Significantly Enhanced Overall Water Splitting Performance by Partial Oxidation of Ir through Au Modification in Core–Shell Alloy Structure

Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water electrolyzers (PEMWEs). We first report the synthesis of core–shell structure nanoparticles (NPs) with an Au core and an AuIr2 alloy shell (Au@...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 143; no. 12; pp. 4639 - 4645
Main Authors Wang, Huimin, Chen, Zhe-ning, Wu, Dongshuang, Cao, Minna, Sun, Fanfei, Zhang, Hao, You, Hanhui, Zhuang, Wei, Cao, Rong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 31.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water electrolyzers (PEMWEs). We first report the synthesis of core–shell structure nanoparticles (NPs) with an Au core and an AuIr2 alloy shell (Au@AuIr2). Au@AuIr2 displayed 4.6 (5.6) times higher intrinsic (mass) activity toward the oxygen evolution reaction (OER) than a commercial Ir catalyst. Furthermore, it showed hydrogen evolution reaction (HER) catalytic properties comparable to those of commercial Pt/C. Significantly, when Au@AuIr2 was used as both the anode and cathode catalyst, the overall water splitting cell achieved 10 mA/cm2 with a low cell voltage of 1.55 V and maintained this activity for more than 40 h, which greatly outperformed the commercial couples (Ir/C||Pt/C, 1.63 V, activity decreased within minutes) and is among the most efficient bifunctional catalysts reported. Theoretical calculations coupled with X-ray-based structural analyses suggest that partially oxidized surfaces originating from the electronic interaction between Au and Ir provide a balance for different intermediates binding and realize significantly enhanced OER performance.
AbstractList Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water electrolyzers (PEMWEs). We first report the synthesis of core–shell structure nanoparticles (NPs) with an Au core and an AuIr2 alloy shell (Au@AuIr2). Au@AuIr2 displayed 4.6 (5.6) times higher intrinsic (mass) activity toward the oxygen evolution reaction (OER) than a commercial Ir catalyst. Furthermore, it showed hydrogen evolution reaction (HER) catalytic properties comparable to those of commercial Pt/C. Significantly, when Au@AuIr2 was used as both the anode and cathode catalyst, the overall water splitting cell achieved 10 mA/cm2 with a low cell voltage of 1.55 V and maintained this activity for more than 40 h, which greatly outperformed the commercial couples (Ir/C||Pt/C, 1.63 V, activity decreased within minutes) and is among the most efficient bifunctional catalysts reported. Theoretical calculations coupled with X-ray-based structural analyses suggest that partially oxidized surfaces originating from the electronic interaction between Au and Ir provide a balance for different intermediates binding and realize significantly enhanced OER performance.
Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water electrolyzers (PEMWEs). We first report the synthesis of core-shell structure nanoparticles (NPs) with an Au core and an AuIr alloy shell (Au@AuIr ). Au@AuIr displayed 4.6 (5.6) times higher intrinsic (mass) activity toward the oxygen evolution reaction (OER) than a commercial Ir catalyst. Furthermore, it showed hydrogen evolution reaction (HER) catalytic properties comparable to those of commercial Pt/C. Significantly, when Au@AuIr was used as both the anode and cathode catalyst, the overall water splitting cell achieved 10 mA/cm with a low cell voltage of 1.55 V and maintained this activity for more than 40 h, which greatly outperformed the commercial couples (Ir/C||Pt/C, 1.63 V, activity decreased within minutes) and is among the most efficient bifunctional catalysts reported. Theoretical calculations coupled with X-ray-based structural analyses suggest that partially oxidized surfaces originating from the electronic interaction between Au and Ir provide a balance for different intermediates binding and realize significantly enhanced OER performance.
Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water electrolyzers (PEMWEs). We first report the synthesis of core–shell structure nanoparticles (NPs) with an Au core and an AuIr₂ alloy shell (Au@AuIr₂). Au@AuIr₂ displayed 4.6 (5.6) times higher intrinsic (mass) activity toward the oxygen evolution reaction (OER) than a commercial Ir catalyst. Furthermore, it showed hydrogen evolution reaction (HER) catalytic properties comparable to those of commercial Pt/C. Significantly, when Au@AuIr₂ was used as both the anode and cathode catalyst, the overall water splitting cell achieved 10 mA/cm² with a low cell voltage of 1.55 V and maintained this activity for more than 40 h, which greatly outperformed the commercial couples (Ir/C||Pt/C, 1.63 V, activity decreased within minutes) and is among the most efficient bifunctional catalysts reported. Theoretical calculations coupled with X-ray-based structural analyses suggest that partially oxidized surfaces originating from the electronic interaction between Au and Ir provide a balance for different intermediates binding and realize significantly enhanced OER performance.
Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water electrolyzers (PEMWEs). We first report the synthesis of core-shell structure nanoparticles (NPs) with an Au core and an AuIr2 alloy shell (Au@AuIr2). Au@AuIr2 displayed 4.6 (5.6) times higher intrinsic (mass) activity toward the oxygen evolution reaction (OER) than a commercial Ir catalyst. Furthermore, it showed hydrogen evolution reaction (HER) catalytic properties comparable to those of commercial Pt/C. Significantly, when Au@AuIr2 was used as both the anode and cathode catalyst, the overall water splitting cell achieved 10 mA/cm2 with a low cell voltage of 1.55 V and maintained this activity for more than 40 h, which greatly outperformed the commercial couples (Ir/C||Pt/C, 1.63 V, activity decreased within minutes) and is among the most efficient bifunctional catalysts reported. Theoretical calculations coupled with X-ray-based structural analyses suggest that partially oxidized surfaces originating from the electronic interaction between Au and Ir provide a balance for different intermediates binding and realize significantly enhanced OER performance.Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water electrolyzers (PEMWEs). We first report the synthesis of core-shell structure nanoparticles (NPs) with an Au core and an AuIr2 alloy shell (Au@AuIr2). Au@AuIr2 displayed 4.6 (5.6) times higher intrinsic (mass) activity toward the oxygen evolution reaction (OER) than a commercial Ir catalyst. Furthermore, it showed hydrogen evolution reaction (HER) catalytic properties comparable to those of commercial Pt/C. Significantly, when Au@AuIr2 was used as both the anode and cathode catalyst, the overall water splitting cell achieved 10 mA/cm2 with a low cell voltage of 1.55 V and maintained this activity for more than 40 h, which greatly outperformed the commercial couples (Ir/C||Pt/C, 1.63 V, activity decreased within minutes) and is among the most efficient bifunctional catalysts reported. Theoretical calculations coupled with X-ray-based structural analyses suggest that partially oxidized surfaces originating from the electronic interaction between Au and Ir provide a balance for different intermediates binding and realize significantly enhanced OER performance.
Author Sun, Fanfei
Cao, Minna
Wang, Huimin
Zhuang, Wei
Cao, Rong
You, Hanhui
Chen, Zhe-ning
Zhang, Hao
Wu, Dongshuang
AuthorAffiliation State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter
Chinese Academy of Sciences
Division of Chemistry, Graduate School of Science
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: Division of Chemistry, Graduate School of Science
– name: Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics
– name: University of Chinese Academy of Sciences
– name: Chinese Academy of Sciences
– name: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter
Author_xml – sequence: 1
  givenname: Huimin
  surname: Wang
  fullname: Wang, Huimin
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Zhe-ning
  orcidid: 0000-0003-3821-5843
  surname: Chen
  fullname: Chen, Zhe-ning
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter
– sequence: 3
  givenname: Dongshuang
  orcidid: 0000-0001-8512-8473
  surname: Wu
  fullname: Wu, Dongshuang
  organization: Division of Chemistry, Graduate School of Science
– sequence: 4
  givenname: Minna
  orcidid: 0000-0002-3418-4229
  surname: Cao
  fullname: Cao, Minna
  email: mncao@fjirsm.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Fanfei
  surname: Sun
  fullname: Sun, Fanfei
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Hao
  orcidid: 0000-0003-2300-1404
  surname: Zhang
  fullname: Zhang, Hao
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Hanhui
  surname: You
  fullname: You, Hanhui
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter
– sequence: 8
  givenname: Wei
  surname: Zhuang
  fullname: Zhuang, Wei
  email: wzhuang@fjirsm.ac.cn
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter
– sequence: 9
  givenname: Rong
  orcidid: 0000-0002-2398-399X
  surname: Cao
  fullname: Cao, Rong
  email: rcao@fjirsm.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33656891$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9uEzEQxi3UiqaFG2fkI4du6z_r3fUxigpUKkqlgDiuZr124sixg9dbkVtfgBNvyJPgpIEDAnGyxvObTzPfd45OfPAaoVeUXFHC6PUa1HBFFGV1SZ6hCRWMFIKy6gRNCCGsqJuKn6HzYVjnsmQNfY7OOK9E1Ug6Qd8WdumtsQp8cjt841fgle7x_EFHcA5_hqQjXmydTcn6Jb7X0YS42UO42-F7iMmCw_Ovtodkg8fB4NuI0yqGcbnC0xF_CP1B_9C1Hs9C1D8evy9WOstPnQs7vEhxVGmM-gU6NeAG_fL4XqBPb28-zt4Xd_N3t7PpXQEl46kwFW-gB0lVA7WRhnScg6mAQwUqXyZ4D31T5q6QvJO06pjRHaOsq6kyPecX6M2T7jaGL6MeUruxg8oLgddhHFomBJVSlqL8P1rKmlLCicjo6yM6dhvdt9toNxB37S-3M3D5BKgYhiFq8xuhpN2H2e7DbI9hZpz9gSubDj6mCNb9a-i47_5zHcbos5F_R38CClmy_g
CitedBy_id crossref_primary_10_1002_advs_202401652
crossref_primary_10_1016_j_fuel_2024_133227
crossref_primary_10_1002_adfm_202212097
crossref_primary_10_1002_ange_202420470
crossref_primary_10_1016_j_enchem_2022_100083
crossref_primary_10_1007_s11581_023_05269_4
crossref_primary_10_1039_D3DT00065F
crossref_primary_10_1016_j_jechem_2023_08_017
crossref_primary_10_1002_ange_202411517
crossref_primary_10_1016_j_ijhydene_2025_03_271
crossref_primary_10_1021_acsnano_3c05810
crossref_primary_10_1016_j_ijhydene_2023_12_074
crossref_primary_10_1016_j_cej_2024_154703
crossref_primary_10_1002_chem_202404378
crossref_primary_10_1016_j_apcatb_2022_121338
crossref_primary_10_1002_adma_202105400
crossref_primary_10_26599_NRE_2023_9120056
crossref_primary_10_1021_acsmaterialslett_3c00834
crossref_primary_10_1007_s11581_023_05190_w
crossref_primary_10_1039_D3TA06370D
crossref_primary_10_1021_acsanm_2c04069
crossref_primary_10_1038_s41467_023_36380_9
crossref_primary_10_1016_j_cattod_2022_05_031
crossref_primary_10_1016_j_ijhydene_2024_05_042
crossref_primary_10_1002_aenm_202102261
crossref_primary_10_1039_D2TA02742A
crossref_primary_10_1002_er_7989
crossref_primary_10_1039_D1CC06062G
crossref_primary_10_1016_j_apcatb_2024_123741
crossref_primary_10_1021_acsenergylett_3c00366
crossref_primary_10_1021_jacs_2c03875
crossref_primary_10_1021_acsnano_4c14158
crossref_primary_10_1016_j_optmat_2021_111497
crossref_primary_10_1002_smll_202102448
crossref_primary_10_1016_j_nanoen_2023_108292
crossref_primary_10_1021_acscatal_4c00037
crossref_primary_10_1002_adma_202501607
crossref_primary_10_1021_acsaem_2c03184
crossref_primary_10_1002_adfm_202107597
crossref_primary_10_1021_acs_inorgchem_4c02684
crossref_primary_10_1002_ange_202207226
crossref_primary_10_1016_j_ijhydene_2022_09_075
crossref_primary_10_1002_admi_202400765
crossref_primary_10_1016_j_ijhydene_2022_10_169
crossref_primary_10_1016_j_enrev_2024_100103
crossref_primary_10_1002_advs_202309750
crossref_primary_10_1002_adma_202302285
crossref_primary_10_1016_j_apcatb_2023_122486
crossref_primary_10_1016_j_cej_2024_153719
crossref_primary_10_1002_adma_202107399
crossref_primary_10_1016_j_cej_2023_144146
crossref_primary_10_1021_acs_chemrev_3c00332
crossref_primary_10_1016_j_ijhydene_2022_02_078
crossref_primary_10_1039_D2TA08066D
crossref_primary_10_1039_D2TA04440D
crossref_primary_10_1002_ange_202422740
crossref_primary_10_3390_ma16051917
crossref_primary_10_1002_adsu_202400059
crossref_primary_10_1002_smll_202408887
crossref_primary_10_1016_j_ijhydene_2023_06_110
crossref_primary_10_1002_aenm_202401227
crossref_primary_10_1021_jacsau_3c00247
crossref_primary_10_1021_jacs_2c00583
crossref_primary_10_1002_ange_202312644
crossref_primary_10_1016_j_ijhydene_2024_05_114
crossref_primary_10_1039_D4NJ01121J
crossref_primary_10_1039_D1TA06216F
crossref_primary_10_3390_ma16186319
crossref_primary_10_1038_s41467_024_52471_7
crossref_primary_10_1016_j_cej_2022_138497
crossref_primary_10_2139_ssrn_4193501
crossref_primary_10_1126_sciadv_adi8025
crossref_primary_10_1039_D1TA09932A
crossref_primary_10_1002_admi_202201263
crossref_primary_10_1016_j_jechem_2023_12_051
crossref_primary_10_1038_s41467_024_46815_6
crossref_primary_10_1039_D2SC03947H
crossref_primary_10_1039_D5CY00014A
crossref_primary_10_1021_acsmaterialslett_1c00428
crossref_primary_10_1016_S1872_2067_22_64166_4
crossref_primary_10_1021_acsami_4c21373
crossref_primary_10_1002_smsc_202200030
crossref_primary_10_1016_j_cclet_2023_109073
crossref_primary_10_1002_smll_202103178
crossref_primary_10_1002_anie_202411517
crossref_primary_10_1007_s12598_024_03081_1
crossref_primary_10_1021_acssuschemeng_2c01092
crossref_primary_10_1002_adma_202308060
crossref_primary_10_1021_acsenergylett_4c00884
crossref_primary_10_1007_s12274_024_6454_3
crossref_primary_10_1002_aenm_202303987
crossref_primary_10_1038_s41467_023_37530_9
crossref_primary_10_26599_NRE_2022_9120036
crossref_primary_10_1016_S1872_2067_21_64052_4
crossref_primary_10_3390_molecules27217176
crossref_primary_10_1002_aenm_202402886
crossref_primary_10_1002_anie_202312644
crossref_primary_10_1016_j_jcis_2024_08_084
crossref_primary_10_1039_D3IM00070B
crossref_primary_10_1002_anie_202420470
crossref_primary_10_3390_catal12091050
crossref_primary_10_1039_D3TA02115G
crossref_primary_10_1039_D1TA08254J
crossref_primary_10_1039_D1NR08035K
crossref_primary_10_1016_j_cej_2023_146760
crossref_primary_10_1002_smll_202208261
crossref_primary_10_1002_anie_202422740
crossref_primary_10_1007_s40820_023_01080_y
crossref_primary_10_1016_j_cej_2024_150174
crossref_primary_10_1073_pnas_2204666119
crossref_primary_10_1039_D4TA04989F
crossref_primary_10_3390_en15082908
crossref_primary_10_1016_j_ijhydene_2024_06_366
crossref_primary_10_1016_j_mtener_2022_101021
crossref_primary_10_1016_j_jcis_2023_04_008
crossref_primary_10_1002_adfm_202311683
crossref_primary_10_1002_smtd_202301504
crossref_primary_10_1002_adma_202210565
crossref_primary_10_1002_smll_202305479
crossref_primary_10_1016_j_cej_2022_137094
crossref_primary_10_1016_j_jallcom_2022_167846
crossref_primary_10_1021_acs_chemmater_4c00076
crossref_primary_10_1002_anie_202207226
crossref_primary_10_1016_j_jclepro_2021_128544
crossref_primary_10_1002_aenm_202202703
crossref_primary_10_1016_j_ijhydene_2024_09_338
crossref_primary_10_1021_jacs_1c02831
crossref_primary_10_1039_D4DT01404A
crossref_primary_10_2139_ssrn_4156085
crossref_primary_10_1002_smll_202412729
crossref_primary_10_1016_j_jcis_2023_07_204
crossref_primary_10_1002_cey2_526
crossref_primary_10_1002_sstr_202300518
crossref_primary_10_1039_D3DT02273K
crossref_primary_10_1016_j_ica_2024_122453
crossref_primary_10_1007_s40820_025_01680_w
crossref_primary_10_1002_sstr_202300081
crossref_primary_10_1360_TB_2023_0133
crossref_primary_10_1038_s44160_023_00258_x
crossref_primary_10_1021_acsami_2c14942
crossref_primary_10_1016_j_apcatb_2024_124462
crossref_primary_10_1016_j_jcis_2023_09_041
crossref_primary_10_1016_j_jcis_2025_01_280
crossref_primary_10_1021_jacs_4c01379
crossref_primary_10_1002_adma_202306934
crossref_primary_10_1016_j_ijhydene_2022_11_133
crossref_primary_10_1007_s40820_023_01152_z
crossref_primary_10_3390_catal12080914
crossref_primary_10_1016_j_jssc_2024_124775
crossref_primary_10_1002_smll_202405784
crossref_primary_10_1016_j_apsusc_2022_152957
crossref_primary_10_1002_advs_202300094
crossref_primary_10_1016_j_apsusc_2021_151049
crossref_primary_10_1016_j_ijhydene_2022_07_007
crossref_primary_10_1039_D1CC02349G
crossref_primary_10_1039_D1CY00650A
crossref_primary_10_1038_s41467_023_36833_1
crossref_primary_10_1002_smll_202301640
crossref_primary_10_1016_j_apcatb_2024_124698
crossref_primary_10_1016_j_cej_2024_149057
crossref_primary_10_1021_acscatal_3c02887
crossref_primary_10_1039_D3YA00492A
crossref_primary_10_1002_advs_202401975
crossref_primary_10_1016_j_apcatb_2021_120836
crossref_primary_10_1039_D1TA09887J
crossref_primary_10_1016_j_cej_2023_141823
crossref_primary_10_1002_anie_202423353
crossref_primary_10_1039_D3EE01192E
crossref_primary_10_1016_j_ijhydene_2024_03_351
crossref_primary_10_1021_acs_nanolett_3c04236
crossref_primary_10_1002_smll_202300388
crossref_primary_10_1007_s10800_024_02104_0
crossref_primary_10_1016_j_cej_2023_146820
crossref_primary_10_1016_j_ijhydene_2022_08_216
crossref_primary_10_1021_acsnano_4c15234
crossref_primary_10_1016_j_electacta_2024_144000
crossref_primary_10_1016_j_jechem_2024_06_048
crossref_primary_10_1016_j_jechem_2022_12_032
crossref_primary_10_1021_acs_inorgchem_4c01089
crossref_primary_10_1016_j_mset_2024_07_006
crossref_primary_10_1039_D2TA08775H
crossref_primary_10_1088_1361_6528_ac4068
crossref_primary_10_1016_j_jcis_2021_07_124
crossref_primary_10_1002_tcr_202300129
crossref_primary_10_1016_j_apmt_2022_101400
crossref_primary_10_2139_ssrn_3978291
crossref_primary_10_1016_j_apcatb_2022_121921
crossref_primary_10_1039_D1TA08325B
crossref_primary_10_1007_s12274_023_5769_9
crossref_primary_10_1021_acsanm_3c03670
crossref_primary_10_1021_acsami_1c16546
crossref_primary_10_3389_fenrg_2024_1465349
crossref_primary_10_1016_j_cej_2022_135281
crossref_primary_10_1039_D2CS00681B
crossref_primary_10_1021_acs_inorgchem_4c04351
crossref_primary_10_1021_acsami_2c01617
crossref_primary_10_1016_j_catcom_2022_106427
crossref_primary_10_1002_smll_202410372
crossref_primary_10_1016_j_ijhydene_2023_12_138
crossref_primary_10_1016_j_electacta_2021_139596
crossref_primary_10_1016_j_nanoen_2022_107960
crossref_primary_10_1002_smll_202403845
crossref_primary_10_1021_acsanm_4c05951
crossref_primary_10_1002_ange_202209675
crossref_primary_10_1002_adfm_202301375
crossref_primary_10_1002_ange_202423353
crossref_primary_10_1002_anie_202209675
crossref_primary_10_1016_j_apcatb_2023_122853
crossref_primary_10_1002_smll_202105972
crossref_primary_10_1002_adfm_202201726
crossref_primary_10_1093_nsr_nwae056
crossref_primary_10_1007_s10311_022_01454_5
crossref_primary_10_1002_adfm_202208358
crossref_primary_10_1016_j_apcatb_2023_123386
Cites_doi 10.1002/anie.201907017
10.1016/j.chempr.2018.11.010
10.1021/acs.accounts.7b00077
10.1126/science.1120560
10.1039/C6SC04622C
10.1016/j.ijhydene.2013.01.151
10.1039/c3sc50301a
10.1038/s41929-018-0153-y
10.1021/acs.chemmater.8b03620
10.1002/sia.740060302
10.1103/PhysRevB.54.11169
10.1021/ja505716v
10.1126/science.1134569
10.1021/acsenergylett.9b00553
10.1039/c2ee22554a
10.1039/C5CP06997A
10.1021/acsnano.9b06244
10.1021/j100016a053
10.1002/anie.201204842
10.1039/D0SC02351E
10.1038/srep13801
10.1002/anie.201608601
10.1126/science.aaf1525
10.1103/PhysRevB.71.094110
10.1007/BF02872955
10.1002/sia.6225
10.1002/adfm.201700886
10.1021/jacs.7b08071
10.1021/jacs.0c04807
10.1039/C8SC04135K
10.1002/adma.202003493
10.1038/s41467-020-14848-2
10.1002/cctc.201402194
10.1002/anie.201901732
10.1021/acscentsci.8b00426
10.1002/aenm.201601275
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.0c12740
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 4645
ExternalDocumentID 33656891
10_1021_jacs_0c12740
a47946836
Genre Journal Article
GroupedDBID -
.K2
02
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
ACSAX
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
ZCA
~02
NPM
YIN
7X8
7S9
AAYWT
L.6
ID FETCH-LOGICAL-a423t-f638ada91c8a7f9f0b33af6a3a6ac65653dad84c8a593b916b2feb212b71cfd33
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Tue Aug 05 10:12:09 EDT 2025
Fri Jul 11 15:16:11 EDT 2025
Wed Feb 19 02:28:41 EST 2025
Tue Jul 01 00:44:39 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Fri Apr 02 15:26:46 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a423t-f638ada91c8a7f9f0b33af6a3a6ac65653dad84c8a593b916b2feb212b71cfd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2398-399X
0000-0003-3821-5843
0000-0001-8512-8473
0000-0003-2300-1404
0000-0002-3418-4229
PMID 33656891
PQID 2497110305
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2551999454
proquest_miscellaneous_2497110305
pubmed_primary_33656891
crossref_primary_10_1021_jacs_0c12740
crossref_citationtrail_10_1021_jacs_0c12740
acs_journals_10_1021_jacs_0c12740
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
ACSAX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-31
PublicationDateYYYYMMDD 2021-03-31
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Stolojan V. (ref26/cit26) 1999; 161
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref35/cit35
Seh Z. W. (ref5/cit5) 2017; 355
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref27/cit27
  doi: 10.1002/anie.201907017
– ident: ref11/cit11
  doi: 10.1016/j.chempr.2018.11.010
– ident: ref33/cit33
  doi: 10.1021/acs.accounts.7b00077
– ident: ref17/cit17
  doi: 10.1126/science.1120560
– ident: ref32/cit32
  doi: 10.1039/C6SC04622C
– ident: ref2/cit2
  doi: 10.1016/j.ijhydene.2013.01.151
– ident: ref38/cit38
  doi: 10.1039/c3sc50301a
– ident: ref14/cit14
  doi: 10.1038/s41929-018-0153-y
– ident: ref10/cit10
  doi: 10.1021/acs.chemmater.8b03620
– ident: ref23/cit23
  doi: 10.1002/sia.740060302
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.54.11169
– volume: 355
  start-page: 146
  year: 2017
  ident: ref5/cit5
  publication-title: Science
– ident: ref21/cit21
  doi: 10.1021/ja505716v
– volume: 161
  start-page: 235
  year: 1999
  ident: ref26/cit26
  publication-title: Inst. Phys. Conf. Ser.
– ident: ref18/cit18
  doi: 10.1126/science.1134569
– ident: ref30/cit30
  doi: 10.1021/acsenergylett.9b00553
– ident: ref3/cit3
  doi: 10.1039/c2ee22554a
– ident: ref31/cit31
  doi: 10.1039/C5CP06997A
– ident: ref13/cit13
  doi: 10.1021/acsnano.9b06244
– ident: ref25/cit25
  doi: 10.1021/j100016a053
– ident: ref4/cit4
  doi: 10.1002/anie.201204842
– ident: ref16/cit16
  doi: 10.1039/D0SC02351E
– ident: ref34/cit34
  doi: 10.1038/srep13801
– ident: ref7/cit7
  doi: 10.1002/anie.201608601
– ident: ref1/cit1
  doi: 10.1126/science.aaf1525
– ident: ref28/cit28
  doi: 10.1103/PhysRevB.71.094110
– ident: ref20/cit20
  doi: 10.1007/BF02872955
– ident: ref24/cit24
  doi: 10.1002/sia.6225
– ident: ref9/cit9
  doi: 10.1002/adfm.201700886
– ident: ref8/cit8
  doi: 10.1021/jacs.7b08071
– ident: ref15/cit15
  doi: 10.1021/jacs.0c04807
– ident: ref19/cit19
  doi: 10.1039/C8SC04135K
– ident: ref22/cit22
  doi: 10.1002/adma.202003493
– ident: ref29/cit29
  doi: 10.1038/s41467-020-14848-2
– ident: ref37/cit37
  doi: 10.1002/cctc.201402194
– ident: ref36/cit36
  doi: 10.1002/anie.201901732
– ident: ref12/cit12
  doi: 10.1021/acscentsci.8b00426
– ident: ref6/cit6
  doi: 10.1002/aenm.201601275
SSID ssj0004281
Score 2.6854346
Snippet Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4639
SubjectTerms alloys
anodes
catalysts
cathodes
electric potential difference
hydrogen production
oxidation
oxygen production
Title Significantly Enhanced Overall Water Splitting Performance by Partial Oxidation of Ir through Au Modification in Core–Shell Alloy Structure
URI http://dx.doi.org/10.1021/jacs.0c12740
https://www.ncbi.nlm.nih.gov/pubmed/33656891
https://www.proquest.com/docview/2497110305
https://www.proquest.com/docview/2551999454
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwFLYqOLSXAm1ph00PqT1VGU1sZzuORiytxCKlqNwi27FhRJRUs1QdTvwBTv2H_SU8OwkjqAa4xs72_Jz3fXkbIZ81fhZjJbmH1CvwuMi1JyMkK8bC4aiXCO48ukfH4eEZ_34enM8DZB978KmtD6TG3Z7ykT4hNV-mYRxZktUfpPP8Rxr7LcyN4pA1Ae6Pz7YGSI0fGqAFqNJZl_0VctDm6NRBJVfd6UR21fX_JRufefBV8rYBmNCvNWKNvNLlO_J60PZ1e09u0-FFaQOEUKbFDPbKSxcEACe_7e-pAn4i-hxBiuDUhUTD6Ty1AOQMTq2u4Q1O_gzrdkxQGfg2gqbhD_SncFTl7vpudFjCoBrpfzd_UxtzCv2iqGaQurK105H-QM72934MDr2mKYMnEHlNPIMbVuQi8VUsIpOYnmRMmFAwEQqF4DBguchjjqNBwiSCT0kNsnefyshXJmdsnSyVVak_EZDMBAIRKtpQxaWxzItLSnuCaW2QNnbILoowazbVOHP-cop8xR5tBNshX9vVzFRT1dw21ygWzP5yP_tXXc1jwbzdVjEyXB3rQxGlrqbjDNlq5NvWbMETcxCFIu7mAe-Qj7VW3d-NMZRRnPgbL3i3TfKG2ggalwG5RZZwZfQ2QqCJ3HH6fwdCtwJP
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1PT9swFLcmOLDLxgaMAhsPCU4oqImdJjlWFahltCAFNG6R7dhQLUpQ004rJ74AJ74hn4RnN221Sp242i-2Yz_Hv1_8_hByqPCzGErBHKRevsN4qhwRIFnRBg4H9Ygze6Pb7TXaN-z81r-tnNWNLwwOosSWSnuJP48uYMIEYWFdusiikKGvIg7xDNdqtuK5G6QXulO0G4QNWtm5Lz5tziFZ_nsOLQGX9pA5-0x6s-FZ25LfJ6OhOJGPC5Eb3z3-dfKpgpvQnOjHF_JB5V_JWmua5W2DPMf9u9yYC-EMZ2M4ze-tSQBc_jE_qzL4hVh0ADFCVWsgDVdzRwMQY7gymocdXP7tT5IzQaGhM4Aq_Q80R9AtUtu-re3n0CoG6vXpJTYWqNDMsmIMsQ1iOxqoTXJzdnrdajtVigaHIw4bOhq3L0955MqQBzrSdUEp1w1OeYNLhIo-TXkaMqz1IyoQigpPI5d3PRG4UqeUbpGVvMjVNgFBtc8Rr-KJKpnQhocx4Xl1TpXSSCJr5ACnMKm2WJnY23MP2YsprSa2Ro6ni5rIKsa5SbWRLZE-mkk_TGJ7LJE7mOpHgqtjblR4ropRmSB3DVyTqM3_jwxiUkThzGc18m2iXLPeKMU5CiN35x3vtk_W2tfdi-Si0_u5Sz56xrbG-kbukRVcJfUdwdFQ_LBb4g1jbAqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5VrQRcKM-S8ppK9IRcxd51bB-j0KiltI1qKnqzdte7ENWyqzhBhBN_gBP_kF_C7MZORaUgevWu9znj_T7P7AzAG02fxVhJ7hH1Cj0ucu3JiMiKsXA46iaCO4vu8Unv4Jy_vwgv1sBv78LQIGpqqXZGfKvVV7lpIgzYUEFU0FU-MSli6RvWYmf5Vn-QXl-FDGK_RbxR3GONr_vNt-1ZpOq_z6IVANMdNMNNOFsO0fmXXO7NpnJPfb8RvfFWc3gA9xvYif2FnDyENV0-gruDNtvbY_iZjj-X1m2IVrqY4375xbkG4OlX-9OqwE-ESSeYEmR1jtI4ur5wgHKOIyuB1MHpt_EiSRNWBg8n2KQBwv4Mj6vcte9KxyUOqon-_eNXaj1RsV8U1RxTF8x2NtFP4Hy4_3Fw4DWpGjxBeGzqGVJjkYvEV7GITGK6kjFheoKJnlAEGUOWizzmVBomTBIklYEhTu8HMvKVyRl7CutlVepngJKZUBBupZNVcWksH-MyCLqCaW2ITHZgh5Ywa1StzpwVPSAWY582C9uBt-3GZqqJdW5TbhQrau8ua18tYnysqLfTykhGu2MtK6LU1azOiMNGvk3YFv6jDmFTQuM85B3YWgjYsjfGaI3ixN_-j7m9hjujd8Psw-HJ0XO4F1gXG3dF8gWs0ybpl4SRpvKV04o_8ksNMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significantly+Enhanced+Overall+Water+Splitting+Performance+by+Partial+Oxidation+of+Ir+through+Au+Modification+in+Core%E2%80%93Shell+Alloy+Structure&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Wang%2C+Huimin&rft.au=Chen%2C+Zhe-ning&rft.au=Wu%2C+Dongshuang&rft.au=Cao%2C+Minna&rft.date=2021-03-31&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=143&rft.issue=12&rft.spage=4639&rft.epage=4645&rft_id=info:doi/10.1021%2Fjacs.0c12740&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_0c12740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon