Synthesis of Atropisomers by Transition-Metal-Catalyzed Asymmetric C–H Functionalization Reactions

Transition-metal-catalyzed enantio­selective C–H functionalization has become a powerful strategy for the formation of C–C or C–X bonds, enabling the highly asymmetric synthesis of a wide range of enantio­enriched compounds. Atrop­isomers are widely found in natural products and pharmaceutically rel...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 143; no. 35; pp. 14025 - 14040
Main Authors Liu, Chen-Xu, Zhang, Wen-Wen, Yin, Si-Yong, Gu, Qing, You, Shu-Li
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transition-metal-catalyzed enantio­selective C–H functionalization has become a powerful strategy for the formation of C–C or C–X bonds, enabling the highly asymmetric synthesis of a wide range of enantio­enriched compounds. Atrop­isomers are widely found in natural products and pharmaceutically relevant molecules, and have also found applications as privileged frameworks for chiral ligands and catalysts. Thus, research into asymmetric routes for the synthesis of atrop­isomers has garnered great interest in recent years. In this regard, transition-metal-catalyzed enantio­selective C–H functionalization has emerged as an atom-economic and efficient strategy toward their synthesis. In this Perspective, the approaches for the synthesis of atrop­isomers by transition-metal-catalyzed asymmetric C–H functionalization reactions are summarized. The main focus here is on asymmetric catalysis via Pd, Rh, and Ir complexes, which have been the most frequently utilized catalysts among reported enantio­selective C–H functionalization reactions. Finally, we discuss limitations on available protocols and give an outlook on possible future avenues of research.
AbstractList Transition-metal-catalyzed enantioselective C-H functionalization has become a powerful strategy for the formation of C-C or C-X bonds, enabling the highly asymmetric synthesis of a wide range of enantioenriched compounds. Atropisomers are widely found in natural products and pharmaceutically relevant molecules, and have also found applications as privileged frameworks for chiral ligands and catalysts. Thus, research into asymmetric routes for the synthesis of atropisomers has garnered great interest in recent years. In this regard, transition-metal-catalyzed enantioselective C-H functionalization has emerged as an atom-economic and efficient strategy toward their synthesis. In this Perspective, the approaches for the synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions are summarized. The main focus here is on asymmetric catalysis via Pd, Rh, and Ir complexes, which have been the most frequently utilized catalysts among reported enantioselective C-H functionalization reactions. Finally, we discuss limitations on available protocols and give an outlook on possible future avenues of research.
Transition-metal-catalyzed enantioselective C-H functionalization has become a powerful strategy for the formation of C-C or C-X bonds, enabling the highly asymmetric synthesis of a wide range of enantioenriched compounds. Atropisomers are widely found in natural products and pharmaceutically relevant molecules, and have also found applications as privileged frameworks for chiral ligands and catalysts. Thus, research into asymmetric routes for the synthesis of atropisomers has garnered great interest in recent years. In this regard, transition-metal-catalyzed enantioselective C-H functionalization has emerged as an atom-economic and efficient strategy toward their synthesis. In this Perspective, the approaches for the synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions are summarized. The main focus here is on asymmetric catalysis via Pd, Rh, and Ir complexes, which have been the most frequently utilized catalysts among reported enantioselective C-H functionalization reactions. Finally, we discuss limitations on available protocols and give an outlook on possible future avenues of research.Transition-metal-catalyzed enantioselective C-H functionalization has become a powerful strategy for the formation of C-C or C-X bonds, enabling the highly asymmetric synthesis of a wide range of enantioenriched compounds. Atropisomers are widely found in natural products and pharmaceutically relevant molecules, and have also found applications as privileged frameworks for chiral ligands and catalysts. Thus, research into asymmetric routes for the synthesis of atropisomers has garnered great interest in recent years. In this regard, transition-metal-catalyzed enantioselective C-H functionalization has emerged as an atom-economic and efficient strategy toward their synthesis. In this Perspective, the approaches for the synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions are summarized. The main focus here is on asymmetric catalysis via Pd, Rh, and Ir complexes, which have been the most frequently utilized catalysts among reported enantioselective C-H functionalization reactions. Finally, we discuss limitations on available protocols and give an outlook on possible future avenues of research.
Transition-metal-catalyzed enantio­selective C–H functionalization has become a powerful strategy for the formation of C–C or C–X bonds, enabling the highly asymmetric synthesis of a wide range of enantio­enriched compounds. Atrop­isomers are widely found in natural products and pharmaceutically relevant molecules, and have also found applications as privileged frameworks for chiral ligands and catalysts. Thus, research into asymmetric routes for the synthesis of atrop­isomers has garnered great interest in recent years. In this regard, transition-metal-catalyzed enantio­selective C–H functionalization has emerged as an atom-economic and efficient strategy toward their synthesis. In this Perspective, the approaches for the synthesis of atrop­isomers by transition-metal-catalyzed asymmetric C–H functionalization reactions are summarized. The main focus here is on asymmetric catalysis via Pd, Rh, and Ir complexes, which have been the most frequently utilized catalysts among reported enantio­selective C–H functionalization reactions. Finally, we discuss limitations on available protocols and give an outlook on possible future avenues of research.
Author You, Shu-Li
Gu, Qing
Yin, Si-Yong
Zhang, Wen-Wen
Liu, Chen-Xu
AuthorAffiliation Chang-Kung Chuang Institute
East China Normal University
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry
AuthorAffiliation_xml – name: State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry
– name: East China Normal University
– name: Chang-Kung Chuang Institute
Author_xml – sequence: 1
  givenname: Chen-Xu
  surname: Liu
  fullname: Liu, Chen-Xu
  organization: State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry
– sequence: 2
  givenname: Wen-Wen
  surname: Zhang
  fullname: Zhang, Wen-Wen
  organization: East China Normal University
– sequence: 3
  givenname: Si-Yong
  surname: Yin
  fullname: Yin, Si-Yong
  organization: State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry
– sequence: 4
  givenname: Qing
  orcidid: 0000-0003-4963-2271
  surname: Gu
  fullname: Gu, Qing
  organization: State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry
– sequence: 5
  givenname: Shu-Li
  orcidid: 0000-0003-4586-8359
  surname: You
  fullname: You, Shu-Li
  email: slyou@sioc.ac.cn
  organization: East China Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34432467$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAUha2Kqgy0u66rLFk04Gs7TmY5GpUfCYRUYG35V3iUxIPtLMKq79A35ElIYNigVmxs36vvHl2fc4D2-tBbhL4DPgZM4GQjdToGjWtOq09oARXBZQWE76EFxpiUdcPpPjpIaTOVjDTwBe1TxihhvF4gczP2-d4mn4rgilWOYetT6GxMhRqL2yj75LMPfXlls2zLtZzO8dGaYpXGrrM5el2sn_78PS9Oh17PpGz9o5wfxW8rXzrpK_rsZJvst919iO5Of92uz8vL67OL9eqylIzQXDprAJhiS4NdpRvFKwAjpXFuqV2NDWUVMbxWgLFUoMBayqcvcUWwU9gZeoiOXnW3MTwMNmXR-aRt28rehiEJwilvGHDOPkYrzpasIdBM6I8dOqjOGrGNvpNxFG8mTgB5BXQMKUXrhPb5xYIcpW8FYDEnJeakxC6paejnu6E33f_gu33n5iYMcfI5_Rt9BvMBpJg
CitedBy_id crossref_primary_10_1002_ange_202313778
crossref_primary_10_1021_acs_orglett_2c00812
crossref_primary_10_1002_anie_202218871
crossref_primary_10_1038_s41467_023_43278_z
crossref_primary_10_1021_acs_orglett_4c03827
crossref_primary_10_1007_s11426_022_1471_2
crossref_primary_10_1002_anie_202402612
crossref_primary_10_1038_s41467_022_30693_x
crossref_primary_10_1002_cjoc_202300289
crossref_primary_10_1002_chem_202403284
crossref_primary_10_1021_acscatal_4c06720
crossref_primary_10_1039_D3SC03496H
crossref_primary_10_1016_j_chempr_2022_04_011
crossref_primary_10_1039_D3CC03592A
crossref_primary_10_1021_acs_orglett_2c02208
crossref_primary_10_1038_s41467_023_40164_6
crossref_primary_10_1002_cjoc_202200327
crossref_primary_10_1002_ejoc_202400238
crossref_primary_10_1038_s44160_022_00114_4
crossref_primary_10_1002_anie_202318803
crossref_primary_10_1002_ange_202300905
crossref_primary_10_1021_acscatal_5c00136
crossref_primary_10_3390_molecules28165956
crossref_primary_10_1021_acs_orglett_1c02574
crossref_primary_10_1021_acscatal_4c01839
crossref_primary_10_1002_ange_202216863
crossref_primary_10_1002_ange_202319871
crossref_primary_10_3390_inorganics10110179
crossref_primary_10_1002_adsc_202101183
crossref_primary_10_1002_ange_202304706
crossref_primary_10_1038_s41467_023_37987_8
crossref_primary_10_1007_s11426_022_1363_y
crossref_primary_10_1021_acs_orglett_4c01656
crossref_primary_10_1002_anie_202401756
crossref_primary_10_1039_D4QO01905A
crossref_primary_10_1002_cctc_202301566
crossref_primary_10_1039_D4OB00012A
crossref_primary_10_1002_anie_202410581
crossref_primary_10_1021_acs_joc_4c02680
crossref_primary_10_1021_acs_chemrev_3c00327
crossref_primary_10_1055_a_2021_9514
crossref_primary_10_1016_j_trechm_2023_05_005
crossref_primary_10_1038_s44160_022_00201_6
crossref_primary_10_1039_D4SC05375C
crossref_primary_10_1002_ange_202401498
crossref_primary_10_1038_s41467_025_57804_8
crossref_primary_10_1039_D2QO01813F
crossref_primary_10_1021_acscatal_3c00732
crossref_primary_10_1021_acscatal_3c00751
crossref_primary_10_1002_anie_202300481
crossref_primary_10_1021_acscatal_2c00083
crossref_primary_10_1002_ange_202205037
crossref_primary_10_1021_jacs_3c04498
crossref_primary_10_1055_a_2230_0759
crossref_primary_10_1002_anie_202407640
crossref_primary_10_1016_j_chempr_2023_09_017
crossref_primary_10_1002_ejoc_202300996
crossref_primary_10_1021_acs_joc_3c02912
crossref_primary_10_1002_anie_202400441
crossref_primary_10_1021_jacs_3c14600
crossref_primary_10_1002_adsc_202301302
crossref_primary_10_1002_ange_202300481
crossref_primary_10_1021_acs_orglett_2c00968
crossref_primary_10_1021_acs_orglett_2c01818
crossref_primary_10_1002_anie_202211303
crossref_primary_10_1021_jacs_3c08769
crossref_primary_10_1055_a_1802_6793
crossref_primary_10_1002_cctc_202401143
crossref_primary_10_1002_ange_202401756
crossref_primary_10_1021_jacs_3c00003
crossref_primary_10_1002_ange_202300419
crossref_primary_10_1021_acs_cgd_4c00837
crossref_primary_10_1002_adsc_202301310
crossref_primary_10_1039_D5SC00014A
crossref_primary_10_1002_anie_202300905
crossref_primary_10_1021_acscatal_2c03187
crossref_primary_10_1002_anie_202313388
crossref_primary_10_1021_prechem_4c00008
crossref_primary_10_1002_ange_202212595
crossref_primary_10_1002_anie_202304706
crossref_primary_10_1021_acs_orglett_3c01590
crossref_primary_10_1039_D3QO01877F
crossref_primary_10_1002_adsc_202401553
crossref_primary_10_1021_acs_orglett_4c00479
crossref_primary_10_1002_ange_202410581
crossref_primary_10_1039_D3SC02714G
crossref_primary_10_1021_acs_joc_3c01391
crossref_primary_10_1038_s44160_022_00177_3
crossref_primary_10_1039_D3SC02800C
crossref_primary_10_1021_acscatal_4c00428
crossref_primary_10_1021_jacs_3c10714
crossref_primary_10_1021_acscatal_3c02199
crossref_primary_10_1002_ange_202402612
crossref_primary_10_1039_D5SC00623F
crossref_primary_10_1021_acscatal_3c02072
crossref_primary_10_1002_cjoc_202300529
crossref_primary_10_1002_anie_202310320
crossref_primary_10_1039_D2QO00946C
crossref_primary_10_1021_acscatal_4c01082
crossref_primary_10_1021_acs_orglett_4c01214
crossref_primary_10_1016_j_chempr_2023_05_022
crossref_primary_10_1002_ange_202302964
crossref_primary_10_1039_D4CC01785D
crossref_primary_10_1002_advs_202402429
crossref_primary_10_1021_acs_orglett_3c00805
crossref_primary_10_1021_jacs_5c02428
crossref_primary_10_3390_molecules27238517
crossref_primary_10_1002_adsc_202200957
crossref_primary_10_1016_j_checat_2023_100822
crossref_primary_10_1021_acscatal_2c04373
crossref_primary_10_1021_acscatal_2c06310
crossref_primary_10_1021_acscatal_4c00519
crossref_primary_10_1021_jacsau_4c00777
crossref_primary_10_1002_ange_202310004
crossref_primary_10_1055_a_2005_5006
crossref_primary_10_1021_acs_orglett_3c01453
crossref_primary_10_1055_a_1677_5870
crossref_primary_10_1039_D4CC04701J
crossref_primary_10_1016_j_gresc_2021_12_005
crossref_primary_10_1002_asia_202201180
crossref_primary_10_1002_ange_202310112
crossref_primary_10_1021_acs_orglett_2c00127
crossref_primary_10_1002_ange_202316454
crossref_primary_10_1021_acs_orglett_5c00441
crossref_primary_10_1021_jacs_3c12234
crossref_primary_10_1002_aoc_7901
crossref_primary_10_1038_s41467_023_39968_3
crossref_primary_10_1002_ange_202315005
crossref_primary_10_1002_cjoc_202300438
crossref_primary_10_1039_D3QO01083J
crossref_primary_10_6023_cjoc202212003
crossref_primary_10_1021_acscatal_4c07281
crossref_primary_10_1021_jacs_1c09889
crossref_primary_10_1021_acscatal_4c04455
crossref_primary_10_1002_anie_202218533
crossref_primary_10_1021_acs_accounts_2c00175
crossref_primary_10_1021_acs_orglett_3c01685
crossref_primary_10_1021_acs_chemrev_3c00149
crossref_primary_10_1002_chem_202303165
crossref_primary_10_1039_D4SC02178A
crossref_primary_10_1002_anie_202205037
crossref_primary_10_1021_acs_orglett_2c01981
crossref_primary_10_1039_D2CC01625G
crossref_primary_10_1002_ejoc_202400402
crossref_primary_10_1021_acs_orglett_1c04002
crossref_primary_10_1021_acs_orglett_2c03003
crossref_primary_10_1039_D3CC01328F
crossref_primary_10_1002_anie_202316454
crossref_primary_10_1002_anie_202310112
crossref_primary_10_1002_anie_202315005
crossref_primary_10_1021_jacs_3c14450
crossref_primary_10_6023_cjoc202211022
crossref_primary_10_1002_ange_202218533
crossref_primary_10_1039_D4SC01837K
crossref_primary_10_1002_anie_202302964
crossref_primary_10_1002_ange_202305067
crossref_primary_10_1021_acscatal_3c04853
crossref_primary_10_1021_acscatal_3c03867
crossref_primary_10_1021_acs_orglett_4c02692
crossref_primary_10_1039_D2QO00021K
crossref_primary_10_1002_anie_202115221
crossref_primary_10_1016_j_xcrp_2023_101697
crossref_primary_10_1039_D4OB00739E
crossref_primary_10_1002_ejoc_202101449
crossref_primary_10_1021_jacs_3c05845
crossref_primary_10_1002_adsc_202500021
crossref_primary_10_1039_D4OB02090A
crossref_primary_10_1039_D3SC03686C
crossref_primary_10_1002_ange_202425512
crossref_primary_10_1039_D3CC01666H
crossref_primary_10_1002_anie_202310004
crossref_primary_10_1002_adsc_202301484
crossref_primary_10_1021_acs_accounts_2c00509
crossref_primary_10_1021_jacs_4c04623
crossref_primary_10_1002_anie_202300419
crossref_primary_10_1021_acscatal_4c02092
crossref_primary_10_1002_ange_202305518
crossref_primary_10_1021_acscatal_4c06579
crossref_primary_10_1021_acs_orglett_3c00178
crossref_primary_10_1021_acs_orglett_3c02478
crossref_primary_10_1002_ange_202310320
crossref_primary_10_1038_s41467_023_36723_6
crossref_primary_10_1039_D1SC06135F
crossref_primary_10_1126_sciadv_adg1645
crossref_primary_10_1021_acscatal_4c07749
crossref_primary_10_1021_acs_accounts_2c00513
crossref_primary_10_1021_acscatal_4c03944
crossref_primary_10_1021_acscatal_2c04292
crossref_primary_10_1002_ange_202400441
crossref_primary_10_1002_ange_202407640
crossref_primary_10_1002_anie_202319871
crossref_primary_10_1039_D4QO01857E
crossref_primary_10_1002_ange_202218871
crossref_primary_10_1021_acscatal_4c06788
crossref_primary_10_1002_anie_202306981
crossref_primary_10_1021_acs_orglett_1c03967
crossref_primary_10_1002_anie_202313778
crossref_primary_10_1021_acs_orglett_2c00686
crossref_primary_10_1021_acs_orglett_5c00121
crossref_primary_10_1039_D4QO01235F
crossref_primary_10_1021_acs_orglett_2c04247
crossref_primary_10_1002_cctc_202400701
crossref_primary_10_1002_ange_202313388
crossref_primary_10_1002_anie_202401498
crossref_primary_10_1002_anie_202212595
crossref_primary_10_1039_D3CC04425D
crossref_primary_10_1002_ange_202111860
crossref_primary_10_1039_D3GC04154A
crossref_primary_10_1002_cjoc_202300355
crossref_primary_10_1021_acscatal_3c00901
crossref_primary_10_1002_ange_202306981
crossref_primary_10_1021_acs_orglett_4c04862
crossref_primary_10_1039_D1QO01884A
crossref_primary_10_1016_j_chempr_2023_04_003
crossref_primary_10_1021_jacs_1c13020
crossref_primary_10_1039_D2SC06131G
crossref_primary_10_1038_s41929_024_01138_z
crossref_primary_10_1002_ange_202115221
crossref_primary_10_1038_s41467_023_44202_1
crossref_primary_10_1039_D3CC06011J
crossref_primary_10_1016_j_trechm_2022_01_005
crossref_primary_10_1002_ange_202312923
crossref_primary_10_1021_acscatal_4c04979
crossref_primary_10_1021_jacs_3c08129
crossref_primary_10_1021_acscatal_2c06175
crossref_primary_10_1021_jacs_4c08459
crossref_primary_10_1021_acs_orglett_2c01141
crossref_primary_10_1039_D4QO00493K
crossref_primary_10_1002_anie_202421060
crossref_primary_10_1021_acs_orglett_4c03346
crossref_primary_10_1021_acscatal_3c06032
crossref_primary_10_1021_acscatal_5c00111
crossref_primary_10_1002_anie_202305518
crossref_primary_10_1002_ange_202211303
crossref_primary_10_1002_anie_202212846
crossref_primary_10_1002_anie_202111860
crossref_primary_10_1021_jacs_4c18255
crossref_primary_10_1021_acs_orglett_2c03699
crossref_primary_10_1021_acs_orglett_3c01509
crossref_primary_10_1002_anie_202208912
crossref_primary_10_1002_ange_202316035
crossref_primary_10_1021_acs_joc_4c00330
crossref_primary_10_1021_acscentsci_2c01207
crossref_primary_10_1002_anie_202316035
crossref_primary_10_1021_acscatal_4c06131
crossref_primary_10_1021_acs_joc_2c02303
crossref_primary_10_1039_D3CC00708A
crossref_primary_10_1021_acs_orglett_4c03119
crossref_primary_10_1016_j_checat_2021_11_001
crossref_primary_10_1021_acs_orglett_3c01865
crossref_primary_10_1021_acscatal_3c06148
crossref_primary_10_1002_anie_202305067
crossref_primary_10_1016_j_xcrp_2022_101005
crossref_primary_10_1002_ange_202318803
crossref_primary_10_1016_j_checat_2022_08_020
crossref_primary_10_1002_ajoc_202200695
crossref_primary_10_1002_chem_202500248
crossref_primary_10_1039_D3NA00178D
crossref_primary_10_1021_jacs_4c12063
crossref_primary_10_1039_D4GC04390A
crossref_primary_10_1039_D3OB01063E
crossref_primary_10_1002_ange_202208912
crossref_primary_10_1021_acscatal_4c06100
crossref_primary_10_1021_acs_organomet_1c00687
crossref_primary_10_1021_acs_orglett_4c00177
crossref_primary_10_1021_jacs_3c13266
crossref_primary_10_1002_anie_202425512
crossref_primary_10_1039_D3CC05142K
crossref_primary_10_1002_anie_202216863
crossref_primary_10_1021_acscatal_4c01212
crossref_primary_10_1002_adsc_202400084
crossref_primary_10_1038_s41467_024_52133_8
crossref_primary_10_1021_acscatal_3c03304
crossref_primary_10_1021_jacs_2c09479
crossref_primary_10_1021_jacs_2c08820
crossref_primary_10_1039_D2SC00748G
crossref_primary_10_1021_acscatal_2c04524
crossref_primary_10_1021_acs_orglett_2c00642
crossref_primary_10_1039_D2SC05310A
crossref_primary_10_1002_anie_202312923
crossref_primary_10_1016_j_checat_2025_101329
crossref_primary_10_1007_s11426_024_2441_2
crossref_primary_10_1021_acscatal_4c06594
crossref_primary_10_1002_ange_202421060
crossref_primary_10_1039_D2NJ00175F
crossref_primary_10_1021_acs_orglett_4c02482
crossref_primary_10_1002_ange_202212846
crossref_primary_10_1038_s41467_024_47589_7
crossref_primary_10_1021_acs_accounts_2c00573
crossref_primary_10_1021_acs_orglett_3c03467
crossref_primary_10_1021_acscatal_3c05955
Cites_doi 10.1002/anie.200801030
10.1002/anie.201701849
10.1002/anie.202106871
10.1016/j.chempr.2021.04.005
10.1002/anie.202103748
10.1002/chem.202100237
10.1039/9781782621966
10.1021/acs.orglett.5b00968
10.1126/science.1226938
10.1002/anie.201806527
10.1002/anie.201407865
10.1039/D1QO00183C
10.1002/adsc.201300446
10.1021/acs.orglett.0c03757
10.1002/anie.201408805
10.1021/jacs.6b02302
10.1126/science.aad7893
10.1021/jacs.9b12299
10.1021/acs.accounts.7b00602
10.31635/ccschem.021.202000695
10.1021/jacs.1c02405
10.1016/j.scib.2020.09.035
10.1002/anie.201801130
10.1038/s41929-020-0494-1
10.1002/anie.201611981
10.1021/acs.accounts.6b00573
10.1021/acs.accounts.8b00473
10.1002/anie.202105093
10.1016/j.ccr.2015.07.006
10.1021/acscatal.8b01037
10.1021/acs.chemrev.5b00136
10.1039/C5CS00012B
10.1126/science.1226132
10.1021/acs.orglett.0c03355
10.1021/jacs.5b02809
10.1016/j.chempr.2019.12.011
10.1021/acscatal.8b04870
10.1002/9783527635207
10.1002/anie.201809680
10.1039/C9CC03967H
10.1021/acs.orglett.9b02243
10.1002/anie.201906700
10.31635/ccschem.021.202000725
10.1021/jacs.0c08205
10.1021/cr078004a
10.1002/anie.202012932
10.1021/acs.chemrev.0c01306
10.1002/chem.201503650
10.1002/anie.201915674
10.1039/c3sc51206a
10.1002/anie.200905060
10.1002/anie.200462661
10.1142/q0192
10.1126/science.aao4798
10.1002/anie.199701191
10.1002/anie.201807749
10.1039/C7CS00875A
10.1002/9783527664801
10.1002/anie.202003826
10.1021/acs.chemrev.6b00692
10.1002/anie.201915949
10.1002/anie.200901719
10.1039/C8CC05555F
10.1021/jacs.0c09400
10.1002/anie.201901619
10.1021/jacs.9b04711
10.1021/cs500813z
10.1021/acs.orglett.9b01099
10.1002/anie.202002208
10.1039/c2sc20277h
10.1038/nature14214
10.1039/D1SC01130H
10.1016/S0957-4166(00)00244-5
10.1038/s41586-018-0220-1
10.1039/D0SC06661C
10.1002/anie.202106403
10.1021/acs.orglett.5b00844
10.1002/anie.201902126
10.1021/acs.orglett.7b00608
10.1002/anie.202103638
10.1002/anie.201713106
10.1021/ar200048d
10.1002/anie.201811256
10.1021/acscatal.7b01855
10.1021/jacs.9b12858
10.1016/j.trechm.2020.05.003
10.1055/s-2007-985593
10.1039/C4NP00121D
10.1021/jacs.9b03862
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.1c07635
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 14040
ExternalDocumentID 34432467
10_1021_jacs_1c07635
a344344384
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GGK
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
CITATION
CUPRZ
XSW
YQT
ZCA
~02
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a423t-fed114b49d0f5c8b6511daadff9cf70d3452d67b100ab1b1ee360046b20fb0fd3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 12:40:40 EDT 2025
Fri Jul 11 13:23:12 EDT 2025
Thu Apr 03 07:07:59 EDT 2025
Tue Jul 01 00:44:46 EDT 2025
Thu Apr 24 22:51:23 EDT 2025
Fri Sep 10 04:40:41 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a423t-fed114b49d0f5c8b6511daadff9cf70d3452d67b100ab1b1ee360046b20fb0fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4586-8359
0000-0003-4963-2271
PMID 34432467
PQID 2564948218
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2636841664
proquest_miscellaneous_2564948218
pubmed_primary_34432467
crossref_citationtrail_10_1021_jacs_1c07635
crossref_primary_10_1021_jacs_1c07635
acs_journals_10_1021_jacs_1c07635
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-08
PublicationDateYYYYMMDD 2021-09-08
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref27/cit27
ref13/cit13a
ref16/cit16
ref13/cit13b
ref12/cit12c
ref12/cit12b
ref12/cit12a
ref23/cit23
ref8/cit8
ref2/cit2b
ref31/cit31
ref2/cit2a
ref34/cit34
ref17/cit17
ref26/cit26b
Lassaletta J. M. (ref4/cit4i) 2019
Zhou Q.-L. (ref3/cit3b) 2011
ref19/cit19
ref7/cit7e
ref7/cit7d
ref3/cit3a
ref26/cit26a
Yu J.-Q. (ref5/cit5a) 2010; 292
ref7/cit7c
ref7/cit7b
ref7/cit7a
ref24/cit24
ref35/cit35a
ref36/cit36
ref18/cit18
ref35/cit35d
ref35/cit35c
ref35/cit35b
ref10/cit10d
ref29/cit29c
ref10/cit10e
ref29/cit29b
ref10/cit10f
ref11/cit11
ref29/cit29a
ref10/cit10g
ref25/cit25b
ref10/cit10a
ref10/cit10b
ref29/cit29e
ref10/cit10c
ref25/cit25a
ref29/cit29d
ref21/cit21b
ref32/cit32
ref21/cit21a
Ding K. (ref5/cit5b) 2012
ref6/cit6d
ref4/cit4a
ref4/cit4b
ref4/cit4c
You S.-L. (ref5/cit5c) 2015
ref14/cit14a
ref28/cit28a
ref14/cit14c
ref14/cit14b
ref15/cit15
ref14/cit14e
ref14/cit14d
ref14/cit14g
ref28/cit28b
ref14/cit14f
ref28/cit28c
ref14/cit14i
ref30/cit30a
ref14/cit14h
ref14/cit14k
ref20/cit20a
ref22/cit22
ref14/cit14j
ref30/cit30b
ref20/cit20c
ref20/cit20b
ref33/cit33
ref4/cit4d
ref4/cit4e
ref6/cit6a
ref1/cit1
ref4/cit4f
ref6/cit6b
ref4/cit4g
ref6/cit6c
ref4/cit4h
ref4/cit4j
References_xml – ident: ref8/cit8
  doi: 10.1002/anie.200801030
– ident: ref14/cit14a
  doi: 10.1002/anie.201701849
– ident: ref36/cit36
  doi: 10.1002/anie.202106871
– ident: ref29/cit29e
  doi: 10.1016/j.chempr.2021.04.005
– ident: ref19/cit19
  doi: 10.1002/anie.202103748
– ident: ref10/cit10c
  doi: 10.1002/chem.202100237
– volume-title: Asymmetric Functionalization of C-H Bonds
  year: 2015
  ident: ref5/cit5c
  doi: 10.1039/9781782621966
– ident: ref11/cit11
  doi: 10.1021/acs.orglett.5b00968
– ident: ref20/cit20b
  doi: 10.1126/science.1226938
– ident: ref26/cit26a
  doi: 10.1002/anie.201806527
– ident: ref7/cit7b
  doi: 10.1002/anie.201407865
– ident: ref14/cit14h
  doi: 10.1039/D1QO00183C
– ident: ref7/cit7a
  doi: 10.1002/adsc.201300446
– ident: ref12/cit12c
  doi: 10.1021/acs.orglett.0c03757
– ident: ref21/cit21a
  doi: 10.1002/anie.201408805
– ident: ref21/cit21b
  doi: 10.1021/jacs.6b02302
– ident: ref13/cit13a
  doi: 10.1126/science.aad7893
– ident: ref26/cit26b
  doi: 10.1021/jacs.9b12299
– ident: ref4/cit4f
  doi: 10.1021/acs.accounts.7b00602
– ident: ref14/cit14e
  doi: 10.31635/ccschem.021.202000695
– ident: ref29/cit29d
  doi: 10.1021/jacs.1c02405
– ident: ref20/cit20c
  doi: 10.1016/j.scib.2020.09.035
– ident: ref7/cit7d
  doi: 10.1002/anie.201801130
– ident: ref29/cit29b
  doi: 10.1038/s41929-020-0494-1
– ident: ref30/cit30a
  doi: 10.1002/anie.201611981
– ident: ref6/cit6b
  doi: 10.1021/acs.accounts.6b00573
– ident: ref4/cit4g
  doi: 10.1021/acs.accounts.8b00473
– ident: ref35/cit35d
  doi: 10.1002/anie.202105093
– ident: ref4/cit4d
  doi: 10.1016/j.ccr.2015.07.006
– ident: ref29/cit29a
  doi: 10.1021/acscatal.8b01037
– ident: ref4/cit4c
  doi: 10.1021/acs.chemrev.5b00136
– ident: ref4/cit4b
  doi: 10.1039/C5CS00012B
– ident: ref20/cit20a
  doi: 10.1126/science.1226132
– ident: ref30/cit30b
  doi: 10.1021/acs.orglett.0c03355
– ident: ref28/cit28b
  doi: 10.1021/jacs.5b02809
– ident: ref10/cit10d
  doi: 10.1016/j.chempr.2019.12.011
– ident: ref14/cit14i
  doi: 10.1021/acscatal.8b04870
– volume-title: Privileged Chiral Ligands and Catalysts
  year: 2011
  ident: ref3/cit3b
  doi: 10.1002/9783527635207
– ident: ref35/cit35a
  doi: 10.1002/anie.201809680
– ident: ref4/cit4h
  doi: 10.1039/C9CC03967H
– ident: ref14/cit14j
  doi: 10.1021/acs.orglett.9b02243
– ident: ref14/cit14d
  doi: 10.1002/anie.201906700
– ident: ref29/cit29c
  doi: 10.31635/ccschem.021.202000725
– ident: ref22/cit22
  doi: 10.1021/jacs.0c08205
– ident: ref3/cit3a
  doi: 10.1021/cr078004a
– ident: ref35/cit35c
  doi: 10.1002/anie.202012932
– ident: ref4/cit4j
  doi: 10.1021/acs.chemrev.0c01306
– volume: 292
  volume-title: Topics in Current Chemistry
  year: 2010
  ident: ref5/cit5a
– ident: ref7/cit7c
  doi: 10.1002/chem.201503650
– ident: ref12/cit12b
  doi: 10.1002/anie.201915674
– ident: ref25/cit25b
  doi: 10.1039/c3sc51206a
– ident: ref15/cit15
  doi: 10.1002/anie.200905060
– ident: ref4/cit4a
  doi: 10.1002/anie.200462661
– volume-title: Atropisomerism and Axial Chirality
  year: 2019
  ident: ref4/cit4i
  doi: 10.1142/q0192
– ident: ref6/cit6c
  doi: 10.1126/science.aao4798
– ident: ref27/cit27
  doi: 10.1002/anie.199701191
– ident: ref32/cit32
  doi: 10.1002/anie.201807749
– ident: ref4/cit4e
  doi: 10.1039/C7CS00875A
– volume-title: Organic Chemistry-Breakthroughs and Perspectives
  year: 2012
  ident: ref5/cit5b
  doi: 10.1002/9783527664801
– ident: ref14/cit14f
  doi: 10.1002/anie.202003826
– ident: ref6/cit6a
  doi: 10.1021/acs.chemrev.6b00692
– ident: ref14/cit14g
  doi: 10.1002/anie.201915949
– ident: ref2/cit2a
  doi: 10.1002/anie.200901719
– ident: ref10/cit10b
  doi: 10.1039/C8CC05555F
– ident: ref10/cit10f
  doi: 10.1021/jacs.0c09400
– ident: ref23/cit23
  doi: 10.1002/anie.201901619
– ident: ref34/cit34
  doi: 10.1021/jacs.9b04711
– ident: ref9/cit9
  doi: 10.1021/cs500813z
– ident: ref14/cit14k
  doi: 10.1021/acs.orglett.9b01099
– ident: ref35/cit35b
  doi: 10.1002/anie.202002208
– ident: ref25/cit25a
  doi: 10.1039/c2sc20277h
– ident: ref28/cit28a
  doi: 10.1038/nature14214
– ident: ref10/cit10g
  doi: 10.1039/D1SC01130H
– ident: ref17/cit17
  doi: 10.1016/S0957-4166(00)00244-5
– ident: ref28/cit28c
  doi: 10.1038/s41586-018-0220-1
– ident: ref10/cit10e
  doi: 10.1039/D0SC06661C
– ident: ref33/cit33
  doi: 10.1002/anie.202106403
– ident: ref7/cit7e
  doi: 10.1021/acs.orglett.5b00844
– ident: ref12/cit12a
  doi: 10.1002/anie.201902126
– ident: ref10/cit10a
  doi: 10.1021/acs.orglett.7b00608
– ident: ref31/cit31
  doi: 10.1002/anie.202103638
– ident: ref14/cit14b
  doi: 10.1002/anie.201713106
– ident: ref1/cit1
  doi: 10.1021/ar200048d
– ident: ref14/cit14c
  doi: 10.1002/anie.201811256
– ident: ref16/cit16
  doi: 10.1021/acscatal.7b01855
– ident: ref24/cit24
  doi: 10.1021/jacs.9b12858
– ident: ref6/cit6d
  doi: 10.1016/j.trechm.2020.05.003
– ident: ref13/cit13b
  doi: 10.1055/s-2007-985593
– ident: ref2/cit2b
  doi: 10.1039/C4NP00121D
– ident: ref18/cit18
  doi: 10.1021/jacs.9b03862
SSID ssj0004281
Score 2.6976373
SecondaryResourceType review_article
Snippet Transition-metal-catalyzed enantio­selective C–H functionalization has become a powerful strategy for the formation of C–C or C–X bonds, enabling the highly...
Transition-metal-catalyzed enantioselective C-H functionalization has become a powerful strategy for the formation of C-C or C-X bonds, enabling the highly...
Transition-metal-catalyzed enantioselective C–H functionalization has become a powerful strategy for the formation of C–C or C–X bonds, enabling the highly...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14025
SubjectTerms carbon-hydrogen bond activation
catalytic activity
enantioselectivity
ligands
stereoselective synthesis
Title Synthesis of Atropisomers by Transition-Metal-Catalyzed Asymmetric C–H Functionalization Reactions
URI http://dx.doi.org/10.1021/jacs.1c07635
https://www.ncbi.nlm.nih.gov/pubmed/34432467
https://www.proquest.com/docview/2564948218
https://www.proquest.com/docview/2636841664
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JSsRAEG1cDnpxX8aNFvQkkaS708kch-A4CHpwAW-hVxCdREzmMJ78B__QL7Eri6Iy6jVU6KQX6r2uqlcIHQgSWWj57mnQQ2QmYu7MqcCjXEaqS0MRKChwPr_ggxt2dhvefibIfo_gE9AHUpAe5INy2jSaJTyOgGT1kqvP-kcSBy3MjWJOmwT372-DA1LFVwc0AVVW3qW_iE7bGp06qeT-eFTKY_X8U7Lxjw9fQgsNwMS9ekcsoymTraC5pO3rtor01ThzqK-4K3Buca98yh_vihyur7Ec48p3VWlc3rlxwNxL4H5n_Gw07hXj4RAacCmcvL28DnDf-cT6KrEp5sSXpq6TKNbQTf_kOhl4Ta8FTzhAVXrWaMeMJOtq34YqltwBMS2EtrarbORrykKieSQD3xcykIExlAO3lsS30rearqOZLM_MJsImEIQ6IiRCw5k1TFjBHanrCseslA5UB-27mUmbs1KkVRicOBoCT5v56qCjdpFS1YiVQ8-MhwnWhx_Wj7VIxwS7_Xa9UzfpEBoRmclHReqAH-jkOLzziw2nHIK0nHXQRr1ZPkajDJQNebT1j3_bRvMEEmMgKhXvoJnyaWR2HbIp5V61rd8B5Qj0nw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JbtRAEC2FcAgX9mVYOxI5IUd2227PHDiMDKMJyeRAEik306sUQewo7RGanPgHzvwKH8OXUOVlIiIN4hKJq1Wye6l2veqqegXwWvLMUcv3wBAfYmKzBM-cjoJYqEyP4lRGmgqcZ_tiepR8OE6P1-BHXwuDg_D4Jt8E8S_ZBYgmSFOWUEgEal0O5a5dfEUPzb_deYfbucX55P1hPg26JgKBRKRQB84ahPwqGZnQpXqoBCIMI6VxbqRdFpo4SbkRmYrCUKpIRdbGgpxGxUOnQmdifO8NuIm4h5NvN84PLssu-TDq0XU2FHGXV391tGT3tP_T7q0As41Rm9yBn8vlaHJZPm_Pa7WtL64wRf6363UXbndwmo1b_b8Ha7a8Dxt538XuAZiDRYkY1594Vjk2rs-rsxNf0WU9UwvWWOomaS2YWXRDgpxusxYX1rCxX5yeUrsxzfJf375P2QQRQHtx2pWuso-2rQrxD-HoWib5CNbLqrRPgNlI8hjdPplakTibSCcFurAjiX6kNpEewCbuRNH9GXzRBP05Ol30tNufAbzpdaPQHTU7dQj5skJ6ayl91lKSrJDb7NWswEWnQJAsbTX3BcJcYgVCdPcXGRELCkmLZACPWx1dfi1OiMdRZE__YW6vYGN6ONsr9nb2d5_BLU4pQRSPGz6H9fp8bl8gpqvVy-ZkMfh03ar5G5LYWTY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LahRREC1iBHVjfEVHo96AWUmHft6eWbgYOg4TY4IYA9m19wlB0z3k9iCdlf_gF_grfkq-JFX9GDEw4ibgtim676Oq76lbVacAXokwtdTy3dPEhxibNEabU4EXcZmqUZSIQFGB8_4Bnx7F746T4xX42dfC4CAcvsk1QXyy6pm2HcMAUQUpyhTyiUSty6PcM_U39NLcm90d3NKtMJy8_ZRNva6RgCcQLVSeNRphv4xH2reJGkqOKEMLoa0dKZv6OoqTUPNUBr4vZCADYyJOjqMMfSt9qyN87w24SRFC8u_G2eHv0stwGPQIOx3yqMutvzpaOvuU-_PsWwJom4Ntsga_FkvS5LN82Z5XcludX2GL_K_X7B7c7WA1G7d2cB9WTPEAbmd9N7uHoA_rArGuO3GstGxcnZWzE1fSpT2TNWtO7CZ5zds36I54Gd1q1edGs7GrT0-p7Zhi2cX3H1M2QSTQXqB2Jazso2mrQ9wjOLqWSa7DalEW5gkwE4gwQvdPJIbH1sTCCo6u7EigP6l0oAawiTuRd38IlzfB_xCdL3ra7c8AXvf6kauOop06hXxdIr21kJ611CRL5DZ7Vctx0SkgJApTzl2OcJfYgRDl_UWGR5xC0zwewONWTxdfi2Lic-Tp03-Y20u49WFnkr_fPdh7BndCygyisNxwA1ars7l5jtCuki8a42Lw-bo18xLan1u5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Atropisomers+by+Transition-Metal-Catalyzed+Asymmetric+C-H+Functionalization+Reactions&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Liu%2C+Chen-Xu&rft.au=Zhang%2C+Wen-Wen&rft.au=Yin%2C+Si-Yong&rft.au=Gu%2C+Qing&rft.date=2021-09-08&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=143&rft.issue=35&rft.spage=14025&rft_id=info:doi/10.1021%2Fjacs.1c07635&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon