Realizing 17.5% Efficiency Flexible Organic Solar Cells via Atomic-Level Chemical Welding of Silver Nanowire Electrodes

Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 144; no. 19; pp. 8658 - 8668
Main Authors Zeng, Guang, Chen, Weijie, Chen, Xiaobin, Hu, Yin, Chen, Yang, Zhang, Ben, Chen, Haiyang, Sun, Weiwei, Shen, Yunxiu, Li, Yaowen, Yan, Feng, Li, Yongfang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is still a huge challenge. Silver nanowire (AgNW) electrodes, exhibiting easily tuned optoelectronic/mechanical properties, are attracting considerable attention, but their poor contacts at the junction site of the AgNWs increase the sheet resistance and reduce mechanical stability. In this study, an ionic liquid (IL)-type reducing agent containing Cl– and a dihydroxyl group was employed to control the reduction process of silver (Ag) in AgNW-based FTEs precisely. The Cl– in the IL regulates the Ag+ concentration through the formation and dissolution of AgCl, whereas the dihydroxyl group slowly reduces the released Ag+ to form metal Ag. The reduced Ag grew in situ at the junction site of the AgNWs in a twin-crystal growth mode, facilitating an atomic-level contact between the AgNWs and the reduced Ag. This enforced atomic-level contact decreased the sheet resistance, and enhanced the mechanical stability of the FTEs. As a result, the single-junction flexible OSCs based on this chemically welded FTE achieved record power conversion efficiencies of 17.52% (active area: 0.062 cm2) and 15.82% (active area: 1.0 cm2). These flexible devices also displayed robust bending and peeling durability even under extreme test conditions.
AbstractList Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is still a huge challenge. Silver nanowire (AgNW) electrodes, exhibiting easily tuned optoelectronic/mechanical properties, are attracting considerable attention, but their poor contacts at the junction site of the AgNWs increase the sheet resistance and reduce mechanical stability. In this study, an ionic liquid (IL)-type reducing agent containing Cl and a dihydroxyl group was employed to control the reduction process of silver (Ag) in AgNW-based FTEs precisely. The Cl in the IL regulates the Ag concentration through the formation and dissolution of AgCl, whereas the dihydroxyl group slowly reduces the released Ag to form metal Ag. The reduced Ag grew in situ at the junction site of the AgNWs in a twin-crystal growth mode, facilitating an atomic-level contact between the AgNWs and the reduced Ag. This enforced atomic-level contact decreased the sheet resistance, and enhanced the mechanical stability of the FTEs. As a result, the single-junction flexible OSCs based on this chemically welded FTE achieved record power conversion efficiencies of 17.52% (active area: 0.062 cm ) and 15.82% (active area: 1.0 cm ). These flexible devices also displayed robust bending and peeling durability even under extreme test conditions.
Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is still a huge challenge. Silver nanowire (AgNW) electrodes, exhibiting easily tuned optoelectronic/mechanical properties, are attracting considerable attention, but their poor contacts at the junction site of the AgNWs increase the sheet resistance and reduce mechanical stability. In this study, an ionic liquid (IL)-type reducing agent containing Cl- and a dihydroxyl group was employed to control the reduction process of silver (Ag) in AgNW-based FTEs precisely. The Cl- in the IL regulates the Ag+ concentration through the formation and dissolution of AgCl, whereas the dihydroxyl group slowly reduces the released Ag+ to form metal Ag. The reduced Ag grew in situ at the junction site of the AgNWs in a twin-crystal growth mode, facilitating an atomic-level contact between the AgNWs and the reduced Ag. This enforced atomic-level contact decreased the sheet resistance, and enhanced the mechanical stability of the FTEs. As a result, the single-junction flexible OSCs based on this chemically welded FTE achieved record power conversion efficiencies of 17.52% (active area: 0.062 cm2) and 15.82% (active area: 1.0 cm2). These flexible devices also displayed robust bending and peeling durability even under extreme test conditions.Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is still a huge challenge. Silver nanowire (AgNW) electrodes, exhibiting easily tuned optoelectronic/mechanical properties, are attracting considerable attention, but their poor contacts at the junction site of the AgNWs increase the sheet resistance and reduce mechanical stability. In this study, an ionic liquid (IL)-type reducing agent containing Cl- and a dihydroxyl group was employed to control the reduction process of silver (Ag) in AgNW-based FTEs precisely. The Cl- in the IL regulates the Ag+ concentration through the formation and dissolution of AgCl, whereas the dihydroxyl group slowly reduces the released Ag+ to form metal Ag. The reduced Ag grew in situ at the junction site of the AgNWs in a twin-crystal growth mode, facilitating an atomic-level contact between the AgNWs and the reduced Ag. This enforced atomic-level contact decreased the sheet resistance, and enhanced the mechanical stability of the FTEs. As a result, the single-junction flexible OSCs based on this chemically welded FTE achieved record power conversion efficiencies of 17.52% (active area: 0.062 cm2) and 15.82% (active area: 1.0 cm2). These flexible devices also displayed robust bending and peeling durability even under extreme test conditions.
Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is still a huge challenge. Silver nanowire (AgNW) electrodes, exhibiting easily tuned optoelectronic/mechanical properties, are attracting considerable attention, but their poor contacts at the junction site of the AgNWs increase the sheet resistance and reduce mechanical stability. In this study, an ionic liquid (IL)-type reducing agent containing Cl– and a dihydroxyl group was employed to control the reduction process of silver (Ag) in AgNW-based FTEs precisely. The Cl– in the IL regulates the Ag+ concentration through the formation and dissolution of AgCl, whereas the dihydroxyl group slowly reduces the released Ag+ to form metal Ag. The reduced Ag grew in situ at the junction site of the AgNWs in a twin-crystal growth mode, facilitating an atomic-level contact between the AgNWs and the reduced Ag. This enforced atomic-level contact decreased the sheet resistance, and enhanced the mechanical stability of the FTEs. As a result, the single-junction flexible OSCs based on this chemically welded FTE achieved record power conversion efficiencies of 17.52% (active area: 0.062 cm2) and 15.82% (active area: 1.0 cm2). These flexible devices also displayed robust bending and peeling durability even under extreme test conditions.
Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is still a huge challenge. Silver nanowire (AgNW) electrodes, exhibiting easily tuned optoelectronic/mechanical properties, are attracting considerable attention, but their poor contacts at the junction site of the AgNWs increase the sheet resistance and reduce mechanical stability. In this study, an ionic liquid (IL)-type reducing agent containing Cl– and a dihydroxyl group was employed to control the reduction process of silver (Ag) in AgNW-based FTEs precisely. The Cl– in the IL regulates the Ag⁺ concentration through the formation and dissolution of AgCl, whereas the dihydroxyl group slowly reduces the released Ag⁺ to form metal Ag. The reduced Ag grew in situ at the junction site of the AgNWs in a twin-crystal growth mode, facilitating an atomic-level contact between the AgNWs and the reduced Ag. This enforced atomic-level contact decreased the sheet resistance, and enhanced the mechanical stability of the FTEs. As a result, the single-junction flexible OSCs based on this chemically welded FTE achieved record power conversion efficiencies of 17.52% (active area: 0.062 cm²) and 15.82% (active area: 1.0 cm²). These flexible devices also displayed robust bending and peeling durability even under extreme test conditions.
Author Li, Yongfang
Chen, Haiyang
Yan, Feng
Chen, Weijie
Chen, Xiaobin
Shen, Yunxiu
Zhang, Ben
Chen, Yang
Zeng, Guang
Hu, Yin
Li, Yaowen
Sun, Weiwei
AuthorAffiliation Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science
College of Chemistry, Chemical Engineering and Materials Science
AuthorAffiliation_xml – name: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science
– name: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry
– name: State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
– name: College of Chemistry, Chemical Engineering and Materials Science
Author_xml – sequence: 1
  givenname: Guang
  orcidid: 0000-0002-0368-9988
  surname: Zeng
  fullname: Zeng, Guang
  organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 2
  givenname: Weijie
  orcidid: 0000-0002-7614-1702
  surname: Chen
  fullname: Chen, Weijie
  organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 3
  givenname: Xiaobin
  surname: Chen
  fullname: Chen, Xiaobin
  organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 4
  givenname: Yin
  orcidid: 0000-0003-3868-026X
  surname: Hu
  fullname: Hu, Yin
  organization: College of Chemistry, Chemical Engineering and Materials Science
– sequence: 5
  givenname: Yang
  surname: Chen
  fullname: Chen, Yang
  organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 6
  givenname: Ben
  surname: Zhang
  fullname: Zhang, Ben
  organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 7
  givenname: Haiyang
  surname: Chen
  fullname: Chen, Haiyang
  organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 8
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
  organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 9
  givenname: Yunxiu
  surname: Shen
  fullname: Shen, Yunxiu
  organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science
– sequence: 10
  givenname: Yaowen
  orcidid: 0000-0001-7229-582X
  surname: Li
  fullname: Li, Yaowen
  email: ywli@suda.edu.cn
  organization: State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
– sequence: 11
  givenname: Feng
  orcidid: 0000-0001-9269-7025
  surname: Yan
  fullname: Yan, Feng
  organization: College of Chemistry, Chemical Engineering and Materials Science
– sequence: 12
  givenname: Yongfang
  orcidid: 0000-0002-2565-2748
  surname: Li
  fullname: Li, Yongfang
  organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35469397$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9PHCEUB3BiNLr-uHk2XJr00Fn5MQzD0WzWtsmmJmrT44SBN5YNCwqza-1fXzZue2hqeiIPPrzA9x2j_RADIHROyZQSRi-X2uQpM4QKwvfQhApGKkFZs48mhBBWybbhR-g452Upa9bSQ3TERd0oruQEPd-C9u6nCw-Yyql4h-fD4IyDYF7wtYcfrveAb9KDDs7gu-h1wjPwPuON0_hqjCtnqgVswOPZdyiF9vgbeLvtFwd85_wGEv6iQ3x2CfDcgxlTtJBP0cGgfYaz3XqCvl7P72efqsXNx8-zq0Wla8bHyoJUUlA51LYFaqil3PamVkQNjTCkbyRAOVSMDQJqbkEoqUlfZFv3Slt-gt6_9n1M8WkNeexWLpvyAx0grnPHJG0Zp4rI_9NGCNGUBNtCL3Z03a_Ado_JrXR66X7nWsCHV2BSzDnB8IdQ0m3H1m3H1u3GVjj7ixs36tHFMCbt_FuXdu_dbi7jOoUS5L_pL7l0p7Q
CitedBy_id crossref_primary_10_1021_acsenergylett_2c02348
crossref_primary_10_1002_smtd_202401235
crossref_primary_10_1007_s11664_023_10693_3
crossref_primary_10_1016_j_nanoen_2022_108153
crossref_primary_10_1039_D4NR02531H
crossref_primary_10_1002_cjoc_202200437
crossref_primary_10_1002_ange_202313016
crossref_primary_10_1039_D4TC03745F
crossref_primary_10_1039_D2NH00313A
crossref_primary_10_1002_adfm_202304752
crossref_primary_10_1002_adfm_202305445
crossref_primary_10_1021_acsami_4c06483
crossref_primary_10_1002_adfm_202408453
crossref_primary_10_1002_solr_202200797
crossref_primary_10_1016_j_colsurfa_2025_136646
crossref_primary_10_1039_D3CS00492A
crossref_primary_10_1117_1_OE_63_11_117104
crossref_primary_10_1002_solr_202300211
crossref_primary_10_1002_adfm_202410766
crossref_primary_10_1002_adma_202406879
crossref_primary_10_1002_solr_202400206
crossref_primary_10_1016_j_cej_2023_148498
crossref_primary_10_1021_acsaelm_2c01791
crossref_primary_10_1038_s41560_024_01501_1
crossref_primary_10_1002_anie_202216340
crossref_primary_10_1016_j_cej_2023_146505
crossref_primary_10_1016_j_mtener_2023_101409
crossref_primary_10_1002_smll_202307242
crossref_primary_10_1038_s41528_022_00188_2
crossref_primary_10_1126_science_adj3654
crossref_primary_10_1021_acsnano_3c10033
crossref_primary_10_1039_D3EE00272A
crossref_primary_10_1021_acsnano_2c10999
crossref_primary_10_1002_adma_202307280
crossref_primary_10_1002_adom_202201977
crossref_primary_10_1021_acsenergylett_3c01178
crossref_primary_10_1039_D3EE01333B
crossref_primary_10_1039_D4TA07622B
crossref_primary_10_1016_j_rser_2024_114740
crossref_primary_10_1039_D3TA03213B
crossref_primary_10_3390_molecules27175739
crossref_primary_10_1016_j_jphotochem_2024_115926
crossref_primary_10_34133_adi_0058
crossref_primary_10_1002_admt_202301321
crossref_primary_10_1002_solr_202300822
crossref_primary_10_1021_acsami_2c22047
crossref_primary_10_1080_10408436_2024_2379246
crossref_primary_10_1002_ange_202216340
crossref_primary_10_1002_cjoc_202200770
crossref_primary_10_1021_acsami_2c21996
crossref_primary_10_1002_admt_202400728
crossref_primary_10_1002_aenm_202404233
crossref_primary_10_1039_D4TC03335C
crossref_primary_10_1039_D3RA08044G
crossref_primary_10_1016_j_giant_2024_100286
crossref_primary_10_1016_j_colcom_2022_100663
crossref_primary_10_1002_marc_202200432
crossref_primary_10_1039_D2EE03096A
crossref_primary_10_34133_adi_0061
crossref_primary_10_1002_anie_202209580
crossref_primary_10_1039_D4CS00080C
crossref_primary_10_1021_acsaem_4c03093
crossref_primary_10_1038_s41467_024_50894_w
crossref_primary_10_1007_s11426_022_1282_4
crossref_primary_10_1063_5_0249768
crossref_primary_10_1002_ange_202310034
crossref_primary_10_1021_acsami_4c04848
crossref_primary_10_1002_eem2_12592
crossref_primary_10_1002_smll_202311561
crossref_primary_10_1021_acsanm_4c00463
crossref_primary_10_1016_j_cej_2023_142524
crossref_primary_10_1002_anie_202313016
crossref_primary_10_1002_adfm_202214781
crossref_primary_10_1039_D4EE02724H
crossref_primary_10_1016_j_apsusc_2023_158281
crossref_primary_10_1021_acsami_4c12238
crossref_primary_10_1021_acsenergylett_4c03168
crossref_primary_10_1002_adfm_202301573
crossref_primary_10_1002_solr_202300322
crossref_primary_10_1002_anie_202421090
crossref_primary_10_1016_j_cej_2023_147091
crossref_primary_10_1002_adma_202305562
crossref_primary_10_1039_D3CS00233K
crossref_primary_10_1021_acsami_3c01519
crossref_primary_10_1038_s41528_022_00207_2
crossref_primary_10_3390_ma17020505
crossref_primary_10_1002_smll_202305327
crossref_primary_10_1016_j_mattod_2024_01_006
crossref_primary_10_1038_s41528_022_00222_3
crossref_primary_10_3390_mi14030562
crossref_primary_10_1002_adfm_202404567
crossref_primary_10_1002_adma_202402350
crossref_primary_10_1007_s11426_023_1616_2
crossref_primary_10_1002_marc_202400433
crossref_primary_10_1002_ange_202311559
crossref_primary_10_1039_D3EE00087G
crossref_primary_10_1016_j_synthmet_2023_117347
crossref_primary_10_1021_acs_nanolett_4c04731
crossref_primary_10_1039_D4MH00340C
crossref_primary_10_1002_anie_202310034
crossref_primary_10_1002_ange_202421090
crossref_primary_10_1039_D4EE02963A
crossref_primary_10_1002_aenm_202203313
crossref_primary_10_1002_aenm_202202224
crossref_primary_10_1002_anie_202420090
crossref_primary_10_1039_D3EE01164J
crossref_primary_10_1021_acsami_2c07063
crossref_primary_10_1002_adom_202201788
crossref_primary_10_1016_j_desal_2023_116910
crossref_primary_10_1016_j_jechem_2023_09_035
crossref_primary_10_1360_SSC_2022_0126
crossref_primary_10_1007_s10118_022_2803_4
crossref_primary_10_1021_acsanm_4c04964
crossref_primary_10_1007_s11467_023_1258_6
crossref_primary_10_1039_D3TA01049J
crossref_primary_10_1002_adma_202311170
crossref_primary_10_1007_s11426_022_1390_2
crossref_primary_10_1016_j_jcis_2024_08_068
crossref_primary_10_1016_j_joule_2023_07_005
crossref_primary_10_1021_acs_jpcc_3c05629
crossref_primary_10_1021_jacs_4c03730
crossref_primary_10_1002_adfm_202407392
crossref_primary_10_1002_ange_202209580
crossref_primary_10_1002_adfm_202308468
crossref_primary_10_1016_j_nanoen_2023_108805
crossref_primary_10_1016_j_wees_2024_03_001
crossref_primary_10_1039_D3TC00742A
crossref_primary_10_1021_acsaem_3c03171
crossref_primary_10_1038_s41528_023_00260_5
crossref_primary_10_1002_smsc_202300004
crossref_primary_10_1002_aenm_202402370
crossref_primary_10_1002_eem2_12683
crossref_primary_10_1002_solr_202400230
crossref_primary_10_1002_aenm_202404679
crossref_primary_10_1016_j_ijbiomac_2024_139185
crossref_primary_10_1021_acsami_2c22885
crossref_primary_10_1002_adfm_202400547
crossref_primary_10_1007_s40843_023_2843_8
crossref_primary_10_1021_acsami_3c15207
crossref_primary_10_1002_agt2_281
crossref_primary_10_1039_D3TA00086A
crossref_primary_10_1039_D4TA01335B
crossref_primary_10_1093_nsr_nwac285
crossref_primary_10_1002_adma_202306681
crossref_primary_10_1007_s11426_024_2299_7
crossref_primary_10_1038_s41467_024_52534_9
crossref_primary_10_1002_anie_202303551
crossref_primary_10_1039_D4TA00044G
crossref_primary_10_1002_anie_202311559
crossref_primary_10_1039_D4TA06570K
crossref_primary_10_1039_D4CP02513J
crossref_primary_10_1002_eom2_12281
crossref_primary_10_1002_flm2_30
crossref_primary_10_1016_j_cej_2023_142327
crossref_primary_10_3390_su17051820
crossref_primary_10_1021_acsami_3c06450
crossref_primary_10_1039_D2TA08971H
crossref_primary_10_1039_D4CC02580F
crossref_primary_10_1021_acs_langmuir_4c01631
crossref_primary_10_1088_2752_5724_acd6ab
crossref_primary_10_3390_polym15163462
crossref_primary_10_1021_acsaem_2c03407
crossref_primary_10_1039_D2TA07406K
crossref_primary_10_1016_j_cclet_2023_108527
crossref_primary_10_1016_j_esci_2022_10_010
crossref_primary_10_1002_ange_202420090
crossref_primary_10_1007_s40843_022_2383_7
crossref_primary_10_1002_adma_202420439
crossref_primary_10_3390_ijms24119319
crossref_primary_10_1002_ange_202303551
crossref_primary_10_1002_adfm_202411787
crossref_primary_10_1007_s40820_023_01122_5
crossref_primary_10_3390_nano12152521
crossref_primary_10_1016_j_saa_2022_121925
crossref_primary_10_3390_nano13212865
Cites_doi 10.1021/acsami.6b01389
10.1007/s11426-021-1180-6
10.1002/adfm.201606641
10.1007/s11426-021-1094-y
10.1002/adfm.201303108
10.1002/adfm.201902922
10.1021/nl010093y
10.1038/s41928-019-0315-1
10.1002/adma.202102787
10.1002/adma.201902447
10.1002/aenm.202002536
10.1002/adma.201704738
10.1088/0957-4484/24/33/335202
10.1002/adma.202101090
10.1016/j.nanoen.2019.104018
10.2118/14236-PA
10.1002/adma.201908478
10.1021/jp048023d
10.1038/s41528-021-00128-6
10.1002/aenm.202101705
10.1002/adma.201203099
10.1039/c2nr31254a
10.1007/s12274-012-0264-8
10.1002/adma.201902210
10.1039/c2jm35545k
10.1016/j.joule.2020.02.012
10.1002/aenm.201600847
10.1002/adma.202109516
10.1002/adma.201800659
10.1021/acsnano.5b08137
10.1021/am502639n
10.1021/cg701128b
10.1039/C7TC04673A
10.1002/adfm.201501004
10.1063/1.3211850
10.1002/adfm.202102694
10.1007/s11426-018-9430-8
10.1021/nn4065567
10.1002/adma.202101469
10.1111/jmi.12065
10.1002/adma.201701479
10.1002/adfm.201501887
10.1021/acsnano.8b08019
10.1002/adfm.201503739
10.1021/jacs.5b03739
10.1002/aenm.202000765
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.2c01503
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 8668
ExternalDocumentID 35469397
10_1021_jacs_2c01503
c876484841
Genre Journal Article
GroupedDBID -
02
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AGXLV
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DC
DU5
DZ
EBS
ED
ET
F5P
GGK
GNL
IH2
IH9
JG
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XSW
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
.K2
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AHGAQ
CITATION
CUPRZ
ED~
JG~
YQT
ZCA
~02
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-a423t-de797517f4d8e1c1d13dbc4909f65c0b67ee7f4922f5e43de597a0b1c184b9ad3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 05:50:06 EDT 2025
Fri Jul 11 16:52:25 EDT 2025
Wed Feb 19 02:25:47 EST 2025
Tue Jul 01 03:54:08 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Fri May 20 03:10:39 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a423t-de797517f4d8e1c1d13dbc4909f65c0b67ee7f4922f5e43de597a0b1c184b9ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3868-026X
0000-0002-2565-2748
0000-0002-7614-1702
0000-0002-0368-9988
0000-0001-9269-7025
0000-0001-7229-582X
PMID 35469397
PQID 2655564288
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2718231907
proquest_miscellaneous_2655564288
pubmed_primary_35469397
crossref_primary_10_1021_jacs_2c01503
crossref_citationtrail_10_1021_jacs_2c01503
acs_journals_10_1021_jacs_2c01503
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-18
PublicationDateYYYYMMDD 2022-05-18
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
Miah M. (ref38/cit38) 2017; 6
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref44/cit44
ref7/cit7
References_xml – ident: ref16/cit16
  doi: 10.1021/acsami.6b01389
– ident: ref8/cit8
  doi: 10.1007/s11426-021-1180-6
– ident: ref10/cit10
  doi: 10.1002/adfm.201606641
– ident: ref19/cit19
  doi: 10.1007/s11426-021-1094-y
– ident: ref28/cit28
  doi: 10.1002/adfm.201303108
– ident: ref46/cit46
  doi: 10.1002/adfm.201902922
– ident: ref40/cit40
  doi: 10.1021/nl010093y
– ident: ref21/cit21
  doi: 10.1038/s41928-019-0315-1
– ident: ref5/cit5
  doi: 10.1002/adma.202102787
– ident: ref45/cit45
  doi: 10.1002/adma.201902447
– volume: 6
  start-page: 52
  year: 2017
  ident: ref38/cit38
  publication-title: Int. J. Sci. Technol. Res.
– ident: ref22/cit22
  doi: 10.1002/aenm.202002536
– ident: ref20/cit20
  doi: 10.1002/adma.201704738
– ident: ref34/cit34
  doi: 10.1088/0957-4484/24/33/335202
– ident: ref4/cit4
  doi: 10.1002/adma.202101090
– ident: ref13/cit13
  doi: 10.1016/j.nanoen.2019.104018
– ident: ref37/cit37
  doi: 10.2118/14236-PA
– ident: ref18/cit18
  doi: 10.1002/adma.201908478
– ident: ref39/cit39
  doi: 10.1021/jp048023d
– ident: ref43/cit43
  doi: 10.1038/s41528-021-00128-6
– ident: ref3/cit3
  doi: 10.1002/aenm.202101705
– ident: ref9/cit9
  doi: 10.1002/adma.201203099
– ident: ref33/cit33
  doi: 10.1039/c2nr31254a
– ident: ref27/cit27
  doi: 10.1007/s12274-012-0264-8
– ident: ref17/cit17
  doi: 10.1002/adma.201902210
– ident: ref31/cit31
  doi: 10.1039/c2jm35545k
– ident: ref12/cit12
  doi: 10.1016/j.joule.2020.02.012
– ident: ref14/cit14
  doi: 10.1002/aenm.201600847
– ident: ref6/cit6
  doi: 10.1002/adma.202109516
– ident: ref44/cit44
  doi: 10.1002/adma.201800659
– ident: ref29/cit29
  doi: 10.1021/acsnano.5b08137
– ident: ref30/cit30
  doi: 10.1021/am502639n
– ident: ref42/cit42
  doi: 10.1021/cg701128b
– ident: ref26/cit26
  doi: 10.1039/C7TC04673A
– ident: ref35/cit35
  doi: 10.1002/adfm.201501004
– ident: ref47/cit47
  doi: 10.1063/1.3211850
– ident: ref1/cit1
  doi: 10.1002/adfm.202102694
– ident: ref25/cit25
  doi: 10.1007/s11426-018-9430-8
– ident: ref32/cit32
  doi: 10.1021/nn4065567
– ident: ref2/cit2
  doi: 10.1002/adma.202101469
– ident: ref41/cit41
  doi: 10.1111/jmi.12065
– ident: ref24/cit24
  doi: 10.1002/adma.201701479
– ident: ref23/cit23
  doi: 10.1002/adfm.201501887
– ident: ref36/cit36
  doi: 10.1021/acsnano.8b08019
– ident: ref11/cit11
  doi: 10.1002/adfm.201503739
– ident: ref15/cit15
  doi: 10.1021/jacs.5b03739
– ident: ref7/cit7
  doi: 10.1002/aenm.202000765
SSID ssj0004281
Score 2.687086
Snippet Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8658
SubjectTerms durability
ionic liquids
mechanical properties
nanowires
silver
Title Realizing 17.5% Efficiency Flexible Organic Solar Cells via Atomic-Level Chemical Welding of Silver Nanowire Electrodes
URI http://dx.doi.org/10.1021/jacs.2c01503
https://www.ncbi.nlm.nih.gov/pubmed/35469397
https://www.proquest.com/docview/2655564288
https://www.proquest.com/docview/2718231907
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOcClvCG8tJXoCTny2vs8RlFChYADoaK3aB9jKWqUIOwUqb-eGT9aURTguh6_dseebzTzfcvYW0QN0iWDSY63PqPCUObzSmc65iWA8L7SxB3-9FmfnMoPZ-rsukH2ZgW_IH2gWI-LSJl5eZvdKbQ1lGRNpotr_mNhxQBzjdVl3-B-82wKQLH-PQDtQZVtdJnfZ-8Hjk7XVHI-3jVhHC__lGz8x4M_YIc9wOSTziMesluwecTuTod93R6zn18QG64uMWRxYcbqmM9aFQmiYPI5yWOGNfCOohn5gjJfPoX1uuYXK88nDbGYs4_UasQHsQH-DdoSFt9WfLGiVmuOP-0tqSDzWbfNToL6CTudz75OT7J--4XMI8ZqsgTGGSVMJZMFEUUSZQpRutxVWsU8aAOAB11RVApkmQBzE58HtLQyOJ_Kp-xgs93Ac8ZxTELSdKUoIdqQnPA2xEr45CsVRuwIJ2vZfz71sq2MF5iZ0Gg_hSP2bli3Zez1y2kbjfUe6-Mr6--dbsceu6PBBZa4DlQt8RvY7tBAK6UoO7N_scHIjgDZ5WbEnnX-c3W3UkntEO29-I93e8nuFUSrIFVY-4odND928BrBThPetJ7-Cw-_-OI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcigX3pTw3ErkhBz5tWv7wCEKiVKa9kBa0VvYx1iKiBKEHSr6X_gr_DZm_EhFpSAulbiuR-t9jD3faGa-AXhDqCHOXEJOjk61x4EhT_u58pT1I8RA61xx7fDxiRqfxR_O5fkO_GxrYWgRBc1UVEH8K3YBpgmiwdCyg972qj7CHxfkoRXvDt_TdXbDcDQ8HYy9pomApwkplJ7DJEtkkOSxSzGwgQsiZ2yc-VmupPWNShDpYRaGucQ4ckgIW_uGJNPYZNpFNO8tuE24J2Tfrj-YXpVdhmnQouskVVGTV399tWz3bPGn3dsCZiujNroHvzbHUeWyfOmtS9Ozl9eYIv_b87oPdxs4Lfq1_j-AHVw-hL1B28XuEVx8JCQ8vyQDLYKkJ7tiWHFmcMGpGDEZqFmgqAtSrZiyny8GuFgU4vtci37JNdvehBOrREutID5hFbATq1xM55xYLshErZjzWQzrpkIOi8dwdiP7fgK7y9USn4KgsRid4plsjDY1Lgt0amweaKdzaTpwQJcza34WxazKAwjJD-PR5so68LZVl5lt2Nq5achii3R3I_21ZinZInfQat6M7oFjQ3qJqzUJKCkl-6LpX2QIx5A7kPlJB_Zrtd28LZKxygjbPvuHvb2GvfHp8WQ2OTw5eg53Qi4oYT7c9AXslt_W-JJgXmleVR-bgM83ra2_AacPXH0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JbhNBEC2FIAEX9sWsHQmf0Fizdc_MgYPl2EpIiBAmIrdJLzWShWVHzJiI_A2_wpdRNYsRkYy4ROLaXerpdeqVquoVwGtCDXHmEjJydKo9dgx52i-Up6wfIQZaF4pzh98fqb3j-N2JPNmCH10uDE2ipJHK2onPr_rMFS3DAFMFUUdo2Ujv6lUf4PdzstLKt_u7dKT9MJyMP432vLaQgKcJLVSewyRLZJAUsUsxsIELImdsnPlZoaT1jUoQqTMLw0JiHDkklK19Q5JpbDLtIhr3GlxnDyHbd8PR9HfqZZgGHcJOUhW1sfWXZ8u6z5Z_6r4NgLZWbJM78HO9JXU8y5fBqjIDe3GJLfK_3rO7cLuF1WLYvIN7sIWL-3Bz1FWzewDnHwkRzy5IUYsgGci-GNfcGZx4KiZMCmrmKJrEVCumbO-LEc7npfg202JYce62d8gBVqKjWBCfsXbciWUhpjMOMBekqpbM_SzGTXEhh-VDOL6SdT-C7cVygU9AUFuMTvFINkabGpcFOjW2CLTThTQ92KHDydufRpnX8QAh2WPc2h5ZD950Vya3LWs7Fw-Zb5Dur6XPGraSDXI73e3L6RzYR6QXuFyRgJJSsk2a_kWG8AyZBZmf9OBxc3XXX4tkrDLCuE__YW2v4MaH3Ul-uH908AxuhZxXwrS46XPYrr6u8AWhvcq8rN-bgNOrvqy_ACKVXwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realizing+17.5%25+Efficiency+Flexible+Organic+Solar+Cells+via+Atomic-Level+Chemical+Welding+of+Silver+Nanowire+Electrodes&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zeng%2C+Guang&rft.au=Chen%2C+Weijie&rft.au=Chen%2C+Xiaobin&rft.au=Hu%2C+Yin&rft.date=2022-05-18&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=144&rft.issue=19&rft.spage=8658&rft.epage=8668&rft_id=info:doi/10.1021%2Fjacs.2c01503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_2c01503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon