A simple expression for the bulk field capacity of a sloping soil horizon
Field capacity is a commonly used soil parameter in surface water hydrological models, loosely defined as the moisture content of a soil after drainage. The most commonly applied expression for field capacity is defined as the remaining water in a vertical soil column subject to 1/3 atm. of pressure...
Saved in:
Published in | Hydrological processes Vol. 25; no. 1; pp. 112 - 116 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.01.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Field capacity is a commonly used soil parameter in surface water hydrological models, loosely defined as the moisture content of a soil after drainage. The most commonly applied expression for field capacity is defined as the remaining water in a vertical soil column subject to 1/3 atm. of pressure head. While this quantification is sufficient in some cases, the definition is not consistent with the use of bulk field capacity in calculations of lateral drainage from hillslopes, as required by some surface soil parameterizations, nor does it address additional complications arising from differences in soil texture or sample size. Here, a simple alternative expression for bulk field capacity in a sloping or vertical soil is derived directly from Richards equation with the use of the Brooks‐Corey characteristics. It is demonstrated that this expression is consistent with data acquired from vertical soil columns, but may be extended to additional situations commonly found in surface water models and land surface schemes. The calculation of bulk field capacity requires only the Brooks‐Corey pore size distribution index, soil air‐entry pressure, and hillslope length and slope, and may be considered a physically based alternative to pedotransfer function or lookup table approaches. Copyright © 2010 John Wiley & Sons Ltd and Crown in the right of Canada. |
---|---|
AbstractList | Field capacity is a commonly used soil parameter in surface water hydrological models, loosely defined as the moisture content of a soil after drainage. The most commonly applied expression for field capacity is defined as the remaining water in a vertical soil column subject to 1/3 atm. of pressure head. While this quantification is sufficient in some cases, the definition is not consistent with the use of bulk field capacity in calculations of lateral drainage from hillslopes, as required by some surface soil parameterizations, nor does it address additional complications arising from differences in soil texture or sample size. Here, a simple alternative expression for bulk field capacity in a sloping or vertical soil is derived directly from Richards equation with the use of the Brooks‐Corey characteristics. It is demonstrated that this expression is consistent with data acquired from vertical soil columns, but may be extended to additional situations commonly found in surface water models and land surface schemes. The calculation of bulk field capacity requires only the Brooks‐Corey pore size distribution index, soil air‐entry pressure, and hillslope length and slope, and may be considered a physically based alternative to pedotransfer function or lookup table approaches. Copyright © 2010 John Wiley & Sons Ltd and Crown in the right of Canada. Field capacity is a commonly used soil parameter in surface water hydrological models, loosely defined as the moisture content of a soil after drainage. The most commonly applied expression for field capacity is defined as the remaining water in a vertical soil column subject to 1/3 atm. of pressure head. While this quantification is sufficient in some cases, the definition is not consistent with the use of bulk field capacity in calculations of lateral drainage from hillslopes, as required by some surface soil parameterizations, nor does it address additional complications arising from differences in soil texture or sample size. Here, a simple alternative expression for bulk field capacity in a sloping or vertical soil is derived directly from Richards equation with the use of the Brooks‐Corey characteristics. It is demonstrated that this expression is consistent with data acquired from vertical soil columns, but may be extended to additional situations commonly found in surface water models and land surface schemes. The calculation of bulk field capacity requires only the Brooks‐Corey pore size distribution index, soil air‐entry pressure, and hillslope length and slope, and may be considered a physically based alternative to pedotransfer function or lookup table approaches. Field capacity is a commonly used soil parameter in surface water hydrological models, loosely defined as the moisture content of a soil after drainage. The most commonly applied expression for field capacity is defined as the remaining water in a vertical soil column subject to 1/3 atm. of pressure head. While this quantification is sufficient in some cases, the definition is not consistent with the use of bulk field capacity in calculations of lateral drainage from hillslopes, as required by some surface soil parameterizations, nor does it address additional complications arising from differences in soil texture or sample size. Here, a simple alternative expression for bulk field capacity in a sloping or vertical soil is derived directly from Richards equation with the use of the Brooks-Corey characteristics. It is demonstrated that this expression is consistent with data acquired from vertical soil columns, but may be extended to additional situations commonly found in surface water models and land surface schemes. The calculation of bulk field capacity requires only the Brooks-Corey pore size distribution index, soil air-entry pressure, and hillslope length and slope, and may be considered a physically based alternative to pedotransfer function or lookup table approaches. Copyright 2010 John Wiley & Sons Ltd and Crown in the right of Canada. |
Author | Liu, G. Soulis, E. D. Fortin, V. Craig, J. R. |
Author_xml | – sequence: 1 givenname: E. D. surname: Soulis fullname: Soulis, E. D. organization: Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada – sequence: 2 givenname: J. R. surname: Craig fullname: Craig, J. R. email: jrcraig@uwaterloo.ca organization: Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada – sequence: 3 givenname: V. surname: Fortin fullname: Fortin, V. organization: Canadian Meteorological Centre, Environment Canada, Dorval, Quebec, Canada – sequence: 4 givenname: G. surname: Liu fullname: Liu, G. organization: Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada |
BookMark | eNqF0c1OGzEUBWALUakBKvURvIPNhOvx-G-JAgQk1KKqCJWN5fF4iMEZD_ZEEJ6-iYJAlYCu7ua7Z3HODtruYucQ-k5gTADKw9myHwtZii00IqBUQUCybTQCKVnBQYqvaCfnOwCoQMIInR_h7Od9cNg99cnl7GOH25jwMHO4XoR73HoXGmxNb6wflji22OAcYu-7W5yjD3gWk3-O3R760pqQ3beXu4uuTk9-T86Ki5_T88nRRWGqshIFEaTlStnaMhCVbUStSlXWLTXWqqayRqhGEWYtUGNMq4DXVSNswzk1IKmlu2h_k9un-LBwedBzn60LwXQuLrKWQlWCM1at5MGnkgheEiKlhP9TyhlQpuiajjfUpphzcq1e9WKGVW9DMj5oAno9hF4NoddDvGW_PvTJz01avkeLDX30wS0_dPrsz-W_3ufBPb16k-41F1Qwff1jqsUx3LDJL6kV_Qv8pqe- |
CitedBy_id | crossref_primary_10_1175_JHM_D_11_0151_1 crossref_primary_10_5194_hess_23_741_2019 crossref_primary_10_1016_j_jhydrol_2014_01_020 crossref_primary_10_1016_j_jhydrol_2018_01_065 crossref_primary_10_1175_JHM_D_15_0189_1 crossref_primary_10_1002_qj_4499 crossref_primary_10_5194_gmd_10_2761_2017 crossref_primary_10_1080_07055900_2014_999745 crossref_primary_10_5194_hess_24_2141_2020 crossref_primary_10_5194_gmd_16_5427_2023 crossref_primary_10_1002_hyp_14557 crossref_primary_10_3390_atmos11030278 crossref_primary_10_1002_vzj2_20396 crossref_primary_10_1016_j_still_2012_04_004 crossref_primary_10_1016_j_jhydrol_2020_125744 |
Cites_doi | 10.1061/(ASCE)0733-9437(1998)124:4(230) 10.1029/WR015i006p01633 10.1080/07055900.2000.9649648 10.13031/2013.33720 10.5194/hess-11-1279-2007 10.1111/j.1365-2389.1961.tb00922.x 10.2136/sssaj1986.03615995005000040039x 10.1097/00010694-193109000-00003 10.1016/0933-3630(95)00032-1 10.1029/WR014i004p00601 |
ContentType | Journal Article |
Copyright | Copyright © 2010 John Wiley & Sons Ltd and Crown in the right of Canada. |
Copyright_xml | – notice: Copyright © 2010 John Wiley & Sons Ltd and Crown in the right of Canada. |
DBID | BSCLL AAYXX CITATION 7S9 L.6 8FD FR3 KR7 7QH 7ST 7UA C1K F1W H96 L.G SOI |
DOI | 10.1002/hyp.7827 |
DatabaseName | Istex CrossRef AGRICOLA AGRICOLA - Academic Technology Research Database Engineering Research Database Civil Engineering Abstracts Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Technology Research Database Civil Engineering Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef AGRICOLA Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1099-1085 |
EndPage | 116 |
ExternalDocumentID | 10_1002_hyp_7827 HYP7827 ark_67375_WNG_7D0Z5CR8_9 |
Genre | article |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WWD WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ABEML ACSCC AEYWJ AGHNM AGQPQ AGYGG AI. CITATION DDYGU M62 RIWAO RJQFR SAMSI VH1 ZY4 7S9 AAMMB AEFGJ AGXDD AIDQK AIDYY L.6 8FD FR3 KR7 7QH 7ST 7UA C1K F1W H96 L.G SOI |
ID | FETCH-LOGICAL-a4247-171f699cbc5074cd7b9292bf3acc9d4ca79d915cc03aaaf906b4d7cd663a083c3 |
IEDL.DBID | DR2 |
ISSN | 0885-6087 1099-1085 |
IngestDate | Fri Jul 11 02:57:07 EDT 2025 Fri Jul 11 13:43:45 EDT 2025 Fri Jul 11 00:46:44 EDT 2025 Tue Jul 01 01:46:21 EDT 2025 Thu Apr 24 23:08:28 EDT 2025 Wed Jan 22 16:47:52 EST 2025 Wed Oct 30 09:55:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4247-171f699cbc5074cd7b9292bf3acc9d4ca79d915cc03aaaf906b4d7cd663a083c3 |
Notes | istex:49FADDE7C2C920791CC9CCABF98E67BF2F32E2F0 ArticleID:HYP7827 Natural Sciences and Engineering Research Council of Canada (NSERC) ark:/67375/WNG-7D0Z5CR8-9 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1365035930 |
PQPubID | 24069 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_879476554 proquest_miscellaneous_1762118880 proquest_miscellaneous_1365035930 crossref_citationtrail_10_1002_hyp_7827 crossref_primary_10_1002_hyp_7827 wiley_primary_10_1002_hyp_7827_HYP7827 istex_primary_ark_67375_WNG_7D0Z5CR8_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-01-01 1 January 2011 2011-01-00 20110101 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Hydrological processes |
PublicationTitleAlternate | Hydrol. Process |
PublicationYear | 2011 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | Nachabe M. 1998. Refining the interpretation of field capacity in the literature. Journal of Irrigation and Drainage Engineering 124(4): 230-232. Saxton KE, Rawls W, Romberger J, Papendick R. 1986. Estimating generalized soil water characteristics from texture. Soil Science Society of America Journal 50: 1031-1036. Bell MA, van Keulen H. 1996. Effect of soil disturbance on pedotransfer function development for field capacity. Soil Technology 8(4): 321-329. Pietroniro A, Fortin V, Kouwen N, Neal C, Turcotte R, Davison B, Verseghy D, Soulis ED, Caldwell R, Evora N, Pellerin P. 2007. Using the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale. Hydrology and Earth System Sciences 113: 1279-1294. Rawls WJ, Brakensiek DL, Saxton KE. 1982. Estimation of soil water properties. Transactions of the ASAE 25: 1316-1320. Veihmeyer FJ, Hendrickson A. 1931. The moisture equivalent as a measure of the field capacity of soils. Soil Science 32: 181-193. Salter PJ, Haworth F. 1961. The available-water capacity of a sandy loam soil I. A critical comparison of methods of determining the moisture content of soil at field capacity and at the permanent wilting percentage. European Journal of Soil Science 12(2): 326-334. Soulis ED, Snelgrove K, Kouwen N, Seglenieks F, Verseghy D. 2000. Towards closing the vertical water balance in Canadian atmospheric models: Coupling of the land surface scheme CLASS with the distributed hydrological model WATFLOOD. Atmosphere-Ocean 38(1): 251-269. Clapp RB, Hornberger GM. 1978. Empirical equations for some soil hydraulic properties. Water Resources Research 14: 601-604. Richards LA, Weaver LR. 1944. Moisture retention by some irrigated soils as related to soil moisture tension. Journal of Agricultural Research 69: 215-235. Gupta SC, Larson WE. 1979. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resources Research 15(6): 1633-1635. 1944; 69 1982; 25 2007; 113 1979; 15 1986; 50 2000; 38 1987 2009 1964 1983 1978; 14 2002 1961; 12 1998; 124 1931; 32 1996; 8 1968 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 Richards LA (e_1_2_7_12_1) 1944; 69 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_10_1 |
References_xml | – reference: Clapp RB, Hornberger GM. 1978. Empirical equations for some soil hydraulic properties. Water Resources Research 14: 601-604. – reference: Nachabe M. 1998. Refining the interpretation of field capacity in the literature. Journal of Irrigation and Drainage Engineering 124(4): 230-232. – reference: Bell MA, van Keulen H. 1996. Effect of soil disturbance on pedotransfer function development for field capacity. Soil Technology 8(4): 321-329. – reference: Richards LA, Weaver LR. 1944. Moisture retention by some irrigated soils as related to soil moisture tension. Journal of Agricultural Research 69: 215-235. – reference: Salter PJ, Haworth F. 1961. The available-water capacity of a sandy loam soil I. A critical comparison of methods of determining the moisture content of soil at field capacity and at the permanent wilting percentage. European Journal of Soil Science 12(2): 326-334. – reference: Gupta SC, Larson WE. 1979. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resources Research 15(6): 1633-1635. – reference: Veihmeyer FJ, Hendrickson A. 1931. The moisture equivalent as a measure of the field capacity of soils. Soil Science 32: 181-193. – reference: Rawls WJ, Brakensiek DL, Saxton KE. 1982. Estimation of soil water properties. Transactions of the ASAE 25: 1316-1320. – reference: Pietroniro A, Fortin V, Kouwen N, Neal C, Turcotte R, Davison B, Verseghy D, Soulis ED, Caldwell R, Evora N, Pellerin P. 2007. Using the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale. Hydrology and Earth System Sciences 113: 1279-1294. – reference: Saxton KE, Rawls W, Romberger J, Papendick R. 1986. Estimating generalized soil water characteristics from texture. Soil Science Society of America Journal 50: 1031-1036. – reference: Soulis ED, Snelgrove K, Kouwen N, Seglenieks F, Verseghy D. 2000. Towards closing the vertical water balance in Canadian atmospheric models: Coupling of the land surface scheme CLASS with the distributed hydrological model WATFLOOD. Atmosphere-Ocean 38(1): 251-269. – year: 2009 – volume: 15 start-page: 1633 issue: 6 year: 1979 end-page: 1635 article-title: Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density publication-title: Water Resources Research – year: 1964 – volume: 69 start-page: 215 year: 1944 end-page: 235 article-title: Moisture retention by some irrigated soils as related to soil moisture tension publication-title: Journal of Agricultural Research – start-page: 3 year: 1983 end-page: 19 – volume: 124 start-page: 230 issue: 4 year: 1998 end-page: 232 article-title: Refining the interpretation of field capacity in the literature publication-title: Journal of Irrigation and Drainage Engineering – volume: 50 start-page: 1031 year: 1986 end-page: 1036 article-title: Estimating generalized soil water characteristics from texture publication-title: Soil Science Society of America Journal – volume: 25 start-page: 1316 year: 1982 end-page: 1320 article-title: Estimation of soil water properties publication-title: Transactions of the ASAE – year: 1968 – year: 2002 – year: 1987 – volume: 12 start-page: 326 issue: 2 year: 1961 end-page: 334 article-title: The available‐water capacity of a sandy loam soil I. A critical comparison of methods of determining the moisture content of soil at field capacity and at the permanent wilting percentage publication-title: European Journal of Soil Science – volume: 14 start-page: 601 year: 1978 end-page: 604 article-title: Empirical equations for some soil hydraulic properties publication-title: Water Resources Research – volume: 113 start-page: 1279 year: 2007 end-page: 1294 article-title: Using the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale publication-title: Hydrology and Earth System Sciences – volume: 38 start-page: 251 issue: 1 year: 2000 end-page: 269 article-title: Towards closing the vertical water balance in Canadian atmospheric models: Coupling of the land surface scheme CLASS with the distributed hydrological model WATFLOOD publication-title: Atmosphere‐Ocean – volume: 32 start-page: 181 year: 1931 end-page: 193 article-title: The moisture equivalent as a measure of the field capacity of soils publication-title: Soil Science – volume: 8 start-page: 321 issue: 4 year: 1996 end-page: 329 article-title: Effect of soil disturbance on pedotransfer function development for field capacity publication-title: Soil Technology – ident: e_1_2_7_8_1 – ident: e_1_2_7_5_1 – ident: e_1_2_7_9_1 doi: 10.1061/(ASCE)0733-9437(1998)124:4(230) – ident: e_1_2_7_7_1 doi: 10.1029/WR015i006p01633 – ident: e_1_2_7_16_1 doi: 10.1080/07055900.2000.9649648 – ident: e_1_2_7_11_1 doi: 10.13031/2013.33720 – ident: e_1_2_7_13_1 – ident: e_1_2_7_10_1 doi: 10.5194/hess-11-1279-2007 – ident: e_1_2_7_3_1 – ident: e_1_2_7_14_1 doi: 10.1111/j.1365-2389.1961.tb00922.x – ident: e_1_2_7_15_1 doi: 10.2136/sssaj1986.03615995005000040039x – volume: 69 start-page: 215 year: 1944 ident: e_1_2_7_12_1 article-title: Moisture retention by some irrigated soils as related to soil moisture tension publication-title: Journal of Agricultural Research – ident: e_1_2_7_17_1 doi: 10.1097/00010694-193109000-00003 – ident: e_1_2_7_18_1 – ident: e_1_2_7_6_1 – ident: e_1_2_7_2_1 doi: 10.1016/0933-3630(95)00032-1 – ident: e_1_2_7_4_1 doi: 10.1029/WR014i004p00601 |
SSID | ssj0004080 |
Score | 2.052477 |
Snippet | Field capacity is a commonly used soil parameter in surface water hydrological models, loosely defined as the moisture content of a soil after drainage. The... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112 |
SubjectTerms | analytical solution Drainage equations field capacity hillslope hydrology hydrologic models Hydrology Mathematical models Parametrization pedotransfer functions retained soil moisture Soil (material) soil horizons soil sampling soil water soil water content Surface layer Surface water Texture |
Title | A simple expression for the bulk field capacity of a sloping soil horizon |
URI | https://api.istex.fr/ark:/67375/WNG-7D0Z5CR8-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.7827 https://www.proquest.com/docview/1365035930 https://www.proquest.com/docview/1762118880 https://www.proquest.com/docview/879476554 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBejfehe2q5bWfqFBmV7cirbsh09ln5lg5ZRVtZtD0I62SQk2CFOoO1f3zt_pOtoyygYDOZsJJ1O95N89zvG9tHFh8KkqYe7K-lJ42eeioLYi0CFaeL7mXB0oH9-Efev5Lfr6LqJqqRcmJofYnHgRpZRrddk4MaWBw-koYPbSRfdGyWSU6gW4aHLB-YoKaqiaWhDkReLXtLyzorgoH3xkSdapkG9eQQz_warlbc5XWN_2nbWQSaj7nxmu3D3D4Xj6zqyzlYbEMoP61nzjr1J8w220tRDH9y-Z18PeTkk3mCe3jSRsjlHeMsRLnI7H494FfnGAV0tII7nRcYNL-vsK14WwzEfFNPhXZF_YFenJz-O-l5TdMEzMpBEGOlnsVJgAZGiBJdYBFCBzUIDoJwEkyin_AhAhMaYTInYSpeAQ-RiEM5BuMmW8iJPPzLuu6DnMnwkQUgInILQ4JY4pix246zrsC-tAjQ0jORUGGOsay7lQOPQaBqaDvu0kJzULBxPyHyudLgQMNMRRa0lkf55caaTY_E7OrrsaYUfa5Ws0ZboB4nJ02JeappHRGkYihdk0HvgpgyXvQ7jz8j0cJFLYgRq2KZK8882Wvd_faf71v8KbrO39ak2XTtsaTadp7sIi2Z2rzKAe6DoCZM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-sPtiX1mpLr612BbFPOTfJJntLn0SrZ9WjiFJbhGUzm3DHHYncB6h_fWfzcdaipRQCgTAJm53Mzm8ms78B2CIXH3KTph5FV8ITxs88FQWxF6EKU-n7GbcuoX_ai7sX4utldLkAn5u9MBU_xDzh5iyjXK-dgbuE9M49a2j_9rpN_k0-gyXX0LuMp87uuaMEL9umkRVFXsw7smGe5cFOc-cDX7TkpvXmAdD8Ha6W_ubgJVw1I63KTIbt2TRp490fJI7_-Sor8KLGoWy3-nBewUKar8Jy3RK9f7sGR7tsMnDUwSy9qYtlc0YIlxFiZMlsNGRl8RtD8rZIUJ4VGTNsUm3AYpNiMGL9Yjy4K_LXcHHw5Xyv69V9FzwjAuE4I_0sVgoTJLAo0MqEMFSQZKFBVFagkcoqP0LkoTEmUzxOhJVoCbwYQnQYvoHFvMjTt8B8G3RsRpcEcoGBVRgaiopjt5Hd2MS24FOjAY01KbnrjTHSFZ1yoGlqtJuaFmzOJa8rIo5HZLZLJc4FzHjoCtdkpL_3DrXc5z-jvbOOVvSwRsuazMn9IzF5Wswm2lX9OVbDkP9FhhwIxWW08rWAPSHToXVOxoTVaEyl6p8ctO7--ObO7_5V8CMsd89PT_TJUe_4PTyvktzu-ACL0_EsXSeUNE02Smv4BSa0Da4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED-6FrZ-absXTdttGoztk1PZlq3oY2mWpXuEUlbWbR-EfLJJSLBDHtD2r-_Jj3Qd6xgDg8E-m7NOp_tJPv0O4A2F-JCbNPVodiU8YfzMU1EQexGqMJW-n3HrFvS_DOL-ufh4EV3UWZVuL0zFD7FacHOeUY7XzsGnNju8JQ0dXk3bFN7kA9gQMe-4Ht09u6WOErysmkZOFHl0WzbEszw4bJ68E4o2XKte3sGZv6LVMtz0tuFno2iVZTJuLxdJG69_43D8vy_Zga0ahbKjqts8hrU0fwKP6oLow6uncHLE5iNHHMzSyzpVNmeEbxnhRZYsJ2NWpr4xpFiLBORZkTHD5tX2KzYvRhM2LGaj6yJ_Bue991-P-15ddcEzIhCOMdLPYqUwQYKKAq1MCEEFSRYaRGUFGqms8iNEHhpjMsXjRFiJlqCLITyH4XNYz4s83QXm26BjM7okkAsMrMLQ0Jw4dtvYjU1sC941BtBYU5K7yhgTXZEpB5qaRrumacHrleS0ouH4g8zb0oYrATMbu7Q1Gelvgw9advmP6PisoxW9rDGyJmdyf0hMnhbLuXY5f47TMOR_kaHwQbMyGvdawO6R6dAoJ2NCaqRTafl7ldb976fuvPevgq_g4Wm3pz-fDD7tw2a1wu2OA1hfzJbpC4JIi-Rl6Qs3FngMZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+expression+for+the+bulk+field+capacity+of+a+sloping+soil+horizon&rft.jtitle=Hydrological+processes&rft.au=Soulis%2C+ED&rft.au=Craig%2C+J+R&rft.au=tin%2C+V&rft.au=Liu%2C+G&rft.date=2011-01-01&rft.issn=1099-1085&rft.volume=25&rft.issue=1&rft.spage=112&rft.epage=116&rft_id=info:doi/10.1002%2Fhyp.7827&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon |