Identification of Alkoxy Radicals as Hydrogen Atom Transfer Agents in Ce-Catalyzed C–H Functionalization
The intermediacy of alkoxy radicals in cerium-catalyzed C–H functionalization via H-atom abstraction has been unambiguously confirmed. Catalytically relevant Ce(IV)–alkoxide complexes have been synthesized and characterized by X-ray diffraction. Operando electron paramagnetic resonance and transien...
Saved in:
Published in | Journal of the American Chemical Society Vol. 145; no. 1; pp. 359 - 376 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The intermediacy of alkoxy radicals in cerium-catalyzed C–H functionalization via H-atom abstraction has been unambiguously confirmed. Catalytically relevant Ce(IV)–alkoxide complexes have been synthesized and characterized by X-ray diffraction. Operando electron paramagnetic resonance and transient absorption spectroscopy experiments on isolated pentachloro Ce(IV) alkoxides identified alkoxy radicals as the sole heteroatom-centered radical species generated via ligand-to-metal charge transfer (LMCT) excitation. Alkoxy-radical-mediated hydrogen atom transfer (HAT) has been verified via kinetic analysis, density functional theory (DFT) calculations, and reactions under strictly chloride-free conditions. These experimental findings unambiguously establish the critical role of alkoxy radicals in Ce-LMCT catalysis and definitively preclude the involvement of chlorine radical. This study has also reinforced the necessity of a high relative ratio of alcohol vs Ce for the selective alkoxy-radical-mediated HAT, as seemingly trivial changes in the relative ratio of alcohol vs Ce can lead to drastically different mechanistic pathways. Importantly, the previously proposed chlorine radical–alcohol complex, postulated to explain alkoxy-radical-enabled selectivities in this system, has been examined under scrutiny and ruled out by regioselectivity studies, transient absorption experiments, and high-level calculations. Moreover, the peculiar selectivity of alkoxy radical generation in the LMCT homolysis of Ce(IV) heteroleptic complexes has been analyzed and back-electron transfer (BET) may have regulated the efficiency and selectivity for the formation of ligand-centered radicals. |
---|---|
AbstractList | The intermediacy of alkoxy radicals in cerium-catalyzed C–H functionalization via H-atom abstraction has been unambiguously confirmed. Catalytically relevant Ce(IV)–alkoxide complexes have been synthesized and characterized by X-ray diffraction. Operando electron paramagnetic resonance and transient absorption spectroscopy experiments on isolated pentachloro Ce(IV) alkoxides identified alkoxy radicals as the sole heteroatom-centered radical species generated via ligand-to-metal charge transfer (LMCT) excitation. Alkoxy-radical-mediated hydrogen atom transfer (HAT) has been verified via kinetic analysis, density functional theory (DFT) calculations, and reactions under strictly chloride-free conditions. These experimental findings unambiguously establish the critical role of alkoxy radicals in Ce-LMCT catalysis and definitively preclude the involvement of chlorine radical. This study has also reinforced the necessity of a high relative ratio of alcohol vs Ce for the selective alkoxy-radical-mediated HAT, as seemingly trivial changes in the relative ratio of alcohol vs Ce can lead to drastically different mechanistic pathways. Importantly, the previously proposed chlorine radical–alcohol complex, postulated to explain alkoxy-radical-enabled selectivities in this system, has been examined under scrutiny and ruled out by regioselectivity studies, transient absorption experiments, and high-level calculations. Moreover, the peculiar selectivity of alkoxy radical generation in the LMCT homolysis of Ce(IV) heteroleptic complexes has been analyzed and back-electron transfer (BET) may have regulated the efficiency and selectivity for the formation of ligand-centered radicals. The intermediacy of alkoxy radicals in cerium-catalyzed C-H functionalization via H-atom abstraction has been unambiguously confirmed. Catalytically relevant Ce(IV)-alkoxide complexes have been synthesized and characterized by X-ray diffraction. Operando electron paramagnetic resonance and transient absorption spectroscopy experiments on isolated pentachloro Ce(IV) alkoxides identified alkoxy radicals as the sole heteroatom-centered radical species generated via ligand-to-metal charge transfer (LMCT) excitation. Alkoxy-radical-mediated hydrogen atom transfer (HAT) has been verified via kinetic analysis, density functional theory (DFT) calculations, and reactions under strictly chloride-free conditions. These experimental findings unambiguously establish the critical role of alkoxy radicals in Ce-LMCT catalysis and definitively preclude the involvement of chlorine radical. This study has also reinforced the necessity of a high relative ratio of alcohol vs Ce for the selective alkoxy-radical-mediated HAT, as seemingly trivial changes in the relative ratio of alcohol vs Ce can lead to drastically different mechanistic pathways. Importantly, the previously proposed chlorine radical-alcohol complex, postulated to explain alkoxy-radical-enabled selectivities in this system, has been examined under scrutiny and ruled out by regioselectivity studies, transient absorption experiments, and high-level calculations. Moreover, the peculiar selectivity of alkoxy radical generation in the LMCT homolysis of Ce(IV) heteroleptic complexes has been analyzed and back-electron transfer (BET) may have regulated the efficiency and selectivity for the formation of ligand-centered radicals. The intermediacy of alkoxy radicals in cerium-catalyzed C-H functionalization via H-atom abstraction has been unambiguously confirmed. Catalytically relevant Ce(IV)-alkoxide complexes have been synthesized and characterized by X-ray diffraction. Operando electron paramagnetic resonance and transient absorption spectroscopy experiments on isolated pentachloro Ce(IV) alkoxides identified alkoxy radicals as the sole heteroatom-centered radical species generated via ligand-to-metal charge transfer (LMCT) excitation. Alkoxy-radical-mediated hydrogen atom transfer (HAT) has been verified via kinetic analysis, density functional theory (DFT) calculations, and reactions under strictly chloride-free conditions. These experimental findings unambiguously establish the critical role of alkoxy radicals in Ce-LMCT catalysis and definitively preclude the involvement of chlorine radical. This study has also reinforced the necessity of a high relative ratio of alcohol vs Ce for the selective alkoxy-radical-mediated HAT, as seemingly trivial changes in the relative ratio of alcohol vs Ce can lead to drastically different mechanistic pathways. Importantly, the previously proposed chlorine radical-alcohol complex, postulated to explain alkoxy-radical-enabled selectivities in this system, has been examined under scrutiny and ruled out by regioselectivity studies, transient absorption experiments, and high-level calculations. Moreover, the peculiar selectivity of alkoxy radical generation in the LMCT homolysis of Ce(IV) heteroleptic complexes has been analyzed and back-electron transfer (BET) may have regulated the efficiency and selectivity for the formation of ligand-centered radicals.The intermediacy of alkoxy radicals in cerium-catalyzed C-H functionalization via H-atom abstraction has been unambiguously confirmed. Catalytically relevant Ce(IV)-alkoxide complexes have been synthesized and characterized by X-ray diffraction. Operando electron paramagnetic resonance and transient absorption spectroscopy experiments on isolated pentachloro Ce(IV) alkoxides identified alkoxy radicals as the sole heteroatom-centered radical species generated via ligand-to-metal charge transfer (LMCT) excitation. Alkoxy-radical-mediated hydrogen atom transfer (HAT) has been verified via kinetic analysis, density functional theory (DFT) calculations, and reactions under strictly chloride-free conditions. These experimental findings unambiguously establish the critical role of alkoxy radicals in Ce-LMCT catalysis and definitively preclude the involvement of chlorine radical. This study has also reinforced the necessity of a high relative ratio of alcohol vs Ce for the selective alkoxy-radical-mediated HAT, as seemingly trivial changes in the relative ratio of alcohol vs Ce can lead to drastically different mechanistic pathways. Importantly, the previously proposed chlorine radical-alcohol complex, postulated to explain alkoxy-radical-enabled selectivities in this system, has been examined under scrutiny and ruled out by regioselectivity studies, transient absorption experiments, and high-level calculations. Moreover, the peculiar selectivity of alkoxy radical generation in the LMCT homolysis of Ce(IV) heteroleptic complexes has been analyzed and back-electron transfer (BET) may have regulated the efficiency and selectivity for the formation of ligand-centered radicals. |
Author | Du, Jianbo Chen, Yuegang Pu, Ruihua Yu, Na Hong, Xin An, Qing Zhang, Shuo-Qing Jia, Menghui Zhang, Yanxia Zuo, Zhiwei Xing, Yang-Yang Chen, Jinquan Hu, Anhua Liu, Weimin |
AuthorAffiliation | Chinese Academy of Sciences Westlake University State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry State Key Laboratory of Precision Spectroscopy Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization Beijing National Laboratory for Molecular Sciences School of Physical Science and Technology College of Chemistry and Chemical Engineering Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science |
AuthorAffiliation_xml | – name: Westlake University – name: School of Physical Science and Technology – name: Beijing National Laboratory for Molecular Sciences – name: Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science – name: State Key Laboratory of Precision Spectroscopy – name: Chinese Academy of Sciences – name: Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization – name: State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry – name: College of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Qing surname: An fullname: An, Qing organization: Chinese Academy of Sciences – sequence: 2 givenname: Yang-Yang orcidid: 0000-0001-6656-3293 surname: Xing fullname: Xing, Yang-Yang organization: Westlake University – sequence: 3 givenname: Ruihua surname: Pu fullname: Pu, Ruihua organization: School of Physical Science and Technology – sequence: 4 givenname: Menghui surname: Jia fullname: Jia, Menghui organization: State Key Laboratory of Precision Spectroscopy – sequence: 5 givenname: Yuegang surname: Chen fullname: Chen, Yuegang organization: School of Physical Science and Technology – sequence: 6 givenname: Anhua surname: Hu fullname: Hu, Anhua organization: College of Chemistry and Chemical Engineering – sequence: 7 givenname: Shuo-Qing orcidid: 0000-0002-7617-3042 surname: Zhang fullname: Zhang, Shuo-Qing organization: Westlake University – sequence: 8 givenname: Na surname: Yu fullname: Yu, Na organization: School of Physical Science and Technology – sequence: 9 givenname: Jianbo surname: Du fullname: Du, Jianbo organization: Chinese Academy of Sciences – sequence: 10 givenname: Yanxia surname: Zhang fullname: Zhang, Yanxia organization: Chinese Academy of Sciences – sequence: 11 givenname: Jinquan orcidid: 0000-0003-0652-1379 surname: Chen fullname: Chen, Jinquan email: jqchen@lps.ecnu.edu.cn organization: State Key Laboratory of Precision Spectroscopy – sequence: 12 givenname: Weimin orcidid: 0000-0002-9359-1465 surname: Liu fullname: Liu, Weimin email: liuwm@shanghaitech.edu.cn organization: School of Physical Science and Technology – sequence: 13 givenname: Xin surname: Hong fullname: Hong, Xin email: hxchem@zju.edu.cn organization: Westlake University – sequence: 14 givenname: Zhiwei orcidid: 0000-0002-3361-3220 surname: Zuo fullname: Zuo, Zhiwei email: zuozhw@sioc.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36538367$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb9OHDEQxi1EBAdJlzpymSJL_He9lKcV5JCQkCJSW7NeO_Jlzya2V8pR8Q68YZ4kPjiaKBHVzHz6zSd7vhN0GGKwCL2n5IwSRj-vweQzZiihrD1ACyoZaWTtD9GCEMIa1bX8GJ3kvK6jYB09Qse8lbzjrVqg9dVoQ_HOGyg-BhwdXk4_4q8t_gpjFaeMIePVdkzxuw14WeIG3yYI2dmEl1UqGfuAe9v0UGDa3tsR978fHlf4cg5mZwmTv3_yfoveuOpn3-3rKfp2eXHbr5rrmy9X_fK6AcF4aUZHzrkdOwLCKGPk0CkjgQnZipFY5Vpuag_gBtFRqgZ6TgahCAcQbmCt46fo47PvXYo_Z5uL3vhs7DRBsHHOmhNBhFRKdq-iTMmWMipJW9EPe3QeNnbUd8lvIG31yykrwJ4Bk2LOyTptfHn6eEngJ02J3uWld3npfV516dNfSy--_8H3792J6zinet38b_QPfeuk0w |
CitedBy_id | crossref_primary_10_1002_chem_202404063 crossref_primary_10_1021_jacs_4c04618 crossref_primary_10_1016_j_chempr_2024_12_005 crossref_primary_10_1002_ange_202402964 crossref_primary_10_1039_D3SC06857A crossref_primary_10_1039_D5GC00186B crossref_primary_10_1021_acs_accounts_4c00510 crossref_primary_10_1039_D4QO01179A crossref_primary_10_1021_acs_joc_4c01378 crossref_primary_10_1039_D4SC08731C crossref_primary_10_1038_s41467_023_42264_9 crossref_primary_10_1021_acscatal_4c07252 crossref_primary_10_1039_D4GC00848K crossref_primary_10_1039_D4CC04036H crossref_primary_10_1002_anie_202308563 crossref_primary_10_1038_s41467_025_57567_2 crossref_primary_10_1021_jacs_3c02185 crossref_primary_10_1021_jacs_3c08166 crossref_primary_10_1038_s41929_024_01276_4 crossref_primary_10_1039_D3OB01458D crossref_primary_10_1021_acs_inorgchem_3c01210 crossref_primary_10_1039_D4DD00043A crossref_primary_10_1021_jacs_3c13371 crossref_primary_10_1039_D3SC01118F crossref_primary_10_1002_chem_202400642 crossref_primary_10_1055_s_0042_1751518 crossref_primary_10_1002_anie_202402964 crossref_primary_10_1039_D4OB00876F crossref_primary_10_6023_A23030099 crossref_primary_10_1002_chem_202404687 crossref_primary_10_1021_jacs_3c01082 crossref_primary_10_1002_cctc_202300311 crossref_primary_10_1021_jacs_4c15627 crossref_primary_10_1021_acs_orglett_4c03353 crossref_primary_10_1002_cjoc_202300493 crossref_primary_10_1021_acs_orglett_3c04019 crossref_primary_10_1016_j_ccr_2023_215522 crossref_primary_10_1016_j_jenvman_2023_118861 crossref_primary_10_3390_molecules29030688 crossref_primary_10_1002_ange_202308563 crossref_primary_10_1038_s41467_024_51239_3 crossref_primary_10_1039_D3GC04425D crossref_primary_10_1016_j_scib_2024_04_031 crossref_primary_10_1039_D3CC00439B crossref_primary_10_1021_acs_joc_5c00191 crossref_primary_10_1039_D2CC07071E crossref_primary_10_1038_s41467_024_50562_z crossref_primary_10_1021_jacs_4c01964 crossref_primary_10_1002_ejoc_202400540 crossref_primary_10_1002_cptc_202400406 crossref_primary_10_1021_acs_orglett_4c02279 crossref_primary_10_1039_D3SC04410F crossref_primary_10_1021_acs_orglett_4c00612 crossref_primary_10_1039_D3CC02790B crossref_primary_10_1002_adsc_202400442 crossref_primary_10_1016_j_jmst_2025_02_013 crossref_primary_10_1021_acs_orglett_3c02589 crossref_primary_10_1039_D3GC02469E crossref_primary_10_1021_acs_jpclett_3c01049 crossref_primary_10_1002_ejoc_202400935 crossref_primary_10_1126_science_adj9258 crossref_primary_10_1007_s40242_024_0095_4 crossref_primary_10_1021_acscatal_4c03799 crossref_primary_10_1038_s41598_024_76775_2 crossref_primary_10_1126_science_adj0040 crossref_primary_10_1007_s11426_023_1911_x crossref_primary_10_1021_acs_joc_4c00155 crossref_primary_10_1039_D4QO02384F crossref_primary_10_1021_jacs_4c05052 crossref_primary_10_1039_D4QO02146K crossref_primary_10_1021_acs_orglett_4c03697 crossref_primary_10_1055_a_2044_2140 crossref_primary_10_1038_s41467_024_49557_7 |
Cites_doi | 10.1002/1099-0682(200012)2000:12<2455::AID-EJIC2455>3.0.CO;2-4 10.1002/anie.201703743 10.1021/jacs.1c00687 10.1021/ja00508a014 10.1016/0020-7055(76)90039-5 10.1039/B603480B 10.1021/acs.joc.5b00191 10.1055/s-0037-1611785 10.1021/ja00482a033 10.1021/acs.organomet.5b00568 10.1126/science.abd8408 10.1016/0009-2614(89)85261-3 10.1021/ja0493493 10.1021/acs.orglett.2c00138 10.1016/j.ccr.2016.12.009 10.1021/jacs.1c02490 10.1021/jp109613t 10.1021/jp212076g 10.1021/jacs.6b09970 10.1021/jacs.1c07144 10.1021/jp980846d 10.1021/acs.accounts.0c00694 10.1002/anie.201609035 10.1021/acs.chemrev.6b00551 10.1021/jacs.2c00389 10.1016/j.checat.2022.03.020 10.1002/cssc.202102360 10.1055/s-2002-33335 10.1021/jacs.6b06517 10.1021/acs.joc.0c01016 10.1021/acs.chemrev.1c00263 10.1021/jacs.1c13333 10.1021/ja00305a023 10.1021/acs.orglett.0c01409 10.1038/nature19810 10.1002/cctc.202200916 10.1002/advs.201902020 10.1002/cjoc.202100420 10.1038/446391a 10.1039/f19888403319 10.1002/anie.201810187 10.1055/s-0035-1561297 10.1039/C9CC00492K 10.1038/s41586-020-2831-6 10.1002/anie.202010801 10.1039/C7CC09457D 10.1002/kin.550221102 10.1002/ejoc.201900786 10.1021/ic00010a018 10.1021/jacs.2c01411 10.1021/ja01551a057 10.1021/acs.accounts.5b00348 10.1021/jo980991n 10.1016/j.chempr.2020.04.022 10.1021/jacs.7b13131 10.1038/nature14255 10.1021/acscatal.1c02285 10.1021/jacs.0c00781 10.1021/jacs.1c02889 10.1021/acscatal.2c03315 10.1021/acs.inorgchem.7b00828 10.1021/jp9822236 10.1038/nature19811 10.1002/anie.202100270 10.1002/anie.201804844 10.1021/jacs.6b08397 10.1021/ja00115a005 10.1016/0047-2670(83)80006-9 10.1021/jacs.1c00618 10.1021/jacs.1c05566 10.1021/acs.chemrev.1c00311 10.1126/science.aat9750 10.1039/D0SC04542J 10.1021/jacs.2c01630 10.1002/cctc.201500125 10.1021/jo00257a005 10.1021/acs.jpca.5b12509 10.1021/jacs.9b06834 10.1016/j.checat.2022.02.013 10.1039/a804291h 10.1038/s41557-021-00834-8 10.1039/D1GC01563J 10.1021/jacs.5b03192 10.1002/anie.201806522 10.1021/ar00175a003 10.1021/acs.chemrev.8b00732 10.1021/jacs.2c01705 10.1021/cr000453m 10.1002/anie.202002900 10.1021/jacs.6b09414 10.1021/jp050055t 10.1021/jacs.9b12918 10.1021/acs.chemrev.1c00256 10.1002/anie.201801678 10.1021/ja00112a037 10.1021/jacs.0c00212 10.1021/jo102420p 10.1016/S0020-1693(00)82358-0 10.1139/v82-392 10.1021/acscatal.7b01036 10.1021/jacs.8b08781 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.2c10126 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 376 |
ExternalDocumentID | 36538367 10_1021_jacs_2c10126 c583973340 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 55A 5GY 5RE 5VS 7~N 85S 8W4 AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZCA ~02 53G AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA AHGAQ CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 AAYWT 7S9 L.6 |
ID | FETCH-LOGICAL-a423t-df093ed80a4c7cc5b87c5a24564d0e7f63c456aafb48117b190b4703aa4fb26f3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 15:57:39 EDT 2025 Tue Aug 05 11:18:37 EDT 2025 Thu Apr 03 07:10:06 EDT 2025 Thu Apr 24 22:58:39 EDT 2025 Tue Jul 01 03:54:23 EDT 2025 Fri Jan 13 03:10:46 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a423t-df093ed80a4c7cc5b87c5a24564d0e7f63c456aafb48117b190b4703aa4fb26f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7617-3042 0000-0001-6656-3293 0000-0002-3361-3220 0000-0002-9359-1465 0000-0003-0652-1379 |
PMID | 36538367 |
PQID | 2756121506 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_3040457758 proquest_miscellaneous_2756121506 pubmed_primary_36538367 crossref_citationtrail_10_1021_jacs_2c10126 crossref_primary_10_1021_jacs_2c10126 acs_journals_10_1021_jacs_2c10126 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-11 |
PublicationDateYYYYMMDD | 2023-01-11 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 Bunce N. J. (ref65/cit65) 1985; 107 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref42/cit42 ref96/cit96 ref13/cit13 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref6/cit6 ref18/cit18 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref95/cit95 doi: 10.1002/1099-0682(200012)2000:12<2455::AID-EJIC2455>3.0.CO;2-4 – ident: ref2/cit2 doi: 10.1002/anie.201703743 – ident: ref42/cit42 doi: 10.1021/jacs.1c00687 – ident: ref90/cit90 doi: 10.1021/ja00508a014 – ident: ref91/cit91 doi: 10.1016/0020-7055(76)90039-5 – ident: ref81/cit81 doi: 10.1039/B603480B – ident: ref82/cit82 doi: 10.1021/acs.joc.5b00191 – ident: ref78/cit78 doi: 10.1055/s-0037-1611785 – ident: ref88/cit88 doi: 10.1021/ja00482a033 – ident: ref99/cit99 doi: 10.1021/acs.organomet.5b00568 – ident: ref25/cit25 doi: 10.1126/science.abd8408 – ident: ref85/cit85 doi: 10.1016/0009-2614(89)85261-3 – ident: ref74/cit74 doi: 10.1021/ja0493493 – ident: ref51/cit51 doi: 10.1021/acs.orglett.2c00138 – ident: ref75/cit75 doi: 10.1016/j.ccr.2016.12.009 – ident: ref43/cit43 doi: 10.1021/jacs.1c02490 – ident: ref98/cit98 doi: 10.1021/jp109613t – ident: ref72/cit72 doi: 10.1021/jp212076g – ident: ref16/cit16 doi: 10.1021/jacs.6b09970 – ident: ref21/cit21 doi: 10.1021/jacs.1c07144 – ident: ref68/cit68 doi: 10.1021/jp980846d – ident: ref61/cit61 doi: 10.1021/acs.accounts.0c00694 – ident: ref28/cit28 doi: 10.1002/anie.201609035 – ident: ref58/cit58 doi: 10.1021/acs.chemrev.6b00551 – ident: ref27/cit27 doi: 10.1021/jacs.2c00389 – ident: ref46/cit46 doi: 10.1016/j.checat.2022.03.020 – ident: ref52/cit52 doi: 10.1002/cssc.202102360 – ident: ref56/cit56 doi: 10.1055/s-2002-33335 – ident: ref71/cit71 doi: 10.1021/jacs.6b06517 – ident: ref80/cit80 doi: 10.1021/acs.joc.0c01016 – ident: ref8/cit8 doi: 10.1021/acs.chemrev.1c00263 – ident: ref48/cit48 doi: 10.1021/jacs.1c13333 – volume: 107 start-page: 5464 year: 1985 ident: ref65/cit65 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00305a023 – ident: ref92/cit92 doi: 10.1021/acs.orglett.0c01409 – ident: ref14/cit14 doi: 10.1038/nature19810 – ident: ref11/cit11 doi: 10.1002/cctc.202200916 – ident: ref33/cit33 doi: 10.1002/advs.201902020 – ident: ref44/cit44 doi: 10.1002/cjoc.202100420 – ident: ref1/cit1 doi: 10.1038/446391a – ident: ref73/cit73 doi: 10.1039/f19888403319 – ident: ref60/cit60 doi: 10.1002/anie.201810187 – ident: ref103/cit103 doi: 10.1055/s-0035-1561297 – ident: ref34/cit34 doi: 10.1039/C9CC00492K – ident: ref19/cit19 doi: 10.1038/s41586-020-2831-6 – ident: ref37/cit37 doi: 10.1002/anie.202010801 – ident: ref17/cit17 doi: 10.1039/C7CC09457D – ident: ref69/cit69 doi: 10.1002/kin.550221102 – ident: ref70/cit70 doi: 10.1002/ejoc.201900786 – ident: ref77/cit77 doi: 10.1021/ic00010a018 – ident: ref50/cit50 doi: 10.1021/jacs.2c01411 – ident: ref62/cit62 doi: 10.1021/ja01551a057 – ident: ref6/cit6 doi: 10.1021/acs.accounts.5b00348 – ident: ref66/cit66 doi: 10.1021/jo980991n – ident: ref20/cit20 doi: 10.1016/j.chempr.2020.04.022 – ident: ref23/cit23 doi: 10.1021/jacs.7b13131 – ident: ref12/cit12 doi: 10.1038/nature14255 – ident: ref41/cit41 doi: 10.1021/acscatal.1c02285 – ident: ref96/cit96 doi: 10.1021/jacs.0c00781 – ident: ref94/cit94 doi: 10.1021/jacs.1c02889 – ident: ref45/cit45 doi: 10.1021/acscatal.2c03315 – ident: ref76/cit76 doi: 10.1021/acs.inorgchem.7b00828 – ident: ref89/cit89 doi: 10.1021/jp9822236 – ident: ref13/cit13 doi: 10.1038/nature19811 – ident: ref10/cit10 doi: 10.1002/anie.202100270 – ident: ref59/cit59 doi: 10.1002/anie.201804844 – ident: ref29/cit29 doi: 10.1021/jacs.6b08397 – ident: ref87/cit87 doi: 10.1021/ja00115a005 – ident: ref97/cit97 doi: 10.1016/0047-2670(83)80006-9 – ident: ref39/cit39 doi: 10.1021/jacs.1c00618 – ident: ref26/cit26 doi: 10.1021/jacs.1c05566 – ident: ref3/cit3 doi: 10.1021/acs.chemrev.1c00311 – ident: ref24/cit24 doi: 10.1126/science.aat9750 – ident: ref9/cit9 doi: 10.1039/D0SC04542J – ident: ref47/cit47 doi: 10.1021/jacs.2c01630 – ident: ref7/cit7 doi: 10.1002/cctc.201500125 – ident: ref63/cit63 doi: 10.1021/jo00257a005 – ident: ref86/cit86 doi: 10.1021/acs.jpca.5b12509 – ident: ref18/cit18 doi: 10.1021/jacs.9b06834 – ident: ref53/cit53 doi: 10.1016/j.checat.2022.02.013 – ident: ref5/cit5 doi: 10.1039/a804291h – ident: ref49/cit49 doi: 10.1038/s41557-021-00834-8 – ident: ref40/cit40 doi: 10.1039/D1GC01563J – ident: ref100/cit100 doi: 10.1021/jacs.5b03192 – ident: ref55/cit55 doi: 10.1002/anie.201806522 – ident: ref64/cit64 doi: 10.1021/ar00175a003 – ident: ref84/cit84 doi: 10.1021/acs.chemrev.8b00732 – ident: ref22/cit22 doi: 10.1021/jacs.2c01705 – ident: ref4/cit4 doi: 10.1021/cr000453m – ident: ref36/cit36 doi: 10.1002/anie.202002900 – ident: ref15/cit15 doi: 10.1021/jacs.6b09414 – ident: ref67/cit67 doi: 10.1021/jp050055t – ident: ref38/cit38 doi: 10.1021/jacs.9b12918 – ident: ref57/cit57 doi: 10.1021/acs.chemrev.1c00256 – ident: ref32/cit32 doi: 10.1002/anie.201801678 – ident: ref102/cit102 doi: 10.1021/ja00112a037 – ident: ref35/cit35 doi: 10.1021/jacs.0c00212 – ident: ref101/cit101 doi: 10.1021/jo102420p – ident: ref83/cit83 doi: 10.1016/S0020-1693(00)82358-0 – ident: ref79/cit79 doi: 10.1139/v82-392 – ident: ref30/cit30 doi: 10.1021/acscatal.7b01036 – ident: ref31/cit31 doi: 10.1021/jacs.8b08781 |
SSID | ssj0004281 |
Score | 2.6253076 |
Snippet | The intermediacy of alkoxy radicals in cerium-catalyzed C–H functionalization via H-atom abstraction has been unambiguously confirmed. Catalytically relevant... The intermediacy of alkoxy radicals in cerium-catalyzed C-H functionalization via H-atom abstraction has been unambiguously confirmed. Catalytically relevant... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 359 |
SubjectTerms | absorption alcohols carbon-hydrogen bond activation Catalysis catalytic activity Chlorine density functional theory electron paramagnetic resonance spectroscopy Ethanol homolytic cleavage hydrogen Hydrogen - chemistry Kinetics Ligands Metals regioselectivity X-ray diffraction |
Title | Identification of Alkoxy Radicals as Hydrogen Atom Transfer Agents in Ce-Catalyzed C–H Functionalization |
URI | http://dx.doi.org/10.1021/jacs.2c10126 https://www.ncbi.nlm.nih.gov/pubmed/36538367 https://www.proquest.com/docview/2756121506 https://www.proquest.com/docview/3040457758 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTuQwELUYODAXllmg2WQk5oTS6sRb-hhFNC0kODAgcWvZji3NAAnqpA9w4h_4Q76EqiwgGLWGWxRV5MQup15V-VURcjDkRvBs4AOA4izgMe45IXngnYhix2XoMnQUT8_k-JKfXImrtwOyHzP4EdYHsmU_sliHSn4hS5GMFTpZSfr7jf8YxWEHc1UsWXvA_ePTaIBs-d4AzUGVtXUZrZLjjqPTHCq57s8q07cP_5Zs_M-Lr5GVFmDSpNGIdbLg8m9kOe36un0nfxturm-DdbTwNLm5hnHpua6TNiXVJR3fZ9MClIsmVXFLa4vm3ZQmyMQq6Z-cpi5IMfRz_-Aymj4_Po3pCGxkE1psyZ0_yOXo6CIdB23HhUADrKqCzA-GzGXxQHOrrBUmVlZozI3CejrlJbNwrbU3HAmqBtCE4fDP0Jp7E0nPfpLFvMjdJqGhz4xXwjk_jDln3NRkFG9V6KPQCt4j-zA_k3bHlJM6GR6BM4J321nrkcNuqSa2LVmOnTNu5kj_epW-a0p1zJHb71Z9AlOPCRKdu2IGAgp7hWLNxfkyDP56XChws3pko1GZ19GYBPPBpNr6xLdtk6_YuR6jOWG4Qxar6cztAr6pzF6t3C9DhfQQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHMqlpby6BYorwQml2sSv7DGKWIU-9gCt1FtkO7YELUm1yR7aU_8D_5Bfwkzi3YpKK_UWWZPYsceeb2Y8M4R8mnAjeDX2EUBxFvEU95yQPPJOJKnjMnYVKoqnM1mc86MLcRGC1TEWBgbRwpfa3ol_n10A0wRBY2IxHZV8Sp4BDklQ18ryH_dhkEkaL9GuSiUL99wfvo1yyLb_y6E14LIXMtNtMlsNr79bcnm46MyhvX2QufHR439BtgLcpNnAHzvkiatfks18WeXtFfk1ROr6YLqjjafZ1SV0T7_r3oXTUt3S4qaaN8BqNOua37SXb97NaYZxWS39WdPcRTkagm5uXUXzv3d_CjoFiTkYGkOo52tyPv16lhdRqL8QaQBZXVT58YS5Kh1rbpW1wqTKCo2eUlhdp7xkFp619oZjuKoBbGE4nCBac28S6dkbslE3tdslNPaV8Uo45ycp54ybPjTFWxX7JLaCj8gBzE8Z9k9b9q7xBFQTbA2zNiJflitW2pDAHOtoXK2h_ryivh4Sd6yhO1gufglTj-4SXbtmAQQKK4diBsb1NAzOQC4UKF0j8nbgnFVvTIIwYVLtPeLfPpLN4uz0pDz5Njt-R55jTXu088Txe7LRzRfuAyCfzuz3_P4P-AH8cQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgGX8iwsT1eCE0q1iR_JHqPAanlVqFCpt8h2bAlakmqTPbSn_gf-Ib-EmcRZRKWV4BYlk8SPseebGc8MwMuZMFJUUx8hFOeRyGjNSSUi72SSOaFiV5Gi-OlALY7E-2N5vAXxGAuDjWjxS23vxKdVfVb5kGGAUgXhg8RSSip1Da6Tx470rbz48icUMsniEfGmmeLhrPvVt0kW2fZvWbQBYPaCZn4bDtdN7M-XnOyvOrNvL65kb_yvPtyBnQA7WT7wyV3YcvU9uFmM1d7uw_chYtcHEx5rPMtPT7AJ7FD3rpyW6ZYtzqtlgyzH8q75wXo5592S5RSf1bJvNStcVJBB6PzCVaz4dflzweYoOQeDYwj5fABH87dfi0UU6jBEGsFWF1V-OuOuyqZa2NRaabLUSk0eU5xll3rFLV5r7Y2gsFWDGMMI3Em0Ft4kyvNd2K6b2j0CFvvK-FQ652eZEFyYPkTF2zT2SWylmMAejk8Z1lFb9i7yBFUUuhtGbQKvx1krbUhkTvU0TjdQv1pTnw0JPDbQ7Y0MUOLQk9tE165ZIUFKFUQpE-NmGo57oUBulNkEHg7cs_4bVyhUuEof_0PfXsCNz2_m5cd3Bx-ewC0qbU_mnjh-CtvdcuWeIQDqzPOe5X8DLxj-9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Alkoxy+Radicals+as+Hydrogen+Atom+Transfer+Agents+in+Ce-Catalyzed+C%E2%80%93H+Functionalization&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=An%2C+Qing&rft.au=Xing%2C+Yang-Yang&rft.au=Pu%2C+Ruihua&rft.au=Jia%2C+Menghui&rft.date=2023-01-11&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=145&rft.issue=1&rft.spage=359&rft.epage=376&rft_id=info:doi/10.1021%2Fjacs.2c10126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_2c10126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |