Realizing 17.5% Efficiency Flexible Organic Solar Cells via Atomic-Level Chemical Welding of Silver Nanowire Electrodes
Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is...
Saved in:
Published in | Journal of the American Chemical Society Vol. 144; no. 19; pp. 8658 - 8668 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is still a huge challenge. Silver nanowire (AgNW) electrodes, exhibiting easily tuned optoelectronic/mechanical properties, are attracting considerable attention, but their poor contacts at the junction site of the AgNWs increase the sheet resistance and reduce mechanical stability. In this study, an ionic liquid (IL)-type reducing agent containing Cl– and a dihydroxyl group was employed to control the reduction process of silver (Ag) in AgNW-based FTEs precisely. The Cl– in the IL regulates the Ag+ concentration through the formation and dissolution of AgCl, whereas the dihydroxyl group slowly reduces the released Ag+ to form metal Ag. The reduced Ag grew in situ at the junction site of the AgNWs in a twin-crystal growth mode, facilitating an atomic-level contact between the AgNWs and the reduced Ag. This enforced atomic-level contact decreased the sheet resistance, and enhanced the mechanical stability of the FTEs. As a result, the single-junction flexible OSCs based on this chemically welded FTE achieved record power conversion efficiencies of 17.52% (active area: 0.062 cm2) and 15.82% (active area: 1.0 cm2). These flexible devices also displayed robust bending and peeling durability even under extreme test conditions. |
---|---|
AbstractList | Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is still a huge challenge. Silver nanowire (AgNW) electrodes, exhibiting easily tuned optoelectronic/mechanical properties, are attracting considerable attention, but their poor contacts at the junction site of the AgNWs increase the sheet resistance and reduce mechanical stability. In this study, an ionic liquid (IL)-type reducing agent containing Cl
and a dihydroxyl group was employed to control the reduction process of silver (Ag) in AgNW-based FTEs precisely. The Cl
in the IL regulates the Ag
concentration through the formation and dissolution of AgCl, whereas the dihydroxyl group slowly reduces the released Ag
to form metal Ag. The reduced Ag grew in situ at the junction site of the AgNWs in a twin-crystal growth mode, facilitating an atomic-level contact between the AgNWs and the reduced Ag. This enforced atomic-level contact decreased the sheet resistance, and enhanced the mechanical stability of the FTEs. As a result, the single-junction flexible OSCs based on this chemically welded FTE achieved record power conversion efficiencies of 17.52% (active area: 0.062 cm
) and 15.82% (active area: 1.0 cm
). These flexible devices also displayed robust bending and peeling durability even under extreme test conditions. Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is still a huge challenge. Silver nanowire (AgNW) electrodes, exhibiting easily tuned optoelectronic/mechanical properties, are attracting considerable attention, but their poor contacts at the junction site of the AgNWs increase the sheet resistance and reduce mechanical stability. In this study, an ionic liquid (IL)-type reducing agent containing Cl- and a dihydroxyl group was employed to control the reduction process of silver (Ag) in AgNW-based FTEs precisely. The Cl- in the IL regulates the Ag+ concentration through the formation and dissolution of AgCl, whereas the dihydroxyl group slowly reduces the released Ag+ to form metal Ag. The reduced Ag grew in situ at the junction site of the AgNWs in a twin-crystal growth mode, facilitating an atomic-level contact between the AgNWs and the reduced Ag. This enforced atomic-level contact decreased the sheet resistance, and enhanced the mechanical stability of the FTEs. As a result, the single-junction flexible OSCs based on this chemically welded FTE achieved record power conversion efficiencies of 17.52% (active area: 0.062 cm2) and 15.82% (active area: 1.0 cm2). These flexible devices also displayed robust bending and peeling durability even under extreme test conditions.Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is still a huge challenge. Silver nanowire (AgNW) electrodes, exhibiting easily tuned optoelectronic/mechanical properties, are attracting considerable attention, but their poor contacts at the junction site of the AgNWs increase the sheet resistance and reduce mechanical stability. In this study, an ionic liquid (IL)-type reducing agent containing Cl- and a dihydroxyl group was employed to control the reduction process of silver (Ag) in AgNW-based FTEs precisely. The Cl- in the IL regulates the Ag+ concentration through the formation and dissolution of AgCl, whereas the dihydroxyl group slowly reduces the released Ag+ to form metal Ag. The reduced Ag grew in situ at the junction site of the AgNWs in a twin-crystal growth mode, facilitating an atomic-level contact between the AgNWs and the reduced Ag. This enforced atomic-level contact decreased the sheet resistance, and enhanced the mechanical stability of the FTEs. As a result, the single-junction flexible OSCs based on this chemically welded FTE achieved record power conversion efficiencies of 17.52% (active area: 0.062 cm2) and 15.82% (active area: 1.0 cm2). These flexible devices also displayed robust bending and peeling durability even under extreme test conditions. Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is still a huge challenge. Silver nanowire (AgNW) electrodes, exhibiting easily tuned optoelectronic/mechanical properties, are attracting considerable attention, but their poor contacts at the junction site of the AgNWs increase the sheet resistance and reduce mechanical stability. In this study, an ionic liquid (IL)-type reducing agent containing Cl– and a dihydroxyl group was employed to control the reduction process of silver (Ag) in AgNW-based FTEs precisely. The Cl– in the IL regulates the Ag+ concentration through the formation and dissolution of AgCl, whereas the dihydroxyl group slowly reduces the released Ag+ to form metal Ag. The reduced Ag grew in situ at the junction site of the AgNWs in a twin-crystal growth mode, facilitating an atomic-level contact between the AgNWs and the reduced Ag. This enforced atomic-level contact decreased the sheet resistance, and enhanced the mechanical stability of the FTEs. As a result, the single-junction flexible OSCs based on this chemically welded FTE achieved record power conversion efficiencies of 17.52% (active area: 0.062 cm2) and 15.82% (active area: 1.0 cm2). These flexible devices also displayed robust bending and peeling durability even under extreme test conditions. Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar cells (OSCs) on a large scale. However, how to balance the optoelectronic properties and meanwhile achieve robust mechanical behavior of FTEs is still a huge challenge. Silver nanowire (AgNW) electrodes, exhibiting easily tuned optoelectronic/mechanical properties, are attracting considerable attention, but their poor contacts at the junction site of the AgNWs increase the sheet resistance and reduce mechanical stability. In this study, an ionic liquid (IL)-type reducing agent containing Cl– and a dihydroxyl group was employed to control the reduction process of silver (Ag) in AgNW-based FTEs precisely. The Cl– in the IL regulates the Ag⁺ concentration through the formation and dissolution of AgCl, whereas the dihydroxyl group slowly reduces the released Ag⁺ to form metal Ag. The reduced Ag grew in situ at the junction site of the AgNWs in a twin-crystal growth mode, facilitating an atomic-level contact between the AgNWs and the reduced Ag. This enforced atomic-level contact decreased the sheet resistance, and enhanced the mechanical stability of the FTEs. As a result, the single-junction flexible OSCs based on this chemically welded FTE achieved record power conversion efficiencies of 17.52% (active area: 0.062 cm²) and 15.82% (active area: 1.0 cm²). These flexible devices also displayed robust bending and peeling durability even under extreme test conditions. |
Author | Li, Yongfang Chen, Haiyang Yan, Feng Chen, Weijie Chen, Xiaobin Shen, Yunxiu Zhang, Ben Chen, Yang Zeng, Guang Hu, Yin Li, Yaowen Sun, Weiwei |
AuthorAffiliation | Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science College of Chemistry, Chemical Engineering and Materials Science |
AuthorAffiliation_xml | – name: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science – name: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry – name: State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application – name: College of Chemistry, Chemical Engineering and Materials Science |
Author_xml | – sequence: 1 givenname: Guang orcidid: 0000-0002-0368-9988 surname: Zeng fullname: Zeng, Guang organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science – sequence: 2 givenname: Weijie orcidid: 0000-0002-7614-1702 surname: Chen fullname: Chen, Weijie organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science – sequence: 3 givenname: Xiaobin surname: Chen fullname: Chen, Xiaobin organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science – sequence: 4 givenname: Yin orcidid: 0000-0003-3868-026X surname: Hu fullname: Hu, Yin organization: College of Chemistry, Chemical Engineering and Materials Science – sequence: 5 givenname: Yang surname: Chen fullname: Chen, Yang organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science – sequence: 6 givenname: Ben surname: Zhang fullname: Zhang, Ben organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science – sequence: 7 givenname: Haiyang surname: Chen fullname: Chen, Haiyang organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science – sequence: 8 givenname: Weiwei surname: Sun fullname: Sun, Weiwei organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science – sequence: 9 givenname: Yunxiu surname: Shen fullname: Shen, Yunxiu organization: Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science – sequence: 10 givenname: Yaowen orcidid: 0000-0001-7229-582X surname: Li fullname: Li, Yaowen email: ywli@suda.edu.cn organization: State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application – sequence: 11 givenname: Feng orcidid: 0000-0001-9269-7025 surname: Yan fullname: Yan, Feng organization: College of Chemistry, Chemical Engineering and Materials Science – sequence: 12 givenname: Yongfang orcidid: 0000-0002-2565-2748 surname: Li fullname: Li, Yongfang organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35469397$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c9PHCEUB3BiNLr-uHk2XJr00Fn5MQzD0WzWtsmmJmrT44SBN5YNCwqza-1fXzZue2hqeiIPPrzA9x2j_RADIHROyZQSRi-X2uQpM4QKwvfQhApGKkFZs48mhBBWybbhR-g452Upa9bSQ3TERd0oruQEPd-C9u6nCw-Yyql4h-fD4IyDYF7wtYcfrveAb9KDDs7gu-h1wjPwPuON0_hqjCtnqgVswOPZdyiF9vgbeLvtFwd85_wGEv6iQ3x2CfDcgxlTtJBP0cGgfYaz3XqCvl7P72efqsXNx8-zq0Wla8bHyoJUUlA51LYFaqil3PamVkQNjTCkbyRAOVSMDQJqbkEoqUlfZFv3Slt-gt6_9n1M8WkNeexWLpvyAx0grnPHJG0Zp4rI_9NGCNGUBNtCL3Z03a_Ado_JrXR66X7nWsCHV2BSzDnB8IdQ0m3H1m3H1u3GVjj7ixs36tHFMCbt_FuXdu_dbi7jOoUS5L_pL7l0p7Q |
CitedBy_id | crossref_primary_10_1021_acsenergylett_2c02348 crossref_primary_10_1002_smtd_202401235 crossref_primary_10_1007_s11664_023_10693_3 crossref_primary_10_1016_j_nanoen_2022_108153 crossref_primary_10_1039_D4NR02531H crossref_primary_10_1002_cjoc_202200437 crossref_primary_10_1002_ange_202313016 crossref_primary_10_1039_D4TC03745F crossref_primary_10_1039_D2NH00313A crossref_primary_10_1002_adfm_202304752 crossref_primary_10_1002_adfm_202305445 crossref_primary_10_1021_acsami_4c06483 crossref_primary_10_1002_adfm_202408453 crossref_primary_10_1002_solr_202200797 crossref_primary_10_1016_j_colsurfa_2025_136646 crossref_primary_10_1039_D3CS00492A crossref_primary_10_1117_1_OE_63_11_117104 crossref_primary_10_1002_solr_202300211 crossref_primary_10_1002_adfm_202410766 crossref_primary_10_1002_adma_202406879 crossref_primary_10_1002_solr_202400206 crossref_primary_10_1016_j_cej_2023_148498 crossref_primary_10_1021_acsaelm_2c01791 crossref_primary_10_1038_s41560_024_01501_1 crossref_primary_10_1002_anie_202216340 crossref_primary_10_1016_j_cej_2023_146505 crossref_primary_10_1016_j_mtener_2023_101409 crossref_primary_10_1002_smll_202307242 crossref_primary_10_1038_s41528_022_00188_2 crossref_primary_10_1126_science_adj3654 crossref_primary_10_1021_acsnano_3c10033 crossref_primary_10_1039_D3EE00272A crossref_primary_10_1021_acsnano_2c10999 crossref_primary_10_1002_adma_202307280 crossref_primary_10_1002_adom_202201977 crossref_primary_10_1021_acsenergylett_3c01178 crossref_primary_10_1039_D3EE01333B crossref_primary_10_1039_D4TA07622B crossref_primary_10_1016_j_rser_2024_114740 crossref_primary_10_1039_D3TA03213B crossref_primary_10_3390_molecules27175739 crossref_primary_10_1016_j_jphotochem_2024_115926 crossref_primary_10_34133_adi_0058 crossref_primary_10_1002_admt_202301321 crossref_primary_10_1002_solr_202300822 crossref_primary_10_1021_acsami_2c22047 crossref_primary_10_1080_10408436_2024_2379246 crossref_primary_10_1002_ange_202216340 crossref_primary_10_1002_cjoc_202200770 crossref_primary_10_1021_acsami_2c21996 crossref_primary_10_1002_admt_202400728 crossref_primary_10_1002_aenm_202404233 crossref_primary_10_1039_D4TC03335C crossref_primary_10_1039_D3RA08044G crossref_primary_10_1016_j_giant_2024_100286 crossref_primary_10_1016_j_colcom_2022_100663 crossref_primary_10_1002_marc_202200432 crossref_primary_10_1039_D2EE03096A crossref_primary_10_34133_adi_0061 crossref_primary_10_1002_anie_202209580 crossref_primary_10_1039_D4CS00080C crossref_primary_10_1021_acsaem_4c03093 crossref_primary_10_1038_s41467_024_50894_w crossref_primary_10_1007_s11426_022_1282_4 crossref_primary_10_1063_5_0249768 crossref_primary_10_1002_ange_202310034 crossref_primary_10_1021_acsami_4c04848 crossref_primary_10_1002_eem2_12592 crossref_primary_10_1002_smll_202311561 crossref_primary_10_1021_acsanm_4c00463 crossref_primary_10_1016_j_cej_2023_142524 crossref_primary_10_1002_anie_202313016 crossref_primary_10_1002_adfm_202214781 crossref_primary_10_1039_D4EE02724H crossref_primary_10_1016_j_apsusc_2023_158281 crossref_primary_10_1021_acsami_4c12238 crossref_primary_10_1021_acsenergylett_4c03168 crossref_primary_10_1002_adfm_202301573 crossref_primary_10_1002_solr_202300322 crossref_primary_10_1002_anie_202421090 crossref_primary_10_1016_j_cej_2023_147091 crossref_primary_10_1002_adma_202305562 crossref_primary_10_1039_D3CS00233K crossref_primary_10_1021_acsami_3c01519 crossref_primary_10_1038_s41528_022_00207_2 crossref_primary_10_3390_ma17020505 crossref_primary_10_1002_smll_202305327 crossref_primary_10_1016_j_mattod_2024_01_006 crossref_primary_10_1038_s41528_022_00222_3 crossref_primary_10_3390_mi14030562 crossref_primary_10_1002_adfm_202404567 crossref_primary_10_1002_adma_202402350 crossref_primary_10_1007_s11426_023_1616_2 crossref_primary_10_1002_marc_202400433 crossref_primary_10_1002_ange_202311559 crossref_primary_10_1039_D3EE00087G crossref_primary_10_1016_j_synthmet_2023_117347 crossref_primary_10_1021_acs_nanolett_4c04731 crossref_primary_10_1039_D4MH00340C crossref_primary_10_1002_anie_202310034 crossref_primary_10_1002_ange_202421090 crossref_primary_10_1039_D4EE02963A crossref_primary_10_1002_aenm_202203313 crossref_primary_10_1002_aenm_202202224 crossref_primary_10_1002_anie_202420090 crossref_primary_10_1039_D3EE01164J crossref_primary_10_1021_acsami_2c07063 crossref_primary_10_1002_adom_202201788 crossref_primary_10_1016_j_desal_2023_116910 crossref_primary_10_1016_j_jechem_2023_09_035 crossref_primary_10_1360_SSC_2022_0126 crossref_primary_10_1007_s10118_022_2803_4 crossref_primary_10_1021_acsanm_4c04964 crossref_primary_10_1007_s11467_023_1258_6 crossref_primary_10_1039_D3TA01049J crossref_primary_10_1002_adma_202311170 crossref_primary_10_1007_s11426_022_1390_2 crossref_primary_10_1016_j_jcis_2024_08_068 crossref_primary_10_1016_j_joule_2023_07_005 crossref_primary_10_1021_acs_jpcc_3c05629 crossref_primary_10_1021_jacs_4c03730 crossref_primary_10_1002_adfm_202407392 crossref_primary_10_1002_ange_202209580 crossref_primary_10_1002_adfm_202308468 crossref_primary_10_1016_j_nanoen_2023_108805 crossref_primary_10_1016_j_wees_2024_03_001 crossref_primary_10_1039_D3TC00742A crossref_primary_10_1021_acsaem_3c03171 crossref_primary_10_1038_s41528_023_00260_5 crossref_primary_10_1002_smsc_202300004 crossref_primary_10_1002_aenm_202402370 crossref_primary_10_1002_eem2_12683 crossref_primary_10_1002_solr_202400230 crossref_primary_10_1002_aenm_202404679 crossref_primary_10_1016_j_ijbiomac_2024_139185 crossref_primary_10_1021_acsami_2c22885 crossref_primary_10_1002_adfm_202400547 crossref_primary_10_1007_s40843_023_2843_8 crossref_primary_10_1021_acsami_3c15207 crossref_primary_10_1002_agt2_281 crossref_primary_10_1039_D3TA00086A crossref_primary_10_1039_D4TA01335B crossref_primary_10_1093_nsr_nwac285 crossref_primary_10_1002_adma_202306681 crossref_primary_10_1007_s11426_024_2299_7 crossref_primary_10_1038_s41467_024_52534_9 crossref_primary_10_1002_anie_202303551 crossref_primary_10_1039_D4TA00044G crossref_primary_10_1002_anie_202311559 crossref_primary_10_1039_D4TA06570K crossref_primary_10_1039_D4CP02513J crossref_primary_10_1002_eom2_12281 crossref_primary_10_1002_flm2_30 crossref_primary_10_1016_j_cej_2023_142327 crossref_primary_10_3390_su17051820 crossref_primary_10_1021_acsami_3c06450 crossref_primary_10_1039_D2TA08971H crossref_primary_10_1039_D4CC02580F crossref_primary_10_1021_acs_langmuir_4c01631 crossref_primary_10_1088_2752_5724_acd6ab crossref_primary_10_3390_polym15163462 crossref_primary_10_1021_acsaem_2c03407 crossref_primary_10_1039_D2TA07406K crossref_primary_10_1016_j_cclet_2023_108527 crossref_primary_10_1016_j_esci_2022_10_010 crossref_primary_10_1002_ange_202420090 crossref_primary_10_1007_s40843_022_2383_7 crossref_primary_10_1002_adma_202420439 crossref_primary_10_3390_ijms24119319 crossref_primary_10_1002_ange_202303551 crossref_primary_10_1002_adfm_202411787 crossref_primary_10_1007_s40820_023_01122_5 crossref_primary_10_3390_nano12152521 crossref_primary_10_1016_j_saa_2022_121925 crossref_primary_10_3390_nano13212865 |
Cites_doi | 10.1021/acsami.6b01389 10.1007/s11426-021-1180-6 10.1002/adfm.201606641 10.1007/s11426-021-1094-y 10.1002/adfm.201303108 10.1002/adfm.201902922 10.1021/nl010093y 10.1038/s41928-019-0315-1 10.1002/adma.202102787 10.1002/adma.201902447 10.1002/aenm.202002536 10.1002/adma.201704738 10.1088/0957-4484/24/33/335202 10.1002/adma.202101090 10.1016/j.nanoen.2019.104018 10.2118/14236-PA 10.1002/adma.201908478 10.1021/jp048023d 10.1038/s41528-021-00128-6 10.1002/aenm.202101705 10.1002/adma.201203099 10.1039/c2nr31254a 10.1007/s12274-012-0264-8 10.1002/adma.201902210 10.1039/c2jm35545k 10.1016/j.joule.2020.02.012 10.1002/aenm.201600847 10.1002/adma.202109516 10.1002/adma.201800659 10.1021/acsnano.5b08137 10.1021/am502639n 10.1021/cg701128b 10.1039/C7TC04673A 10.1002/adfm.201501004 10.1063/1.3211850 10.1002/adfm.202102694 10.1007/s11426-018-9430-8 10.1021/nn4065567 10.1002/adma.202101469 10.1111/jmi.12065 10.1002/adma.201701479 10.1002/adfm.201501887 10.1021/acsnano.8b08019 10.1002/adfm.201503739 10.1021/jacs.5b03739 10.1002/aenm.202000765 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.2c01503 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 8668 |
ExternalDocumentID | 35469397 10_1021_jacs_2c01503 c876484841 |
Genre | Journal Article |
GroupedDBID | - 02 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AGXLV ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DC DU5 DZ EBS ED ET F5P GGK GNL IH2 IH9 JG K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XSW YZZ ZHY --- -DZ -ET -~X .DC .K2 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AHGAQ CITATION CUPRZ ED~ JG~ YQT ZCA ~02 NPM YIN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a423t-de797517f4d8e1c1d13dbc4909f65c0b67ee7f4922f5e43de597a0b1c184b9ad3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 05:50:06 EDT 2025 Fri Jul 11 16:52:25 EDT 2025 Wed Feb 19 02:25:47 EST 2025 Tue Jul 01 03:54:08 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Fri May 20 03:10:39 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a423t-de797517f4d8e1c1d13dbc4909f65c0b67ee7f4922f5e43de597a0b1c184b9ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3868-026X 0000-0002-2565-2748 0000-0002-7614-1702 0000-0002-0368-9988 0000-0001-9269-7025 0000-0001-7229-582X |
PMID | 35469397 |
PQID | 2655564288 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2718231907 proquest_miscellaneous_2655564288 pubmed_primary_35469397 crossref_primary_10_1021_jacs_2c01503 crossref_citationtrail_10_1021_jacs_2c01503 acs_journals_10_1021_jacs_2c01503 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-18 |
PublicationDateYYYYMMDD | 2022-05-18 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 Miah M. (ref38/cit38) 2017; 6 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref16/cit16 doi: 10.1021/acsami.6b01389 – ident: ref8/cit8 doi: 10.1007/s11426-021-1180-6 – ident: ref10/cit10 doi: 10.1002/adfm.201606641 – ident: ref19/cit19 doi: 10.1007/s11426-021-1094-y – ident: ref28/cit28 doi: 10.1002/adfm.201303108 – ident: ref46/cit46 doi: 10.1002/adfm.201902922 – ident: ref40/cit40 doi: 10.1021/nl010093y – ident: ref21/cit21 doi: 10.1038/s41928-019-0315-1 – ident: ref5/cit5 doi: 10.1002/adma.202102787 – ident: ref45/cit45 doi: 10.1002/adma.201902447 – volume: 6 start-page: 52 year: 2017 ident: ref38/cit38 publication-title: Int. J. Sci. Technol. Res. – ident: ref22/cit22 doi: 10.1002/aenm.202002536 – ident: ref20/cit20 doi: 10.1002/adma.201704738 – ident: ref34/cit34 doi: 10.1088/0957-4484/24/33/335202 – ident: ref4/cit4 doi: 10.1002/adma.202101090 – ident: ref13/cit13 doi: 10.1016/j.nanoen.2019.104018 – ident: ref37/cit37 doi: 10.2118/14236-PA – ident: ref18/cit18 doi: 10.1002/adma.201908478 – ident: ref39/cit39 doi: 10.1021/jp048023d – ident: ref43/cit43 doi: 10.1038/s41528-021-00128-6 – ident: ref3/cit3 doi: 10.1002/aenm.202101705 – ident: ref9/cit9 doi: 10.1002/adma.201203099 – ident: ref33/cit33 doi: 10.1039/c2nr31254a – ident: ref27/cit27 doi: 10.1007/s12274-012-0264-8 – ident: ref17/cit17 doi: 10.1002/adma.201902210 – ident: ref31/cit31 doi: 10.1039/c2jm35545k – ident: ref12/cit12 doi: 10.1016/j.joule.2020.02.012 – ident: ref14/cit14 doi: 10.1002/aenm.201600847 – ident: ref6/cit6 doi: 10.1002/adma.202109516 – ident: ref44/cit44 doi: 10.1002/adma.201800659 – ident: ref29/cit29 doi: 10.1021/acsnano.5b08137 – ident: ref30/cit30 doi: 10.1021/am502639n – ident: ref42/cit42 doi: 10.1021/cg701128b – ident: ref26/cit26 doi: 10.1039/C7TC04673A – ident: ref35/cit35 doi: 10.1002/adfm.201501004 – ident: ref47/cit47 doi: 10.1063/1.3211850 – ident: ref1/cit1 doi: 10.1002/adfm.202102694 – ident: ref25/cit25 doi: 10.1007/s11426-018-9430-8 – ident: ref32/cit32 doi: 10.1021/nn4065567 – ident: ref2/cit2 doi: 10.1002/adma.202101469 – ident: ref41/cit41 doi: 10.1111/jmi.12065 – ident: ref24/cit24 doi: 10.1002/adma.201701479 – ident: ref23/cit23 doi: 10.1002/adfm.201501887 – ident: ref36/cit36 doi: 10.1021/acsnano.8b08019 – ident: ref11/cit11 doi: 10.1002/adfm.201503739 – ident: ref15/cit15 doi: 10.1021/jacs.5b03739 – ident: ref7/cit7 doi: 10.1002/aenm.202000765 |
SSID | ssj0004281 |
Score | 2.687086 |
Snippet | Solution processable flexible transparent electrodes (FTEs) are urgently needed to boost the efficiency and mechanical stability of flexible organic solar... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8658 |
SubjectTerms | durability ionic liquids mechanical properties nanowires silver |
Title | Realizing 17.5% Efficiency Flexible Organic Solar Cells via Atomic-Level Chemical Welding of Silver Nanowire Electrodes |
URI | http://dx.doi.org/10.1021/jacs.2c01503 https://www.ncbi.nlm.nih.gov/pubmed/35469397 https://www.proquest.com/docview/2655564288 https://www.proquest.com/docview/2718231907 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOcClvCG8tJXoCTny2vs8RlFChYADoaK3aB9jKWqUIOwUqb-eGT9aURTguh6_dseebzTzfcvYW0QN0iWDSY63PqPCUObzSmc65iWA8L7SxB3-9FmfnMoPZ-rsukH2ZgW_IH2gWI-LSJl5eZvdKbQ1lGRNpotr_mNhxQBzjdVl3-B-82wKQLH-PQDtQZVtdJnfZ-8Hjk7XVHI-3jVhHC__lGz8x4M_YIc9wOSTziMesluwecTuTod93R6zn18QG64uMWRxYcbqmM9aFQmiYPI5yWOGNfCOohn5gjJfPoX1uuYXK88nDbGYs4_UasQHsQH-DdoSFt9WfLGiVmuOP-0tqSDzWbfNToL6CTudz75OT7J--4XMI8ZqsgTGGSVMJZMFEUUSZQpRutxVWsU8aAOAB11RVApkmQBzE58HtLQyOJ_Kp-xgs93Ac8ZxTELSdKUoIdqQnPA2xEr45CsVRuwIJ2vZfz71sq2MF5iZ0Gg_hSP2bli3Zez1y2kbjfUe6-Mr6--dbsceu6PBBZa4DlQt8RvY7tBAK6UoO7N_scHIjgDZ5WbEnnX-c3W3UkntEO29-I93e8nuFUSrIFVY-4odND928BrBThPetJ7-Cw-_-OI |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcigX3pTw3ErkhBz5tWv7wCEKiVKa9kBa0VvYx1iKiBKEHSr6X_gr_DZm_EhFpSAulbiuR-t9jD3faGa-AXhDqCHOXEJOjk61x4EhT_u58pT1I8RA61xx7fDxiRqfxR_O5fkO_GxrYWgRBc1UVEH8K3YBpgmiwdCyg972qj7CHxfkoRXvDt_TdXbDcDQ8HYy9pomApwkplJ7DJEtkkOSxSzGwgQsiZ2yc-VmupPWNShDpYRaGucQ4ckgIW_uGJNPYZNpFNO8tuE24J2Tfrj-YXpVdhmnQouskVVGTV399tWz3bPGn3dsCZiujNroHvzbHUeWyfOmtS9Ozl9eYIv_b87oPdxs4Lfq1_j-AHVw-hL1B28XuEVx8JCQ8vyQDLYKkJ7tiWHFmcMGpGDEZqFmgqAtSrZiyny8GuFgU4vtci37JNdvehBOrREutID5hFbATq1xM55xYLshErZjzWQzrpkIOi8dwdiP7fgK7y9USn4KgsRid4plsjDY1Lgt0amweaKdzaTpwQJcza34WxazKAwjJD-PR5so68LZVl5lt2Nq5achii3R3I_21ZinZInfQat6M7oFjQ3qJqzUJKCkl-6LpX2QIx5A7kPlJB_Zrtd28LZKxygjbPvuHvb2GvfHp8WQ2OTw5eg53Qi4oYT7c9AXslt_W-JJgXmleVR-bgM83ra2_AacPXH0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JbhNBEC2FIAEX9sWsHQmf0Fizdc_MgYPl2EpIiBAmIrdJLzWShWVHzJiI_A2_wpdRNYsRkYy4ROLaXerpdeqVquoVwGtCDXHmEjJydKo9dgx52i-Up6wfIQZaF4pzh98fqb3j-N2JPNmCH10uDE2ipJHK2onPr_rMFS3DAFMFUUdo2Ujv6lUf4PdzstLKt_u7dKT9MJyMP432vLaQgKcJLVSewyRLZJAUsUsxsIELImdsnPlZoaT1jUoQqTMLw0JiHDkklK19Q5JpbDLtIhr3GlxnDyHbd8PR9HfqZZgGHcJOUhW1sfWXZ8u6z5Z_6r4NgLZWbJM78HO9JXU8y5fBqjIDe3GJLfK_3rO7cLuF1WLYvIN7sIWL-3Bz1FWzewDnHwkRzy5IUYsgGci-GNfcGZx4KiZMCmrmKJrEVCumbO-LEc7npfg202JYce62d8gBVqKjWBCfsXbciWUhpjMOMBekqpbM_SzGTXEhh-VDOL6SdT-C7cVygU9AUFuMTvFINkabGpcFOjW2CLTThTQ92KHDydufRpnX8QAh2WPc2h5ZD950Vya3LWs7Fw-Zb5Dur6XPGraSDXI73e3L6RzYR6QXuFyRgJJSsk2a_kWG8AyZBZmf9OBxc3XXX4tkrDLCuE__YW2v4MaH3Ul-uH908AxuhZxXwrS46XPYrr6u8AWhvcq8rN-bgNOrvqy_ACKVXwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realizing+17.5%25+Efficiency+Flexible+Organic+Solar+Cells+via+Atomic-Level+Chemical+Welding+of+Silver+Nanowire+Electrodes&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zeng%2C+Guang&rft.au=Chen%2C+Weijie&rft.au=Chen%2C+Xiaobin&rft.au=Hu%2C+Yin&rft.date=2022-05-18&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=144&rft.issue=19&rft.spage=8658&rft.epage=8668&rft_id=info:doi/10.1021%2Fjacs.2c01503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_2c01503 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |