkD1PwzAURS0EEm3hHzBkZEnxZxKzVRVfUlGRgIkhchy7dZXEwXaG8utx1cLAQKcnvXvPe9IZg9POdgqAKwSnCGJ0I6SfNqJbtYNxUyghylBxAkaIYZiyAuenYARzStKcZuQcjL3fQAg5oXwEPmZdMNpZH0y3Sl6U09a1opMqsToRyevQK7fe1s72a1sZGRdOi5hW22TZB9Oarx0X1uo3ebYudhu72l6AMy0ary4PcwLe7-_e5o_pYvnwNJ8tUkExDSniRV5XWkGCqOZK5IxRzoqcSSZUhaUkkmcqhzWklWaZYIpXTMG6zjDGPMNkAq73d3tnPwflQ9kaL1UTlSg7-BLzIqM5ic-OVynJKKSoYLF6u6_KaMc7pUtpggjGdsEJ05QIljv5ZZRf_sgvD_IjTP_AvTOtcNtjGNxju3RjB9dFb_8j30I1oTA |
CitedBy_id | crossref_primary_10_1615_JEnhHeatTransf_2022042325 crossref_primary_10_1021_acs_langmuir_2c00916 crossref_primary_10_1016_j_rinma_2022_100274 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125035 crossref_primary_10_1016_j_molliq_2024_125139 crossref_primary_10_3389_fbioe_2022_887902 crossref_primary_10_1016_j_colsurfa_2024_133294 crossref_primary_10_1016_j_jiec_2022_10_039 crossref_primary_10_1021_acs_langmuir_1c01684 crossref_primary_10_1021_acs_cgd_1c00449 crossref_primary_10_1021_acs_langmuir_1c00676 crossref_primary_10_1016_j_expthermflusci_2023_110878 crossref_primary_10_3389_fbioe_2022_1033514 |
Cites_doi | 10.1021/am502607e 10.1021/nl303835d 10.1016/j.apenergy.2015.11.036 10.1016/j.apsusc.2015.02.051 10.1016/j.applthermaleng.2017.01.049 10.1016/j.applthermaleng.2016.08.145 10.1016/j.pmatsci.2013.12.003 10.1021/jp9085415 10.1016/j.scriptamat.2016.03.015 10.1007/978-1-4419-6247-8_5262 10.1016/j.pmatsci.2014.10.003 10.1016/j.expthermflusci.2014.09.003 10.1002/admi.201900244 10.1021/acsami.9b21704 10.1021/am501252u 10.1007/s00339-017-1509-x 10.1016/j.ijrefrig.2015.02.005 10.1063/1.3524513 10.1016/j.expthermflusci.2006.11.002 10.1038/nmat924 10.1016/j.rser.2013.10.038 10.1007/978-1-4684-4916-7_20 10.1021/acs.langmuir.7b01418 10.1038/nature10447 10.1016/j.rser.2017.08.046 10.1016/j.pmatsci.2012.11.001 10.1016/B978-044453021-9/50005-1 10.1016/j.apsusc.2015.08.027 10.1016/j.enconman.2015.11.028 10.1063/1.4752436 10.1038/natrevmats.2015.3 10.1021/nn406522n 10.1016/j.applthermaleng.2020.114967 10.1021/ar040224c 10.1039/tf9444000546 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1021/acs.langmuir.0c01618 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 10165 |
ExternalDocumentID | 10_1021_acs_langmuir_0c01618 a864063349 |
GroupedDBID | - .K2 02 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GNL IH9 IHE JG JG~ K2 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK YQT ~02 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a424t-1987dbfe0314f9ea755495875c5aeb2cc3c96e70d04bf56a5e9b5e0dd62229623 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Fri Jul 11 12:24:36 EDT 2025 Fri Jul 11 13:46:12 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 Tue Jul 01 03:59:02 EDT 2025 Thu Sep 03 06:07:35 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a424t-1987dbfe0314f9ea755495875c5aeb2cc3c96e70d04bf56a5e9b5e0dd62229623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4917-746X |
PQID | 2436404185 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2986473424 proquest_miscellaneous_2436404185 crossref_citationtrail_10_1021_acs_langmuir_0c01618 crossref_primary_10_1021_acs_langmuir_0c01618 acs_journals_10_1021_acs_langmuir_0c01618 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 Chen Z. S. (ref27/cit27) 1992; 22 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref11/cit11 doi: 10.1021/am502607e – ident: ref12/cit12 doi: 10.1021/nl303835d – ident: ref5/cit5 doi: 10.1016/j.apenergy.2015.11.036 – ident: ref16/cit16 doi: 10.1016/j.apsusc.2015.02.051 – ident: ref3/cit3 doi: 10.1016/j.applthermaleng.2017.01.049 – ident: ref20/cit20 doi: 10.1016/j.applthermaleng.2016.08.145 – ident: ref30/cit30 doi: 10.1016/j.pmatsci.2013.12.003 – ident: ref35/cit35 doi: 10.1021/jp9085415 – ident: ref8/cit8 doi: 10.1016/j.scriptamat.2016.03.015 – ident: ref26/cit26 doi: 10.1007/978-1-4419-6247-8_5262 – ident: ref29/cit29 doi: 10.1016/j.pmatsci.2014.10.003 – volume: 22 start-page: 416 year: 1992 ident: ref27/cit27 publication-title: Journal of China University of Science and Technology (In Chinese) – ident: ref19/cit19 doi: 10.1016/j.expthermflusci.2014.09.003 – ident: ref17/cit17 doi: 10.1002/admi.201900244 – ident: ref13/cit13 doi: 10.1021/acsami.9b21704 – ident: ref18/cit18 doi: 10.1021/am501252u – ident: ref23/cit23 doi: 10.1007/s00339-017-1509-x – ident: ref2/cit2 doi: 10.1016/j.ijrefrig.2015.02.005 – ident: ref24/cit24 doi: 10.1063/1.3524513 – ident: ref6/cit6 doi: 10.1016/j.expthermflusci.2006.11.002 – ident: ref36/cit36 doi: 10.1038/nmat924 – ident: ref33/cit33 doi: 10.1007/978-1-4419-6247-8_5262 – ident: ref1/cit1 doi: 10.1016/j.rser.2013.10.038 – ident: ref31/cit31 doi: 10.1007/978-1-4684-4916-7_20 – ident: ref22/cit22 doi: 10.1021/acs.langmuir.7b01418 – ident: ref15/cit15 doi: 10.1038/nature10447 – ident: ref10/cit10 doi: 10.1016/j.rser.2017.08.046 – ident: ref28/cit28 doi: 10.1016/j.pmatsci.2012.11.001 – ident: ref32/cit32 doi: 10.1016/B978-044453021-9/50005-1 – ident: ref21/cit21 doi: 10.1016/j.apsusc.2015.08.027 – ident: ref4/cit4 doi: 10.1016/j.enconman.2015.11.028 – ident: ref25/cit25 doi: 10.1063/1.4752436 – ident: ref9/cit9 doi: 10.1038/natrevmats.2015.3 – ident: ref7/cit7 doi: 10.1021/nn406522n – ident: ref14/cit14 doi: 10.1016/j.applthermaleng.2020.114967 – ident: ref37/cit37 doi: 10.1021/ar040224c – ident: ref34/cit34 doi: 10.1039/tf9444000546 |
SSID | ssj0009349 |
Score | 2.4134665 |
Snippet | Improving the antifrosting ability of stainless steel is crucial. In previous reports, many efforts have been dedicated to enhancing the antifrosting... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10156 |
SubjectTerms | air droplets frost humidity hydrophobicity simulation models stainless steel temperature |
Title | Antifrosting Performance of a Superhydrophobic Surface by Optimizing the Surface Morphology |
URI | http://dx.doi.org/10.1021/acs.langmuir.0c01618 https://www.proquest.com/docview/2436404185 https://www.proquest.com/docview/2986473424 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HvTiW3wTwYuH1Dx2N8mxFEsRaoVaKHgIu5MNLWpT0ubQ_np30qSlilav-wjJzGbnm9mdbwi5lWAL6tu26bMITOrEtikswbSXYgcSJI39CBOcW0-82aWPPdZbOopfT_Ad-17AuIqxu49skFYtyBneN8mWw30Pna1avbMk2XXncBdpNz3K3TJV7oenoEGC8apBWt2PcyPT2CPtMlVnfrfkrZpNZBVm35kb__j--2S3wJtGbb5ADsiGGh6S7XpZ5u2IvNbwuhDmfmgjZjwv8wiMJDaE0clGKu1PozQZ9RM5AN2QxkL3yqnR1tvNx2CG8zSMXPS0Eq27PFp_TLqNh5d60ywqLpiCOnRiYgQikrFCTvs4UMLTYCNg2qUBJrQLDuBCwJVnRRaVMeOCqUAyZUURx7LgGkmdkMowGapTYnDKhUZvjgsCqGuBzxgARk8UE3Yk2Rm505IJiz9mHOaH4Y4dYmMprrAQ1xlxSxWFUFCXYwWN9zWzzMWs0Zy6Y834m1L7odYBHpyIoUqycehQl1MLaX5-GYM8956rxXj-jy-7IDsOOvD5pbVLUpmkmbrSKGcir_Ol_Ql2tfvV |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtswDCaK7tBd9j-s--k8YDvs4MyWJSU-7BBkK9K16Qa0BQrs4Em0jAZd48COMaTv01fpc5V07AQdsBU7FNhVsgxJpERSJD8CvLUYGtkLQ7-nUvSlyELfBEaRlRLGFq3MeiknOI_29fBIfjlWx2tw0ebC0CRK-lNZO_FX6ALhB27jJ7yzalx0AqyB3ptYyl03_0WWWvlx5xOR9Z0Q258PB0O_KSbgGynkzGfjOrWZY7j2LHamS3I0VqStozJkXSJGGGvXDdJA2kxpo1xslQvSVHPFa834BnTT3yH9R7CN1x8crLB9o4WWzWifXamjNkPvD7NmOYjldTl4XQzUsm37Plwud6UOaTntVDPbwfPfACP_-217APca7drrL47DQ1hzk0ewMWiL2j2G730OjuJMFxLZ3rdV1oSXZ57xDqqpK07maZFPT3I7RmooMkO9du59pcv1bHzO40hpXvaMcuLU2jfxBI5uZW1PYX2ST9wz8LTUhnRVEaFBGQXYUwqR34qcMmFq1Sa8J0okzf1QJrXrX4QJN7bkSRrybELUckaCDVA71wv5ecMofzlqugAqueH7Ny3TJUQDdhOZicurMhEy0jJgUKO_fMOo_t2ItvH5P6zsNWwMD0d7yd7O_u4LuCv46aIO13sJ67Oicq9Iv5vZrfp0efDjtvnyCuPAXlA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9swDCaKDth22bNDu1c9YDvs4MwPSYkPPQRpgz7WrkBboMAOnkTJaLA1DuwYQ_qP9lf6q0Y6dooOWIsdethVsgxJpERSJD8CvDcYatELQ78nLfoiykJfB1qSlRImBo3IepYTnPcP1PaJ2D2Vp0vwq82FoUmU9KeyduLzqZ7YrEEYCD9xOz_jnVejohNgDfbexFPuudlPstbKjZ1NIu2HKBpuHQ-2_aaggK9FJKY-G9jWZI4h27PE6S7J0kSSxo5Sk4WJGGOiXDewgTCZVFq6xEgXWKu46rVijAO67e-xp5DtvP7g6ArfN55r2oz42RUqbrP0_jJrloVYXpeF10VBLd-Gj-FysTN1WMv3TjU1Hbz4AzTyv9i6J_Co0bK9_vxYPIUlN34GDwZtcbvn8LXPQVKc8UKi2zu8yp7w8szT3lE1ccXZzBb55Cw3I6SGItPUa2beF7pkz0cXPI6U50XPfk4cW_soVuDkTtb2ApbH-ditgqeE0qSzRjFqFHGAPSkR-c3ISR1aI9fgI1Eibe6JMq1DAKIw5caWPGlDnjWIW-5IsQFs57ohP24Z5S9GTeaAJbd8_65lvJRowO4iPXZ5VaaRiJUIGNzohm8Y3b8b0za-_IeVrcP9w81h-nnnYO8VPIz4BaOO2nsNy9Oicm9IzZuat_UB8-DbXbPlb0_5YNM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antifrosting+Performance+of+a+Superhydrophobic+Surface+by+Optimizing+the+Surface+Morphology&rft.jtitle=Langmuir&rft.au=Jiang%2C+Shuyue&rft.au=Zhang%2C+Haifeng&rft.au=Jiang%2C+Chunfeng&rft.au=Liu%2C+Xiaowei&rft.date=2020-09-01&rft.issn=1520-5827&rft.volume=36&rft.issue=34+p.10156-10165&rft.spage=10156&rft.epage=10165&rft_id=info:doi/10.1021%2Facs.langmuir.0c01618&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |