Understanding the Stabilization of a Bulk Nanobubble: A Molecular Dynamics Analysis
Bulk nanobubbles (NBs) have received considerable attention because of their extensive potential applications, such as in ultrasound imaging and water management. Although multiple types of experimental evidence have supported the existence and stabilization of bulk NBs, the underlying mechanism rem...
Saved in:
Published in | Langmuir Vol. 37; no. 38; pp. 11281 - 11291 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
28.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bulk nanobubbles (NBs) have received considerable attention because of their extensive potential applications, such as in ultrasound imaging and water management. Although multiple types of experimental evidence have supported the existence and stabilization of bulk NBs, the underlying mechanism remains unclear. This study numerically investigates the bulk NB stabilization with molecular dynamics (MD) methods: the all-atom (AA) MD simulation is used for NBs of several nanometers diameter; the coarse-grained (CG) MD simulation is for the NBs of about 100 nm. The NB properties are statistically obtained and analyzed, including the inner density, inner pressure, surface charge, interfacial hydrogen bond (HB), and gaseous diffusion. The results show that the gas inside an NB has ultrahigh density (tens of kilograms per cubic meter). A double-layer surface charge exists on the NB. The inner/outer layer is positively/negatively charged, and the electrostatic stress can counteract part of the surface tension. In addition, the interfacial HB is weakened by the interaction between gas and water molecules, causing less surface tension. The above features are beneficial to NB stabilization. The NB equilibrium radii solved by the interfacial mechanical equilibrium equation agree with the MD results, indicating that this equation can describe the force balance of an NB as small as several nanometers. Besides, supersaturation appears to be necessary for the NB thermodynamic equilibrium. Based on Henry’s law and the ideal gas law, the theoretical analysis suggests that the stability of the NB thermodynamic equilibrium is conditional: the number of gas molecules in NBs should be more than half that dissolved in liquid. This study unravels a stabilized bulk NB’s properties and discusses the NB equilibrium and stabilization mechanism, which will advance the understanding and application of bulk NBs. |
---|---|
AbstractList | Bulk nanobubbles (NBs) have received considerable attention because of their extensive potential applications, such as in ultrasound imaging and water management. Although multiple types of experimental evidence have supported the existence and stabilization of bulk NBs, the underlying mechanism remains unclear. This study numerically investigates the bulk NB stabilization with molecular dynamics (MD) methods: the all-atom (AA) MD simulation is used for NBs of several nanometers diameter; the coarse-grained (CG) MD simulation is for the NBs of about 100 nm. The NB properties are statistically obtained and analyzed, including the inner density, inner pressure, surface charge, interfacial hydrogen bond (HB), and gaseous diffusion. The results show that the gas inside an NB has ultrahigh density (tens of kilograms per cubic meter). A double-layer surface charge exists on the NB. The inner/outer layer is positively/negatively charged, and the electrostatic stress can counteract part of the surface tension. In addition, the interfacial HB is weakened by the interaction between gas and water molecules, causing less surface tension. The above features are beneficial to NB stabilization. The NB equilibrium radii solved by the interfacial mechanical equilibrium equation agree with the MD results, indicating that this equation can describe the force balance of an NB as small as several nanometers. Besides, supersaturation appears to be necessary for the NB thermodynamic equilibrium. Based on Henry’s law and the ideal gas law, the theoretical analysis suggests that the stability of the NB thermodynamic equilibrium is conditional: the number of gas molecules in NBs should be more than half that dissolved in liquid. This study unravels a stabilized bulk NB’s properties and discusses the NB equilibrium and stabilization mechanism, which will advance the understanding and application of bulk NBs. Bulk nanobubbles (NBs) have received considerable attention because of their extensive potential applications, such as in ultrasound imaging and water management. Although multiple types of experimental evidence have supported the existence and stabilization of bulk NBs, the underlying mechanism remains unclear. This study numerically investigates the bulk NB stabilization with molecular dynamics (MD) methods: the all-atom (AA) MD simulation is used for NBs of several nanometers diameter; the coarse-grained (CG) MD simulation is for the NBs of about 100 nm. The NB properties are statistically obtained and analyzed, including the inner density, inner pressure, surface charge, interfacial hydrogen bond (HB), and gaseous diffusion. The results show that the gas inside an NB has ultrahigh density (tens of kilograms per cubic meter). A double-layer surface charge exists on the NB. The inner/outer layer is positively/negatively charged, and the electrostatic stress can counteract part of the surface tension. In addition, the interfacial HB is weakened by the interaction between gas and water molecules, causing less surface tension. The above features are beneficial to NB stabilization. The NB equilibrium radii solved by the interfacial mechanical equilibrium equation agree with the MD results, indicating that this equation can describe the force balance of an NB as small as several nanometers. Besides, supersaturation appears to be necessary for the NB thermodynamic equilibrium. Based on Henry's law and the ideal gas law, the theoretical analysis suggests that the stability of the NB thermodynamic equilibrium is conditional: the number of gas molecules in NBs should be more than half that dissolved in liquid. This study unravels a stabilized bulk NB's properties and discusses the NB equilibrium and stabilization mechanism, which will advance the understanding and application of bulk NBs.Bulk nanobubbles (NBs) have received considerable attention because of their extensive potential applications, such as in ultrasound imaging and water management. Although multiple types of experimental evidence have supported the existence and stabilization of bulk NBs, the underlying mechanism remains unclear. This study numerically investigates the bulk NB stabilization with molecular dynamics (MD) methods: the all-atom (AA) MD simulation is used for NBs of several nanometers diameter; the coarse-grained (CG) MD simulation is for the NBs of about 100 nm. The NB properties are statistically obtained and analyzed, including the inner density, inner pressure, surface charge, interfacial hydrogen bond (HB), and gaseous diffusion. The results show that the gas inside an NB has ultrahigh density (tens of kilograms per cubic meter). A double-layer surface charge exists on the NB. The inner/outer layer is positively/negatively charged, and the electrostatic stress can counteract part of the surface tension. In addition, the interfacial HB is weakened by the interaction between gas and water molecules, causing less surface tension. The above features are beneficial to NB stabilization. The NB equilibrium radii solved by the interfacial mechanical equilibrium equation agree with the MD results, indicating that this equation can describe the force balance of an NB as small as several nanometers. Besides, supersaturation appears to be necessary for the NB thermodynamic equilibrium. Based on Henry's law and the ideal gas law, the theoretical analysis suggests that the stability of the NB thermodynamic equilibrium is conditional: the number of gas molecules in NBs should be more than half that dissolved in liquid. This study unravels a stabilized bulk NB's properties and discusses the NB equilibrium and stabilization mechanism, which will advance the understanding and application of bulk NBs. |
Author | Sun, Weitao Wang, Bing Wu, Wangxia Gao, Zhan |
AuthorAffiliation | School of Aerospace Engineering Beijing Institute of Technology |
AuthorAffiliation_xml | – name: School of Aerospace Engineering – name: Beijing Institute of Technology |
Author_xml | – sequence: 1 givenname: Zhan surname: Gao fullname: Gao, Zhan organization: School of Aerospace Engineering – sequence: 2 givenname: Wangxia surname: Wu fullname: Wu, Wangxia organization: Beijing Institute of Technology – sequence: 3 givenname: Weitao surname: Sun fullname: Sun, Weitao organization: School of Aerospace Engineering – sequence: 4 givenname: Bing orcidid: 0000-0003-3373-7351 surname: Wang fullname: Wang, Bing email: wbing@tsinghua.edu.cn organization: School of Aerospace Engineering |
BookMark | eNqF0LtOwzAYhmELgUQp3AGDR5YUn3Jwt3JGKjCUztEfxykurl3sZChXT0rLwgCLPfh7PTwn6NB5pxE6p2RECaOXoOLIglusOhNGVBGay-wADWjKSJIWLD9EA5ILnuQi48foJMYlIURyIQdoNne1DrEFVxu3wO2bxrMWKmPNJ7TGO-wbDPiqs-_4GZyvuqqyeown-MlbrToLAd9sHKyMinjiwG6iiafoqAEb9dn-HqL53e3r9UMyfbl_vJ5MExBMtAmVjFGtKJGFVsDrqiGa1VJkRUMJJZo3WZP2Rw6FIFSLVHJaUFVnKSkg5zUfoovdv-vgPzod23JlotK2p9C-iyXLeMYLymT2_zTNmeRpD9dPxW6qgo8x6KZcB7OCsCkpKbfcZc9d_nCXe-4-G__KlGm_CdsAxv4Xk128fV36LvSS8e_kCymhnKM |
CitedBy_id | crossref_primary_10_1016_j_molliq_2024_125838 crossref_primary_10_1016_j_cherd_2024_08_041 crossref_primary_10_1016_j_jclepro_2023_139153 crossref_primary_10_1016_j_jcis_2023_08_173 crossref_primary_10_1016_j_fuel_2024_132517 crossref_primary_10_1016_j_mineng_2022_107554 crossref_primary_10_1016_j_conbuildmat_2024_139807 crossref_primary_10_1063_5_0137541 crossref_primary_10_1016_j_chemosphere_2022_136733 crossref_primary_10_1021_acs_langmuir_2c02792 crossref_primary_10_1016_j_molliq_2024_125180 crossref_primary_10_1021_acs_langmuir_3c00484 crossref_primary_10_1016_j_colsurfa_2024_133530 crossref_primary_10_1021_acs_analchem_4c01035 crossref_primary_10_1080_10408398_2022_2067119 crossref_primary_10_1002_sstr_202400080 crossref_primary_10_1002_solr_202301047 crossref_primary_10_1021_acs_langmuir_3c03213 crossref_primary_10_1016_j_jclepro_2022_134331 crossref_primary_10_1016_j_colsurfa_2024_135535 crossref_primary_10_1007_s11433_024_2538_9 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125407 crossref_primary_10_1103_PhysRevLett_133_104001 crossref_primary_10_3390_ma15186353 crossref_primary_10_1021_acsestengg_3c00344 crossref_primary_10_1088_1674_1056_ad989d crossref_primary_10_1016_j_fuel_2023_127650 crossref_primary_10_1016_j_jclepro_2024_142230 crossref_primary_10_1021_jacs_4c06641 crossref_primary_10_1016_j_watres_2023_120613 crossref_primary_10_1021_acs_jcim_4c01027 crossref_primary_10_1016_j_ijft_2024_100734 crossref_primary_10_1088_1572_9494_ad109c crossref_primary_10_3390_pr12061227 crossref_primary_10_1063_5_0230903 crossref_primary_10_1038_s41467_024_53304_3 crossref_primary_10_3390_nano12132175 crossref_primary_10_3390_nano15040314 crossref_primary_10_1021_acs_langmuir_2c02042 crossref_primary_10_1002_admi_202400496 crossref_primary_10_15377_2410_3624_2024_11_3 crossref_primary_10_1016_j_molliq_2022_120979 crossref_primary_10_1063_5_0204665 crossref_primary_10_1080_10643389_2022_2136931 crossref_primary_10_3390_app14156452 |
Cites_doi | 10.1021/acs.langmuir.9b03532 10.1080/08927022.2018.1511903 10.1080/002689797169916 10.1021/acs.langmuir.6b01004 10.1016/0263-7855(96)00018-5 10.1063/1.2742385 10.1021/acs.langmuir.6b01644 10.1016/j.ces.2009.10.003 10.1103/PhysRevLett.110.054501 10.1039/D0SM00116C 10.1021/j100389a010 10.1016/j.colsurfa.2020.124430 10.1039/c3cs60093a 10.1016/j.jcis.2021.03.064 10.1039/c1cp22018g 10.1007/s11433-008-0026-5 10.1063/1.1747247 10.1063/1.2715577 10.3389/fphy.2020.583202 10.1063/1.1747520 10.1021/acs.langmuir.8b01163 10.1039/C8SM01949E 10.1021/acsnano.8b08359 10.1063/1.447358 10.1126/science.213.4504.209 10.1016/j.ces.2018.09.044 10.1007/s10483-013-1757-x 10.1002/9780470143476.ch7 10.1126/sciadv.aaz0094 10.1016/j.jcis.2018.10.108 10.1021/la000219r 10.1021/jacs.9b11303 10.1103/PhysRevLett.124.134503 10.1021/acs.langmuir.6b02489 10.1063/1.1747782 10.26434/chemrxiv.13591283 10.1002/cphc.201100807 10.1002/jcc.21224 10.1021/jp071097f 10.1063/1.5004985 10.1021/acsami.0c07022 10.1017/jfm.2020.1049 10.1021/acs.langmuir.5b04703 10.1063/1.477658 10.1063/1.4739528 10.1021/acs.langmuir.7b02290 10.1016/j.jcis.2019.12.093 10.1021/acs.langmuir.7b00510 10.1063/1.3245303 10.1016/j.colsurfa.2005.06.063 10.1016/j.colsurfa.2010.03.005 10.1021/acs.langmuir.0c03574 10.1063/1.2121687 10.1103/PhysRevLett.76.928 10.1016/j.scitotenv.2018.04.284 10.1016/j.jcis.2020.02.101 10.1021/acs.langmuir.8b04314 10.1063/1.3330544 10.1016/j.jmb.2021.166841 10.1117/12.2064811 10.1021/acs.langmuir.9b00144 10.1021/jp036508g 10.1006/jcis.1999.6663 10.1063/1.3279128 10.1021/acs.langmuir.8b03113 10.1016/j.colsurfa.2016.01.050 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1021/acs.langmuir.1c01796 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 11291 |
ExternalDocumentID | 10_1021_acs_langmuir_1c01796 f2248145 |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV CITATION CUPRZ YQT ~02 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a424t-19221ec1098eca3dbf0e2d9468f1010e3f6f53f67a8401e4593181cd6508a73d3 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Fri Jul 11 05:52:31 EDT 2025 Thu Jul 10 23:36:39 EDT 2025 Tue Jul 01 03:59:09 EDT 2025 Thu Apr 24 23:08:16 EDT 2025 Thu Sep 30 03:10:48 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a424t-19221ec1098eca3dbf0e2d9468f1010e3f6f53f67a8401e4593181cd6508a73d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3373-7351 |
PQID | 2572935179 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2636381296 proquest_miscellaneous_2572935179 crossref_primary_10_1021_acs_langmuir_1c01796 crossref_citationtrail_10_1021_acs_langmuir_1c01796 acs_journals_10_1021_acs_langmuir_1c01796 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-28 |
PublicationDateYYYYMMDD | 2021-09-28 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 Mørch K. A. (ref7/cit7) 2018 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 Yesudasan S. (ref57/cit57) 2019; 12 |
References_xml | – ident: ref23/cit23 doi: 10.1021/acs.langmuir.9b03532 – ident: ref41/cit41 doi: 10.1080/08927022.2018.1511903 – ident: ref60/cit60 doi: 10.1080/002689797169916 – ident: ref3/cit3 doi: 10.1021/acs.langmuir.6b01004 – ident: ref38/cit38 doi: 10.1016/0263-7855(96)00018-5 – ident: ref64/cit64 doi: 10.1063/1.2742385 – ident: ref28/cit28 doi: 10.1021/acs.langmuir.6b01644 – ident: ref19/cit19 doi: 10.1016/j.ces.2009.10.003 – start-page: 1108 volume-title: International Symposium on Cavitation year: 2018 ident: ref7/cit7 – ident: ref66/cit66 doi: 10.1103/PhysRevLett.110.054501 – ident: ref30/cit30 doi: 10.1039/D0SM00116C – ident: ref59/cit59 doi: 10.1021/j100389a010 – ident: ref9/cit9 doi: 10.1016/j.colsurfa.2020.124430 – ident: ref47/cit47 doi: 10.1039/c3cs60093a – ident: ref63/cit63 doi: 10.1016/j.jcis.2021.03.064 – ident: ref34/cit34 doi: 10.1039/c1cp22018g – ident: ref25/cit25 doi: 10.1007/s11433-008-0026-5 – ident: ref67/cit67 doi: 10.1063/1.1747247 – ident: ref42/cit42 doi: 10.1063/1.2715577 – ident: ref65/cit65 doi: 10.3389/fphy.2020.583202 – ident: ref12/cit12 doi: 10.1063/1.1747520 – ident: ref22/cit22 doi: 10.1021/acs.langmuir.8b01163 – ident: ref31/cit31 doi: 10.1039/C8SM01949E – ident: ref4/cit4 doi: 10.1021/acsnano.8b08359 – ident: ref54/cit54 doi: 10.1063/1.447358 – ident: ref13/cit13 doi: 10.1126/science.213.4504.209 – ident: ref18/cit18 doi: 10.1016/j.ces.2018.09.044 – ident: ref36/cit36 doi: 10.1007/s10483-013-1757-x – ident: ref55/cit55 doi: 10.1002/9780470143476.ch7 – ident: ref33/cit33 doi: 10.1126/sciadv.aaz0094 – ident: ref27/cit27 doi: 10.1016/j.jcis.2018.10.108 – ident: ref10/cit10 doi: 10.1021/la000219r – ident: ref50/cit50 doi: 10.1021/jacs.9b11303 – ident: ref29/cit29 doi: 10.1103/PhysRevLett.124.134503 – ident: ref1/cit1 doi: 10.1021/acs.langmuir.6b02489 – ident: ref56/cit56 doi: 10.1063/1.1747782 – ident: ref45/cit45 doi: 10.26434/chemrxiv.13591283 – ident: ref35/cit35 doi: 10.1002/cphc.201100807 – ident: ref51/cit51 doi: 10.1002/jcc.21224 – ident: ref44/cit44 doi: 10.1021/jp071097f – ident: ref68/cit68 doi: 10.1063/1.5004985 – ident: ref5/cit5 doi: 10.1021/acsami.0c07022 – ident: ref8/cit8 doi: 10.1017/jfm.2020.1049 – ident: ref26/cit26 doi: 10.1021/acs.langmuir.5b04703 – ident: ref53/cit53 doi: 10.1063/1.477658 – volume: 12 start-page: 1 issue: 1 year: 2019 ident: ref57/cit57 publication-title: Int. J. Eng. Technol. – ident: ref20/cit20 doi: 10.1063/1.4739528 – ident: ref6/cit6 doi: 10.1021/acs.langmuir.7b02290 – ident: ref16/cit16 doi: 10.1016/j.jcis.2019.12.093 – ident: ref17/cit17 doi: 10.1021/acs.langmuir.7b00510 – ident: ref37/cit37 doi: 10.1063/1.3245303 – ident: ref61/cit61 doi: 10.1016/j.colsurfa.2005.06.063 – ident: ref15/cit15 doi: 10.1016/j.colsurfa.2010.03.005 – ident: ref49/cit49 doi: 10.1021/acs.langmuir.0c03574 – ident: ref39/cit39 doi: 10.1063/1.2121687 – ident: ref58/cit58 doi: 10.1103/PhysRevLett.76.928 – ident: ref2/cit2 doi: 10.1016/j.scitotenv.2018.04.284 – ident: ref48/cit48 doi: 10.1016/j.jcis.2020.02.101 – ident: ref32/cit32 doi: 10.1021/acs.langmuir.8b04314 – ident: ref40/cit40 doi: 10.1063/1.3330544 – ident: ref52/cit52 doi: 10.1016/j.jmb.2021.166841 – ident: ref21/cit21 doi: 10.1117/12.2064811 – ident: ref24/cit24 doi: 10.1021/acs.langmuir.9b00144 – ident: ref46/cit46 doi: 10.1021/jp036508g – ident: ref14/cit14 doi: 10.1006/jcis.1999.6663 – ident: ref43/cit43 doi: 10.1063/1.3279128 – ident: ref62/cit62 doi: 10.1021/acs.langmuir.8b03113 – ident: ref11/cit11 doi: 10.1016/j.colsurfa.2016.01.050 |
SSID | ssj0009349 |
Score | 2.5685732 |
Snippet | Bulk nanobubbles (NBs) have received considerable attention because of their extensive potential applications, such as in ultrasound imaging and water... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11281 |
SubjectTerms | equations hydrogen bonding liquids molecular dynamics nanobubbles surface tension thermodynamics ultrasonics water management |
Title | Understanding the Stabilization of a Bulk Nanobubble: A Molecular Dynamics Analysis |
URI | http://dx.doi.org/10.1021/acs.langmuir.1c01796 https://www.proquest.com/docview/2572935179 https://www.proquest.com/docview/2636381296 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRpSXjMTCkBI_4iRspVBVSIWhVOoW2Y4toZYENcnCr8duEkpBUFgyRLaVnM_nz7677wC40IIqrHns8DCOHSoYcoSricNjnwprDrFnc4f7D6w3pPcjbzQ_KH714GN0xWXWsnd3L8XztIWk1SC2CtYwC3x72Gp3BnOSXVLCXUu76VNG6lS5H0axG5LMFjekRXs822S6W-CxTtUpY0vGrSIXLfn2nbnxj9-_DTYrvAnbpYLsgBWV7IL1Tl3mbQ8Mhp_TW6DBg9AAUBsyWyZowlRDDm-KyRgaS5yKQoiJuoZt2K8L68Lbsqp9BmuGk30w7N49dXpOVWnB4RTT3DEwDyMlkRsGSnISC-0qHIeUBdosWVcRzbRnHj4350GkqBcaU4BkbOEd90lMDkAjSRN1CKBiinEdeNp1BQ2Ja3REcMTtzYXyfYmb4NJIJKpWShbNnOAYRfZlLaaoElMTkHpqIllRltvKGZMlvZyPXq8lZceS9uf1rEdG9tZhwhOVFllkzJlBQ5bE7Jc2jBgTZlATO_rHnx2DDWyDY6x7KzgBjXxaqFODbnJxNlPpdzc_-F0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5ReqCX0qegT1dqDz1kGz_ibJB62C5FS2G5wErcUtuxJcSSrchGiP6f_pX-LmayCZRKLeoBqZccrNiyPeOZz54XwNtglRfBFJHJiiJSVvPIxkFGpkiVJXEoEoodHu_p0UR9OUwOl-BHFwuDk6hwpKox4l9lF-AfqI2e8E7qo9Med8RIuvWl3PHnZ3hTqz5ubyJZ3wmx9flgOIraYgKRUULNI0QygnvH46zvnZGFDbEXRaZ0PyBXxl4GHRL8pAavPNyrJENu564gBGNSWUgc9w7cRfwj6I43GO5f5faVC5RN2T5TpWUXofeHWZMedNV1PXhdDTS6bWsVfl7uSuPSctyr57bnvv-WMPK_37YHcL9F12ywOA4PYcmXj2Bl2BW1ewz7k1-DeRiiX4ZwmxyEF-GobBaYYZ_q6TFDvTOztbVTv8EGbNyVEWab56U5OXIV6_K5PIHJrazpKSyXs9KvAfPaaxP6SYhjqzIZ44mwhht6p_Fp6sQ6vEcK5K1cqPLG5C94To0dWfKWLOsgO47IXZugneqETG_oFV32-rZIUHLD_286Zstx78k8ZEo_q6schTdiP0rZ9pd_tESBjRhRP_uHlb2GldHBeDff3d7beQ73BLkFkWGv_wKW56e1f4m4bm5fNaeKwdfb5scL_JBY4A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgGX8halPIwEBw5Z4kecTSUOyy6rltIKqazUW7BjW6q6zVbNRlX7j_gr_KrOZJNCkaDi0AOXHKzYsj0zns-eF8DrYJUXwbjIZM5Fymoe2TjIyLhUWToORUKxw9s7emOiPu0le0vwvYuFwUlUOFLVGPFJqo9caDMM8HfUTs94h_X-cY8XxEy69afc8qcneFur3m-OkLRvhBh__DrciNqCApFRQs0jRDOC-4LHWd8XRjobYi9cpnQ_IGfGXgYdEvykBq893KskQ47nhSMUY1LpJI57A26SpZDueYPh7s_8vnKBtCnjZ6q07KL0_jBr0oVFdVkXXlYFjX4b34UfFzvTuLUc9Oq57RVnvyWN_C-27h6stCibDRZicR-WfPkAbg-74nYPYXfya1APQxTMEHaTo_AiLJXNAjPsQz09YKh_Zra2durX2YBtd-WE2ei0NIf7RcW6vC6PYHIta3oMy-Ws9E-Aee21Cf0kxLFVmYxRMqzhht5rfJoWYhXeIgXy9nyo8sb0L3hOjR1Z8pYsqyA7rsiLNlE71QuZXtEruuh1tEhUcsX_rzqGy3HvyUxkSj-rqxwPccSAlLrtL_9oiQc3YkX99B9W9hJufRmN88-bO1trcEeQdxDZ9_rPYHl-XPvnCO_m9kUjWAy-XTc7ngNXc1tj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+Stabilization+of+a+Bulk+Nanobubble%3A+A+Molecular+Dynamics+Analysis&rft.jtitle=Langmuir&rft.au=Gao%2C+Zhan&rft.au=Wu%2C+Wangxia&rft.au=Sun%2C+Weitao&rft.au=Wang%2C+Bing&rft.date=2021-09-28&rft.issn=1520-5827&rft.volume=37&rft.issue=38+p.11281-11291&rft.spage=11281&rft.epage=11291&rft_id=info:doi/10.1021%2Facs.langmuir.1c01796&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |