Ultralow-Power Near Infrared Lamp Light Operable Targeted Organic Nanoparticle Photodynamic Therapy

Tissue penetration depth is a major challenge in practical photodynamic therapy (PDT). A biocompatible and highly effective near infrared (NIR)-light-absorbing carbazole-substituted BODIPY (Car-BDP) molecule is reported as a class of imaging-guidable deep-tissue activatable photosensitizers for PDT....

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 138; no. 44; pp. 14586 - 14591
Main Authors Huang, Ling, Li, Zhanjun, Zhao, Yang, Zhang, Yuanwei, Wu, Shuang, Zhao, Jianzhang, Han, Gang
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 09.11.2016
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tissue penetration depth is a major challenge in practical photodynamic therapy (PDT). A biocompatible and highly effective near infrared (NIR)-light-absorbing carbazole-substituted BODIPY (Car-BDP) molecule is reported as a class of imaging-guidable deep-tissue activatable photosensitizers for PDT. Car-BDP possesses an intense, broad NIR absorption band (600–800 nm) with a remarkably high singlet oxygen quantum yield (ΦΔ = 67%). After being encapsulated with biodegradable PLA–PEG-FA polymers, Car-BDP can form uniform and small organic nanoparticles that are water-soluble and tumor-targetable. Rather than using laser light, such nanoparticles offer an unprecedented deep-tissue, tumor targeting photodynamic therapeutic effect by using an exceptionally low-power-density and cost-effective lamp light (12 mW cm–2). In addition, these nanoparticles can be simultaneously traced in vivo due to their excellent NIR fluorescence. This study signals a major step forward in photodynamic therapy by developing a new class of NIR-absorbing biocompatible organic nanoparticles for effective targeting and treatment of deep-tissue tumors. This work also provides a potential new platform for precise tumor-targeting theranostics and novel opportunities for future affordable clinical cancer treatment.
AbstractList Tissue penetration depth is a major challenge in practical photodynamic therapy (PDT). A biocompatible and highly effective near infrared (NIR)-light-absorbing carbazole-substituted BODIPY (Car-BDP) molecule is reported as a class of imaging-guidable deep-tissue activatable photosensitizers for PDT. Car-BDP possesses an intense, broad NIR absorption band (600–800 nm) with a remarkably high singlet oxygen quantum yield (ΦΔ = 67%). After being encapsulated with biodegradable PLA–PEG-FA polymers, Car-BDP can form uniform and small organic nanoparticles that are water-soluble and tumor-targetable. Rather than using laser light, such nanoparticles offer an unprecedented deep-tissue, tumor targeting photodynamic therapeutic effect by using an exceptionally low-power-density and cost-effective lamp light (12 mW cm–2). In addition, these nanoparticles can be simultaneously traced in vivo due to their excellent NIR fluorescence. This study signals a major step forward in photodynamic therapy by developing a new class of NIR-absorbing biocompatible organic nanoparticles for effective targeting and treatment of deep-tissue tumors. This work also provides a potential new platform for precise tumor-targeting theranostics and novel opportunities for future affordable clinical cancer treatment.
Tissue penetration depth is a major challenge in practical photodynamic therapy (PDT). A biocompatible and highly effective near infrared (NIR)-light-absorbing carbazole-substituted BODIPY (Car-BDP) molecule is reported as a class of imaging-guidable deep-tissue activatable photosensitizers for PDT. Car-BDP possesses an intense, broad NIR absorption band (600–800 nm) with a remarkably high singlet oxygen quantum yield (ΦΔ = 67%). After being encapsulated with biodegradable PLA–PEG-FA polymers, Car-BDP can form uniform and small organic nanoparticles that are water-soluble and tumor-targetable. Rather than using laser light, such nanoparticles offer an unprecedented deep-tissue, tumor targeting photodynamic therapeutic effect by using an exceptionally low-power-density and cost-effective lamp light (12 mW cm–²). In addition, these nanoparticles can be simultaneously traced in vivo due to their excellent NIR fluorescence. This study signals a major step forward in photodynamic therapy by developing a new class of NIR-absorbing biocompatible organic nanoparticles for effective targeting and treatment of deep-tissue tumors. This work also provides a potential new platform for precise tumor-targeting theranostics and novel opportunities for future affordable clinical cancer treatment.
Tissue penetration depth is a major challenge in practical photodynamic therapy (PDT). A biocompatible and highly effective near infrared (NIR)-light-absorbing carbazole-substituted BODIPY (Car-BDP) molecule is reported as a class of imaging-guidable deep-tissue activatable photosensitizers for PDT. Car-BDP possesses an intense, broad NIR absorption band (600-800 nm) with a remarkably high singlet oxygen quantum yield (Φ = 67%). After being encapsulated with biodegradable PLA-PEG-FA polymers, Car-BDP can form uniform and small organic nanoparticles that are water-soluble and tumor-targetable. Rather than using laser light, such nanoparticles offer an unprecedented deep-tissue, tumor targeting photodynamic therapeutic effect by using an exceptionally low-power-density and cost-effective lamp light (12 mW cm ). In addition, these nanoparticles can be simultaneously traced in vivo due to their excellent NIR fluorescence. This study signals a major step forward in photodynamic therapy by developing a new class of NIR-absorbing biocompatible organic nanoparticles for effective targeting and treatment of deep-tissue tumors. This work also provides a potential new platform for precise tumor-targeting theranostics and novel opportunities for future affordable clinical cancer treatment.
Tissue penetration depth is a major challenge in practical photodynamic therapy (PDT). A biocompatible and highly effective near infrared (NIR)-light-absorbing carbazole-substituted BODIPY (Car-BDP) molecule is reported as a class of imaging guidable deep-tissue activatable photosensitizers for PDT. Car-BDP possesses an intense, broad NLR. absorption band (600-800 nm) with a remarkably high singlet oxygen quantum yield (Phi(Delta) = 67%). After being encapsulated with biodegradable PLA-PEG-FA polymers, Car-BDP can form uniform and small organic nano particles that are water-soluble and tumor-targetable. Rather than using laser light, such nanoparticles offer an unprecedented deep-tissue, tumor targeting photodynamic therapeutic effect by using an exceptionally low-power-density and cost-effective lamp light (12 mW cm(-2)). In addition, these nanoparticles can be simultaneously traced in vivo due to their excellent NIR fluorescence. This study signals a major step forward in photodynamic therapy by developing a new class of NIR-absorbing biocompatible organic nanoparticles for effective targeting and treatment of deep-tissue tumors. This work also provides a potential new platform for precise tumor-targeting theranostics and novel opportunities for future affordable clinical cancer treatment.
Author Zhao, Jianzhang
Han, Gang
Wu, Shuang
Huang, Ling
Li, Zhanjun
Zhao, Yang
Zhang, Yuanwei
AuthorAffiliation University of Massachusetts Medical School
State Key Laboratory of Fine Chemicals, School of Chemical Engineering
Dalian University of Technology
The Second Hospital of Tianjin Medical University
Department of Biochemistry and Molecular Pharmacology
Department of Radiology
AuthorAffiliation_xml – name: State Key Laboratory of Fine Chemicals, School of Chemical Engineering
– name: The Second Hospital of Tianjin Medical University
– name: University of Massachusetts Medical School
– name: Department of Radiology
– name: Dalian University of Technology
– name: Department of Biochemistry and Molecular Pharmacology
Author_xml – sequence: 1
  givenname: Ling
  surname: Huang
  fullname: Huang, Ling
– sequence: 2
  givenname: Zhanjun
  surname: Li
  fullname: Li, Zhanjun
– sequence: 3
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
– sequence: 4
  givenname: Yuanwei
  surname: Zhang
  fullname: Zhang, Yuanwei
– sequence: 5
  givenname: Shuang
  surname: Wu
  fullname: Wu, Shuang
– sequence: 6
  givenname: Jianzhang
  surname: Zhao
  fullname: Zhao, Jianzhang
– sequence: 7
  givenname: Gang
  surname: Han
  fullname: Han, Gang
  email: Gang.Han@umassmed.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27786443$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2P0zAQhi20iO0WbpxRjkiQxR-xkxxRxcdK1XYP3bM1cZzWVWIH21HVf78uzXJAIJAPtud93hl5PDfoyjqrEXpL8C3BlHw6gAq3osGc1fgFWhBOcc4JFVdogTGmeVkJdo1uQjika0Er8gpd0zJFi4ItkHrso4feHfMHd9Q-u9fgszvbefC6zdYwjNna7PYx24zaQ9PrbAt-p2MSN34H1qjsHqwbwUejkvqwd9G1JwtDUrb75BlPr9HLDvqg38z7Ej1-_bJdfc_Xm293q8_rHArKYt6qumZdzUXRMqEwI2VBiepII2qMW6wqICXreJK0aOuGiFoUNccYKsFFCQ1boveXvKN3PyYdohxMULrvwWo3BUnPDUhL8H-ipGIpZyV-ou9mdGoG3crRmwH8ST73MAEfLsBRN64Lymir9C8s1WRVKShn6ZQesETV_9MrEyEaZ1dusjFZ6cWqvAvB606qWU9faHpJsDxPhDxPhJwnIpk-_mZ6rvUXfG7MOXhwk7fpx_6MPgHgIcFl
CitedBy_id crossref_primary_10_1016_j_ica_2020_119659
crossref_primary_10_1021_acsami_8b03568
crossref_primary_10_1021_acsabm_1c00719
crossref_primary_10_1021_acs_joc_0c01649
crossref_primary_10_1039_D0CC02285C
crossref_primary_10_1016_j_nantod_2018_02_010
crossref_primary_10_3389_fbioe_2021_783354
crossref_primary_10_1016_j_dyepig_2022_110679
crossref_primary_10_1021_acsnano_1c07241
crossref_primary_10_1039_D0TB00361A
crossref_primary_10_1016_j_cej_2022_135983
crossref_primary_10_1063_5_0065873
crossref_primary_10_1016_j_dyepig_2021_109611
crossref_primary_10_1016_j_cclet_2021_04_060
crossref_primary_10_1021_acs_nanolett_6b04269
crossref_primary_10_1002_smll_201702299
crossref_primary_10_1016_j_biomaterials_2021_120945
crossref_primary_10_1002_adfm_201706507
crossref_primary_10_1016_j_freeradbiomed_2018_02_002
crossref_primary_10_3390_molecules26051401
crossref_primary_10_1039_C6TB03230C
crossref_primary_10_1039_D2TB00309K
crossref_primary_10_1016_j_nantod_2020_100963
crossref_primary_10_1021_acsabm_9b00836
crossref_primary_10_1007_s11426_020_9947_4
crossref_primary_10_1016_j_dyepig_2018_10_037
crossref_primary_10_1039_D0MH01312A
crossref_primary_10_1039_C9TB01248F
crossref_primary_10_1016_j_biomaterials_2020_120532
crossref_primary_10_1002_smll_201704247
crossref_primary_10_1039_C8CC00392K
crossref_primary_10_3762_bjoc_15_169
crossref_primary_10_1016_j_dyepig_2020_108937
crossref_primary_10_1021_jacs_8b13141
crossref_primary_10_1021_acs_inorgchem_8b01316
crossref_primary_10_1016_j_saa_2023_123387
crossref_primary_10_1021_acsnano_0c09913
crossref_primary_10_1039_C7DT03976J
crossref_primary_10_1021_acs_orglett_0c02478
crossref_primary_10_1039_D2BM01700H
crossref_primary_10_1021_acsnano_0c05317
crossref_primary_10_1021_acs_jpclett_3c01736
crossref_primary_10_1002_adhm_201800296
crossref_primary_10_1016_j_biomaterials_2020_120089
crossref_primary_10_1016_j_jconrel_2022_04_047
crossref_primary_10_1002_anie_202000740
crossref_primary_10_1002_adhm_202000802
crossref_primary_10_1002_slct_201702888
crossref_primary_10_1016_j_snb_2022_132311
crossref_primary_10_1039_C8AN01486H
crossref_primary_10_1142_S1088424619501268
crossref_primary_10_1016_j_dyepig_2017_08_026
crossref_primary_10_1021_acs_jpcc_0c01290
crossref_primary_10_1016_j_chempr_2021_03_008
crossref_primary_10_1002_adma_201707567
crossref_primary_10_1002_adma_201700548
crossref_primary_10_1002_anie_202312600
crossref_primary_10_1021_acs_joc_4c00034
crossref_primary_10_1039_C8SC02508H
crossref_primary_10_1016_j_jssc_2017_10_013
crossref_primary_10_1002_adhm_201900132
crossref_primary_10_1016_j_cclet_2022_05_029
crossref_primary_10_1038_s41467_024_46768_w
crossref_primary_10_1039_D0PY01513J
crossref_primary_10_1021_acsami_4c03123
crossref_primary_10_4155_tde_2018_0015
crossref_primary_10_1038_s41467_023_43074_9
crossref_primary_10_1002_chem_201702935
crossref_primary_10_1021_acs_inorgchem_9b03280
crossref_primary_10_1039_C8BM00796A
crossref_primary_10_1021_jacs_1c07372
crossref_primary_10_1039_D3BM01873C
crossref_primary_10_1002_cplu_201900317
crossref_primary_10_1007_s11426_019_9464_1
crossref_primary_10_1016_j_jphotochem_2023_114735
crossref_primary_10_1021_acsami_8b06758
crossref_primary_10_1002_ange_202218341
crossref_primary_10_1039_C8SC00633D
crossref_primary_10_1002_wnan_1627
crossref_primary_10_1039_C7TB00731K
crossref_primary_10_1039_D3OB01130E
crossref_primary_10_1016_j_mattod_2022_11_011
crossref_primary_10_1016_j_carbpol_2022_119868
crossref_primary_10_1016_j_dyepig_2019_107617
crossref_primary_10_34133_bmr_0159
crossref_primary_10_1039_C8NR02643B
crossref_primary_10_1016_j_actbio_2021_03_064
crossref_primary_10_1021_acsami_9b16403
crossref_primary_10_1021_acs_nanolett_8b04763
crossref_primary_10_1021_acsami_2c05276
crossref_primary_10_1021_acs_jmedchem_0c00882
crossref_primary_10_1016_j_ccr_2023_215074
crossref_primary_10_1016_j_dyepig_2017_07_048
crossref_primary_10_1039_C7NJ05034H
crossref_primary_10_1039_D0TB00991A
crossref_primary_10_1021_acs_bioconjchem_8b00068
crossref_primary_10_1002_ange_202000740
crossref_primary_10_1016_j_biomaterials_2021_120990
crossref_primary_10_1021_acsami_0c01695
crossref_primary_10_1039_D0DT03342A
crossref_primary_10_1021_acsami_4c04278
crossref_primary_10_1016_j_biomaterials_2021_120993
crossref_primary_10_1039_C8TB01957F
crossref_primary_10_1002_smll_202001343
crossref_primary_10_1038_s41467_021_22282_1
crossref_primary_10_1002_adfm_201704079
crossref_primary_10_1021_acsabm_4c01108
crossref_primary_10_1039_D0SC01171A
crossref_primary_10_1016_j_dyepig_2019_108003
crossref_primary_10_1016_j_dyepig_2021_110018
crossref_primary_10_1002_anie_201907510
crossref_primary_10_1039_C9BM01709G
crossref_primary_10_1039_D3QM00585B
crossref_primary_10_1021_jacs_0c05604
crossref_primary_10_1142_S1088424619300234
crossref_primary_10_3762_bjoc_16_53
crossref_primary_10_1002_anie_202210920
crossref_primary_10_1021_acsanm_1c04143
crossref_primary_10_1007_s12274_023_5923_4
crossref_primary_10_1016_j_chempr_2018_06_003
crossref_primary_10_1007_s12274_018_2191_9
crossref_primary_10_1021_acs_jmedchem_7b01907
crossref_primary_10_1039_D1TB02066H
crossref_primary_10_1039_D2BM01838A
crossref_primary_10_1021_jacs_0c00734
crossref_primary_10_1039_C9RA06058H
crossref_primary_10_1039_C7SC04694D
crossref_primary_10_1039_D3TC03432A
crossref_primary_10_1002_slct_202200850
crossref_primary_10_1002_adhm_202402274
crossref_primary_10_1016_j_colsurfb_2023_113274
crossref_primary_10_1016_j_dyepig_2020_108676
crossref_primary_10_1039_C9BM00762H
crossref_primary_10_1142_S108842461850089X
crossref_primary_10_1002_ange_202312600
crossref_primary_10_1016_j_jinorgbio_2020_111127
crossref_primary_10_1021_acs_jpcc_2c03847
crossref_primary_10_1016_j_jcis_2018_10_051
crossref_primary_10_1039_C9NR01306G
crossref_primary_10_1016_j_dyepig_2025_112740
crossref_primary_10_1016_j_saa_2023_123688
crossref_primary_10_1021_acsami_9b13861
crossref_primary_10_1002_cjoc_202200714
crossref_primary_10_1021_acs_jpclett_0c02054
crossref_primary_10_1016_j_biomaterials_2018_09_045
crossref_primary_10_1021_acs_orglett_0c00118
crossref_primary_10_1021_acsami_3c12827
crossref_primary_10_1002_adhm_201800351
crossref_primary_10_1016_j_nantod_2022_101427
crossref_primary_10_1039_D1AN01826D
crossref_primary_10_1139_cjc_2021_0030
crossref_primary_10_1016_j_addr_2023_114821
crossref_primary_10_1016_j_dyepig_2022_110963
crossref_primary_10_3390_molecules27134047
crossref_primary_10_1039_C9SC00264B
crossref_primary_10_1002_smll_201804927
crossref_primary_10_1016_j_snb_2023_133663
crossref_primary_10_1021_acsami_7b07569
crossref_primary_10_1039_D1BM00157D
crossref_primary_10_1007_s10895_023_03562_z
crossref_primary_10_1021_acs_molpharmaceut_8b00419
crossref_primary_10_1039_D4TB00535J
crossref_primary_10_1002_ange_201907510
crossref_primary_10_3389_fchem_2019_00841
crossref_primary_10_1002_ange_202411802
crossref_primary_10_1016_j_inoche_2022_109543
crossref_primary_10_1021_jacs_8b09374
crossref_primary_10_1021_jacs_8b10396
crossref_primary_10_1039_D3CP03888B
crossref_primary_10_1016_j_jphotochem_2020_112503
crossref_primary_10_1007_s11051_021_05213_5
crossref_primary_10_1016_j_ijbiomac_2023_126143
crossref_primary_10_1021_acscentsci_0c01551
crossref_primary_10_1002_ange_202210920
crossref_primary_10_1016_j_ceramint_2018_03_155
crossref_primary_10_1039_D1RA06548C
crossref_primary_10_1016_j_ccr_2023_215367
crossref_primary_10_1038_s41377_019_0142_1
crossref_primary_10_1016_j_biomaterials_2019_119282
crossref_primary_10_1002_adma_201801216
crossref_primary_10_1631_jzus_B2200107
crossref_primary_10_1002_smtd_201700370
crossref_primary_10_1021_acsmaterialslett_0c00377
crossref_primary_10_1016_j_jphotochemrev_2019_04_001
crossref_primary_10_1016_j_dyepig_2022_110613
crossref_primary_10_1039_C7MH00469A
crossref_primary_10_1016_j_msec_2020_111099
crossref_primary_10_1002_anie_202303476
crossref_primary_10_1002_cmdc_202000831
crossref_primary_10_1039_C7CP01333G
crossref_primary_10_1039_C9CC06271H
crossref_primary_10_1039_C7TB00724H
crossref_primary_10_1002_adma_202004754
crossref_primary_10_1021_acs_jmedchem_1c02154
crossref_primary_10_1016_j_biomaterials_2018_01_047
crossref_primary_10_1039_D3RA04074G
crossref_primary_10_1002_anie_202218341
crossref_primary_10_1021_acsnano_7b00944
crossref_primary_10_3390_medicines6010021
crossref_primary_10_1038_s41467_019_11082_3
crossref_primary_10_1021_acs_jpca_1c01088
crossref_primary_10_1016_j_bmcl_2019_126854
crossref_primary_10_1016_j_saa_2021_119512
crossref_primary_10_1039_C9SE01090D
crossref_primary_10_1016_j_ejmech_2021_113438
crossref_primary_10_1016_j_cej_2020_127282
crossref_primary_10_1021_acsami_8b04710
crossref_primary_10_1021_acsabm_8b00703
crossref_primary_10_1002_ange_202303476
crossref_primary_10_1002_chem_202004278
crossref_primary_10_1039_C9CC07730H
crossref_primary_10_1007_s41664_023_00264_0
crossref_primary_10_1039_D3OB01966G
crossref_primary_10_1016_j_ccr_2017_09_029
crossref_primary_10_1039_D0TB00746C
crossref_primary_10_1002_smll_201701841
crossref_primary_10_1016_j_biomaterials_2018_09_001
crossref_primary_10_1021_acsami_7b10763
crossref_primary_10_1002_chem_202303766
crossref_primary_10_1016_j_cej_2024_156121
crossref_primary_10_1021_acs_bioconjchem_8b00576
crossref_primary_10_1016_j_dyepig_2020_108284
crossref_primary_10_1021_acs_bioconjchem_8b00333
crossref_primary_10_1021_acs_jmedchem_4c01641
crossref_primary_10_1007_s11426_020_9922_3
crossref_primary_10_1016_j_ejmech_2018_08_024
crossref_primary_10_1039_C8SC04012E
crossref_primary_10_1038_s41570_024_00662_7
crossref_primary_10_1039_C7NR02180A
crossref_primary_10_1039_C9TB00180H
crossref_primary_10_1002_advs_201800341
crossref_primary_10_1016_j_cclet_2019_08_028
crossref_primary_10_1039_D0CS00173B
crossref_primary_10_1039_C8SC04840A
crossref_primary_10_1002_adma_202109111
crossref_primary_10_1021_acscatal_8b04005
crossref_primary_10_1021_acs_accounts_2c00307
crossref_primary_10_1039_D3CC03257D
crossref_primary_10_1021_acsami_9b10713
crossref_primary_10_1039_C7BM00348J
crossref_primary_10_1016_j_colsurfa_2019_04_060
crossref_primary_10_1039_C7NR08811F
crossref_primary_10_1039_D4CC04049J
crossref_primary_10_3390_molecules30061305
crossref_primary_10_1002_adma_202104223
crossref_primary_10_1021_acs_chemmater_8b03762
crossref_primary_10_1021_jacs_9b03457
crossref_primary_10_6023_A23050243
crossref_primary_10_1016_j_dyepig_2017_11_010
crossref_primary_10_1002_adom_202202060
crossref_primary_10_1021_acsnano_0c02767
crossref_primary_10_1016_j_ccr_2024_216054
crossref_primary_10_1002_adma_201606690
crossref_primary_10_1021_acsnano_8b04787
crossref_primary_10_1002_aelm_201700354
crossref_primary_10_1002_adhm_201800643
crossref_primary_10_1016_j_ccr_2021_214308
crossref_primary_10_3390_biom9050202
crossref_primary_10_1002_adma_202106797
crossref_primary_10_1016_j_cej_2018_09_076
crossref_primary_10_1039_D1TB01306H
crossref_primary_10_3390_ijms20092152
crossref_primary_10_1021_acs_jpclett_2c02122
crossref_primary_10_1039_D1TB01155C
crossref_primary_10_1021_acsami_9b17375
crossref_primary_10_1016_j_jinorgbio_2020_111236
crossref_primary_10_1007_s40242_021_1186_3
crossref_primary_10_1016_j_ijpharm_2018_09_019
crossref_primary_10_1021_acs_jmedchem_2c01653
crossref_primary_10_1021_acs_chemmater_9b00265
crossref_primary_10_1016_j_talanta_2024_126633
crossref_primary_10_1002_adma_201704136
crossref_primary_10_1002_anie_202411802
crossref_primary_10_1021_acs_jpcc_8b05460
crossref_primary_10_1016_j_checat_2024_100973
crossref_primary_10_1039_C8SC04854A
crossref_primary_10_1016_j_dyepig_2023_111426
crossref_primary_10_1055_s_0040_1720060
crossref_primary_10_1039_C9SC03355F
crossref_primary_10_1021_acs_langmuir_8b01049
crossref_primary_10_1016_j_ccr_2022_214979
crossref_primary_10_1021_acs_jcim_3c00819
Cites_doi 10.1039/C5CS00364D
10.1002/smll.201401416
10.1002/anie.201510597
10.1038/nrc1071
10.1021/cr900236h
10.1039/C4CS00177J
10.1016/j.addr.2008.08.003
10.1002/anie.201105736
10.1016/j.biomaterials.2011.05.007
10.1002/smll.201501923
10.1021/nn505051d
10.1038/nm.2933
10.1039/C5SC01721A
10.1039/C2CS35216H
10.1039/c4tb00284a
10.1021/ol102562k
10.1021/jm101637g
10.1021/mp5005564
10.1021/jm4009168
10.1021/cr078381n
10.1002/adma.201504617
10.1021/jm901823u
10.1038/nm.2554
10.1021/cr900300p
10.1002/anie.201405490
10.1038/sj.bjc.6605247
10.1039/C5TB01857A
10.1021/acsnano.5b02513
10.1021/jm4012142
10.1039/c4cs00030g
10.1021/cr5004198
10.1023/A:1020134521778
10.1039/C4CS00175C
10.1021/ja408286k
10.1002/anie.200702070
10.1039/c5cs00364d
10.1039/c5tb01857a
10.1039/c2cs35216h
10.1039/c5sc01721a
10.1039/c4cs00175c
10.1039/c4cs00177j
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
GYFQL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.6b05390
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2016
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Web of Science
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
Web of Science
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 14591
ExternalDocumentID 27786443
000387625300017
10_1021_jacs_6b05390
c115348436
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NATIONAL INSTITUTE OF MENTAL HEALTH; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA; NIH National Institute of Mental Health (NIMH)
  grantid: R01MH103133
– fundername: National Institutes of Health; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA
  grantid: R01MH103133
– fundername: Human Frontier Science; Human Frontier Science Program
  grantid: RGY-0090/2014
– fundername: China Scholarship Council (CSC); China Scholarship Council
– fundername: NIMH NIH HHS
  grantid: R01 MH103133
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
17B
1KM
AAYWT
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a423t-dc993f9564d36c0317421cf1b6900d0c8a173f56c0e6d9b169649500a86567ab3
IEDL.DBID ACS
ISICitedReferencesCount 283
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000387625300017
ISSN 0002-7863
1520-5126
IngestDate Thu Aug 07 14:58:46 EDT 2025
Fri Jul 11 11:55:06 EDT 2025
Thu Apr 03 07:05:37 EDT 2025
Fri Aug 29 16:15:28 EDT 2025
Wed Aug 06 02:06:59 EDT 2025
Tue Jul 01 04:33:35 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Thu Aug 27 13:42:10 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords BODIPY DYES
VITRO
OXYGEN
CLEARANCE
UPCONVERTING NANOPARTICLES
BORON DIPYRROMETHENE DERIVATIVES
IN-VIVO
PHOTOSENSITIZERS
UP-CONVERSION NANOPARTICLES
CANCER-THERAPY
Language English
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-a423t-dc993f9564d36c0317421cf1b6900d0c8a173f56c0e6d9b169649500a86567ab3
Notes NIH RePORTER
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5405-6398
0000-0003-2111-0981
PMID 27786443
PQID 1835678665
PQPubID 23479
PageCount 6
ParticipantIDs webofscience_primary_000387625300017
crossref_citationtrail_10_1021_jacs_6b05390
proquest_miscellaneous_1835678665
acs_journals_10_1021_jacs_6b05390
pubmed_primary_27786443
webofscience_primary_000387625300017CitationCount
crossref_primary_10_1021_jacs_6b05390
proquest_miscellaneous_2000404065
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-09
PublicationDateYYYYMMDD 2016-11-09
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-09
  day: 09
PublicationDecade 2010
PublicationPlace WASHINGTON
PublicationPlace_xml – name: WASHINGTON
– name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAbbrev J AM CHEM SOC
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2016
Publisher American Chemical Society
Amer Chemical Soc
Publisher_xml – name: American Chemical Society
– name: Amer Chemical Soc
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
Lovell, JF (WOS:000277811600011) 2010; 110
Song, GS (WOS:000369854700031) 2016; 55
Wang, C (WOS:000292904100021) 2011; 32
Sun, Y (WOS:000351244800010) 2015; 44
Dolmans, DEJGJ (WOS:000183007900017) 2003; 3
Hu, J (WOS:000365850400001) 2015; 11
Zhao, JZ (WOS:000365532000014) 2015; 3
Cakmak, Y (WOS:000298085000014) 2011; 50
Lim, SH (WOS:000276096300015) 2010; 53
Voon, SH (WOS:000346364000001) 2014; 10
Mitsunaga, M (WOS:000297978000044) 2011; 17
Tian, JW (WOS:000342677000022) 2014; 53
Byrne, AT (WOS:000271247800012) 2009; 101
Tian, JW (WOS:000328865100031) 2013; 135
He, H (WOS:000289697800044) 2011; 54
Celli, JP (WOS:000277811600010) 2010; 110
Kamkaew, A (WOS:000311968700006) 2013; 42
Chatterjee, DK (WOS:000261649800006) 2008; 60
Kamkaew, A (WOS:000326367100012) 2013; 56
Song, GS (WOS:000373839600005) 2016; 28
Gnach, A (WOS:000351244800012) 2015; 44
Loudet, A (WOS:000250970400010) 2007; 107
Tian, JW (WOS:000361212000075) 2015; 6
Ishida, T (WOS:000177970000005) 2002; 22
Punjabi, A (WOS:000343952600098) 2014; 8
Lucky, SS (WOS:000350192900007) 2015; 115
Lu, H (WOS:000337131200023) 2014; 43
Majumdar, P (WOS:000335225100004) 2014; 2
Adarsh, N (WOS:000285081300032) 2010; 12
Kue, CS (WOS:000347506300021) 2015; 12
Ke, MR (WOS:000327111100020) 2013; 56
Zhang, JF (WOS:000363915300030) 2015; 9
Idris, NM (WOS:000309587500038) 2012; 18
Zhao, JZ (WOS:000365530400010) 2015; 44
Ulrich, G (WOS:000253103800005) 2008; 47
References_xml – ident: ref25/cit25
  doi: 10.1039/C5CS00364D
– ident: ref6/cit6
  doi: 10.1002/smll.201401416
– ident: ref34/cit34
  doi: 10.1002/anie.201510597
– ident: ref1/cit1
  doi: 10.1038/nrc1071
– ident: ref2/cit2
  doi: 10.1021/cr900236h
– ident: ref12/cit12
  doi: 10.1039/C4CS00177J
– ident: ref5/cit5
  doi: 10.1016/j.addr.2008.08.003
– ident: ref28/cit28
  doi: 10.1002/anie.201105736
– ident: ref9/cit9
  doi: 10.1016/j.biomaterials.2011.05.007
– ident: ref8/cit8
  doi: 10.1002/smll.201501923
– ident: ref11/cit11
  doi: 10.1021/nn505051d
– ident: ref10/cit10
  doi: 10.1038/nm.2933
– ident: ref17/cit17
  doi: 10.1039/C5SC01721A
– ident: ref30/cit30
  doi: 10.1039/C2CS35216H
– ident: ref29/cit29
  doi: 10.1039/c4tb00284a
– ident: ref31/cit31
  doi: 10.1021/ol102562k
– ident: ref26/cit26
  doi: 10.1021/jm101637g
– ident: ref23/cit23
  doi: 10.1021/mp5005564
– ident: ref27/cit27
  doi: 10.1021/jm4009168
– ident: ref18/cit18
  doi: 10.1021/cr078381n
– ident: ref33/cit33
  doi: 10.1002/adma.201504617
– ident: ref20/cit20
  doi: 10.1021/jm901823u
– ident: ref7/cit7
  doi: 10.1038/nm.2554
– ident: ref3/cit3
  doi: 10.1021/cr900300p
– ident: ref16/cit16
  doi: 10.1002/anie.201405490
– ident: ref14/cit14
  doi: 10.1038/sj.bjc.6605247
– ident: ref24/cit24
  doi: 10.1039/C5TB01857A
– ident: ref32/cit32
  doi: 10.1021/acsnano.5b02513
– ident: ref21/cit21
  doi: 10.1021/jm4012142
– ident: ref22/cit22
  doi: 10.1039/c4cs00030g
– ident: ref4/cit4
  doi: 10.1021/cr5004198
– ident: ref35/cit35
  doi: 10.1023/A:1020134521778
– ident: ref13/cit13
  doi: 10.1039/C4CS00175C
– ident: ref15/cit15
  doi: 10.1021/ja408286k
– ident: ref19/cit19
  doi: 10.1002/anie.200702070
– volume: 3
  start-page: 380
  year: 2003
  ident: WOS:000183007900017
  article-title: Photodynamic therapy for cancer
  publication-title: NATURE REVIEWS CANCER
  doi: 10.1038/nrc1071
– volume: 43
  start-page: 4778
  year: 2014
  ident: WOS:000337131200023
  article-title: Structural modification strategies for the rational design of red/NIR region BODIPYs
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c4cs00030g
– volume: 110
  start-page: 2795
  year: 2010
  ident: WOS:000277811600010
  article-title: Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr900300p
– volume: 50
  start-page: 11937
  year: 2011
  ident: WOS:000298085000014
  article-title: Designing Excited States: Theory-Guided Access to Efficient Photosensitizers for Photodynamic Action
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201105736
– volume: 60
  start-page: 1627
  year: 2008
  ident: WOS:000261649800006
  article-title: Nanoparticles in photodynamic therapy: An emerging paradigm
  publication-title: ADVANCED DRUG DELIVERY REVIEWS
  doi: 10.1016/j.addr.2008.08.003
– volume: 11
  start-page: 5860
  year: 2015
  ident: WOS:000365850400001
  article-title: Nanocomposite-Based Photodynamic Therapy Strategies for Deep Tumor Treatment
  publication-title: SMALL
  doi: 10.1002/smll.201501923
– volume: 8
  start-page: 10621
  year: 2014
  ident: WOS:000343952600098
  article-title: Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy
  publication-title: ACS NANO
  doi: 10.1021/nn505051d
– volume: 53
  start-page: 9544
  year: 2014
  ident: WOS:000342677000022
  article-title: A Multifunctional Nanomicelle for Real-Time Targeted Imaging and Precise Near-Infrared Cancer Therapy
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201405490
– volume: 47
  start-page: 1184
  year: 2008
  ident: WOS:000253103800005
  article-title: The chemistry of fluorescent bodipy dyes: Versatility unsurpassed
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200702070
– volume: 22
  start-page: 197
  year: 2002
  ident: WOS:000177970000005
  article-title: Liposome clearance
  publication-title: BIOSCIENCE REPORTS
– volume: 56
  start-page: 7608
  year: 2013
  ident: WOS:000326367100012
  article-title: Double-Targeting Using a TrkC Ligand Conjugated to Dipyrrometheneboron Difluoride (BODIPY) Based Photodynamic Therapy (PDT) Agent
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm4012142
– volume: 12
  start-page: 5720
  year: 2010
  ident: WOS:000285081300032
  article-title: Tuning Photosensitized Singlet Oxygen Generation Efficiency of Novel Aza-BODIPY Dyes
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol102562k
– volume: 44
  start-page: 8904
  year: 2015
  ident: WOS:000365530400010
  article-title: The triplet excited state of Bodipy: formation, modulation and application
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c5cs00364d
– volume: 2
  start-page: 2838
  year: 2014
  ident: WOS:000335225100004
  article-title: Cyclometalated Ir(III) complexes with styryl-BODIPY ligands showing near IR absorption/emission: preparation, study of photophysical properties and application as photodynamic/luminescence imaging materials
  publication-title: JOURNAL OF MATERIALS CHEMISTRY B
  doi: 10.1039/c4tb00284a
– volume: 17
  start-page: 1685
  year: 2011
  ident: WOS:000297978000044
  article-title: Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules
  publication-title: NATURE MEDICINE
  doi: 10.1038/nm.2554
– volume: 3
  start-page: 9194
  year: 2015
  ident: WOS:000365532000014
  article-title: Maximizing the thiol-activated photodynamic and fluorescence imaging functionalities of theranostic reagents by modularization of Bodipy-based dyad triplet photosensitizers
  publication-title: JOURNAL OF MATERIALS CHEMISTRY B
  doi: 10.1039/c5tb01857a
– volume: 115
  start-page: 1990
  year: 2015
  ident: WOS:000350192900007
  article-title: Nanoparticles in Photodynamic Therapy
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr5004198
– volume: 28
  start-page: 2716
  year: 2016
  ident: WOS:000373839600005
  article-title: Perfluorocarbon-Loaded Hollow Bi2Se3 Nanoparticles for Timely Supply of Oxygen under Near-Infrared Light to Enhance the Radiotherapy of Cancer
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201504617
– volume: 42
  start-page: 77
  year: 2013
  ident: WOS:000311968700006
  article-title: BODIPY dyes in photodynamic therapy
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c2cs35216h
– volume: 6
  start-page: 5969
  year: 2015
  ident: WOS:000361212000075
  article-title: A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c5sc01721a
– volume: 18
  start-page: 1580
  year: 2012
  ident: WOS:000309587500038
  article-title: In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers
  publication-title: NATURE MEDICINE
  doi: 10.1038/nm.2933
– volume: 44
  start-page: 1509
  year: 2015
  ident: WOS:000351244800010
  article-title: The biosafety of lanthanide upconversion nanomaterials
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c4cs00175c
– volume: 53
  start-page: 2865
  year: 2010
  ident: WOS:000276096300015
  article-title: In Vitro and In Vivo Photocytotoxicity of Boron Dipyrromethene Derivatives for Photodynamic Therapy
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm901823u
– volume: 55
  start-page: 2122
  year: 2016
  ident: WOS:000369854700031
  article-title: Degradable Molybdenum Oxide Nanosheets with Rapid Clearance and Efficient Tumor Homing Capabilities as a Therapeutic Nanoplatform
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201510597
– volume: 44
  start-page: 1561
  year: 2015
  ident: WOS:000351244800012
  article-title: Upconverting nanoparticles: assessing the toxicity
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c4cs00177j
– volume: 110
  start-page: 2839
  year: 2010
  ident: WOS:000277811600011
  article-title: Activatable Photosensitizers for Imaging and Therapy
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr900236h
– volume: 107
  start-page: 4891
  year: 2007
  ident: WOS:000250970400010
  article-title: BODIPY dyes and their derivatives: Syntheses and spectroscopic properties
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr078381n
– volume: 12
  start-page: 212
  year: 2015
  ident: WOS:000347506300021
  article-title: Targeted PDT Agent Eradicates TrkC Expressing Tumors via Photodynamic Therapy (PDT)
  publication-title: MOLECULAR PHARMACEUTICS
  doi: 10.1021/mp5005564
– volume: 54
  start-page: 3097
  year: 2011
  ident: WOS:000289697800044
  article-title: Synthesis and in Vitro Photodynamic Activities of Pegylated Distyryl Boron Dipyrromethene Derivatives
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm101637g
– volume: 101
  start-page: 1565
  year: 2009
  ident: WOS:000271247800012
  article-title: Vascular-targeted photodynamic therapy with BF2-chelated Tetraaryl-Azadipyrromethene agents: a multi-modality molecular imaging approach to therapeutic assessment
  publication-title: BRITISH JOURNAL OF CANCER
  doi: 10.1038/sj.bjc.6605247
– volume: 32
  start-page: 6145
  year: 2011
  ident: WOS:000292904100021
  article-title: Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles
  publication-title: BIOMATERIALS
  doi: 10.1016/j.biomaterials.2011.05.007
– volume: 10
  start-page: 4993
  year: 2014
  ident: WOS:000346364000001
  article-title: In Vivo Studies of Nanostructure-Based Photosensitizers for Photodynamic Cancer Therapy
  publication-title: SMALL
  doi: 10.1002/smll.201401416
– volume: 56
  start-page: 8475
  year: 2013
  ident: WOS:000327111100020
  article-title: Preparation and in Vitro Photodynamic Activities of Folate-Conjugated Distyryl Boron Dipyrromethene Based Photosensitizers
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm4009168
– volume: 9
  start-page: 9741
  year: 2015
  ident: WOS:000363915300030
  article-title: Self-Monitoring and Self-Delivery of Photosensitizer-Doped Nanoparticles for Highly Effective Combination Cancer Therapy in Vitro and in Vivo
  publication-title: ACS NANO
  doi: 10.1021/acsnano.5b02513
– volume: 135
  start-page: 18850
  year: 2013
  ident: WOS:000328865100031
  article-title: Cell-Specific and pH-Activatable Rubyrin-Loaded Nanoparticles for Highly Selective Near-Infrared Photodynamic Therapy against Cancer
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja408286k
SSID ssj0004281
Score 2.6222475
Snippet Tissue penetration depth is a major challenge in practical photodynamic therapy (PDT). A biocompatible and highly effective near infrared (NIR)-light-absorbing...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14586
SubjectTerms absorption
biodegradability
Biological Assay
Boron Compounds - chemistry
Cell Survival
Chemistry
Chemistry, Multidisciplinary
cost effectiveness
fluorescence
HeLa Cells
Humans
Infrared Rays
Molecular Structure
nanoparticles
neoplasms
Optical Imaging
photochemotherapy
Photochemotherapy - methods
photosensitizing agents
Photosensitizing Agents - chemistry
Photosensitizing Agents - economics
Photosensitizing Agents - pharmacology
Physical Sciences
polymers
Radiotherapy - methods
Science & Technology
singlet oxygen
Water - chemistry
Title Ultralow-Power Near Infrared Lamp Light Operable Targeted Organic Nanoparticle Photodynamic Therapy
URI http://dx.doi.org/10.1021/jacs.6b05390
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000387625300017
https://www.ncbi.nlm.nih.gov/pubmed/27786443
https://www.proquest.com/docview/1835678665
https://www.proquest.com/docview/2000404065
Volume 138
WOS 000387625300017
WOSCitedRecordID wos000387625300017
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB6kHvTivtSNEepJUjJZJslRinVBq2AL3sJsQbAk0qYI_nrfy9K6FUtumReSTN7kfd-8jZBWlAjXBrtmaWwd4NkmsIRgxhKREehAFI7C_Y77Hr8eeLfP_vMsQPanB9_B-kBq3OYSlCUCar7s8DBAknXReZrlPzohq2FuEHK3CnD_eTUaIDX-boB-oco_DVBhbLrr5KpO2SljTF7bk1y21cfvCo7_vMcGWavwJr0oFWSTLJl0i6x06jZv20QNhrjZkb1bj9gwjfZA9elNmowwMp1iPUZ6hwSePryZEeZZ0X4RPA6DZR6novCHBupd3oE-vmR5pss-97Rf1izYIYPuZb9zbVWdFywB8Cq3tALYkgB18rTLFax7INBMJUwCl7a1rULBAjfxYchwHUnGIw5Ey7ZFCPAwENLdJY00S80-oUJIriTTmnMAL9IJhdImMCoE5CYYM01yChMTVytnHBdOcQdICZ6tpqtJzutPFquqdDl20BjOkT6bSr-VJTvmyJ3WXz-GOUdHiUhNNoFnAFgKRpxzf74Mpjh5cKDMXqk607s5WJTP89wmaX3Vpel44Y8FK-S7CLGDJmGLiHWqN8diBfnBAtN2SFYB3vEiczI6Io18NDHHAKFyeVKsn09KShOk
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5ED3rx_ajPFfQkkWySbpKjFKVqrYIteAv7CoKSSJsi-OudSdL6LJTcspNks5nNfN_OzgzASZxK30W75hgqHRC4NnSk5NaRsZXkQJSepvWOu65o94Obp-ZTHaxOsTDYiSHeaVg68b-yC1CaIDwpFOpMjAx9AXGIR1zrovX4FQbpRXyMdsNI-PU-999Xkx3Sw5926A-4_NcOlTbnagW6k96WW01ezkeFOtcfvxI5zvw6q7Bco092UanLGszZbB0WW-Oibxug-6-09JG_Ow9UPo11cSKw6ywd0D51RtkZWYfoPLt_swOKumK9cis5NlZRnZrh_xqJePUE9vCcF7mpqt6zXpXBYBP6V5e9Vtup6zA4EsFW4RiNICZFIhUYX2j8CyCd5jrlCpm1a1wdSR76aRObrDCx4iIWSLtcV0YIFkOp_C2Yz_LM7gCTUgmtuDFCIJRRXiS1saHVEeI4ybltwDEOTFLPo2FSusg9pCh0th6uBpyNv1yi60TmVE_jdYr06UT6rUrgMUXueKwECY45uU1kZvMR9gFBKpp0IZrTZSjgKcCDZLYrDZo8zaMUfUHgN-Dku0pN2kvvLNqkpk-AO2wAn0WsVb85pS4odmcYtiNYbPfuOknnunu7B0sI_EQZUxnvw3wxGNkDBFeFOiyn1CeZHxwF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4hkEovhUJLQ0tZJDghI6_trO0jCkRQIESQSNysfVlIUDtKHFXw65nxI-XRSFS5ecbxej3r-caz8w3AbpxK30W_5hhqHRC4NnSk5NaRsZWUQJSepu8dFz1xMgx-3bRvFoA3tTA4iAn-06RM4tOqHpm0ZhggqiAUCIV2E2OUvkQZO4q3DjvXf0shvYg3iDeMhF_vdX99NvkiPXnpi94AzH_6otLvdFfgajbicrvJ3cG0UAf68RWZ43_d0ip8qlEoO6zM5jMs2GwNljtN87d10MN7-gSS_3H61EaN9XBBsNMsHdN-dUYsjeycwnp2ObJjqr5ig3JLOQqr6k7N8L2NAXl1Bda_zYvcPGTyN0oGFZPBFxh2jwedE6fux-BIBF2FYzSCmRQDqsD4QuPbAMNqrlOuMMJ2jasjyUM_baPIChMrLmKB4ZfryghBYyiV_xUWszyz34BJqYRW3BghENIoL5La2NDqCPGc5Ny2YAcnJqnX0yQpU-Uehip0tJ6uFuw3Ty_RNaE59dW4n6O9N9MeVUQec_R2GkNIcM4pfSIzm09xDAhW0bUL0Z6vQ4VPAf5IZ6OyotnVPKLqCwK_BbvPzWomL7O06JvaPgHvsAX8PWqd-s6JwqDYfMe0bcOH_lE3OT_tnX2Hj4j_RFlaGf-AxWI8tVuIsQr1s1xVT9D9Hog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultralow-Power+Near+Infrared+Lamp+Light+Operable+Targeted+Organic+Nanoparticle+Photodynamic+Therapy&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Huang%2C+Ling&rft.au=Li%2C+Zhanjun&rft.au=Zhao%2C+Yang&rft.au=Zhang%2C+Yuanwei&rft.date=2016-11-09&rft.issn=1520-5126&rft.volume=138&rft.issue=44+p.14586-14591&rft.spage=14586&rft.epage=14591&rft_id=info:doi/10.1021%2Fjacs.6b05390&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon