A simple expression for the bulk field capacity of a sloping soil horizon

Field capacity is a commonly used soil parameter in surface water hydrological models, loosely defined as the moisture content of a soil after drainage. The most commonly applied expression for field capacity is defined as the remaining water in a vertical soil column subject to 1/3 atm. of pressure...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 25; no. 1; pp. 112 - 116
Main Authors Soulis, E. D., Craig, J. R., Fortin, V., Liu, G.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Field capacity is a commonly used soil parameter in surface water hydrological models, loosely defined as the moisture content of a soil after drainage. The most commonly applied expression for field capacity is defined as the remaining water in a vertical soil column subject to 1/3 atm. of pressure head. While this quantification is sufficient in some cases, the definition is not consistent with the use of bulk field capacity in calculations of lateral drainage from hillslopes, as required by some surface soil parameterizations, nor does it address additional complications arising from differences in soil texture or sample size. Here, a simple alternative expression for bulk field capacity in a sloping or vertical soil is derived directly from Richards equation with the use of the Brooks‐Corey characteristics. It is demonstrated that this expression is consistent with data acquired from vertical soil columns, but may be extended to additional situations commonly found in surface water models and land surface schemes. The calculation of bulk field capacity requires only the Brooks‐Corey pore size distribution index, soil air‐entry pressure, and hillslope length and slope, and may be considered a physically based alternative to pedotransfer function or lookup table approaches. Copyright © 2010 John Wiley & Sons Ltd and Crown in the right of Canada.
AbstractList Field capacity is a commonly used soil parameter in surface water hydrological models, loosely defined as the moisture content of a soil after drainage. The most commonly applied expression for field capacity is defined as the remaining water in a vertical soil column subject to 1/3 atm. of pressure head. While this quantification is sufficient in some cases, the definition is not consistent with the use of bulk field capacity in calculations of lateral drainage from hillslopes, as required by some surface soil parameterizations, nor does it address additional complications arising from differences in soil texture or sample size. Here, a simple alternative expression for bulk field capacity in a sloping or vertical soil is derived directly from Richards equation with the use of the Brooks‐Corey characteristics. It is demonstrated that this expression is consistent with data acquired from vertical soil columns, but may be extended to additional situations commonly found in surface water models and land surface schemes. The calculation of bulk field capacity requires only the Brooks‐Corey pore size distribution index, soil air‐entry pressure, and hillslope length and slope, and may be considered a physically based alternative to pedotransfer function or lookup table approaches. Copyright © 2010 John Wiley & Sons Ltd and Crown in the right of Canada.
Field capacity is a commonly used soil parameter in surface water hydrological models, loosely defined as the moisture content of a soil after drainage. The most commonly applied expression for field capacity is defined as the remaining water in a vertical soil column subject to 1/3 atm. of pressure head. While this quantification is sufficient in some cases, the definition is not consistent with the use of bulk field capacity in calculations of lateral drainage from hillslopes, as required by some surface soil parameterizations, nor does it address additional complications arising from differences in soil texture or sample size. Here, a simple alternative expression for bulk field capacity in a sloping or vertical soil is derived directly from Richards equation with the use of the Brooks‐Corey characteristics. It is demonstrated that this expression is consistent with data acquired from vertical soil columns, but may be extended to additional situations commonly found in surface water models and land surface schemes. The calculation of bulk field capacity requires only the Brooks‐Corey pore size distribution index, soil air‐entry pressure, and hillslope length and slope, and may be considered a physically based alternative to pedotransfer function or lookup table approaches.
Field capacity is a commonly used soil parameter in surface water hydrological models, loosely defined as the moisture content of a soil after drainage. The most commonly applied expression for field capacity is defined as the remaining water in a vertical soil column subject to 1/3 atm. of pressure head. While this quantification is sufficient in some cases, the definition is not consistent with the use of bulk field capacity in calculations of lateral drainage from hillslopes, as required by some surface soil parameterizations, nor does it address additional complications arising from differences in soil texture or sample size. Here, a simple alternative expression for bulk field capacity in a sloping or vertical soil is derived directly from Richards equation with the use of the Brooks-Corey characteristics. It is demonstrated that this expression is consistent with data acquired from vertical soil columns, but may be extended to additional situations commonly found in surface water models and land surface schemes. The calculation of bulk field capacity requires only the Brooks-Corey pore size distribution index, soil air-entry pressure, and hillslope length and slope, and may be considered a physically based alternative to pedotransfer function or lookup table approaches. Copyright 2010 John Wiley & Sons Ltd and Crown in the right of Canada.
Author Liu, G.
Soulis, E. D.
Fortin, V.
Craig, J. R.
Author_xml – sequence: 1
  givenname: E. D.
  surname: Soulis
  fullname: Soulis, E. D.
  organization: Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
– sequence: 2
  givenname: J. R.
  surname: Craig
  fullname: Craig, J. R.
  email: jrcraig@uwaterloo.ca
  organization: Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
– sequence: 3
  givenname: V.
  surname: Fortin
  fullname: Fortin, V.
  organization: Canadian Meteorological Centre, Environment Canada, Dorval, Quebec, Canada
– sequence: 4
  givenname: G.
  surname: Liu
  fullname: Liu, G.
  organization: Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
BookMark eNqF0c1OGzEUBWALUakBKvURvIPNhOvx-G-JAgQk1KKqCJWN5fF4iMEZD_ZEEJ6-iYJAlYCu7ua7Z3HODtruYucQ-k5gTADKw9myHwtZii00IqBUQUCybTQCKVnBQYqvaCfnOwCoQMIInR_h7Od9cNg99cnl7GOH25jwMHO4XoR73HoXGmxNb6wflji22OAcYu-7W5yjD3gWk3-O3R760pqQ3beXu4uuTk9-T86Ki5_T88nRRWGqshIFEaTlStnaMhCVbUStSlXWLTXWqqayRqhGEWYtUGNMq4DXVSNswzk1IKmlu2h_k9un-LBwedBzn60LwXQuLrKWQlWCM1at5MGnkgheEiKlhP9TyhlQpuiajjfUpphzcq1e9WKGVW9DMj5oAno9hF4NoddDvGW_PvTJz01avkeLDX30wS0_dPrsz-W_3ufBPb16k-41F1Qwff1jqsUx3LDJL6kV_Qv8pqe-
CitedBy_id crossref_primary_10_1175_JHM_D_11_0151_1
crossref_primary_10_5194_hess_23_741_2019
crossref_primary_10_1016_j_jhydrol_2014_01_020
crossref_primary_10_1016_j_jhydrol_2018_01_065
crossref_primary_10_1175_JHM_D_15_0189_1
crossref_primary_10_1002_qj_4499
crossref_primary_10_5194_gmd_10_2761_2017
crossref_primary_10_1080_07055900_2014_999745
crossref_primary_10_5194_hess_24_2141_2020
crossref_primary_10_5194_gmd_16_5427_2023
crossref_primary_10_1002_hyp_14557
crossref_primary_10_3390_atmos11030278
crossref_primary_10_1002_vzj2_20396
crossref_primary_10_1016_j_still_2012_04_004
crossref_primary_10_1016_j_jhydrol_2020_125744
Cites_doi 10.1061/(ASCE)0733-9437(1998)124:4(230)
10.1029/WR015i006p01633
10.1080/07055900.2000.9649648
10.13031/2013.33720
10.5194/hess-11-1279-2007
10.1111/j.1365-2389.1961.tb00922.x
10.2136/sssaj1986.03615995005000040039x
10.1097/00010694-193109000-00003
10.1016/0933-3630(95)00032-1
10.1029/WR014i004p00601
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons Ltd and Crown in the right of Canada.
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons Ltd and Crown in the right of Canada.
DBID BSCLL
AAYXX
CITATION
7S9
L.6
8FD
FR3
KR7
7QH
7ST
7UA
C1K
F1W
H96
L.G
SOI
DOI 10.1002/hyp.7827
DatabaseName Istex
CrossRef
AGRICOLA
AGRICOLA - Academic
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

AGRICOLA
Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 116
ExternalDocumentID 10_1002_hyp_7827
HYP7827
ark_67375_WNG_7D0Z5CR8_9
Genre article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ABEML
ACSCC
AEYWJ
AGHNM
AGQPQ
AGYGG
AI.
CITATION
DDYGU
M62
RIWAO
RJQFR
SAMSI
VH1
ZY4
7S9
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L.6
8FD
FR3
KR7
7QH
7ST
7UA
C1K
F1W
H96
L.G
SOI
ID FETCH-LOGICAL-a4247-171f699cbc5074cd7b9292bf3acc9d4ca79d915cc03aaaf906b4d7cd663a083c3
IEDL.DBID DR2
ISSN 0885-6087
1099-1085
IngestDate Fri Jul 11 02:57:07 EDT 2025
Fri Jul 11 13:43:45 EDT 2025
Fri Jul 11 00:46:44 EDT 2025
Tue Jul 01 01:46:21 EDT 2025
Thu Apr 24 23:08:28 EDT 2025
Wed Jan 22 16:47:52 EST 2025
Wed Oct 30 09:55:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4247-171f699cbc5074cd7b9292bf3acc9d4ca79d915cc03aaaf906b4d7cd663a083c3
Notes istex:49FADDE7C2C920791CC9CCABF98E67BF2F32E2F0
ArticleID:HYP7827
Natural Sciences and Engineering Research Council of Canada (NSERC)
ark:/67375/WNG-7D0Z5CR8-9
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1365035930
PQPubID 24069
PageCount 5
ParticipantIDs proquest_miscellaneous_879476554
proquest_miscellaneous_1762118880
proquest_miscellaneous_1365035930
crossref_citationtrail_10_1002_hyp_7827
crossref_primary_10_1002_hyp_7827
wiley_primary_10_1002_hyp_7827_HYP7827
istex_primary_ark_67375_WNG_7D0Z5CR8_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01-01
1 January 2011
2011-01-00
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Hydrological processes
PublicationTitleAlternate Hydrol. Process
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Nachabe M. 1998. Refining the interpretation of field capacity in the literature. Journal of Irrigation and Drainage Engineering 124(4): 230-232.
Saxton KE, Rawls W, Romberger J, Papendick R. 1986. Estimating generalized soil water characteristics from texture. Soil Science Society of America Journal 50: 1031-1036.
Bell MA, van Keulen H. 1996. Effect of soil disturbance on pedotransfer function development for field capacity. Soil Technology 8(4): 321-329.
Pietroniro A, Fortin V, Kouwen N, Neal C, Turcotte R, Davison B, Verseghy D, Soulis ED, Caldwell R, Evora N, Pellerin P. 2007. Using the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale. Hydrology and Earth System Sciences 113: 1279-1294.
Rawls WJ, Brakensiek DL, Saxton KE. 1982. Estimation of soil water properties. Transactions of the ASAE 25: 1316-1320.
Veihmeyer FJ, Hendrickson A. 1931. The moisture equivalent as a measure of the field capacity of soils. Soil Science 32: 181-193.
Salter PJ, Haworth F. 1961. The available-water capacity of a sandy loam soil I. A critical comparison of methods of determining the moisture content of soil at field capacity and at the permanent wilting percentage. European Journal of Soil Science 12(2): 326-334.
Soulis ED, Snelgrove K, Kouwen N, Seglenieks F, Verseghy D. 2000. Towards closing the vertical water balance in Canadian atmospheric models: Coupling of the land surface scheme CLASS with the distributed hydrological model WATFLOOD. Atmosphere-Ocean 38(1): 251-269.
Clapp RB, Hornberger GM. 1978. Empirical equations for some soil hydraulic properties. Water Resources Research 14: 601-604.
Richards LA, Weaver LR. 1944. Moisture retention by some irrigated soils as related to soil moisture tension. Journal of Agricultural Research 69: 215-235.
Gupta SC, Larson WE. 1979. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resources Research 15(6): 1633-1635.
1944; 69
1982; 25
2007; 113
1979; 15
1986; 50
2000; 38
1987
2009
1964
1983
1978; 14
2002
1961; 12
1998; 124
1931; 32
1996; 8
1968
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Richards LA (e_1_2_7_12_1) 1944; 69
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_10_1
References_xml – reference: Clapp RB, Hornberger GM. 1978. Empirical equations for some soil hydraulic properties. Water Resources Research 14: 601-604.
– reference: Nachabe M. 1998. Refining the interpretation of field capacity in the literature. Journal of Irrigation and Drainage Engineering 124(4): 230-232.
– reference: Bell MA, van Keulen H. 1996. Effect of soil disturbance on pedotransfer function development for field capacity. Soil Technology 8(4): 321-329.
– reference: Richards LA, Weaver LR. 1944. Moisture retention by some irrigated soils as related to soil moisture tension. Journal of Agricultural Research 69: 215-235.
– reference: Salter PJ, Haworth F. 1961. The available-water capacity of a sandy loam soil I. A critical comparison of methods of determining the moisture content of soil at field capacity and at the permanent wilting percentage. European Journal of Soil Science 12(2): 326-334.
– reference: Gupta SC, Larson WE. 1979. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resources Research 15(6): 1633-1635.
– reference: Veihmeyer FJ, Hendrickson A. 1931. The moisture equivalent as a measure of the field capacity of soils. Soil Science 32: 181-193.
– reference: Rawls WJ, Brakensiek DL, Saxton KE. 1982. Estimation of soil water properties. Transactions of the ASAE 25: 1316-1320.
– reference: Pietroniro A, Fortin V, Kouwen N, Neal C, Turcotte R, Davison B, Verseghy D, Soulis ED, Caldwell R, Evora N, Pellerin P. 2007. Using the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale. Hydrology and Earth System Sciences 113: 1279-1294.
– reference: Saxton KE, Rawls W, Romberger J, Papendick R. 1986. Estimating generalized soil water characteristics from texture. Soil Science Society of America Journal 50: 1031-1036.
– reference: Soulis ED, Snelgrove K, Kouwen N, Seglenieks F, Verseghy D. 2000. Towards closing the vertical water balance in Canadian atmospheric models: Coupling of the land surface scheme CLASS with the distributed hydrological model WATFLOOD. Atmosphere-Ocean 38(1): 251-269.
– year: 2009
– volume: 15
  start-page: 1633
  issue: 6
  year: 1979
  end-page: 1635
  article-title: Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density
  publication-title: Water Resources Research
– year: 1964
– volume: 69
  start-page: 215
  year: 1944
  end-page: 235
  article-title: Moisture retention by some irrigated soils as related to soil moisture tension
  publication-title: Journal of Agricultural Research
– start-page: 3
  year: 1983
  end-page: 19
– volume: 124
  start-page: 230
  issue: 4
  year: 1998
  end-page: 232
  article-title: Refining the interpretation of field capacity in the literature
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 50
  start-page: 1031
  year: 1986
  end-page: 1036
  article-title: Estimating generalized soil water characteristics from texture
  publication-title: Soil Science Society of America Journal
– volume: 25
  start-page: 1316
  year: 1982
  end-page: 1320
  article-title: Estimation of soil water properties
  publication-title: Transactions of the ASAE
– year: 1968
– year: 2002
– year: 1987
– volume: 12
  start-page: 326
  issue: 2
  year: 1961
  end-page: 334
  article-title: The available‐water capacity of a sandy loam soil I. A critical comparison of methods of determining the moisture content of soil at field capacity and at the permanent wilting percentage
  publication-title: European Journal of Soil Science
– volume: 14
  start-page: 601
  year: 1978
  end-page: 604
  article-title: Empirical equations for some soil hydraulic properties
  publication-title: Water Resources Research
– volume: 113
  start-page: 1279
  year: 2007
  end-page: 1294
  article-title: Using the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale
  publication-title: Hydrology and Earth System Sciences
– volume: 38
  start-page: 251
  issue: 1
  year: 2000
  end-page: 269
  article-title: Towards closing the vertical water balance in Canadian atmospheric models: Coupling of the land surface scheme CLASS with the distributed hydrological model WATFLOOD
  publication-title: Atmosphere‐Ocean
– volume: 32
  start-page: 181
  year: 1931
  end-page: 193
  article-title: The moisture equivalent as a measure of the field capacity of soils
  publication-title: Soil Science
– volume: 8
  start-page: 321
  issue: 4
  year: 1996
  end-page: 329
  article-title: Effect of soil disturbance on pedotransfer function development for field capacity
  publication-title: Soil Technology
– ident: e_1_2_7_8_1
– ident: e_1_2_7_5_1
– ident: e_1_2_7_9_1
  doi: 10.1061/(ASCE)0733-9437(1998)124:4(230)
– ident: e_1_2_7_7_1
  doi: 10.1029/WR015i006p01633
– ident: e_1_2_7_16_1
  doi: 10.1080/07055900.2000.9649648
– ident: e_1_2_7_11_1
  doi: 10.13031/2013.33720
– ident: e_1_2_7_13_1
– ident: e_1_2_7_10_1
  doi: 10.5194/hess-11-1279-2007
– ident: e_1_2_7_3_1
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1365-2389.1961.tb00922.x
– ident: e_1_2_7_15_1
  doi: 10.2136/sssaj1986.03615995005000040039x
– volume: 69
  start-page: 215
  year: 1944
  ident: e_1_2_7_12_1
  article-title: Moisture retention by some irrigated soils as related to soil moisture tension
  publication-title: Journal of Agricultural Research
– ident: e_1_2_7_17_1
  doi: 10.1097/00010694-193109000-00003
– ident: e_1_2_7_18_1
– ident: e_1_2_7_6_1
– ident: e_1_2_7_2_1
  doi: 10.1016/0933-3630(95)00032-1
– ident: e_1_2_7_4_1
  doi: 10.1029/WR014i004p00601
SSID ssj0004080
Score 2.052477
Snippet Field capacity is a commonly used soil parameter in surface water hydrological models, loosely defined as the moisture content of a soil after drainage. The...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112
SubjectTerms analytical solution
Drainage
equations
field capacity
hillslope hydrology
hydrologic models
Hydrology
Mathematical models
Parametrization
pedotransfer functions
retained soil moisture
Soil (material)
soil horizons
soil sampling
soil water
soil water content
Surface layer
Surface water
Texture
Title A simple expression for the bulk field capacity of a sloping soil horizon
URI https://api.istex.fr/ark:/67375/WNG-7D0Z5CR8-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.7827
https://www.proquest.com/docview/1365035930
https://www.proquest.com/docview/1762118880
https://www.proquest.com/docview/879476554
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBejfehe2q5bWfqFBmV7cirbsh09ln5lg5ZRVtZtD0I62SQk2CFOoO1f3zt_pOtoyygYDOZsJJ1O95N89zvG9tHFh8KkqYe7K-lJ42eeioLYi0CFaeL7mXB0oH9-Efev5Lfr6LqJqqRcmJofYnHgRpZRrddk4MaWBw-koYPbSRfdGyWSU6gW4aHLB-YoKaqiaWhDkReLXtLyzorgoH3xkSdapkG9eQQz_warlbc5XWN_2nbWQSaj7nxmu3D3D4Xj6zqyzlYbEMoP61nzjr1J8w220tRDH9y-Z18PeTkk3mCe3jSRsjlHeMsRLnI7H494FfnGAV0tII7nRcYNL-vsK14WwzEfFNPhXZF_YFenJz-O-l5TdMEzMpBEGOlnsVJgAZGiBJdYBFCBzUIDoJwEkyin_AhAhMaYTInYSpeAQ-RiEM5BuMmW8iJPPzLuu6DnMnwkQUgInILQ4JY4pix246zrsC-tAjQ0jORUGGOsay7lQOPQaBqaDvu0kJzULBxPyHyudLgQMNMRRa0lkf55caaTY_E7OrrsaYUfa5Ws0ZboB4nJ02JeappHRGkYihdk0HvgpgyXvQ7jz8j0cJFLYgRq2KZK8882Wvd_faf71v8KbrO39ak2XTtsaTadp7sIi2Z2rzKAe6DoCZM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-sPtiX1mpLr612BbFPOTfJJntLn0SrZ9WjiFJbhGUzm3DHHYncB6h_fWfzcdaipRQCgTAJm53Mzm8ms78B2CIXH3KTph5FV8ITxs88FQWxF6EKU-n7GbcuoX_ai7sX4utldLkAn5u9MBU_xDzh5iyjXK-dgbuE9M49a2j_9rpN_k0-gyXX0LuMp87uuaMEL9umkRVFXsw7smGe5cFOc-cDX7TkpvXmAdD8Ha6W_ubgJVw1I63KTIbt2TRp490fJI7_-Sor8KLGoWy3-nBewUKar8Jy3RK9f7sGR7tsMnDUwSy9qYtlc0YIlxFiZMlsNGRl8RtD8rZIUJ4VGTNsUm3AYpNiMGL9Yjy4K_LXcHHw5Xyv69V9FzwjAuE4I_0sVgoTJLAo0MqEMFSQZKFBVFagkcoqP0LkoTEmUzxOhJVoCbwYQnQYvoHFvMjTt8B8G3RsRpcEcoGBVRgaiopjt5Hd2MS24FOjAY01KbnrjTHSFZ1yoGlqtJuaFmzOJa8rIo5HZLZLJc4FzHjoCtdkpL_3DrXc5z-jvbOOVvSwRsuazMn9IzF5Wswm2lX9OVbDkP9FhhwIxWW08rWAPSHToXVOxoTVaEyl6p8ctO7--ObO7_5V8CMsd89PT_TJUe_4PTyvktzu-ACL0_EsXSeUNE02Smv4BSa0Da4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED-6FrZ-absXTdttGoztk1PZlq3oY2mWpXuEUlbWbR-EfLJJSLBDHtD2r-_Jj3Qd6xgDg8E-m7NOp_tJPv0O4A2F-JCbNPVodiU8YfzMU1EQexGqMJW-n3HrFvS_DOL-ufh4EV3UWZVuL0zFD7FacHOeUY7XzsGnNju8JQ0dXk3bFN7kA9gQMe-4Ht09u6WOErysmkZOFHl0WzbEszw4bJ68E4o2XKte3sGZv6LVMtz0tuFno2iVZTJuLxdJG69_43D8vy_Zga0ahbKjqts8hrU0fwKP6oLow6uncHLE5iNHHMzSyzpVNmeEbxnhRZYsJ2NWpr4xpFiLBORZkTHD5tX2KzYvRhM2LGaj6yJ_Bue991-P-15ddcEzIhCOMdLPYqUwQYKKAq1MCEEFSRYaRGUFGqms8iNEHhpjMsXjRFiJlqCLITyH4XNYz4s83QXm26BjM7okkAsMrMLQ0Jw4dtvYjU1sC941BtBYU5K7yhgTXZEpB5qaRrumacHrleS0ouH4g8zb0oYrATMbu7Q1Gelvgw9advmP6PisoxW9rDGyJmdyf0hMnhbLuXY5f47TMOR_kaHwQbMyGvdawO6R6dAoJ2NCaqRTafl7ldb976fuvPevgq_g4Wm3pz-fDD7tw2a1wu2OA1hfzJbpC4JIi-Rl6Qs3FngMZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+expression+for+the+bulk+field+capacity+of+a+sloping+soil+horizon&rft.jtitle=Hydrological+processes&rft.au=Soulis%2C+ED&rft.au=Craig%2C+J+R&rft.au=tin%2C+V&rft.au=Liu%2C+G&rft.date=2011-01-01&rft.issn=1099-1085&rft.volume=25&rft.issue=1&rft.spage=112&rft.epage=116&rft_id=info:doi/10.1002%2Fhyp.7827&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon