Active Power Line Conditioners Design, Simulation and Implementation for Improving Power Quality

Active Power Line Conditioners: Design, Simulation and Implementation for Improving Power Quality presents a rigorous theoretical and practical approach to active power line conditioners, one of the subjects of most interest in the field of power quality.

Saved in:
Bibliographic Details
Main Authors Revuelta, Patricio Salmeron, Litrán, Salvador Pérez, Thomas, Jaime Prieto
Format eBook
LanguageEnglish
Published Chantilly Elsevier Science & Technology 2015
Edition1
Subjects
Online AccessGet full text
ISBN0128032162
9780128032169
DOI10.1016/C2014-0-02915-2

Cover

Table of Contents:
  • 7.2 - Unified Power Quality Conditioner -- 7.2.1 - Structure of the UPQC -- 7.2.2 - Control Strategy of the UPQC -- 7.2.2.1 - Calculation of the Load Voltage Reference -- 7.2.2.2 - Calculation of the Active Current Reference -- 7.2.3 - Parameters Design -- 7.2.3.1 - Analysis of the Passive Circuit -- 7.2.3.2 - Control Modification -- 7.3 - Experimental Prototype of UPQC -- 7.3.1 - Results of Practical Case -- 7.4 - Universal Active Power Line Conditioner -- 7.4.1 - Unified Power Flow Controller -- 7.4.2 - Power Flow Control, Voltage Regulation, and Power Quality Improvement -- 7.4.2.1 - Integration in the UPLC Control -- 7.5 - Summary -- References -- 8 - Distributed Generation -- 8.1 - Introduction -- 8.2 - Different Technologies for Distributed Generation -- 8.2.1 - Thermal Solar Plant -- 8.2.2 - Photovoltaic Plant -- 8.2.3 - Wind Power Plants -- 8.2.4 - Cogeneration Plant -- 8.2.5 - Fuel Cell -- 8.2.6 - Small Hydro Generation -- 8.2.7 - Energy Storage -- 8.3 - Power Flow Control of a Distributed Generation -- 8.4 - Distributed Generation Impact in Power Quality -- 8.4.1 - Voltage Fluctuations -- 8.4.2 - Harmonics -- 8.4.3 - Voltage Unbalances -- 8.4.4 - Voltage Dips -- 8.5 - Distribution Line Compensation -- 8.5.1 - Instantaneous Unity Power Factor Control Strategy -- 8.5.2 - Positive Sequence Control Strategy -- 8.6 - Power Quality Improvement in Distributed Environment -- 8.7 - Summary -- References -- Appendix I - Simulink Schemes -- Chapter 1 -- Example 1.1 -- Chapter 2 -- Example 2.2 -- Chapter 3 -- Example 3.4a -- Example 3.4b -- Example 3.5 -- Example 3.6 -- Example 3.8 -- Chapter 4 -- Example 4.1 -- Example 4.2 -- Example 4.3 -- Example 4.4 -- Example 4.5 -- Chapter 5 -- Examples 5.1, 5.2, and 5.3 -- Example 5.4 -- Chapter 6 -- Example 6.1 -- Examples 6.2, 6.3, and 6.4 -- Example 6.4 -- Chapter 7 -- Example 7.1 -- Example 7.2 -- Chapter 8
  • 3.4.1 - dq Formulation -- 3.4.2 - id-iq Method -- 3.4.3 - p-q-r Formulation -- 3.5 - Dual Instantaneous Reactive Power -- 3.5.1 - Dual Original Instantaneous Reactive Power Formulation -- 3.5.2 - Dual Modified Instantaneous Reactive Power Formulation -- 3.6 - Summary -- References -- 4 - Shunt Active Power Filters -- 4.1 - Introduction -- 4.2 - Fundamentals of Shunt Active Power Filters, APFs -- 4.3 - Shunt APF Structure -- 4.3.1 - PWM Voltage Source Inverter -- 4.3.2 - Current Control -- 4.3.3 - Shunt Three-Phase Four-Wire Active Filter -- 4.4 - Compensation Strategies -- 4.4.1 - Instantaneous Compensation -- 4.4.2 - Unit Power Factor -- 4.4.3 - Balanced and Sinusoidal Source Current -- 4.5 - Practical Design Considerations -- 4.5.1 - Component Design -- 4.5.2 - Simulation Models -- 4.6 - Experimental Prototype of APF -- 4.7 - Summary -- References -- 5 - Series Active Power Filters -- 5.1 - Introduction -- 5.2 - Series Active Power Filters -- 5.2.1 - Source Current Detection Control -- 5.2.2 - Load Voltage Detection Control -- 5.2.3 - Combined Control -- 5.3 - Design of SAF from State Space -- 5.3.1 - State Space -- 5.3.2 - SAF State Model -- 5.3.3 - Control Strategies -- 5.4 - Experimental Prototype of SAF -- 5.4.1 - Results of Practical Cases -- 5.5 - Summary -- References -- 6 - Hybrid Filters: Series Active Power Filters and Shunt Passive Filters -- 6.1 - Introduction -- 6.2 - Series Active Filters and Shunt Passive Filters -- 6.2.1 - Control Strategy of Source Current Detection -- 6.2.2 - Control Strategy of Load Voltage Detection -- 6.2.3 - Combined Control -- 6.3 - State Model of SAPPF -- 6.3.1 - Source Current Detection -- 6.3.2 - Load Voltage Detection -- 6.3.3 - Hybrid Control -- 6.4 - Experimental Prototype of SAPPF -- 6.5 - Summary -- References -- 7 - Combined Shunt and Series Active Power Filters -- 7.1 - Introduction
  • Example 8.1 -- Example 8.2 -- Example 8.3 -- Example 8.4 -- Example 8.5 -- Appendix II - Experimental Implementations -- B.1 - Experimental Platform for Series and Hybrid APF Tests -- B.2 - Experimental Platform for Shunt and Series-Shunt APF Tests -- Index
  • Cover -- Title Page -- Copyright Page -- Table of Contents -- Preface -- About the Authors -- 1 - Introduction to Power Quality from Power Conditioning -- 1.1 - Introduction -- 1.2 - Power Quality -- 1.2.1 - Voltage Disturbances -- 1.2.1.1 - Frequency Variations -- 1.2.1.2 - Slow Voltage Variations -- 1.2.1.3 - Voltage Fluctuations -- 1.2.1.4 - Voltage Sags or Dips and Short Interruptions -- 1.2.1.5 - Voltage Imbalances -- 1.2.1.6 - Harmonic Voltage -- 1.2.2 - Harmonics -- 1.3 - Nonlinear Loads Model -- 1.4 - Active Power Line Conditioners -- 1.4.1 - Shunt Active Power Filters -- 1.4.2 - Series Active Filters -- 1.4.3 - Hybrid Active Filters -- 1.4.4 - Unified Power Quality Conditioners -- 1.5 - Summary -- References -- 2 - Electrical Power Terms in the IEEE Std 1459 Framework -- 2.1 - Introduction -- 2.2 - Apparent Power and Power Factor in Distorted and Unbalanced Systems: The Background -- 2.3 - IEEE Working Group on Nonsinusoidal Situations -- 2.3.1 - Single-Phase Nonsinusoidal -- 2.3.2 - Nonsinusoidal and Unbalanced Three-Phase Systems -- 2.3.3 - Depenbrock's Comments -- 2.4 - Standard IEEE 1459 -- 2.4.1 - After the Standard: Std 1459-2010 -- 2.5 - A Practical Case -- 2.6 - Discussions and Conclusions -- 2.7 - Summary -- References -- 3 - Instantaneous Reactive Power Theory -- 3.1 - Introduction -- 3.2 - Original Instantaneous Reactive Power Formulation -- 3.2.1 - 0, α, β Coordinates -- 3.2.2 - Phase Coordinates -- 3.2.2.1 - Without Zero-Sequence Components -- 3.2.2.2 - With Zero-Sequence Components -- 3.2.3 - Applications to Active Compensation -- 3.3 - Modified Instantaneous Reactive Power Formulation -- 3.3.1 - 0, α, β Coordinates -- 3.3.2 - Phase Coordinates -- 3.3.3 - Applications to Active Compensation -- 3.3.4 - Modified Versus Original Instantaneous Reactive Power -- 3.4 - Other Approaches: Synchronous Frames