Understanding the Stabilization of a Bulk Nanobubble: A Molecular Dynamics Analysis

Bulk nanobubbles (NBs) have received considerable attention because of their extensive potential applications, such as in ultrasound imaging and water management. Although multiple types of experimental evidence have supported the existence and stabilization of bulk NBs, the underlying mechanism rem...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 37; no. 38; pp. 11281 - 11291
Main Authors Gao, Zhan, Wu, Wangxia, Sun, Weitao, Wang, Bing
Format Journal Article
LanguageEnglish
Published American Chemical Society 28.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bulk nanobubbles (NBs) have received considerable attention because of their extensive potential applications, such as in ultrasound imaging and water management. Although multiple types of experimental evidence have supported the existence and stabilization of bulk NBs, the underlying mechanism remains unclear. This study numerically investigates the bulk NB stabilization with molecular dynamics (MD) methods: the all-atom (AA) MD simulation is used for NBs of several nanometers diameter; the coarse-grained (CG) MD simulation is for the NBs of about 100 nm. The NB properties are statistically obtained and analyzed, including the inner density, inner pressure, surface charge, interfacial hydrogen bond (HB), and gaseous diffusion. The results show that the gas inside an NB has ultrahigh density (tens of kilograms per cubic meter). A double-layer surface charge exists on the NB. The inner/outer layer is positively/negatively charged, and the electrostatic stress can counteract part of the surface tension. In addition, the interfacial HB is weakened by the interaction between gas and water molecules, causing less surface tension. The above features are beneficial to NB stabilization. The NB equilibrium radii solved by the interfacial mechanical equilibrium equation agree with the MD results, indicating that this equation can describe the force balance of an NB as small as several nanometers. Besides, supersaturation appears to be necessary for the NB thermodynamic equilibrium. Based on Henry’s law and the ideal gas law, the theoretical analysis suggests that the stability of the NB thermodynamic equilibrium is conditional: the number of gas molecules in NBs should be more than half that dissolved in liquid. This study unravels a stabilized bulk NB’s properties and discusses the NB equilibrium and stabilization mechanism, which will advance the understanding and application of bulk NBs.
AbstractList Bulk nanobubbles (NBs) have received considerable attention because of their extensive potential applications, such as in ultrasound imaging and water management. Although multiple types of experimental evidence have supported the existence and stabilization of bulk NBs, the underlying mechanism remains unclear. This study numerically investigates the bulk NB stabilization with molecular dynamics (MD) methods: the all-atom (AA) MD simulation is used for NBs of several nanometers diameter; the coarse-grained (CG) MD simulation is for the NBs of about 100 nm. The NB properties are statistically obtained and analyzed, including the inner density, inner pressure, surface charge, interfacial hydrogen bond (HB), and gaseous diffusion. The results show that the gas inside an NB has ultrahigh density (tens of kilograms per cubic meter). A double-layer surface charge exists on the NB. The inner/outer layer is positively/negatively charged, and the electrostatic stress can counteract part of the surface tension. In addition, the interfacial HB is weakened by the interaction between gas and water molecules, causing less surface tension. The above features are beneficial to NB stabilization. The NB equilibrium radii solved by the interfacial mechanical equilibrium equation agree with the MD results, indicating that this equation can describe the force balance of an NB as small as several nanometers. Besides, supersaturation appears to be necessary for the NB thermodynamic equilibrium. Based on Henry’s law and the ideal gas law, the theoretical analysis suggests that the stability of the NB thermodynamic equilibrium is conditional: the number of gas molecules in NBs should be more than half that dissolved in liquid. This study unravels a stabilized bulk NB’s properties and discusses the NB equilibrium and stabilization mechanism, which will advance the understanding and application of bulk NBs.
Bulk nanobubbles (NBs) have received considerable attention because of their extensive potential applications, such as in ultrasound imaging and water management. Although multiple types of experimental evidence have supported the existence and stabilization of bulk NBs, the underlying mechanism remains unclear. This study numerically investigates the bulk NB stabilization with molecular dynamics (MD) methods: the all-atom (AA) MD simulation is used for NBs of several nanometers diameter; the coarse-grained (CG) MD simulation is for the NBs of about 100 nm. The NB properties are statistically obtained and analyzed, including the inner density, inner pressure, surface charge, interfacial hydrogen bond (HB), and gaseous diffusion. The results show that the gas inside an NB has ultrahigh density (tens of kilograms per cubic meter). A double-layer surface charge exists on the NB. The inner/outer layer is positively/negatively charged, and the electrostatic stress can counteract part of the surface tension. In addition, the interfacial HB is weakened by the interaction between gas and water molecules, causing less surface tension. The above features are beneficial to NB stabilization. The NB equilibrium radii solved by the interfacial mechanical equilibrium equation agree with the MD results, indicating that this equation can describe the force balance of an NB as small as several nanometers. Besides, supersaturation appears to be necessary for the NB thermodynamic equilibrium. Based on Henry's law and the ideal gas law, the theoretical analysis suggests that the stability of the NB thermodynamic equilibrium is conditional: the number of gas molecules in NBs should be more than half that dissolved in liquid. This study unravels a stabilized bulk NB's properties and discusses the NB equilibrium and stabilization mechanism, which will advance the understanding and application of bulk NBs.Bulk nanobubbles (NBs) have received considerable attention because of their extensive potential applications, such as in ultrasound imaging and water management. Although multiple types of experimental evidence have supported the existence and stabilization of bulk NBs, the underlying mechanism remains unclear. This study numerically investigates the bulk NB stabilization with molecular dynamics (MD) methods: the all-atom (AA) MD simulation is used for NBs of several nanometers diameter; the coarse-grained (CG) MD simulation is for the NBs of about 100 nm. The NB properties are statistically obtained and analyzed, including the inner density, inner pressure, surface charge, interfacial hydrogen bond (HB), and gaseous diffusion. The results show that the gas inside an NB has ultrahigh density (tens of kilograms per cubic meter). A double-layer surface charge exists on the NB. The inner/outer layer is positively/negatively charged, and the electrostatic stress can counteract part of the surface tension. In addition, the interfacial HB is weakened by the interaction between gas and water molecules, causing less surface tension. The above features are beneficial to NB stabilization. The NB equilibrium radii solved by the interfacial mechanical equilibrium equation agree with the MD results, indicating that this equation can describe the force balance of an NB as small as several nanometers. Besides, supersaturation appears to be necessary for the NB thermodynamic equilibrium. Based on Henry's law and the ideal gas law, the theoretical analysis suggests that the stability of the NB thermodynamic equilibrium is conditional: the number of gas molecules in NBs should be more than half that dissolved in liquid. This study unravels a stabilized bulk NB's properties and discusses the NB equilibrium and stabilization mechanism, which will advance the understanding and application of bulk NBs.
Author Sun, Weitao
Wang, Bing
Wu, Wangxia
Gao, Zhan
AuthorAffiliation School of Aerospace Engineering
Beijing Institute of Technology
AuthorAffiliation_xml – name: School of Aerospace Engineering
– name: Beijing Institute of Technology
Author_xml – sequence: 1
  givenname: Zhan
  surname: Gao
  fullname: Gao, Zhan
  organization: School of Aerospace Engineering
– sequence: 2
  givenname: Wangxia
  surname: Wu
  fullname: Wu, Wangxia
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Weitao
  surname: Sun
  fullname: Sun, Weitao
  organization: School of Aerospace Engineering
– sequence: 4
  givenname: Bing
  orcidid: 0000-0003-3373-7351
  surname: Wang
  fullname: Wang, Bing
  email: wbing@tsinghua.edu.cn
  organization: School of Aerospace Engineering
BookMark eNqF0LtOwzAYhmELgUQp3AGDR5YUn3Jwt3JGKjCUztEfxykurl3sZChXT0rLwgCLPfh7PTwn6NB5pxE6p2RECaOXoOLIglusOhNGVBGay-wADWjKSJIWLD9EA5ILnuQi48foJMYlIURyIQdoNne1DrEFVxu3wO2bxrMWKmPNJ7TGO-wbDPiqs-_4GZyvuqqyeown-MlbrToLAd9sHKyMinjiwG6iiafoqAEb9dn-HqL53e3r9UMyfbl_vJ5MExBMtAmVjFGtKJGFVsDrqiGa1VJkRUMJJZo3WZP2Rw6FIFSLVHJaUFVnKSkg5zUfoovdv-vgPzod23JlotK2p9C-iyXLeMYLymT2_zTNmeRpD9dPxW6qgo8x6KZcB7OCsCkpKbfcZc9d_nCXe-4-G__KlGm_CdsAxv4Xk128fV36LvSS8e_kCymhnKM
CitedBy_id crossref_primary_10_1016_j_molliq_2024_125838
crossref_primary_10_1016_j_cherd_2024_08_041
crossref_primary_10_1016_j_jclepro_2023_139153
crossref_primary_10_1016_j_jcis_2023_08_173
crossref_primary_10_1016_j_fuel_2024_132517
crossref_primary_10_1016_j_mineng_2022_107554
crossref_primary_10_1016_j_conbuildmat_2024_139807
crossref_primary_10_1063_5_0137541
crossref_primary_10_1016_j_chemosphere_2022_136733
crossref_primary_10_1021_acs_langmuir_2c02792
crossref_primary_10_1016_j_molliq_2024_125180
crossref_primary_10_1021_acs_langmuir_3c00484
crossref_primary_10_1016_j_colsurfa_2024_133530
crossref_primary_10_1021_acs_analchem_4c01035
crossref_primary_10_1080_10408398_2022_2067119
crossref_primary_10_1002_sstr_202400080
crossref_primary_10_1002_solr_202301047
crossref_primary_10_1021_acs_langmuir_3c03213
crossref_primary_10_1016_j_jclepro_2022_134331
crossref_primary_10_1016_j_colsurfa_2024_135535
crossref_primary_10_1007_s11433_024_2538_9
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125407
crossref_primary_10_1103_PhysRevLett_133_104001
crossref_primary_10_3390_ma15186353
crossref_primary_10_1021_acsestengg_3c00344
crossref_primary_10_1088_1674_1056_ad989d
crossref_primary_10_1016_j_fuel_2023_127650
crossref_primary_10_1016_j_jclepro_2024_142230
crossref_primary_10_1021_jacs_4c06641
crossref_primary_10_1016_j_watres_2023_120613
crossref_primary_10_1021_acs_jcim_4c01027
crossref_primary_10_1016_j_ijft_2024_100734
crossref_primary_10_1088_1572_9494_ad109c
crossref_primary_10_3390_pr12061227
crossref_primary_10_1063_5_0230903
crossref_primary_10_1038_s41467_024_53304_3
crossref_primary_10_3390_nano12132175
crossref_primary_10_3390_nano15040314
crossref_primary_10_1021_acs_langmuir_2c02042
crossref_primary_10_1002_admi_202400496
crossref_primary_10_15377_2410_3624_2024_11_3
crossref_primary_10_1016_j_molliq_2022_120979
crossref_primary_10_1063_5_0204665
crossref_primary_10_1080_10643389_2022_2136931
crossref_primary_10_3390_app14156452
Cites_doi 10.1021/acs.langmuir.9b03532
10.1080/08927022.2018.1511903
10.1080/002689797169916
10.1021/acs.langmuir.6b01004
10.1016/0263-7855(96)00018-5
10.1063/1.2742385
10.1021/acs.langmuir.6b01644
10.1016/j.ces.2009.10.003
10.1103/PhysRevLett.110.054501
10.1039/D0SM00116C
10.1021/j100389a010
10.1016/j.colsurfa.2020.124430
10.1039/c3cs60093a
10.1016/j.jcis.2021.03.064
10.1039/c1cp22018g
10.1007/s11433-008-0026-5
10.1063/1.1747247
10.1063/1.2715577
10.3389/fphy.2020.583202
10.1063/1.1747520
10.1021/acs.langmuir.8b01163
10.1039/C8SM01949E
10.1021/acsnano.8b08359
10.1063/1.447358
10.1126/science.213.4504.209
10.1016/j.ces.2018.09.044
10.1007/s10483-013-1757-x
10.1002/9780470143476.ch7
10.1126/sciadv.aaz0094
10.1016/j.jcis.2018.10.108
10.1021/la000219r
10.1021/jacs.9b11303
10.1103/PhysRevLett.124.134503
10.1021/acs.langmuir.6b02489
10.1063/1.1747782
10.26434/chemrxiv.13591283
10.1002/cphc.201100807
10.1002/jcc.21224
10.1021/jp071097f
10.1063/1.5004985
10.1021/acsami.0c07022
10.1017/jfm.2020.1049
10.1021/acs.langmuir.5b04703
10.1063/1.477658
10.1063/1.4739528
10.1021/acs.langmuir.7b02290
10.1016/j.jcis.2019.12.093
10.1021/acs.langmuir.7b00510
10.1063/1.3245303
10.1016/j.colsurfa.2005.06.063
10.1016/j.colsurfa.2010.03.005
10.1021/acs.langmuir.0c03574
10.1063/1.2121687
10.1103/PhysRevLett.76.928
10.1016/j.scitotenv.2018.04.284
10.1016/j.jcis.2020.02.101
10.1021/acs.langmuir.8b04314
10.1063/1.3330544
10.1016/j.jmb.2021.166841
10.1117/12.2064811
10.1021/acs.langmuir.9b00144
10.1021/jp036508g
10.1006/jcis.1999.6663
10.1063/1.3279128
10.1021/acs.langmuir.8b03113
10.1016/j.colsurfa.2016.01.050
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1021/acs.langmuir.1c01796
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 11291
ExternalDocumentID 10_1021_acs_langmuir_1c01796
f2248145
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
CITATION
CUPRZ
YQT
~02
7X8
7S9
L.6
ID FETCH-LOGICAL-a424t-19221ec1098eca3dbf0e2d9468f1010e3f6f53f67a8401e4593181cd6508a73d3
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Fri Jul 11 05:52:31 EDT 2025
Thu Jul 10 23:36:39 EDT 2025
Tue Jul 01 03:59:09 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Thu Sep 30 03:10:48 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a424t-19221ec1098eca3dbf0e2d9468f1010e3f6f53f67a8401e4593181cd6508a73d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3373-7351
PQID 2572935179
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2636381296
proquest_miscellaneous_2572935179
crossref_primary_10_1021_acs_langmuir_1c01796
crossref_citationtrail_10_1021_acs_langmuir_1c01796
acs_journals_10_1021_acs_langmuir_1c01796
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-28
PublicationDateYYYYMMDD 2021-09-28
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-28
  day: 28
PublicationDecade 2020
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
Mørch K. A. (ref7/cit7) 2018
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
Yesudasan S. (ref57/cit57) 2019; 12
References_xml – ident: ref23/cit23
  doi: 10.1021/acs.langmuir.9b03532
– ident: ref41/cit41
  doi: 10.1080/08927022.2018.1511903
– ident: ref60/cit60
  doi: 10.1080/002689797169916
– ident: ref3/cit3
  doi: 10.1021/acs.langmuir.6b01004
– ident: ref38/cit38
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref64/cit64
  doi: 10.1063/1.2742385
– ident: ref28/cit28
  doi: 10.1021/acs.langmuir.6b01644
– ident: ref19/cit19
  doi: 10.1016/j.ces.2009.10.003
– start-page: 1108
  volume-title: International Symposium on Cavitation
  year: 2018
  ident: ref7/cit7
– ident: ref66/cit66
  doi: 10.1103/PhysRevLett.110.054501
– ident: ref30/cit30
  doi: 10.1039/D0SM00116C
– ident: ref59/cit59
  doi: 10.1021/j100389a010
– ident: ref9/cit9
  doi: 10.1016/j.colsurfa.2020.124430
– ident: ref47/cit47
  doi: 10.1039/c3cs60093a
– ident: ref63/cit63
  doi: 10.1016/j.jcis.2021.03.064
– ident: ref34/cit34
  doi: 10.1039/c1cp22018g
– ident: ref25/cit25
  doi: 10.1007/s11433-008-0026-5
– ident: ref67/cit67
  doi: 10.1063/1.1747247
– ident: ref42/cit42
  doi: 10.1063/1.2715577
– ident: ref65/cit65
  doi: 10.3389/fphy.2020.583202
– ident: ref12/cit12
  doi: 10.1063/1.1747520
– ident: ref22/cit22
  doi: 10.1021/acs.langmuir.8b01163
– ident: ref31/cit31
  doi: 10.1039/C8SM01949E
– ident: ref4/cit4
  doi: 10.1021/acsnano.8b08359
– ident: ref54/cit54
  doi: 10.1063/1.447358
– ident: ref13/cit13
  doi: 10.1126/science.213.4504.209
– ident: ref18/cit18
  doi: 10.1016/j.ces.2018.09.044
– ident: ref36/cit36
  doi: 10.1007/s10483-013-1757-x
– ident: ref55/cit55
  doi: 10.1002/9780470143476.ch7
– ident: ref33/cit33
  doi: 10.1126/sciadv.aaz0094
– ident: ref27/cit27
  doi: 10.1016/j.jcis.2018.10.108
– ident: ref10/cit10
  doi: 10.1021/la000219r
– ident: ref50/cit50
  doi: 10.1021/jacs.9b11303
– ident: ref29/cit29
  doi: 10.1103/PhysRevLett.124.134503
– ident: ref1/cit1
  doi: 10.1021/acs.langmuir.6b02489
– ident: ref56/cit56
  doi: 10.1063/1.1747782
– ident: ref45/cit45
  doi: 10.26434/chemrxiv.13591283
– ident: ref35/cit35
  doi: 10.1002/cphc.201100807
– ident: ref51/cit51
  doi: 10.1002/jcc.21224
– ident: ref44/cit44
  doi: 10.1021/jp071097f
– ident: ref68/cit68
  doi: 10.1063/1.5004985
– ident: ref5/cit5
  doi: 10.1021/acsami.0c07022
– ident: ref8/cit8
  doi: 10.1017/jfm.2020.1049
– ident: ref26/cit26
  doi: 10.1021/acs.langmuir.5b04703
– ident: ref53/cit53
  doi: 10.1063/1.477658
– volume: 12
  start-page: 1
  issue: 1
  year: 2019
  ident: ref57/cit57
  publication-title: Int. J. Eng. Technol.
– ident: ref20/cit20
  doi: 10.1063/1.4739528
– ident: ref6/cit6
  doi: 10.1021/acs.langmuir.7b02290
– ident: ref16/cit16
  doi: 10.1016/j.jcis.2019.12.093
– ident: ref17/cit17
  doi: 10.1021/acs.langmuir.7b00510
– ident: ref37/cit37
  doi: 10.1063/1.3245303
– ident: ref61/cit61
  doi: 10.1016/j.colsurfa.2005.06.063
– ident: ref15/cit15
  doi: 10.1016/j.colsurfa.2010.03.005
– ident: ref49/cit49
  doi: 10.1021/acs.langmuir.0c03574
– ident: ref39/cit39
  doi: 10.1063/1.2121687
– ident: ref58/cit58
  doi: 10.1103/PhysRevLett.76.928
– ident: ref2/cit2
  doi: 10.1016/j.scitotenv.2018.04.284
– ident: ref48/cit48
  doi: 10.1016/j.jcis.2020.02.101
– ident: ref32/cit32
  doi: 10.1021/acs.langmuir.8b04314
– ident: ref40/cit40
  doi: 10.1063/1.3330544
– ident: ref52/cit52
  doi: 10.1016/j.jmb.2021.166841
– ident: ref21/cit21
  doi: 10.1117/12.2064811
– ident: ref24/cit24
  doi: 10.1021/acs.langmuir.9b00144
– ident: ref46/cit46
  doi: 10.1021/jp036508g
– ident: ref14/cit14
  doi: 10.1006/jcis.1999.6663
– ident: ref43/cit43
  doi: 10.1063/1.3279128
– ident: ref62/cit62
  doi: 10.1021/acs.langmuir.8b03113
– ident: ref11/cit11
  doi: 10.1016/j.colsurfa.2016.01.050
SSID ssj0009349
Score 2.5685732
Snippet Bulk nanobubbles (NBs) have received considerable attention because of their extensive potential applications, such as in ultrasound imaging and water...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11281
SubjectTerms equations
hydrogen bonding
liquids
molecular dynamics
nanobubbles
surface tension
thermodynamics
ultrasonics
water management
Title Understanding the Stabilization of a Bulk Nanobubble: A Molecular Dynamics Analysis
URI http://dx.doi.org/10.1021/acs.langmuir.1c01796
https://www.proquest.com/docview/2572935179
https://www.proquest.com/docview/2636381296
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRpSXjMTCkBI_4iRspVBVSIWhVOoW2Y4toZYENcnCr8duEkpBUFgyRLaVnM_nz7677wC40IIqrHns8DCOHSoYcoSricNjnwprDrFnc4f7D6w3pPcjbzQ_KH714GN0xWXWsnd3L8XztIWk1SC2CtYwC3x72Gp3BnOSXVLCXUu76VNG6lS5H0axG5LMFjekRXs822S6W-CxTtUpY0vGrSIXLfn2nbnxj9-_DTYrvAnbpYLsgBWV7IL1Tl3mbQ8Mhp_TW6DBg9AAUBsyWyZowlRDDm-KyRgaS5yKQoiJuoZt2K8L68Lbsqp9BmuGk30w7N49dXpOVWnB4RTT3DEwDyMlkRsGSnISC-0qHIeUBdosWVcRzbRnHj4350GkqBcaU4BkbOEd90lMDkAjSRN1CKBiinEdeNp1BQ2Ja3REcMTtzYXyfYmb4NJIJKpWShbNnOAYRfZlLaaoElMTkHpqIllRltvKGZMlvZyPXq8lZceS9uf1rEdG9tZhwhOVFllkzJlBQ5bE7Jc2jBgTZlATO_rHnx2DDWyDY6x7KzgBjXxaqFODbnJxNlPpdzc_-F0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5ReqCX0qegT1dqDz1kGz_ibJB62C5FS2G5wErcUtuxJcSSrchGiP6f_pX-LmayCZRKLeoBqZccrNiyPeOZz54XwNtglRfBFJHJiiJSVvPIxkFGpkiVJXEoEoodHu_p0UR9OUwOl-BHFwuDk6hwpKox4l9lF-AfqI2e8E7qo9Med8RIuvWl3PHnZ3hTqz5ubyJZ3wmx9flgOIraYgKRUULNI0QygnvH46zvnZGFDbEXRaZ0PyBXxl4GHRL8pAavPNyrJENu564gBGNSWUgc9w7cRfwj6I43GO5f5faVC5RN2T5TpWUXofeHWZMedNV1PXhdDTS6bWsVfl7uSuPSctyr57bnvv-WMPK_37YHcL9F12ywOA4PYcmXj2Bl2BW1ewz7k1-DeRiiX4ZwmxyEF-GobBaYYZ_q6TFDvTOztbVTv8EGbNyVEWab56U5OXIV6_K5PIHJrazpKSyXs9KvAfPaaxP6SYhjqzIZ44mwhht6p_Fp6sQ6vEcK5K1cqPLG5C94To0dWfKWLOsgO47IXZugneqETG_oFV32-rZIUHLD_286Zstx78k8ZEo_q6schTdiP0rZ9pd_tESBjRhRP_uHlb2GldHBeDff3d7beQ73BLkFkWGv_wKW56e1f4m4bm5fNaeKwdfb5scL_JBY4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgGX8halPIwEBw5Z4kecTSUOyy6rltIKqazUW7BjW6q6zVbNRlX7j_gr_KrOZJNCkaDi0AOXHKzYsj0zns-eF8DrYJUXwbjIZM5Fymoe2TjIyLhUWToORUKxw9s7emOiPu0le0vwvYuFwUlUOFLVGPFJqo9caDMM8HfUTs94h_X-cY8XxEy69afc8qcneFur3m-OkLRvhBh__DrciNqCApFRQs0jRDOC-4LHWd8XRjobYi9cpnQ_IGfGXgYdEvykBq893KskQ47nhSMUY1LpJI57A26SpZDueYPh7s_8vnKBtCnjZ6q07KL0_jBr0oVFdVkXXlYFjX4b34UfFzvTuLUc9Oq57RVnvyWN_C-27h6stCibDRZicR-WfPkAbg-74nYPYXfya1APQxTMEHaTo_AiLJXNAjPsQz09YKh_Zra2durX2YBtd-WE2ei0NIf7RcW6vC6PYHIta3oMy-Ws9E-Aee21Cf0kxLFVmYxRMqzhht5rfJoWYhXeIgXy9nyo8sb0L3hOjR1Z8pYsqyA7rsiLNlE71QuZXtEruuh1tEhUcsX_rzqGy3HvyUxkSj-rqxwPccSAlLrtL_9oiQc3YkX99B9W9hJufRmN88-bO1trcEeQdxDZ9_rPYHl-XPvnCO_m9kUjWAy-XTc7ngNXc1tj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+Stabilization+of+a+Bulk+Nanobubble%3A+A+Molecular+Dynamics+Analysis&rft.jtitle=Langmuir&rft.au=Gao%2C+Zhan&rft.au=Wu%2C+Wangxia&rft.au=Sun%2C+Weitao&rft.au=Wang%2C+Bing&rft.date=2021-09-28&rft.issn=1520-5827&rft.volume=37&rft.issue=38+p.11281-11291&rft.spage=11281&rft.epage=11291&rft_id=info:doi/10.1021%2Facs.langmuir.1c01796&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon