Significantly Enhanced Overall Water Splitting Performance by Partial Oxidation of Ir through Au Modification in Core–Shell Alloy Structure
Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water electrolyzers (PEMWEs). We first report the synthesis of core–shell structure nanoparticles (NPs) with an Au core and an AuIr2 alloy shell (Au@...
Saved in:
Published in | Journal of the American Chemical Society Vol. 143; no. 12; pp. 4639 - 4645 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
31.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water electrolyzers (PEMWEs). We first report the synthesis of core–shell structure nanoparticles (NPs) with an Au core and an AuIr2 alloy shell (Au@AuIr2). Au@AuIr2 displayed 4.6 (5.6) times higher intrinsic (mass) activity toward the oxygen evolution reaction (OER) than a commercial Ir catalyst. Furthermore, it showed hydrogen evolution reaction (HER) catalytic properties comparable to those of commercial Pt/C. Significantly, when Au@AuIr2 was used as both the anode and cathode catalyst, the overall water splitting cell achieved 10 mA/cm2 with a low cell voltage of 1.55 V and maintained this activity for more than 40 h, which greatly outperformed the commercial couples (Ir/C||Pt/C, 1.63 V, activity decreased within minutes) and is among the most efficient bifunctional catalysts reported. Theoretical calculations coupled with X-ray-based structural analyses suggest that partially oxidized surfaces originating from the electronic interaction between Au and Ir provide a balance for different intermediates binding and realize significantly enhanced OER performance. |
---|---|
AbstractList | Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water electrolyzers (PEMWEs). We first report the synthesis of core–shell structure nanoparticles (NPs) with an Au core and an AuIr2 alloy shell (Au@AuIr2). Au@AuIr2 displayed 4.6 (5.6) times higher intrinsic (mass) activity toward the oxygen evolution reaction (OER) than a commercial Ir catalyst. Furthermore, it showed hydrogen evolution reaction (HER) catalytic properties comparable to those of commercial Pt/C. Significantly, when Au@AuIr2 was used as both the anode and cathode catalyst, the overall water splitting cell achieved 10 mA/cm2 with a low cell voltage of 1.55 V and maintained this activity for more than 40 h, which greatly outperformed the commercial couples (Ir/C||Pt/C, 1.63 V, activity decreased within minutes) and is among the most efficient bifunctional catalysts reported. Theoretical calculations coupled with X-ray-based structural analyses suggest that partially oxidized surfaces originating from the electronic interaction between Au and Ir provide a balance for different intermediates binding and realize significantly enhanced OER performance. Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water electrolyzers (PEMWEs). We first report the synthesis of core-shell structure nanoparticles (NPs) with an Au core and an AuIr alloy shell (Au@AuIr ). Au@AuIr displayed 4.6 (5.6) times higher intrinsic (mass) activity toward the oxygen evolution reaction (OER) than a commercial Ir catalyst. Furthermore, it showed hydrogen evolution reaction (HER) catalytic properties comparable to those of commercial Pt/C. Significantly, when Au@AuIr was used as both the anode and cathode catalyst, the overall water splitting cell achieved 10 mA/cm with a low cell voltage of 1.55 V and maintained this activity for more than 40 h, which greatly outperformed the commercial couples (Ir/C||Pt/C, 1.63 V, activity decreased within minutes) and is among the most efficient bifunctional catalysts reported. Theoretical calculations coupled with X-ray-based structural analyses suggest that partially oxidized surfaces originating from the electronic interaction between Au and Ir provide a balance for different intermediates binding and realize significantly enhanced OER performance. Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water electrolyzers (PEMWEs). We first report the synthesis of core–shell structure nanoparticles (NPs) with an Au core and an AuIr₂ alloy shell (Au@AuIr₂). Au@AuIr₂ displayed 4.6 (5.6) times higher intrinsic (mass) activity toward the oxygen evolution reaction (OER) than a commercial Ir catalyst. Furthermore, it showed hydrogen evolution reaction (HER) catalytic properties comparable to those of commercial Pt/C. Significantly, when Au@AuIr₂ was used as both the anode and cathode catalyst, the overall water splitting cell achieved 10 mA/cm² with a low cell voltage of 1.55 V and maintained this activity for more than 40 h, which greatly outperformed the commercial couples (Ir/C||Pt/C, 1.63 V, activity decreased within minutes) and is among the most efficient bifunctional catalysts reported. Theoretical calculations coupled with X-ray-based structural analyses suggest that partially oxidized surfaces originating from the electronic interaction between Au and Ir provide a balance for different intermediates binding and realize significantly enhanced OER performance. Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water electrolyzers (PEMWEs). We first report the synthesis of core-shell structure nanoparticles (NPs) with an Au core and an AuIr2 alloy shell (Au@AuIr2). Au@AuIr2 displayed 4.6 (5.6) times higher intrinsic (mass) activity toward the oxygen evolution reaction (OER) than a commercial Ir catalyst. Furthermore, it showed hydrogen evolution reaction (HER) catalytic properties comparable to those of commercial Pt/C. Significantly, when Au@AuIr2 was used as both the anode and cathode catalyst, the overall water splitting cell achieved 10 mA/cm2 with a low cell voltage of 1.55 V and maintained this activity for more than 40 h, which greatly outperformed the commercial couples (Ir/C||Pt/C, 1.63 V, activity decreased within minutes) and is among the most efficient bifunctional catalysts reported. Theoretical calculations coupled with X-ray-based structural analyses suggest that partially oxidized surfaces originating from the electronic interaction between Au and Ir provide a balance for different intermediates binding and realize significantly enhanced OER performance.Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water electrolyzers (PEMWEs). We first report the synthesis of core-shell structure nanoparticles (NPs) with an Au core and an AuIr2 alloy shell (Au@AuIr2). Au@AuIr2 displayed 4.6 (5.6) times higher intrinsic (mass) activity toward the oxygen evolution reaction (OER) than a commercial Ir catalyst. Furthermore, it showed hydrogen evolution reaction (HER) catalytic properties comparable to those of commercial Pt/C. Significantly, when Au@AuIr2 was used as both the anode and cathode catalyst, the overall water splitting cell achieved 10 mA/cm2 with a low cell voltage of 1.55 V and maintained this activity for more than 40 h, which greatly outperformed the commercial couples (Ir/C||Pt/C, 1.63 V, activity decreased within minutes) and is among the most efficient bifunctional catalysts reported. Theoretical calculations coupled with X-ray-based structural analyses suggest that partially oxidized surfaces originating from the electronic interaction between Au and Ir provide a balance for different intermediates binding and realize significantly enhanced OER performance. |
Author | Sun, Fanfei Cao, Minna Wang, Huimin Zhuang, Wei Cao, Rong You, Hanhui Chen, Zhe-ning Zhang, Hao Wu, Dongshuang |
AuthorAffiliation | State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Division of Chemistry, Graduate School of Science Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Division of Chemistry, Graduate School of Science – name: Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics – name: University of Chinese Academy of Sciences – name: Chinese Academy of Sciences – name: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter |
Author_xml | – sequence: 1 givenname: Huimin surname: Wang fullname: Wang, Huimin organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Zhe-ning orcidid: 0000-0003-3821-5843 surname: Chen fullname: Chen, Zhe-ning organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter – sequence: 3 givenname: Dongshuang orcidid: 0000-0001-8512-8473 surname: Wu fullname: Wu, Dongshuang organization: Division of Chemistry, Graduate School of Science – sequence: 4 givenname: Minna orcidid: 0000-0002-3418-4229 surname: Cao fullname: Cao, Minna email: mncao@fjirsm.ac.cn organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Fanfei surname: Sun fullname: Sun, Fanfei organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Hao orcidid: 0000-0003-2300-1404 surname: Zhang fullname: Zhang, Hao organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Hanhui surname: You fullname: You, Hanhui organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter – sequence: 8 givenname: Wei surname: Zhuang fullname: Zhuang, Wei email: wzhuang@fjirsm.ac.cn organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter – sequence: 9 givenname: Rong orcidid: 0000-0002-2398-399X surname: Cao fullname: Cao, Rong email: rcao@fjirsm.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33656891$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9uEzEQxi3UiqaFG2fkI4du6z_r3fUxigpUKkqlgDiuZr124sixg9dbkVtfgBNvyJPgpIEDAnGyxvObTzPfd45OfPAaoVeUXFHC6PUa1HBFFGV1SZ6hCRWMFIKy6gRNCCGsqJuKn6HzYVjnsmQNfY7OOK9E1Ug6Qd8WdumtsQp8cjt841fgle7x_EFHcA5_hqQjXmydTcn6Jb7X0YS42UO42-F7iMmCw_Ovtodkg8fB4NuI0yqGcbnC0xF_CP1B_9C1Hs9C1D8evy9WOstPnQs7vEhxVGmM-gU6NeAG_fL4XqBPb28-zt4Xd_N3t7PpXQEl46kwFW-gB0lVA7WRhnScg6mAQwUqXyZ4D31T5q6QvJO06pjRHaOsq6kyPecX6M2T7jaGL6MeUruxg8oLgddhHFomBJVSlqL8P1rKmlLCicjo6yM6dhvdt9toNxB37S-3M3D5BKgYhiFq8xuhpN2H2e7DbI9hZpz9gSubDj6mCNb9a-i47_5zHcbos5F_R38CClmy_g |
CitedBy_id | crossref_primary_10_1002_advs_202401652 crossref_primary_10_1016_j_fuel_2024_133227 crossref_primary_10_1002_adfm_202212097 crossref_primary_10_1002_ange_202420470 crossref_primary_10_1016_j_enchem_2022_100083 crossref_primary_10_1007_s11581_023_05269_4 crossref_primary_10_1039_D3DT00065F crossref_primary_10_1016_j_jechem_2023_08_017 crossref_primary_10_1002_ange_202411517 crossref_primary_10_1016_j_ijhydene_2025_03_271 crossref_primary_10_1021_acsnano_3c05810 crossref_primary_10_1016_j_ijhydene_2023_12_074 crossref_primary_10_1016_j_cej_2024_154703 crossref_primary_10_1002_chem_202404378 crossref_primary_10_1016_j_apcatb_2022_121338 crossref_primary_10_1002_adma_202105400 crossref_primary_10_26599_NRE_2023_9120056 crossref_primary_10_1021_acsmaterialslett_3c00834 crossref_primary_10_1007_s11581_023_05190_w crossref_primary_10_1039_D3TA06370D crossref_primary_10_1021_acsanm_2c04069 crossref_primary_10_1038_s41467_023_36380_9 crossref_primary_10_1016_j_cattod_2022_05_031 crossref_primary_10_1016_j_ijhydene_2024_05_042 crossref_primary_10_1002_aenm_202102261 crossref_primary_10_1039_D2TA02742A crossref_primary_10_1002_er_7989 crossref_primary_10_1039_D1CC06062G crossref_primary_10_1016_j_apcatb_2024_123741 crossref_primary_10_1021_acsenergylett_3c00366 crossref_primary_10_1021_jacs_2c03875 crossref_primary_10_1021_acsnano_4c14158 crossref_primary_10_1016_j_optmat_2021_111497 crossref_primary_10_1002_smll_202102448 crossref_primary_10_1016_j_nanoen_2023_108292 crossref_primary_10_1021_acscatal_4c00037 crossref_primary_10_1002_adma_202501607 crossref_primary_10_1021_acsaem_2c03184 crossref_primary_10_1002_adfm_202107597 crossref_primary_10_1021_acs_inorgchem_4c02684 crossref_primary_10_1002_ange_202207226 crossref_primary_10_1016_j_ijhydene_2022_09_075 crossref_primary_10_1002_admi_202400765 crossref_primary_10_1016_j_ijhydene_2022_10_169 crossref_primary_10_1016_j_enrev_2024_100103 crossref_primary_10_1002_advs_202309750 crossref_primary_10_1002_adma_202302285 crossref_primary_10_1016_j_apcatb_2023_122486 crossref_primary_10_1016_j_cej_2024_153719 crossref_primary_10_1002_adma_202107399 crossref_primary_10_1016_j_cej_2023_144146 crossref_primary_10_1021_acs_chemrev_3c00332 crossref_primary_10_1016_j_ijhydene_2022_02_078 crossref_primary_10_1039_D2TA08066D crossref_primary_10_1039_D2TA04440D crossref_primary_10_1002_ange_202422740 crossref_primary_10_3390_ma16051917 crossref_primary_10_1002_adsu_202400059 crossref_primary_10_1002_smll_202408887 crossref_primary_10_1016_j_ijhydene_2023_06_110 crossref_primary_10_1002_aenm_202401227 crossref_primary_10_1021_jacsau_3c00247 crossref_primary_10_1021_jacs_2c00583 crossref_primary_10_1002_ange_202312644 crossref_primary_10_1016_j_ijhydene_2024_05_114 crossref_primary_10_1039_D4NJ01121J crossref_primary_10_1039_D1TA06216F crossref_primary_10_3390_ma16186319 crossref_primary_10_1038_s41467_024_52471_7 crossref_primary_10_1016_j_cej_2022_138497 crossref_primary_10_2139_ssrn_4193501 crossref_primary_10_1126_sciadv_adi8025 crossref_primary_10_1039_D1TA09932A crossref_primary_10_1002_admi_202201263 crossref_primary_10_1016_j_jechem_2023_12_051 crossref_primary_10_1038_s41467_024_46815_6 crossref_primary_10_1039_D2SC03947H crossref_primary_10_1039_D5CY00014A crossref_primary_10_1021_acsmaterialslett_1c00428 crossref_primary_10_1016_S1872_2067_22_64166_4 crossref_primary_10_1021_acsami_4c21373 crossref_primary_10_1002_smsc_202200030 crossref_primary_10_1016_j_cclet_2023_109073 crossref_primary_10_1002_smll_202103178 crossref_primary_10_1002_anie_202411517 crossref_primary_10_1007_s12598_024_03081_1 crossref_primary_10_1021_acssuschemeng_2c01092 crossref_primary_10_1002_adma_202308060 crossref_primary_10_1021_acsenergylett_4c00884 crossref_primary_10_1007_s12274_024_6454_3 crossref_primary_10_1002_aenm_202303987 crossref_primary_10_1038_s41467_023_37530_9 crossref_primary_10_26599_NRE_2022_9120036 crossref_primary_10_1016_S1872_2067_21_64052_4 crossref_primary_10_3390_molecules27217176 crossref_primary_10_1002_aenm_202402886 crossref_primary_10_1002_anie_202312644 crossref_primary_10_1016_j_jcis_2024_08_084 crossref_primary_10_1039_D3IM00070B crossref_primary_10_1002_anie_202420470 crossref_primary_10_3390_catal12091050 crossref_primary_10_1039_D3TA02115G crossref_primary_10_1039_D1TA08254J crossref_primary_10_1039_D1NR08035K crossref_primary_10_1016_j_cej_2023_146760 crossref_primary_10_1002_smll_202208261 crossref_primary_10_1002_anie_202422740 crossref_primary_10_1007_s40820_023_01080_y crossref_primary_10_1016_j_cej_2024_150174 crossref_primary_10_1073_pnas_2204666119 crossref_primary_10_1039_D4TA04989F crossref_primary_10_3390_en15082908 crossref_primary_10_1016_j_ijhydene_2024_06_366 crossref_primary_10_1016_j_mtener_2022_101021 crossref_primary_10_1016_j_jcis_2023_04_008 crossref_primary_10_1002_adfm_202311683 crossref_primary_10_1002_smtd_202301504 crossref_primary_10_1002_adma_202210565 crossref_primary_10_1002_smll_202305479 crossref_primary_10_1016_j_cej_2022_137094 crossref_primary_10_1016_j_jallcom_2022_167846 crossref_primary_10_1021_acs_chemmater_4c00076 crossref_primary_10_1002_anie_202207226 crossref_primary_10_1016_j_jclepro_2021_128544 crossref_primary_10_1002_aenm_202202703 crossref_primary_10_1016_j_ijhydene_2024_09_338 crossref_primary_10_1021_jacs_1c02831 crossref_primary_10_1039_D4DT01404A crossref_primary_10_2139_ssrn_4156085 crossref_primary_10_1002_smll_202412729 crossref_primary_10_1016_j_jcis_2023_07_204 crossref_primary_10_1002_cey2_526 crossref_primary_10_1002_sstr_202300518 crossref_primary_10_1039_D3DT02273K crossref_primary_10_1016_j_ica_2024_122453 crossref_primary_10_1007_s40820_025_01680_w crossref_primary_10_1002_sstr_202300081 crossref_primary_10_1360_TB_2023_0133 crossref_primary_10_1038_s44160_023_00258_x crossref_primary_10_1021_acsami_2c14942 crossref_primary_10_1016_j_apcatb_2024_124462 crossref_primary_10_1016_j_jcis_2023_09_041 crossref_primary_10_1016_j_jcis_2025_01_280 crossref_primary_10_1021_jacs_4c01379 crossref_primary_10_1002_adma_202306934 crossref_primary_10_1016_j_ijhydene_2022_11_133 crossref_primary_10_1007_s40820_023_01152_z crossref_primary_10_3390_catal12080914 crossref_primary_10_1016_j_jssc_2024_124775 crossref_primary_10_1002_smll_202405784 crossref_primary_10_1016_j_apsusc_2022_152957 crossref_primary_10_1002_advs_202300094 crossref_primary_10_1016_j_apsusc_2021_151049 crossref_primary_10_1016_j_ijhydene_2022_07_007 crossref_primary_10_1039_D1CC02349G crossref_primary_10_1039_D1CY00650A crossref_primary_10_1038_s41467_023_36833_1 crossref_primary_10_1002_smll_202301640 crossref_primary_10_1016_j_apcatb_2024_124698 crossref_primary_10_1016_j_cej_2024_149057 crossref_primary_10_1021_acscatal_3c02887 crossref_primary_10_1039_D3YA00492A crossref_primary_10_1002_advs_202401975 crossref_primary_10_1016_j_apcatb_2021_120836 crossref_primary_10_1039_D1TA09887J crossref_primary_10_1016_j_cej_2023_141823 crossref_primary_10_1002_anie_202423353 crossref_primary_10_1039_D3EE01192E crossref_primary_10_1016_j_ijhydene_2024_03_351 crossref_primary_10_1021_acs_nanolett_3c04236 crossref_primary_10_1002_smll_202300388 crossref_primary_10_1007_s10800_024_02104_0 crossref_primary_10_1016_j_cej_2023_146820 crossref_primary_10_1016_j_ijhydene_2022_08_216 crossref_primary_10_1021_acsnano_4c15234 crossref_primary_10_1016_j_electacta_2024_144000 crossref_primary_10_1016_j_jechem_2024_06_048 crossref_primary_10_1016_j_jechem_2022_12_032 crossref_primary_10_1021_acs_inorgchem_4c01089 crossref_primary_10_1016_j_mset_2024_07_006 crossref_primary_10_1039_D2TA08775H crossref_primary_10_1088_1361_6528_ac4068 crossref_primary_10_1016_j_jcis_2021_07_124 crossref_primary_10_1002_tcr_202300129 crossref_primary_10_1016_j_apmt_2022_101400 crossref_primary_10_2139_ssrn_3978291 crossref_primary_10_1016_j_apcatb_2022_121921 crossref_primary_10_1039_D1TA08325B crossref_primary_10_1007_s12274_023_5769_9 crossref_primary_10_1021_acsanm_3c03670 crossref_primary_10_1021_acsami_1c16546 crossref_primary_10_3389_fenrg_2024_1465349 crossref_primary_10_1016_j_cej_2022_135281 crossref_primary_10_1039_D2CS00681B crossref_primary_10_1021_acs_inorgchem_4c04351 crossref_primary_10_1021_acsami_2c01617 crossref_primary_10_1016_j_catcom_2022_106427 crossref_primary_10_1002_smll_202410372 crossref_primary_10_1016_j_ijhydene_2023_12_138 crossref_primary_10_1016_j_electacta_2021_139596 crossref_primary_10_1016_j_nanoen_2022_107960 crossref_primary_10_1002_smll_202403845 crossref_primary_10_1021_acsanm_4c05951 crossref_primary_10_1002_ange_202209675 crossref_primary_10_1002_adfm_202301375 crossref_primary_10_1002_ange_202423353 crossref_primary_10_1002_anie_202209675 crossref_primary_10_1016_j_apcatb_2023_122853 crossref_primary_10_1002_smll_202105972 crossref_primary_10_1002_adfm_202201726 crossref_primary_10_1093_nsr_nwae056 crossref_primary_10_1007_s10311_022_01454_5 crossref_primary_10_1002_adfm_202208358 crossref_primary_10_1016_j_apcatb_2023_123386 |
Cites_doi | 10.1002/anie.201907017 10.1016/j.chempr.2018.11.010 10.1021/acs.accounts.7b00077 10.1126/science.1120560 10.1039/C6SC04622C 10.1016/j.ijhydene.2013.01.151 10.1039/c3sc50301a 10.1038/s41929-018-0153-y 10.1021/acs.chemmater.8b03620 10.1002/sia.740060302 10.1103/PhysRevB.54.11169 10.1021/ja505716v 10.1126/science.1134569 10.1021/acsenergylett.9b00553 10.1039/c2ee22554a 10.1039/C5CP06997A 10.1021/acsnano.9b06244 10.1021/j100016a053 10.1002/anie.201204842 10.1039/D0SC02351E 10.1038/srep13801 10.1002/anie.201608601 10.1126/science.aaf1525 10.1103/PhysRevB.71.094110 10.1007/BF02872955 10.1002/sia.6225 10.1002/adfm.201700886 10.1021/jacs.7b08071 10.1021/jacs.0c04807 10.1039/C8SC04135K 10.1002/adma.202003493 10.1038/s41467-020-14848-2 10.1002/cctc.201402194 10.1002/anie.201901732 10.1021/acscentsci.8b00426 10.1002/aenm.201601275 |
ContentType | Journal Article |
Copyright | 2021 American Chemical
Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.0c12740 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 4645 |
ExternalDocumentID | 33656891 10_1021_jacs_0c12740 a47946836 |
Genre | Journal Article |
GroupedDBID | - .K2 02 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS ACSAX AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH2 IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHGAQ CITATION CUPRZ GGK XSW YQT ZCA ~02 NPM YIN 7X8 7S9 AAYWT L.6 |
ID | FETCH-LOGICAL-a423t-f638ada91c8a7f9f0b33af6a3a6ac65653dad84c8a593b916b2feb212b71cfd33 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Tue Aug 05 10:12:09 EDT 2025 Fri Jul 11 15:16:11 EDT 2025 Wed Feb 19 02:28:41 EST 2025 Tue Jul 01 00:44:39 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Fri Apr 02 15:26:46 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a423t-f638ada91c8a7f9f0b33af6a3a6ac65653dad84c8a593b916b2feb212b71cfd33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2398-399X 0000-0003-3821-5843 0000-0001-8512-8473 0000-0003-2300-1404 0000-0002-3418-4229 |
PMID | 33656891 |
PQID | 2497110305 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2551999454 proquest_miscellaneous_2497110305 pubmed_primary_33656891 crossref_primary_10_1021_jacs_0c12740 crossref_citationtrail_10_1021_jacs_0c12740 acs_journals_10_1021_jacs_0c12740 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX ACSAX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-31 |
PublicationDateYYYYMMDD | 2021-03-31 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 Stolojan V. (ref26/cit26) 1999; 161 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref35/cit35 Seh Z. W. (ref5/cit5) 2017; 355 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref27/cit27 doi: 10.1002/anie.201907017 – ident: ref11/cit11 doi: 10.1016/j.chempr.2018.11.010 – ident: ref33/cit33 doi: 10.1021/acs.accounts.7b00077 – ident: ref17/cit17 doi: 10.1126/science.1120560 – ident: ref32/cit32 doi: 10.1039/C6SC04622C – ident: ref2/cit2 doi: 10.1016/j.ijhydene.2013.01.151 – ident: ref38/cit38 doi: 10.1039/c3sc50301a – ident: ref14/cit14 doi: 10.1038/s41929-018-0153-y – ident: ref10/cit10 doi: 10.1021/acs.chemmater.8b03620 – ident: ref23/cit23 doi: 10.1002/sia.740060302 – ident: ref35/cit35 doi: 10.1103/PhysRevB.54.11169 – volume: 355 start-page: 146 year: 2017 ident: ref5/cit5 publication-title: Science – ident: ref21/cit21 doi: 10.1021/ja505716v – volume: 161 start-page: 235 year: 1999 ident: ref26/cit26 publication-title: Inst. Phys. Conf. Ser. – ident: ref18/cit18 doi: 10.1126/science.1134569 – ident: ref30/cit30 doi: 10.1021/acsenergylett.9b00553 – ident: ref3/cit3 doi: 10.1039/c2ee22554a – ident: ref31/cit31 doi: 10.1039/C5CP06997A – ident: ref13/cit13 doi: 10.1021/acsnano.9b06244 – ident: ref25/cit25 doi: 10.1021/j100016a053 – ident: ref4/cit4 doi: 10.1002/anie.201204842 – ident: ref16/cit16 doi: 10.1039/D0SC02351E – ident: ref34/cit34 doi: 10.1038/srep13801 – ident: ref7/cit7 doi: 10.1002/anie.201608601 – ident: ref1/cit1 doi: 10.1126/science.aaf1525 – ident: ref28/cit28 doi: 10.1103/PhysRevB.71.094110 – ident: ref20/cit20 doi: 10.1007/BF02872955 – ident: ref24/cit24 doi: 10.1002/sia.6225 – ident: ref9/cit9 doi: 10.1002/adfm.201700886 – ident: ref8/cit8 doi: 10.1021/jacs.7b08071 – ident: ref15/cit15 doi: 10.1021/jacs.0c04807 – ident: ref19/cit19 doi: 10.1039/C8SC04135K – ident: ref22/cit22 doi: 10.1002/adma.202003493 – ident: ref29/cit29 doi: 10.1038/s41467-020-14848-2 – ident: ref37/cit37 doi: 10.1002/cctc.201402194 – ident: ref36/cit36 doi: 10.1002/anie.201901732 – ident: ref12/cit12 doi: 10.1021/acscentsci.8b00426 – ident: ref6/cit6 doi: 10.1002/aenm.201601275 |
SSID | ssj0004281 |
Score | 2.6854346 |
Snippet | Developing efficient bifunctional electrocatalysts for overall water splitting in acidic conditions is the essential step for proton exchange membrane water... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4639 |
SubjectTerms | alloys anodes catalysts cathodes electric potential difference hydrogen production oxidation oxygen production |
Title | Significantly Enhanced Overall Water Splitting Performance by Partial Oxidation of Ir through Au Modification in Core–Shell Alloy Structure |
URI | http://dx.doi.org/10.1021/jacs.0c12740 https://www.ncbi.nlm.nih.gov/pubmed/33656891 https://www.proquest.com/docview/2497110305 https://www.proquest.com/docview/2551999454 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwFLYqOLSXAm1ph00PqT1VGU1sZzuORiytxCKlqNwi27FhRJRUs1QdTvwBTv2H_SU8OwkjqAa4xs72_Jz3fXkbIZ81fhZjJbmH1CvwuMi1JyMkK8bC4aiXCO48ukfH4eEZ_34enM8DZB978KmtD6TG3Z7ykT4hNV-mYRxZktUfpPP8Rxr7LcyN4pA1Ae6Pz7YGSI0fGqAFqNJZl_0VctDm6NRBJVfd6UR21fX_JRufefBV8rYBmNCvNWKNvNLlO_J60PZ1e09u0-FFaQOEUKbFDPbKSxcEACe_7e-pAn4i-hxBiuDUhUTD6Ty1AOQMTq2u4Q1O_gzrdkxQGfg2gqbhD_SncFTl7vpudFjCoBrpfzd_UxtzCv2iqGaQurK105H-QM72934MDr2mKYMnEHlNPIMbVuQi8VUsIpOYnmRMmFAwEQqF4DBguchjjqNBwiSCT0kNsnefyshXJmdsnSyVVak_EZDMBAIRKtpQxaWxzItLSnuCaW2QNnbILoowazbVOHP-cop8xR5tBNshX9vVzFRT1dw21ygWzP5yP_tXXc1jwbzdVjEyXB3rQxGlrqbjDNlq5NvWbMETcxCFIu7mAe-Qj7VW3d-NMZRRnPgbL3i3TfKG2ggalwG5RZZwZfQ2QqCJ3HH6fwdCtwJP |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1PT9swFLcmOLDLxgaMAhsPCU4oqImdJjlWFahltCAFNG6R7dhQLUpQ004rJ74AJ74hn4RnN221Sp242i-2Yz_Hv1_8_hByqPCzGErBHKRevsN4qhwRIFnRBg4H9Ygze6Pb7TXaN-z81r-tnNWNLwwOosSWSnuJP48uYMIEYWFdusiikKGvIg7xDNdqtuK5G6QXulO0G4QNWtm5Lz5tziFZ_nsOLQGX9pA5-0x6s-FZ25LfJ6OhOJGPC5Eb3z3-dfKpgpvQnOjHF_JB5V_JWmua5W2DPMf9u9yYC-EMZ2M4ze-tSQBc_jE_qzL4hVh0ADFCVWsgDVdzRwMQY7gymocdXP7tT5IzQaGhM4Aq_Q80R9AtUtu-re3n0CoG6vXpJTYWqNDMsmIMsQ1iOxqoTXJzdnrdajtVigaHIw4bOhq3L0955MqQBzrSdUEp1w1OeYNLhIo-TXkaMqz1IyoQigpPI5d3PRG4UqeUbpGVvMjVNgFBtc8Rr-KJKpnQhocx4Xl1TpXSSCJr5ACnMKm2WJnY23MP2YsprSa2Ro6ni5rIKsa5SbWRLZE-mkk_TGJ7LJE7mOpHgqtjblR4ropRmSB3DVyTqM3_jwxiUkThzGc18m2iXLPeKMU5CiN35x3vtk_W2tfdi-Si0_u5Sz56xrbG-kbukRVcJfUdwdFQ_LBb4g1jbAqw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5VrQRcKM-S8ppK9IRcxd51bB-j0KiltI1qKnqzdte7ENWyqzhBhBN_gBP_kF_C7MZORaUgevWu9znj_T7P7AzAG02fxVhJ7hH1Cj0ucu3JiMiKsXA46iaCO4vu8Unv4Jy_vwgv1sBv78LQIGpqqXZGfKvVV7lpIgzYUEFU0FU-MSli6RvWYmf5Vn-QXl-FDGK_RbxR3GONr_vNt-1ZpOq_z6IVANMdNMNNOFsO0fmXXO7NpnJPfb8RvfFWc3gA9xvYif2FnDyENV0-gruDNtvbY_iZjj-X1m2IVrqY4375xbkG4OlX-9OqwE-ESSeYEmR1jtI4ur5wgHKOIyuB1MHpt_EiSRNWBg8n2KQBwv4Mj6vcte9KxyUOqon-_eNXaj1RsV8U1RxTF8x2NtFP4Hy4_3Fw4DWpGjxBeGzqGVJjkYvEV7GITGK6kjFheoKJnlAEGUOWizzmVBomTBIklYEhTu8HMvKVyRl7CutlVepngJKZUBBupZNVcWksH-MyCLqCaW2ITHZgh5Ywa1StzpwVPSAWY582C9uBt-3GZqqJdW5TbhQrau8ua18tYnysqLfTykhGu2MtK6LU1azOiMNGvk3YFv6jDmFTQuM85B3YWgjYsjfGaI3ixN_-j7m9hjujd8Psw-HJ0XO4F1gXG3dF8gWs0ybpl4SRpvKV04o_8ksNMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significantly+Enhanced+Overall+Water+Splitting+Performance+by+Partial+Oxidation+of+Ir+through+Au+Modification+in+Core%E2%80%93Shell+Alloy+Structure&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Wang%2C+Huimin&rft.au=Chen%2C+Zhe-ning&rft.au=Wu%2C+Dongshuang&rft.au=Cao%2C+Minna&rft.date=2021-03-31&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=143&rft.issue=12&rft.spage=4639&rft.epage=4645&rft_id=info:doi/10.1021%2Fjacs.0c12740&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_0c12740 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |