Synthesis of Atropisomers by Transition-Metal-Catalyzed Asymmetric C–H Functionalization Reactions
Transition-metal-catalyzed enantioselective C–H functionalization has become a powerful strategy for the formation of C–C or C–X bonds, enabling the highly asymmetric synthesis of a wide range of enantioenriched compounds. Atropisomers are widely found in natural products and pharmaceutically rel...
Saved in:
Published in | Journal of the American Chemical Society Vol. 143; no. 35; pp. 14025 - 14040 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
08.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition-metal-catalyzed enantioselective C–H functionalization has become a powerful strategy for the formation of C–C or C–X bonds, enabling the highly asymmetric synthesis of a wide range of enantioenriched compounds. Atropisomers are widely found in natural products and pharmaceutically relevant molecules, and have also found applications as privileged frameworks for chiral ligands and catalysts. Thus, research into asymmetric routes for the synthesis of atropisomers has garnered great interest in recent years. In this regard, transition-metal-catalyzed enantioselective C–H functionalization has emerged as an atom-economic and efficient strategy toward their synthesis. In this Perspective, the approaches for the synthesis of atropisomers by transition-metal-catalyzed asymmetric C–H functionalization reactions are summarized. The main focus here is on asymmetric catalysis via Pd, Rh, and Ir complexes, which have been the most frequently utilized catalysts among reported enantioselective C–H functionalization reactions. Finally, we discuss limitations on available protocols and give an outlook on possible future avenues of research. |
---|---|
AbstractList | Transition-metal-catalyzed enantioselective C-H functionalization has become a powerful strategy for the formation of C-C or C-X bonds, enabling the highly asymmetric synthesis of a wide range of enantioenriched compounds. Atropisomers are widely found in natural products and pharmaceutically relevant molecules, and have also found applications as privileged frameworks for chiral ligands and catalysts. Thus, research into asymmetric routes for the synthesis of atropisomers has garnered great interest in recent years. In this regard, transition-metal-catalyzed enantioselective C-H functionalization has emerged as an atom-economic and efficient strategy toward their synthesis. In this Perspective, the approaches for the synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions are summarized. The main focus here is on asymmetric catalysis via Pd, Rh, and Ir complexes, which have been the most frequently utilized catalysts among reported enantioselective C-H functionalization reactions. Finally, we discuss limitations on available protocols and give an outlook on possible future avenues of research. Transition-metal-catalyzed enantioselective C-H functionalization has become a powerful strategy for the formation of C-C or C-X bonds, enabling the highly asymmetric synthesis of a wide range of enantioenriched compounds. Atropisomers are widely found in natural products and pharmaceutically relevant molecules, and have also found applications as privileged frameworks for chiral ligands and catalysts. Thus, research into asymmetric routes for the synthesis of atropisomers has garnered great interest in recent years. In this regard, transition-metal-catalyzed enantioselective C-H functionalization has emerged as an atom-economic and efficient strategy toward their synthesis. In this Perspective, the approaches for the synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions are summarized. The main focus here is on asymmetric catalysis via Pd, Rh, and Ir complexes, which have been the most frequently utilized catalysts among reported enantioselective C-H functionalization reactions. Finally, we discuss limitations on available protocols and give an outlook on possible future avenues of research.Transition-metal-catalyzed enantioselective C-H functionalization has become a powerful strategy for the formation of C-C or C-X bonds, enabling the highly asymmetric synthesis of a wide range of enantioenriched compounds. Atropisomers are widely found in natural products and pharmaceutically relevant molecules, and have also found applications as privileged frameworks for chiral ligands and catalysts. Thus, research into asymmetric routes for the synthesis of atropisomers has garnered great interest in recent years. In this regard, transition-metal-catalyzed enantioselective C-H functionalization has emerged as an atom-economic and efficient strategy toward their synthesis. In this Perspective, the approaches for the synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions are summarized. The main focus here is on asymmetric catalysis via Pd, Rh, and Ir complexes, which have been the most frequently utilized catalysts among reported enantioselective C-H functionalization reactions. Finally, we discuss limitations on available protocols and give an outlook on possible future avenues of research. Transition-metal-catalyzed enantioselective C–H functionalization has become a powerful strategy for the formation of C–C or C–X bonds, enabling the highly asymmetric synthesis of a wide range of enantioenriched compounds. Atropisomers are widely found in natural products and pharmaceutically relevant molecules, and have also found applications as privileged frameworks for chiral ligands and catalysts. Thus, research into asymmetric routes for the synthesis of atropisomers has garnered great interest in recent years. In this regard, transition-metal-catalyzed enantioselective C–H functionalization has emerged as an atom-economic and efficient strategy toward their synthesis. In this Perspective, the approaches for the synthesis of atropisomers by transition-metal-catalyzed asymmetric C–H functionalization reactions are summarized. The main focus here is on asymmetric catalysis via Pd, Rh, and Ir complexes, which have been the most frequently utilized catalysts among reported enantioselective C–H functionalization reactions. Finally, we discuss limitations on available protocols and give an outlook on possible future avenues of research. |
Author | You, Shu-Li Gu, Qing Yin, Si-Yong Zhang, Wen-Wen Liu, Chen-Xu |
AuthorAffiliation | Chang-Kung Chuang Institute East China Normal University State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry |
AuthorAffiliation_xml | – name: State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry – name: East China Normal University – name: Chang-Kung Chuang Institute |
Author_xml | – sequence: 1 givenname: Chen-Xu surname: Liu fullname: Liu, Chen-Xu organization: State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry – sequence: 2 givenname: Wen-Wen surname: Zhang fullname: Zhang, Wen-Wen organization: East China Normal University – sequence: 3 givenname: Si-Yong surname: Yin fullname: Yin, Si-Yong organization: State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry – sequence: 4 givenname: Qing orcidid: 0000-0003-4963-2271 surname: Gu fullname: Gu, Qing organization: State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry – sequence: 5 givenname: Shu-Li orcidid: 0000-0003-4586-8359 surname: You fullname: You, Shu-Li email: slyou@sioc.ac.cn organization: East China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34432467$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1O3DAUha2Kqgy0u66rLFk04Gs7TmY5GpUfCYRUYG35V3iUxIPtLMKq79A35ElIYNigVmxs36vvHl2fc4D2-tBbhL4DPgZM4GQjdToGjWtOq09oARXBZQWE76EFxpiUdcPpPjpIaTOVjDTwBe1TxihhvF4gczP2-d4mn4rgilWOYetT6GxMhRqL2yj75LMPfXlls2zLtZzO8dGaYpXGrrM5el2sn_78PS9Oh17PpGz9o5wfxW8rXzrpK_rsZJvst919iO5Of92uz8vL67OL9eqylIzQXDprAJhiS4NdpRvFKwAjpXFuqV2NDWUVMbxWgLFUoMBayqcvcUWwU9gZeoiOXnW3MTwMNmXR-aRt28rehiEJwilvGHDOPkYrzpasIdBM6I8dOqjOGrGNvpNxFG8mTgB5BXQMKUXrhPb5xYIcpW8FYDEnJeakxC6paejnu6E33f_gu33n5iYMcfI5_Rt9BvMBpJg |
CitedBy_id | crossref_primary_10_1002_ange_202313778 crossref_primary_10_1021_acs_orglett_2c00812 crossref_primary_10_1002_anie_202218871 crossref_primary_10_1038_s41467_023_43278_z crossref_primary_10_1021_acs_orglett_4c03827 crossref_primary_10_1007_s11426_022_1471_2 crossref_primary_10_1002_anie_202402612 crossref_primary_10_1038_s41467_022_30693_x crossref_primary_10_1002_cjoc_202300289 crossref_primary_10_1002_chem_202403284 crossref_primary_10_1021_acscatal_4c06720 crossref_primary_10_1039_D3SC03496H crossref_primary_10_1016_j_chempr_2022_04_011 crossref_primary_10_1039_D3CC03592A crossref_primary_10_1021_acs_orglett_2c02208 crossref_primary_10_1038_s41467_023_40164_6 crossref_primary_10_1002_cjoc_202200327 crossref_primary_10_1002_ejoc_202400238 crossref_primary_10_1038_s44160_022_00114_4 crossref_primary_10_1002_anie_202318803 crossref_primary_10_1002_ange_202300905 crossref_primary_10_1021_acscatal_5c00136 crossref_primary_10_3390_molecules28165956 crossref_primary_10_1021_acs_orglett_1c02574 crossref_primary_10_1021_acscatal_4c01839 crossref_primary_10_1002_ange_202216863 crossref_primary_10_1002_ange_202319871 crossref_primary_10_3390_inorganics10110179 crossref_primary_10_1002_adsc_202101183 crossref_primary_10_1002_ange_202304706 crossref_primary_10_1038_s41467_023_37987_8 crossref_primary_10_1007_s11426_022_1363_y crossref_primary_10_1021_acs_orglett_4c01656 crossref_primary_10_1002_anie_202401756 crossref_primary_10_1039_D4QO01905A crossref_primary_10_1002_cctc_202301566 crossref_primary_10_1039_D4OB00012A crossref_primary_10_1002_anie_202410581 crossref_primary_10_1021_acs_joc_4c02680 crossref_primary_10_1021_acs_chemrev_3c00327 crossref_primary_10_1055_a_2021_9514 crossref_primary_10_1016_j_trechm_2023_05_005 crossref_primary_10_1038_s44160_022_00201_6 crossref_primary_10_1039_D4SC05375C crossref_primary_10_1002_ange_202401498 crossref_primary_10_1038_s41467_025_57804_8 crossref_primary_10_1039_D2QO01813F crossref_primary_10_1021_acscatal_3c00732 crossref_primary_10_1021_acscatal_3c00751 crossref_primary_10_1002_anie_202300481 crossref_primary_10_1021_acscatal_2c00083 crossref_primary_10_1002_ange_202205037 crossref_primary_10_1021_jacs_3c04498 crossref_primary_10_1055_a_2230_0759 crossref_primary_10_1002_anie_202407640 crossref_primary_10_1016_j_chempr_2023_09_017 crossref_primary_10_1002_ejoc_202300996 crossref_primary_10_1021_acs_joc_3c02912 crossref_primary_10_1002_anie_202400441 crossref_primary_10_1021_jacs_3c14600 crossref_primary_10_1002_adsc_202301302 crossref_primary_10_1002_ange_202300481 crossref_primary_10_1021_acs_orglett_2c00968 crossref_primary_10_1021_acs_orglett_2c01818 crossref_primary_10_1002_anie_202211303 crossref_primary_10_1021_jacs_3c08769 crossref_primary_10_1055_a_1802_6793 crossref_primary_10_1002_cctc_202401143 crossref_primary_10_1002_ange_202401756 crossref_primary_10_1021_jacs_3c00003 crossref_primary_10_1002_ange_202300419 crossref_primary_10_1021_acs_cgd_4c00837 crossref_primary_10_1002_adsc_202301310 crossref_primary_10_1039_D5SC00014A crossref_primary_10_1002_anie_202300905 crossref_primary_10_1021_acscatal_2c03187 crossref_primary_10_1002_anie_202313388 crossref_primary_10_1021_prechem_4c00008 crossref_primary_10_1002_ange_202212595 crossref_primary_10_1002_anie_202304706 crossref_primary_10_1021_acs_orglett_3c01590 crossref_primary_10_1039_D3QO01877F crossref_primary_10_1002_adsc_202401553 crossref_primary_10_1021_acs_orglett_4c00479 crossref_primary_10_1002_ange_202410581 crossref_primary_10_1039_D3SC02714G crossref_primary_10_1021_acs_joc_3c01391 crossref_primary_10_1038_s44160_022_00177_3 crossref_primary_10_1039_D3SC02800C crossref_primary_10_1021_acscatal_4c00428 crossref_primary_10_1021_jacs_3c10714 crossref_primary_10_1021_acscatal_3c02199 crossref_primary_10_1002_ange_202402612 crossref_primary_10_1039_D5SC00623F crossref_primary_10_1021_acscatal_3c02072 crossref_primary_10_1002_cjoc_202300529 crossref_primary_10_1002_anie_202310320 crossref_primary_10_1039_D2QO00946C crossref_primary_10_1021_acscatal_4c01082 crossref_primary_10_1021_acs_orglett_4c01214 crossref_primary_10_1016_j_chempr_2023_05_022 crossref_primary_10_1002_ange_202302964 crossref_primary_10_1039_D4CC01785D crossref_primary_10_1002_advs_202402429 crossref_primary_10_1021_acs_orglett_3c00805 crossref_primary_10_1021_jacs_5c02428 crossref_primary_10_3390_molecules27238517 crossref_primary_10_1002_adsc_202200957 crossref_primary_10_1016_j_checat_2023_100822 crossref_primary_10_1021_acscatal_2c04373 crossref_primary_10_1021_acscatal_2c06310 crossref_primary_10_1021_acscatal_4c00519 crossref_primary_10_1021_jacsau_4c00777 crossref_primary_10_1002_ange_202310004 crossref_primary_10_1055_a_2005_5006 crossref_primary_10_1021_acs_orglett_3c01453 crossref_primary_10_1055_a_1677_5870 crossref_primary_10_1039_D4CC04701J crossref_primary_10_1016_j_gresc_2021_12_005 crossref_primary_10_1002_asia_202201180 crossref_primary_10_1002_ange_202310112 crossref_primary_10_1021_acs_orglett_2c00127 crossref_primary_10_1002_ange_202316454 crossref_primary_10_1021_acs_orglett_5c00441 crossref_primary_10_1021_jacs_3c12234 crossref_primary_10_1002_aoc_7901 crossref_primary_10_1038_s41467_023_39968_3 crossref_primary_10_1002_ange_202315005 crossref_primary_10_1002_cjoc_202300438 crossref_primary_10_1039_D3QO01083J crossref_primary_10_6023_cjoc202212003 crossref_primary_10_1021_acscatal_4c07281 crossref_primary_10_1021_jacs_1c09889 crossref_primary_10_1021_acscatal_4c04455 crossref_primary_10_1002_anie_202218533 crossref_primary_10_1021_acs_accounts_2c00175 crossref_primary_10_1021_acs_orglett_3c01685 crossref_primary_10_1021_acs_chemrev_3c00149 crossref_primary_10_1002_chem_202303165 crossref_primary_10_1039_D4SC02178A crossref_primary_10_1002_anie_202205037 crossref_primary_10_1021_acs_orglett_2c01981 crossref_primary_10_1039_D2CC01625G crossref_primary_10_1002_ejoc_202400402 crossref_primary_10_1021_acs_orglett_1c04002 crossref_primary_10_1021_acs_orglett_2c03003 crossref_primary_10_1039_D3CC01328F crossref_primary_10_1002_anie_202316454 crossref_primary_10_1002_anie_202310112 crossref_primary_10_1002_anie_202315005 crossref_primary_10_1021_jacs_3c14450 crossref_primary_10_6023_cjoc202211022 crossref_primary_10_1002_ange_202218533 crossref_primary_10_1039_D4SC01837K crossref_primary_10_1002_anie_202302964 crossref_primary_10_1002_ange_202305067 crossref_primary_10_1021_acscatal_3c04853 crossref_primary_10_1021_acscatal_3c03867 crossref_primary_10_1021_acs_orglett_4c02692 crossref_primary_10_1039_D2QO00021K crossref_primary_10_1002_anie_202115221 crossref_primary_10_1016_j_xcrp_2023_101697 crossref_primary_10_1039_D4OB00739E crossref_primary_10_1002_ejoc_202101449 crossref_primary_10_1021_jacs_3c05845 crossref_primary_10_1002_adsc_202500021 crossref_primary_10_1039_D4OB02090A crossref_primary_10_1039_D3SC03686C crossref_primary_10_1002_ange_202425512 crossref_primary_10_1039_D3CC01666H crossref_primary_10_1002_anie_202310004 crossref_primary_10_1002_adsc_202301484 crossref_primary_10_1021_acs_accounts_2c00509 crossref_primary_10_1021_jacs_4c04623 crossref_primary_10_1002_anie_202300419 crossref_primary_10_1021_acscatal_4c02092 crossref_primary_10_1002_ange_202305518 crossref_primary_10_1021_acscatal_4c06579 crossref_primary_10_1021_acs_orglett_3c00178 crossref_primary_10_1021_acs_orglett_3c02478 crossref_primary_10_1002_ange_202310320 crossref_primary_10_1038_s41467_023_36723_6 crossref_primary_10_1039_D1SC06135F crossref_primary_10_1126_sciadv_adg1645 crossref_primary_10_1021_acscatal_4c07749 crossref_primary_10_1021_acs_accounts_2c00513 crossref_primary_10_1021_acscatal_4c03944 crossref_primary_10_1021_acscatal_2c04292 crossref_primary_10_1002_ange_202400441 crossref_primary_10_1002_ange_202407640 crossref_primary_10_1002_anie_202319871 crossref_primary_10_1039_D4QO01857E crossref_primary_10_1002_ange_202218871 crossref_primary_10_1021_acscatal_4c06788 crossref_primary_10_1002_anie_202306981 crossref_primary_10_1021_acs_orglett_1c03967 crossref_primary_10_1002_anie_202313778 crossref_primary_10_1021_acs_orglett_2c00686 crossref_primary_10_1021_acs_orglett_5c00121 crossref_primary_10_1039_D4QO01235F crossref_primary_10_1021_acs_orglett_2c04247 crossref_primary_10_1002_cctc_202400701 crossref_primary_10_1002_ange_202313388 crossref_primary_10_1002_anie_202401498 crossref_primary_10_1002_anie_202212595 crossref_primary_10_1039_D3CC04425D crossref_primary_10_1002_ange_202111860 crossref_primary_10_1039_D3GC04154A crossref_primary_10_1002_cjoc_202300355 crossref_primary_10_1021_acscatal_3c00901 crossref_primary_10_1002_ange_202306981 crossref_primary_10_1021_acs_orglett_4c04862 crossref_primary_10_1039_D1QO01884A crossref_primary_10_1016_j_chempr_2023_04_003 crossref_primary_10_1021_jacs_1c13020 crossref_primary_10_1039_D2SC06131G crossref_primary_10_1038_s41929_024_01138_z crossref_primary_10_1002_ange_202115221 crossref_primary_10_1038_s41467_023_44202_1 crossref_primary_10_1039_D3CC06011J crossref_primary_10_1016_j_trechm_2022_01_005 crossref_primary_10_1002_ange_202312923 crossref_primary_10_1021_acscatal_4c04979 crossref_primary_10_1021_jacs_3c08129 crossref_primary_10_1021_acscatal_2c06175 crossref_primary_10_1021_jacs_4c08459 crossref_primary_10_1021_acs_orglett_2c01141 crossref_primary_10_1039_D4QO00493K crossref_primary_10_1002_anie_202421060 crossref_primary_10_1021_acs_orglett_4c03346 crossref_primary_10_1021_acscatal_3c06032 crossref_primary_10_1021_acscatal_5c00111 crossref_primary_10_1002_anie_202305518 crossref_primary_10_1002_ange_202211303 crossref_primary_10_1002_anie_202212846 crossref_primary_10_1002_anie_202111860 crossref_primary_10_1021_jacs_4c18255 crossref_primary_10_1021_acs_orglett_2c03699 crossref_primary_10_1021_acs_orglett_3c01509 crossref_primary_10_1002_anie_202208912 crossref_primary_10_1002_ange_202316035 crossref_primary_10_1021_acs_joc_4c00330 crossref_primary_10_1021_acscentsci_2c01207 crossref_primary_10_1002_anie_202316035 crossref_primary_10_1021_acscatal_4c06131 crossref_primary_10_1021_acs_joc_2c02303 crossref_primary_10_1039_D3CC00708A crossref_primary_10_1021_acs_orglett_4c03119 crossref_primary_10_1016_j_checat_2021_11_001 crossref_primary_10_1021_acs_orglett_3c01865 crossref_primary_10_1021_acscatal_3c06148 crossref_primary_10_1002_anie_202305067 crossref_primary_10_1016_j_xcrp_2022_101005 crossref_primary_10_1002_ange_202318803 crossref_primary_10_1016_j_checat_2022_08_020 crossref_primary_10_1002_ajoc_202200695 crossref_primary_10_1002_chem_202500248 crossref_primary_10_1039_D3NA00178D crossref_primary_10_1021_jacs_4c12063 crossref_primary_10_1039_D4GC04390A crossref_primary_10_1039_D3OB01063E crossref_primary_10_1002_ange_202208912 crossref_primary_10_1021_acscatal_4c06100 crossref_primary_10_1021_acs_organomet_1c00687 crossref_primary_10_1021_acs_orglett_4c00177 crossref_primary_10_1021_jacs_3c13266 crossref_primary_10_1002_anie_202425512 crossref_primary_10_1039_D3CC05142K crossref_primary_10_1002_anie_202216863 crossref_primary_10_1021_acscatal_4c01212 crossref_primary_10_1002_adsc_202400084 crossref_primary_10_1038_s41467_024_52133_8 crossref_primary_10_1021_acscatal_3c03304 crossref_primary_10_1021_jacs_2c09479 crossref_primary_10_1021_jacs_2c08820 crossref_primary_10_1039_D2SC00748G crossref_primary_10_1021_acscatal_2c04524 crossref_primary_10_1021_acs_orglett_2c00642 crossref_primary_10_1039_D2SC05310A crossref_primary_10_1002_anie_202312923 crossref_primary_10_1016_j_checat_2025_101329 crossref_primary_10_1007_s11426_024_2441_2 crossref_primary_10_1021_acscatal_4c06594 crossref_primary_10_1002_ange_202421060 crossref_primary_10_1039_D2NJ00175F crossref_primary_10_1021_acs_orglett_4c02482 crossref_primary_10_1002_ange_202212846 crossref_primary_10_1038_s41467_024_47589_7 crossref_primary_10_1021_acs_accounts_2c00573 crossref_primary_10_1021_acs_orglett_3c03467 crossref_primary_10_1021_acscatal_3c05955 |
Cites_doi | 10.1002/anie.200801030 10.1002/anie.201701849 10.1002/anie.202106871 10.1016/j.chempr.2021.04.005 10.1002/anie.202103748 10.1002/chem.202100237 10.1039/9781782621966 10.1021/acs.orglett.5b00968 10.1126/science.1226938 10.1002/anie.201806527 10.1002/anie.201407865 10.1039/D1QO00183C 10.1002/adsc.201300446 10.1021/acs.orglett.0c03757 10.1002/anie.201408805 10.1021/jacs.6b02302 10.1126/science.aad7893 10.1021/jacs.9b12299 10.1021/acs.accounts.7b00602 10.31635/ccschem.021.202000695 10.1021/jacs.1c02405 10.1016/j.scib.2020.09.035 10.1002/anie.201801130 10.1038/s41929-020-0494-1 10.1002/anie.201611981 10.1021/acs.accounts.6b00573 10.1021/acs.accounts.8b00473 10.1002/anie.202105093 10.1016/j.ccr.2015.07.006 10.1021/acscatal.8b01037 10.1021/acs.chemrev.5b00136 10.1039/C5CS00012B 10.1126/science.1226132 10.1021/acs.orglett.0c03355 10.1021/jacs.5b02809 10.1016/j.chempr.2019.12.011 10.1021/acscatal.8b04870 10.1002/9783527635207 10.1002/anie.201809680 10.1039/C9CC03967H 10.1021/acs.orglett.9b02243 10.1002/anie.201906700 10.31635/ccschem.021.202000725 10.1021/jacs.0c08205 10.1021/cr078004a 10.1002/anie.202012932 10.1021/acs.chemrev.0c01306 10.1002/chem.201503650 10.1002/anie.201915674 10.1039/c3sc51206a 10.1002/anie.200905060 10.1002/anie.200462661 10.1142/q0192 10.1126/science.aao4798 10.1002/anie.199701191 10.1002/anie.201807749 10.1039/C7CS00875A 10.1002/9783527664801 10.1002/anie.202003826 10.1021/acs.chemrev.6b00692 10.1002/anie.201915949 10.1002/anie.200901719 10.1039/C8CC05555F 10.1021/jacs.0c09400 10.1002/anie.201901619 10.1021/jacs.9b04711 10.1021/cs500813z 10.1021/acs.orglett.9b01099 10.1002/anie.202002208 10.1039/c2sc20277h 10.1038/nature14214 10.1039/D1SC01130H 10.1016/S0957-4166(00)00244-5 10.1038/s41586-018-0220-1 10.1039/D0SC06661C 10.1002/anie.202106403 10.1021/acs.orglett.5b00844 10.1002/anie.201902126 10.1021/acs.orglett.7b00608 10.1002/anie.202103638 10.1002/anie.201713106 10.1021/ar200048d 10.1002/anie.201811256 10.1021/acscatal.7b01855 10.1021/jacs.9b12858 10.1016/j.trechm.2020.05.003 10.1055/s-2007-985593 10.1039/C4NP00121D 10.1021/jacs.9b03862 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.1c07635 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 14040 |
ExternalDocumentID | 34432467 10_1021_jacs_1c07635 a344344384 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GGK GNL IH2 IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV CITATION CUPRZ XSW YQT ZCA ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a423t-fed114b49d0f5c8b6511daadff9cf70d3452d67b100ab1b1ee360046b20fb0fd3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 12:40:40 EDT 2025 Fri Jul 11 13:23:12 EDT 2025 Thu Apr 03 07:07:59 EDT 2025 Tue Jul 01 00:44:46 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 Fri Sep 10 04:40:41 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a423t-fed114b49d0f5c8b6511daadff9cf70d3452d67b100ab1b1ee360046b20fb0fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4586-8359 0000-0003-4963-2271 |
PMID | 34432467 |
PQID | 2564948218 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2636841664 proquest_miscellaneous_2564948218 pubmed_primary_34432467 crossref_citationtrail_10_1021_jacs_1c07635 crossref_primary_10_1021_jacs_1c07635 acs_journals_10_1021_jacs_1c07635 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-08 |
PublicationDateYYYYMMDD | 2021-09-08 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref27/cit27 ref13/cit13a ref16/cit16 ref13/cit13b ref12/cit12c ref12/cit12b ref12/cit12a ref23/cit23 ref8/cit8 ref2/cit2b ref31/cit31 ref2/cit2a ref34/cit34 ref17/cit17 ref26/cit26b Lassaletta J. M. (ref4/cit4i) 2019 Zhou Q.-L. (ref3/cit3b) 2011 ref19/cit19 ref7/cit7e ref7/cit7d ref3/cit3a ref26/cit26a Yu J.-Q. (ref5/cit5a) 2010; 292 ref7/cit7c ref7/cit7b ref7/cit7a ref24/cit24 ref35/cit35a ref36/cit36 ref18/cit18 ref35/cit35d ref35/cit35c ref35/cit35b ref10/cit10d ref29/cit29c ref10/cit10e ref29/cit29b ref10/cit10f ref11/cit11 ref29/cit29a ref10/cit10g ref25/cit25b ref10/cit10a ref10/cit10b ref29/cit29e ref10/cit10c ref25/cit25a ref29/cit29d ref21/cit21b ref32/cit32 ref21/cit21a Ding K. (ref5/cit5b) 2012 ref6/cit6d ref4/cit4a ref4/cit4b ref4/cit4c You S.-L. (ref5/cit5c) 2015 ref14/cit14a ref28/cit28a ref14/cit14c ref14/cit14b ref15/cit15 ref14/cit14e ref14/cit14d ref14/cit14g ref28/cit28b ref14/cit14f ref28/cit28c ref14/cit14i ref30/cit30a ref14/cit14h ref14/cit14k ref20/cit20a ref22/cit22 ref14/cit14j ref30/cit30b ref20/cit20c ref20/cit20b ref33/cit33 ref4/cit4d ref4/cit4e ref6/cit6a ref1/cit1 ref4/cit4f ref6/cit6b ref4/cit4g ref6/cit6c ref4/cit4h ref4/cit4j |
References_xml | – ident: ref8/cit8 doi: 10.1002/anie.200801030 – ident: ref14/cit14a doi: 10.1002/anie.201701849 – ident: ref36/cit36 doi: 10.1002/anie.202106871 – ident: ref29/cit29e doi: 10.1016/j.chempr.2021.04.005 – ident: ref19/cit19 doi: 10.1002/anie.202103748 – ident: ref10/cit10c doi: 10.1002/chem.202100237 – volume-title: Asymmetric Functionalization of C-H Bonds year: 2015 ident: ref5/cit5c doi: 10.1039/9781782621966 – ident: ref11/cit11 doi: 10.1021/acs.orglett.5b00968 – ident: ref20/cit20b doi: 10.1126/science.1226938 – ident: ref26/cit26a doi: 10.1002/anie.201806527 – ident: ref7/cit7b doi: 10.1002/anie.201407865 – ident: ref14/cit14h doi: 10.1039/D1QO00183C – ident: ref7/cit7a doi: 10.1002/adsc.201300446 – ident: ref12/cit12c doi: 10.1021/acs.orglett.0c03757 – ident: ref21/cit21a doi: 10.1002/anie.201408805 – ident: ref21/cit21b doi: 10.1021/jacs.6b02302 – ident: ref13/cit13a doi: 10.1126/science.aad7893 – ident: ref26/cit26b doi: 10.1021/jacs.9b12299 – ident: ref4/cit4f doi: 10.1021/acs.accounts.7b00602 – ident: ref14/cit14e doi: 10.31635/ccschem.021.202000695 – ident: ref29/cit29d doi: 10.1021/jacs.1c02405 – ident: ref20/cit20c doi: 10.1016/j.scib.2020.09.035 – ident: ref7/cit7d doi: 10.1002/anie.201801130 – ident: ref29/cit29b doi: 10.1038/s41929-020-0494-1 – ident: ref30/cit30a doi: 10.1002/anie.201611981 – ident: ref6/cit6b doi: 10.1021/acs.accounts.6b00573 – ident: ref4/cit4g doi: 10.1021/acs.accounts.8b00473 – ident: ref35/cit35d doi: 10.1002/anie.202105093 – ident: ref4/cit4d doi: 10.1016/j.ccr.2015.07.006 – ident: ref29/cit29a doi: 10.1021/acscatal.8b01037 – ident: ref4/cit4c doi: 10.1021/acs.chemrev.5b00136 – ident: ref4/cit4b doi: 10.1039/C5CS00012B – ident: ref20/cit20a doi: 10.1126/science.1226132 – ident: ref30/cit30b doi: 10.1021/acs.orglett.0c03355 – ident: ref28/cit28b doi: 10.1021/jacs.5b02809 – ident: ref10/cit10d doi: 10.1016/j.chempr.2019.12.011 – ident: ref14/cit14i doi: 10.1021/acscatal.8b04870 – volume-title: Privileged Chiral Ligands and Catalysts year: 2011 ident: ref3/cit3b doi: 10.1002/9783527635207 – ident: ref35/cit35a doi: 10.1002/anie.201809680 – ident: ref4/cit4h doi: 10.1039/C9CC03967H – ident: ref14/cit14j doi: 10.1021/acs.orglett.9b02243 – ident: ref14/cit14d doi: 10.1002/anie.201906700 – ident: ref29/cit29c doi: 10.31635/ccschem.021.202000725 – ident: ref22/cit22 doi: 10.1021/jacs.0c08205 – ident: ref3/cit3a doi: 10.1021/cr078004a – ident: ref35/cit35c doi: 10.1002/anie.202012932 – ident: ref4/cit4j doi: 10.1021/acs.chemrev.0c01306 – volume: 292 volume-title: Topics in Current Chemistry year: 2010 ident: ref5/cit5a – ident: ref7/cit7c doi: 10.1002/chem.201503650 – ident: ref12/cit12b doi: 10.1002/anie.201915674 – ident: ref25/cit25b doi: 10.1039/c3sc51206a – ident: ref15/cit15 doi: 10.1002/anie.200905060 – ident: ref4/cit4a doi: 10.1002/anie.200462661 – volume-title: Atropisomerism and Axial Chirality year: 2019 ident: ref4/cit4i doi: 10.1142/q0192 – ident: ref6/cit6c doi: 10.1126/science.aao4798 – ident: ref27/cit27 doi: 10.1002/anie.199701191 – ident: ref32/cit32 doi: 10.1002/anie.201807749 – ident: ref4/cit4e doi: 10.1039/C7CS00875A – volume-title: Organic Chemistry-Breakthroughs and Perspectives year: 2012 ident: ref5/cit5b doi: 10.1002/9783527664801 – ident: ref14/cit14f doi: 10.1002/anie.202003826 – ident: ref6/cit6a doi: 10.1021/acs.chemrev.6b00692 – ident: ref14/cit14g doi: 10.1002/anie.201915949 – ident: ref2/cit2a doi: 10.1002/anie.200901719 – ident: ref10/cit10b doi: 10.1039/C8CC05555F – ident: ref10/cit10f doi: 10.1021/jacs.0c09400 – ident: ref23/cit23 doi: 10.1002/anie.201901619 – ident: ref34/cit34 doi: 10.1021/jacs.9b04711 – ident: ref9/cit9 doi: 10.1021/cs500813z – ident: ref14/cit14k doi: 10.1021/acs.orglett.9b01099 – ident: ref35/cit35b doi: 10.1002/anie.202002208 – ident: ref25/cit25a doi: 10.1039/c2sc20277h – ident: ref28/cit28a doi: 10.1038/nature14214 – ident: ref10/cit10g doi: 10.1039/D1SC01130H – ident: ref17/cit17 doi: 10.1016/S0957-4166(00)00244-5 – ident: ref28/cit28c doi: 10.1038/s41586-018-0220-1 – ident: ref10/cit10e doi: 10.1039/D0SC06661C – ident: ref33/cit33 doi: 10.1002/anie.202106403 – ident: ref7/cit7e doi: 10.1021/acs.orglett.5b00844 – ident: ref12/cit12a doi: 10.1002/anie.201902126 – ident: ref10/cit10a doi: 10.1021/acs.orglett.7b00608 – ident: ref31/cit31 doi: 10.1002/anie.202103638 – ident: ref14/cit14b doi: 10.1002/anie.201713106 – ident: ref1/cit1 doi: 10.1021/ar200048d – ident: ref14/cit14c doi: 10.1002/anie.201811256 – ident: ref16/cit16 doi: 10.1021/acscatal.7b01855 – ident: ref24/cit24 doi: 10.1021/jacs.9b12858 – ident: ref6/cit6d doi: 10.1016/j.trechm.2020.05.003 – ident: ref13/cit13b doi: 10.1055/s-2007-985593 – ident: ref2/cit2b doi: 10.1039/C4NP00121D – ident: ref18/cit18 doi: 10.1021/jacs.9b03862 |
SSID | ssj0004281 |
Score | 2.6976373 |
SecondaryResourceType | review_article |
Snippet | Transition-metal-catalyzed enantioselective C–H functionalization has become a powerful strategy for the formation of C–C or C–X bonds, enabling the highly... Transition-metal-catalyzed enantioselective C-H functionalization has become a powerful strategy for the formation of C-C or C-X bonds, enabling the highly... Transition-metal-catalyzed enantioselective C–H functionalization has become a powerful strategy for the formation of C–C or C–X bonds, enabling the highly... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14025 |
SubjectTerms | carbon-hydrogen bond activation catalytic activity enantioselectivity ligands stereoselective synthesis |
Title | Synthesis of Atropisomers by Transition-Metal-Catalyzed Asymmetric C–H Functionalization Reactions |
URI | http://dx.doi.org/10.1021/jacs.1c07635 https://www.ncbi.nlm.nih.gov/pubmed/34432467 https://www.proquest.com/docview/2564948218 https://www.proquest.com/docview/2636841664 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JSsRAEG1cDnpxX8aNFvQkkaS708kch-A4CHpwAW-hVxCdREzmMJ78B__QL7Eri6Iy6jVU6KQX6r2uqlcIHQgSWWj57mnQQ2QmYu7MqcCjXEaqS0MRKChwPr_ggxt2dhvefibIfo_gE9AHUpAe5INy2jSaJTyOgGT1kqvP-kcSBy3MjWJOmwT372-DA1LFVwc0AVVW3qW_iE7bGp06qeT-eFTKY_X8U7Lxjw9fQgsNwMS9ekcsoymTraC5pO3rtor01ThzqK-4K3Buca98yh_vihyur7Ec48p3VWlc3rlxwNxL4H5n_Gw07hXj4RAacCmcvL28DnDf-cT6KrEp5sSXpq6TKNbQTf_kOhl4Ta8FTzhAVXrWaMeMJOtq34YqltwBMS2EtrarbORrykKieSQD3xcykIExlAO3lsS30rearqOZLM_MJsImEIQ6IiRCw5k1TFjBHanrCseslA5UB-27mUmbs1KkVRicOBoCT5v56qCjdpFS1YiVQ8-MhwnWhx_Wj7VIxwS7_Xa9UzfpEBoRmclHReqAH-jkOLzziw2nHIK0nHXQRr1ZPkajDJQNebT1j3_bRvMEEmMgKhXvoJnyaWR2HbIp5V61rd8B5Qj0nw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JbtRAEC2FcAgX9mVYOxI5IUd2227PHDiMDKMJyeRAEik306sUQewo7RGanPgHzvwKH8OXUOVlIiIN4hKJq1Wye6l2veqqegXwWvLMUcv3wBAfYmKzBM-cjoJYqEyP4lRGmgqcZ_tiepR8OE6P1-BHXwuDg_D4Jt8E8S_ZBYgmSFOWUEgEal0O5a5dfEUPzb_deYfbucX55P1hPg26JgKBRKRQB84ahPwqGZnQpXqoBCIMI6VxbqRdFpo4SbkRmYrCUKpIRdbGgpxGxUOnQmdifO8NuIm4h5NvN84PLssu-TDq0XU2FHGXV391tGT3tP_T7q0As41Rm9yBn8vlaHJZPm_Pa7WtL64wRf6363UXbndwmo1b_b8Ha7a8Dxt538XuAZiDRYkY1594Vjk2rs-rsxNf0WU9UwvWWOomaS2YWXRDgpxusxYX1rCxX5yeUrsxzfJf375P2QQRQHtx2pWuso-2rQrxD-HoWib5CNbLqrRPgNlI8hjdPplakTibSCcFurAjiX6kNpEewCbuRNH9GXzRBP05Ol30tNufAbzpdaPQHTU7dQj5skJ6ayl91lKSrJDb7NWswEWnQJAsbTX3BcJcYgVCdPcXGRELCkmLZACPWx1dfi1OiMdRZE__YW6vYGN6ONsr9nb2d5_BLU4pQRSPGz6H9fp8bl8gpqvVy-ZkMfh03ar5G5LYWTY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LahRREC1iBHVjfEVHo96AWUmHft6eWbgYOg4TY4IYA9m19wlB0z3k9iCdlf_gF_grfkq-JFX9GDEw4ibgtim676Oq76lbVacAXokwtdTy3dPEhxibNEabU4EXcZmqUZSIQFGB8_4Bnx7F746T4xX42dfC4CAcvsk1QXyy6pm2HcMAUQUpyhTyiUSty6PcM_U39NLcm90d3NKtMJy8_ZRNva6RgCcQLVSeNRphv4xH2reJGkqOKEMLoa0dKZv6OoqTUPNUBr4vZCADYyJOjqMMfSt9qyN87w24SRFC8u_G2eHv0stwGPQIOx3yqMutvzpaOvuU-_PsWwJom4Ntsga_FkvS5LN82Z5XcludX2GL_K_X7B7c7WA1G7d2cB9WTPEAbmd9N7uHoA_rArGuO3GstGxcnZWzE1fSpT2TNWtO7CZ5zds36I54Gd1q1edGs7GrT0-p7Zhi2cX3H1M2QSTQXqB2Jazso2mrQ9wjOLqWSa7DalEW5gkwE4gwQvdPJIbH1sTCCo6u7EigP6l0oAawiTuRd38IlzfB_xCdL3ra7c8AXvf6kauOop06hXxdIr21kJ611CRL5DZ7Vctx0SkgJApTzl2OcJfYgRDl_UWGR5xC0zwewONWTxdfi2Lic-Tp03-Y20u49WFnkr_fPdh7BndCygyisNxwA1ars7l5jtCuki8a42Lw-bo18xLan1u5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Atropisomers+by+Transition-Metal-Catalyzed+Asymmetric+C-H+Functionalization+Reactions&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Liu%2C+Chen-Xu&rft.au=Zhang%2C+Wen-Wen&rft.au=Yin%2C+Si-Yong&rft.au=Gu%2C+Qing&rft.date=2021-09-08&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=143&rft.issue=35&rft.spage=14025&rft_id=info:doi/10.1021%2Fjacs.1c07635&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |