mobileOG-db: a Manually Curated Database of Protein Families Mediating the Life Cycle of Bacterial Mobile Genetic Elements
The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and co...
Saved in:
Published in | Applied and environmental microbiology Vol. 88; no. 18; pp. 1 - 10 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
1752 N St., N.W., Washington, DC
American Society for Microbiology
22.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness.
Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the “life cycle” (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome.
IMPORTANCE
The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. To bridge this gap, we systematically analyzed 10,776,849 proteins derived from eight databases of MGEs to identify 6,140 MGE protein families that can serve as candidate hallmarks, i.e., proteins that can be used as “signatures” of MGEs to aid annotation. The resulting resource, mobileOG-db, provides a multilevel classification scheme that encompasses plasmid, phage, integrative, and transposable element protein families categorized into five major mobileOG categories and more than 50 minor categories. mobileOG-db thus provides a rich resource for simple and intuitive element annotation that can be integrated seamlessly into existing MGE detection pipelines and colocalization analyses. |
---|---|
AbstractList | Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the "life cycle" (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome. IMPORTANCE The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. To bridge this gap, we systematically analyzed 10,776,849 proteins derived from eight databases of MGEs to identify 6,140 MGE protein families that can serve as candidate hallmarks, i.e., proteins that can be used as "signatures" of MGEs to aid annotation. The resulting resource, mobileOG-db, provides a multilevel classification scheme that encompasses plasmid, phage, integrative, and transposable element protein families categorized into five major mobileOG categories and more than 50 minor categories. mobileOG-db thus provides a rich resource for simple and intuitive element annotation that can be integrated seamlessly into existing MGE detection pipelines and colocalization analyses.Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the "life cycle" (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome. IMPORTANCE The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. To bridge this gap, we systematically analyzed 10,776,849 proteins derived from eight databases of MGEs to identify 6,140 MGE protein families that can serve as candidate hallmarks, i.e., proteins that can be used as "signatures" of MGEs to aid annotation. The resulting resource, mobileOG-db, provides a multilevel classification scheme that encompasses plasmid, phage, integrative, and transposable element protein families categorized into five major mobileOG categories and more than 50 minor categories. mobileOG-db thus provides a rich resource for simple and intuitive element annotation that can be integrated seamlessly into existing MGE detection pipelines and colocalization analyses. Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the “life cycle” (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome. IMPORTANCE The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. To bridge this gap, we systematically analyzed 10,776,849 proteins derived from eight databases of MGEs to identify 6,140 MGE protein families that can serve as candidate hallmarks, i.e., proteins that can be used as “signatures” of MGEs to aid annotation. The resulting resource, mobileOG-db, provides a multilevel classification scheme that encompasses plasmid, phage, integrative, and transposable element protein families categorized into five major mobileOG categories and more than 50 minor categories. mobileOG-db thus provides a rich resource for simple and intuitive element annotation that can be integrated seamlessly into existing MGE detection pipelines and colocalization analyses. Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the "life cycle" (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome. Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the “life cycle” (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome. IMPORTANCE The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. To bridge this gap, we systematically analyzed 10,776,849 proteins derived from eight databases of MGEs to identify 6,140 MGE protein families that can serve as candidate hallmarks, i.e., proteins that can be used as “signatures” of MGEs to aid annotation. The resulting resource, mobileOG-db, provides a multilevel classification scheme that encompasses plasmid, phage, integrative, and transposable element protein families categorized into five major mobileOG categories and more than 50 minor categories. mobileOG-db thus provides a rich resource for simple and intuitive element annotation that can be integrated seamlessly into existing MGE detection pipelines and colocalization analyses. The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the “life cycle” (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome. IMPORTANCE The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. To bridge this gap, we systematically analyzed 10,776,849 proteins derived from eight databases of MGEs to identify 6,140 MGE protein families that can serve as candidate hallmarks, i.e., proteins that can be used as “signatures” of MGEs to aid annotation. The resulting resource, mobileOG-db, provides a multilevel classification scheme that encompasses plasmid, phage, integrative, and transposable element protein families categorized into five major mobileOG categories and more than 50 minor categories. mobileOG-db thus provides a rich resource for simple and intuitive element annotation that can be integrated seamlessly into existing MGE detection pipelines and colocalization analyses. |
Author | Hindi, Fadi Gupta, Suraj Pruden, Amy Stoll, James E. Vikesland, Peter Keenum, Ishi Brown, Connor L. Choi, Minyoung Zhang, Liqing Mullet, James |
Author_xml | – sequence: 1 givenname: Connor L. orcidid: 0000-0001-5171-0211 surname: Brown fullname: Brown, Connor L. organization: Department of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA – sequence: 2 givenname: James surname: Mullet fullname: Mullet, James organization: Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA – sequence: 3 givenname: Fadi surname: Hindi fullname: Hindi, Fadi organization: Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA – sequence: 4 givenname: James E. surname: Stoll fullname: Stoll, James E. organization: Fralin Life Science Institute, Blacksburg, Virginia, USA – sequence: 5 givenname: Suraj surname: Gupta fullname: Gupta, Suraj organization: Department of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA – sequence: 6 givenname: Minyoung surname: Choi fullname: Choi, Minyoung organization: Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA – sequence: 7 givenname: Ishi surname: Keenum fullname: Keenum, Ishi organization: Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA – sequence: 8 givenname: Peter surname: Vikesland fullname: Vikesland, Peter organization: Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA – sequence: 9 givenname: Amy orcidid: 0000-0002-3191-6244 surname: Pruden fullname: Pruden, Amy organization: Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA – sequence: 10 givenname: Liqing surname: Zhang fullname: Zhang, Liqing organization: Department of Computer Science, Virginia Tech, Blacksburg, Virginia, USA |
BookMark | eNp10d9rFDEQB_AgFXutvvkHBHxR6NYkm_0RHwQ921O4oz7oc5hNZtuU7KZussL1rzd3VxSLPgUmn8xk-J6QozGMSMhLzs45F-1bwOGcMaV4IcQTsuBMtUVVlvURWezKuSrZMTmJ8ZYxJlndPiPHZc3KulJyQe6H0DmPV6vCdu8o0A2MM3i_pct5goSWfoIEHUSkoadfp5DQjfQSBucdRrpB6yC58ZqmG6Rr1yNdbo3f449gEk4OPN3sR9AVjpicoRceBxxTfE6e9uAjvng4T8n3y4tvy8_F-mr1ZflhXYAUZSps3QirOtEaq7hRjJVGQCcNM1yJxorWYseZYVZVUPK-MV3FpEUh-77uStWUp-T9oe_d3A1oTZ49gdd3kxtg2uoATv99M7obfR1-aiWVYkLmBq8fGkzhx4wx6cFFg97DiGGOWjSsaRspRZXpq0f0NszTmNfLimcl2pZl9eagIA7ij-BM7xLVOVG9T1QLke3ZwZopxDhh__vj_-HiETcu5YjCbjXn__3oF7kZs4g |
CitedBy_id | crossref_primary_10_1186_s12864_024_10906_x crossref_primary_10_1021_acs_est_3c03738 crossref_primary_10_1128_aem_02349_23 crossref_primary_10_1016_j_jgar_2024_07_009 crossref_primary_10_1016_j_crmicr_2025_100350 crossref_primary_10_1099_mgen_0_001306 crossref_primary_10_1016_j_micres_2025_128048 crossref_primary_10_1089_mdr_2024_0212 crossref_primary_10_1021_acs_est_3c07935 crossref_primary_10_1186_s12864_024_10921_y crossref_primary_10_1016_j_ijantimicag_2025_107458 crossref_primary_10_1016_j_jhazmat_2023_133333 crossref_primary_10_1038_s41467_024_51617_x crossref_primary_10_3390_biom15010086 crossref_primary_10_1016_j_genrep_2025_102198 crossref_primary_10_1128_aem_01725_24 crossref_primary_10_1038_s41467_025_57276_w crossref_primary_10_1111_1758_2229_70032 crossref_primary_10_1128_mra_00866_24 crossref_primary_10_1093_femsec_fiae155 crossref_primary_10_3390_foods13010107 crossref_primary_10_3390_genes14091710 crossref_primary_10_1016_j_ygeno_2023_110579 crossref_primary_10_1038_s41598_024_51819_9 crossref_primary_10_1016_j_envint_2023_108268 crossref_primary_10_1016_j_watres_2024_122730 crossref_primary_10_1038_s41598_024_84870_7 crossref_primary_10_1016_j_nmni_2025_101576 crossref_primary_10_3390_ani14192833 crossref_primary_10_3390_biology13050339 crossref_primary_10_3389_fsybi_2024_1513580 crossref_primary_10_1099_ijsem_0_006369 crossref_primary_10_3390_ijms241210134 crossref_primary_10_1016_j_foodres_2024_114840 crossref_primary_10_1021_acsestwater_4c00790 crossref_primary_10_1111_1462_2920_70066 crossref_primary_10_3390_v16121903 crossref_primary_10_3390_microorganisms12081549 crossref_primary_10_1007_s00203_023_03746_y crossref_primary_10_3389_fgene_2023_1219297 crossref_primary_10_3390_pathogens13090794 crossref_primary_10_3390_ijms252312930 crossref_primary_10_1016_j_biortech_2023_130267 crossref_primary_10_1016_j_scitotenv_2024_172995 crossref_primary_10_1038_s41598_024_64443_4 crossref_primary_10_1186_s12864_024_10110_x crossref_primary_10_1264_jsme2_ME23105 crossref_primary_10_1021_acs_est_3c10491 crossref_primary_10_1016_j_ijmm_2024_151628 crossref_primary_10_3390_microorganisms12020250 crossref_primary_10_3390_microorganisms12050986 crossref_primary_10_1016_j_jhazmat_2025_137559 crossref_primary_10_1016_j_jgar_2023_11_014 crossref_primary_10_3390_antibiotics12071206 crossref_primary_10_3390_fermentation10010016 crossref_primary_10_1016_j_envres_2023_115866 crossref_primary_10_1016_j_scitotenv_2023_162031 crossref_primary_10_1093_lambio_ovad097 crossref_primary_10_1016_j_marpolbul_2024_116495 crossref_primary_10_1080_19490976_2024_2341635 crossref_primary_10_1093_jac_dkae460 crossref_primary_10_1021_acs_est_3c05905 crossref_primary_10_3390_foods13111773 crossref_primary_10_3390_microorganisms13030697 crossref_primary_10_3390_microorganisms12122662 crossref_primary_10_1016_j_cub_2025_01_003 crossref_primary_10_1016_j_envint_2025_109374 crossref_primary_10_1016_j_envres_2024_119056 crossref_primary_10_1016_j_csbj_2023_10_016 crossref_primary_10_1016_j_envint_2024_108946 crossref_primary_10_1038_s41598_023_49194_y crossref_primary_10_1016_j_microb_2025_100282 crossref_primary_10_1016_j_envint_2024_109239 crossref_primary_10_1016_j_envint_2024_109238 crossref_primary_10_1021_acs_est_3c07761 crossref_primary_10_1099_mgen_0_001182 crossref_primary_10_1128_mra_00440_24 crossref_primary_10_3389_fgene_2025_1460508 crossref_primary_10_1128_msystems_01372_24 crossref_primary_10_1016_j_ijheh_2024_114423 crossref_primary_10_1021_acs_est_4c10879 crossref_primary_10_1016_j_ebiom_2025_105630 crossref_primary_10_1016_j_jhin_2023_09_013 crossref_primary_10_1016_j_csbj_2023_09_043 crossref_primary_10_3390_microorganisms12112227 crossref_primary_10_3389_fmicb_2023_1138751 crossref_primary_10_1038_s41467_024_54237_7 crossref_primary_10_1371_journal_pone_0301642 crossref_primary_10_1093_nar_gkad317 crossref_primary_10_3389_fcimb_2023_1180194 crossref_primary_10_3390_foods13111766 crossref_primary_10_1101_gr_279226_124 crossref_primary_10_1128_msystems_00795_23 crossref_primary_10_1128_msphere_00209_24 crossref_primary_10_1016_j_cej_2024_158144 crossref_primary_10_1021_acs_est_4c02497 crossref_primary_10_1111_ele_70064 crossref_primary_10_3390_life14121691 crossref_primary_10_1016_j_jhazmat_2024_135675 crossref_primary_10_1021_acs_est_3c07974 crossref_primary_10_1038_s41598_025_90414_4 crossref_primary_10_1099_acmi_0_000820_v4 crossref_primary_10_1016_j_micpath_2025_107344 crossref_primary_10_1038_s41598_024_59148_7 crossref_primary_10_1002_imt2_70001 crossref_primary_10_1016_j_heliyon_2024_e38723 crossref_primary_10_1093_nar_gkae891 crossref_primary_10_1186_s42523_024_00364_x crossref_primary_10_1128_spectrum_01101_23 crossref_primary_10_1038_s41467_024_45638_9 crossref_primary_10_1038_s41467_024_49851_4 crossref_primary_10_1016_j_scitotenv_2024_173554 crossref_primary_10_1186_s42523_023_00274_4 crossref_primary_10_1016_j_scitotenv_2024_171530 crossref_primary_10_1016_j_watres_2024_121289 crossref_primary_10_1093_nar_gkad326 crossref_primary_10_1016_j_heliyon_2024_e26723 crossref_primary_10_1089_mdr_2024_0144 crossref_primary_10_1016_j_jhazmat_2024_137046 crossref_primary_10_3390_antibiotics14040329 crossref_primary_10_1186_s40793_024_00658_2 crossref_primary_10_3389_fmicb_2025_1527546 crossref_primary_10_1186_s40168_023_01679_8 crossref_primary_10_1155_2024_6239250 crossref_primary_10_3389_fmicb_2024_1392333 crossref_primary_10_1038_s41598_024_69275_w crossref_primary_10_3390_antibiotics13080762 crossref_primary_10_1186_s12864_023_09855_8 crossref_primary_10_1186_s40168_024_01807_y crossref_primary_10_1016_j_foodres_2024_115299 crossref_primary_10_1021_acsenvironau_4c00071 crossref_primary_10_1038_s41522_024_00574_w crossref_primary_10_1186_s12879_024_10056_1 crossref_primary_10_3389_fmicb_2024_1415723 crossref_primary_10_1038_s43247_025_02139_x crossref_primary_10_3390_microorganisms12122476 crossref_primary_10_1038_s41564_024_01705_x crossref_primary_10_1186_s12864_024_10736_x crossref_primary_10_1016_j_envpol_2024_124598 crossref_primary_10_1016_j_jhazmat_2024_135730 crossref_primary_10_1016_j_aquaculture_2025_742379 crossref_primary_10_1111_1462_2920_16681 crossref_primary_10_1016_j_rvsc_2024_105396 crossref_primary_10_1093_jac_dkad058 crossref_primary_10_3390_microorganisms12030494 crossref_primary_10_3390_microorganisms11122872 crossref_primary_10_1016_j_envpol_2024_124482 crossref_primary_10_1186_s12864_023_09945_7 crossref_primary_10_1016_j_micpath_2025_107415 crossref_primary_10_1016_j_jenvman_2023_119303 crossref_primary_10_1016_j_jenvman_2023_119144 crossref_primary_10_1021_acsagscitech_4c00159 crossref_primary_10_1038_s41467_024_49742_8 crossref_primary_10_1128_mra_00546_24 crossref_primary_10_1016_j_heliyon_2024_e33823 crossref_primary_10_1016_j_jhazmat_2025_137127 crossref_primary_10_1093_jambio_lxaf048 |
Cites_doi | 10.1038/nbt.3988 10.1093/nar/gkj014 10.1093/nar/gkt1223 10.1016/j.cell.2021.01.029 10.1371/journal.pone.0223680 10.1038/ismej.2016.155 10.1111/mmi.14670 10.1128/mmbr.00016-10 10.1111/mmi.12885 10.1016/0006-291x(60)90081-4 10.15252/msb.20209880 10.1128/CMR.00088-17 10.1126/sciadv.aau9124 10.1073/pnas.2008731118 10.1093/nar/gkw975 10.1093/nar/gkab1111 10.1016/j.chom.2019.10.022 10.3389/fcimb.2017.00007 10.1038/s41564-020-0777-y 10.1038/hdy.2010.24 10.1038/s41598-020-59938-9 10.1038/s41467-021-22757-1 10.1093/nar/gkl842 10.1038/nmeth.3176 10.3389/fmicb.2019.01916 10.1016/j.watres.2020.116592 10.3389/fmicb.2020.00483 10.1016/j.plasmid.2017.03.002 10.1128/AEM.01001-19 10.1093/femsec/fiy079 10.1016/bs.aivir.2018.09.003 10.1006/jmbi.2001.4513 10.1128/mBio.02060-21 10.1007/s12275-020-9309-y 10.1186/s40168-017-0387-y 10.1093/nar/gky1123 10.1128/microbiolspec.MDNA3-0062-2014 10.1093/bioinformatics/bty053 10.1128/JB.182.6.1659-1670.2000 10.1186/s40168-019-0703-9 10.1093/nar/gkx1321 10.1111/1574-6976.12067 10.1186/s40168-019-0663-0 10.1128/MMBR.63.3.507-522.1999 10.1093/nar/gkv1248 10.3389/fmicb.2020.01376 10.1186/1471-2105-11-119 10.1093/nar/gkab064 10.1128/microbiolspec.MDNA3-0019-2014 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Brown et al. Copyright American Society for Microbiology Sep 2022 Copyright © 2022 Brown et al. 2022 Brown et al. |
Copyright_xml | – notice: Copyright © 2022 Brown et al. – notice: Copyright American Society for Microbiology Sep 2022 – notice: Copyright © 2022 Brown et al. 2022 Brown et al. |
DBID | AAYXX CITATION 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
DOI | 10.1128/aem.00991-22 |
DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology |
EISSN | 1098-5336 |
Editor | Nojiri, Hideaki |
Editor_xml | – sequence: 1 givenname: Hideaki surname: Nojiri fullname: Nojiri, Hideaki |
ExternalDocumentID | PMC9499024 00991-22 10_1128_aem_00991_22 |
GrantInformation_xml | – fundername: U.S. Department of Agriculture (USDA) grantid: 2017-68003-26498 funderid: https://doi.org/10.13039/100000199 – fundername: National Science Foundation (NSF) grantid: 1545756 funderid: https://doi.org/10.13039/100000001 – fundername: Water Research Foundation (WRF) grantid: 4961 funderid: https://doi.org/10.13039/100005612 – fundername: National Science Foundation (NSF) grantid: 2004751 funderid: https://doi.org/10.13039/100000001 – fundername: National Science Foundation (NSF) grantid: 2125798 funderid: https://doi.org/10.13039/100000001 – fundername: ; grantid: 2125798 – fundername: ; grantid: 2017-68003-26498 – fundername: ; grantid: 1545756 – fundername: ; grantid: 2004751 – fundername: ; grantid: 4961 |
GroupedDBID | --- -~X 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 85S AAGFI AAYXX AAZTW ABOGM ABPPZ ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFRAH AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CS3 D0L DIK E.- E3Z EBS F5P GX1 H13 HYE HZ~ K-O KQ8 L7B O9- P2P PQQKQ RHI RNS RPM RSF RXW TAE TN5 TR2 TWZ UHB W8F WH7 WOQ X6Y ~02 ~KM AAPBV ABFLS ABPTK ABRJW PQEST RHF TAF UCJ ZA5 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-a423t-d672d9b28cd91c9003c2ab4c0c1927d28deb10c0d95a31f7cb504de24ff6b3973 |
ISSN | 0099-2240 1098-5336 |
IngestDate | Thu Aug 21 18:39:48 EDT 2025 Fri Jul 11 07:40:21 EDT 2025 Mon Jun 30 10:23:57 EDT 2025 Tue Sep 27 18:21:51 EDT 2022 Thu Apr 24 22:58:40 EDT 2025 Tue Jul 01 04:29:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | integrative elements insertion sequence antibiotic resistance metagenomics bacteriophages mobile genetic elements transposons plasmids mobilome |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a423t-d672d9b28cd91c9003c2ab4c0c1927d28deb10c0d95a31f7cb504de24ff6b3973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0002-3191-6244 0000-0001-5171-0211 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9499024 |
PMID | 36036594 |
PQID | 2717872880 |
PQPubID | 42251 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9499024 proquest_miscellaneous_2707874425 proquest_journals_2717872880 asm2_journals_10_1128_aem_00991_22 crossref_primary_10_1128_aem_00991_22 crossref_citationtrail_10_1128_aem_00991_22 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220922 |
PublicationDateYYYYMMDD | 2022-09-22 |
PublicationDate_xml | – month: 09 year: 2022 text: 20220922 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | 1752 N St., N.W., Washington, DC |
PublicationPlace_xml | – name: 1752 N St., N.W., Washington, DC – name: Washington |
PublicationTitle | Applied and environmental microbiology |
PublicationTitleAbbrev | Appl Environ Microbiol |
PublicationYear | 2022 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 Leplae R (e_1_3_3_24_2) 2009; 38 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 Alcock BP (e_1_3_3_16_2) 2020; 48 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 Chandler M (e_1_3_3_49_2) 2015 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 Hui, W, Zhang, W, Kwok, L-Y, Zhang, H, Kong, J, Sun, T (B41) 2019; 85 Smyshlyaev, G, Bateman, A, Barabas, O (B38) 2021; 17 Finn, RD, Bateman, A, Clements, J, Coggill, P, Eberhardt, RY, Eddy, SR, Heger, A, Hetherington, K, Holm, L, Mistry, J, Sonnhammer, ELL, Tate, J, Punta, M (B54) 2014; 40 Siguier, P, Perochon, J, Lestrade, L, Mahillon, J, Chandler, M (B19) 2006; 34 Mustard, JA, Little, JW (B36) 2000; 182 Davies, J (B2) 1996 Slizovskiy, IB, Mukherjee, K, Dean, CJ, Boucher, C, Noyes, NR (B10) 2020; 11 Nakaya, R, Nakamura, A, Murata, Y (B4) 1960; 3 Liu, M, Li, X, Xie, Y, Bi, D, Sun, J, Li, J, Tai, C, Deng, Z, Ou, HY (B11) 2019; 47 Pfeifer, E, Moura De Sousa, JA, Touchon, M, Rocha, EPC (B34) 2021; 49 Krawczyk, PS, Lipinski, L, Dziembowski, A (B12) 2018; 46 Partridge, SR, Kwong, SM, Firth, N, Jensen, SO (B39) 2018; 31 Ellabaan, MMH, Munck, C, Porse, A, Imamovic, L, Sommer, MOA (B25) 2021; 12 Huerta-Cepas, J, Szklarczyk, D, Forslund, K, Cook, H, Heller, D, Walter, MC, Rattei, T, Mende, DR, Sunagawa, S, Kuhn, M, Jensen, LJ, von Mering, C, Bork, P (B53) 2016; 44 Li, L-G, Xia, Y, Zhang, T (B26) 2017; 11 Oh, M, Pruden, A, Chen, C, Heath, LS, Xia, K, Zhang, L (B8) 2018; 94 Orlek, A, Phan, H, Sheppard, AE, Doumith, M, Ellington, M, Peto, T, Crook, D, Walker, AS, Woodford, N, Anjum, MF, Stoesser, N (B40) 2017; 91 Pärnänen, KMM, Narciso-da-Rocha, C, Kneis, D, Berendonk, TU, Cacace, D, Do, TT, Elpers, C, Fatta-Kassinos, D, Henriques, I, Jaeger, T, Karkman, A, Martinez, JL, Michael, SG, Michael-Kordatou, I, O'Sullivan, K, Rodriguez-Mozaz, S, Schwartz, T, Sheng, H, Sørum, H, Stedtfeld, RD, Tiedje, JM, Giustina, SVD, Walsh, F, Vaz-Moreira, I, Virta, M, Manaia, CM (B7) 2019; 5 Calderón-Franco, D, van Loosdrecht, MCM, Abeel, T, Weissbrodt, DG (B14) 2021; 189 Buchfink, B, Xie, C, Huson, DH (B50) 2015; 12 B3 Yin, X, Jiang, XT, Chai, B, Li, L, Yang, Y, Cole, JR, Tiedje, JM, Zhang, T (B16) 2018; 34 Chandler, M, Gellert, M, Lambowitz, AM, Rice, PA, Sandmeyer, SB (B48) 2015 B6 Escudero, JA, Loot, C, Nivina, A, Mazel, D (B28) 2015; 3 Siguier, P, Gourbeyre, E, Chandler, M (B27) 2014; 38 Che, Y, Yang, Y, Xu, X, Brinda, K, Polz, MF, Hanage, WP, Zhang, T (B47) 2021; 118 Craig, NL (B29) 2015 Chen, SH, Byrne, RT, Wood, EA, Cox, MM (B43) 2015; 95 Yoo, K, Yoo, H, Lee, J, Choi, EJ, Park, J (B32) 2020; 58 Ross, K, Varani, AM, Snesrud, E, Huang, H, Alvarenga, DO, Zhang, J, Wu, C, McGann, P, Chandler, M (B46) 2021; 12 Schmartz, GP, Hartung, A, Hirsch, P, Kern, F, Fehlmann, T, Müller, R, Keller, A (B45) 2022; 50 Rankin, DJ, Rocha, EPC, Brown, SP (B1) 2011; 106 Lanza, VF, Baquero, F, Martínez, JL, Ramos-Ruíz, R, González-Zorn, B, Andremont, A, Sánchez-Valenzuela, A, Ehrlich, SD, Kennedy, S, Ruppé, E, van Schaik, W, Willems, RJ, de la Cruz, F, Coque, TM (B33) 2018; 6 Pruitt, KD, Tatusova, T, Maglott, DR (B22) 2007; 35 Hyatt, D, Chen, GL, LoCascio, PF, Land, ML, Larimer, FW, Hauser, LJ (B49) 2010; 11 Liebert, CA, Hall, RM, Summers, AO (B5) 1999; 63 Millman, A, Melamed, S, Amitai, G, Sorek, R (B42) 2020; 5 Durrant, MG, Li, MM, Siranosian, BA, Montgomery, SB, Bhatt, AS (B24) 2020; 27 Steinegger, M, Söding, J (B51) 2017; 35 Lu, Y, Zeng, J, Wu, B, Shunmei, E, Wang, L, Cai, R, Zhang, N, Li, Y, Huang, X, Huang, B, Chen, C (B35) 2017; 7 Leplae, R, Lima-Mendez, G, Toussaint, A (B23) 2009; 38 Chen, J, Li, J, Zhang, H, Shi, W, Liu, Y (B31) 2019; 10 Alcock, BP, Raphenya, AR, Lau, TTY, Tsang, KK, Bouchard, M, Edalatmand, A, Huynh, W, Nguyen, A-LV, Cheng, AA, Liu, S, Min, SY, Miroshnichenko, A, Tran, H-K, Werfalli, RE, Nasir, JA, Oloni, M, Speicher, DJ, Florescu, A, Singh, B, Faltyn, M, Hernandez-Koutoucheva, A, Sharma, AN, Bordeleau, E, Pawlowski, AC, Zubyk, HL, Dooley, D, Griffiths, E, Maguire, F, Winsor, GL, Beiko, RG, Brinkman, FSL, Hsiao, WWL, Domselaar, GV, McArthur, AG (B15) 2020; 48 Todd, AE, Orengo, CA, Thornton, JM (B52) 2001; 307 Camarillo-Guerrero, LF, Almeida, A, Rangel-Pineros, G, Finn, RD, Lawley, TD (B18) 2021; 184 Grazziotin, AL, Koonin, EV, Kristensen, DM (B17) 2017; 45 Arango-Argoty, GA, Dai, D, Pruden, A, Vikesland, P, Heath, LS, Zhang, L (B9) 2019; 7 Veress, A, Nagy, T, Wilk, T, Kömüves, J, Olasz, F, Kiss, J (B30) 2020; 10 Douarre, PE, Mallet, L, Radomski, N, Felten, A, Mistou, MY (B21) 2020; 11 Cahill, J, Young, R (B37) 2019; 103 Jiang, X, Hall, AB, Xavier, RJ, Alm, EJ (B20) 2019; 14 Costa, TRD, Harb, L, Khara, P, Zeng, L, Hu, B, Christie, PJ (B44) 2021; 115 Che, Y, Xia, Y, Liu, L, Li, AD, Yang, Y, Zhang, T (B13) 2019; 7 |
References_xml | – ident: e_1_3_3_52_2 doi: 10.1038/nbt.3988 – ident: e_1_3_3_20_2 doi: 10.1093/nar/gkj014 – ident: e_1_3_3_55_2 doi: 10.1093/nar/gkt1223 – ident: e_1_3_3_19_2 doi: 10.1016/j.cell.2021.01.029 – ident: e_1_3_3_21_2 doi: 10.1371/journal.pone.0223680 – ident: e_1_3_3_27_2 doi: 10.1038/ismej.2016.155 – ident: e_1_3_3_7_2 – ident: e_1_3_3_45_2 doi: 10.1111/mmi.14670 – ident: e_1_3_3_3_2 doi: 10.1128/mmbr.00016-10 – volume-title: Mobile DNA III. year: 2015 ident: e_1_3_3_49_2 – ident: e_1_3_3_44_2 doi: 10.1111/mmi.12885 – ident: e_1_3_3_5_2 doi: 10.1016/0006-291x(60)90081-4 – ident: e_1_3_3_39_2 doi: 10.15252/msb.20209880 – ident: e_1_3_3_40_2 doi: 10.1128/CMR.00088-17 – ident: e_1_3_3_8_2 doi: 10.1126/sciadv.aau9124 – ident: e_1_3_3_48_2 doi: 10.1073/pnas.2008731118 – ident: e_1_3_3_18_2 doi: 10.1093/nar/gkw975 – ident: e_1_3_3_46_2 doi: 10.1093/nar/gkab1111 – ident: e_1_3_3_25_2 doi: 10.1016/j.chom.2019.10.022 – ident: e_1_3_3_36_2 doi: 10.3389/fcimb.2017.00007 – ident: e_1_3_3_43_2 doi: 10.1038/s41564-020-0777-y – ident: e_1_3_3_2_2 doi: 10.1038/hdy.2010.24 – ident: e_1_3_3_31_2 doi: 10.1038/s41598-020-59938-9 – ident: e_1_3_3_26_2 doi: 10.1038/s41467-021-22757-1 – volume: 48 start-page: D517 year: 2020 ident: e_1_3_3_16_2 article-title: CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database publication-title: Nucleic Acids Res – ident: e_1_3_3_23_2 doi: 10.1093/nar/gkl842 – ident: e_1_3_3_51_2 doi: 10.1038/nmeth.3176 – ident: e_1_3_3_32_2 doi: 10.3389/fmicb.2019.01916 – ident: e_1_3_3_15_2 doi: 10.1016/j.watres.2020.116592 – ident: e_1_3_3_22_2 doi: 10.3389/fmicb.2020.00483 – volume: 38 year: 2009 ident: e_1_3_3_24_2 article-title: ACLAME: a classification of mobile genetic elements, update 2010 publication-title: Nucleic Acids Res – ident: e_1_3_3_41_2 doi: 10.1016/j.plasmid.2017.03.002 – ident: e_1_3_3_42_2 doi: 10.1128/AEM.01001-19 – ident: e_1_3_3_9_2 doi: 10.1093/femsec/fiy079 – ident: e_1_3_3_38_2 doi: 10.1016/bs.aivir.2018.09.003 – ident: e_1_3_3_53_2 doi: 10.1006/jmbi.2001.4513 – ident: e_1_3_3_47_2 doi: 10.1128/mBio.02060-21 – ident: e_1_3_3_4_2 – ident: e_1_3_3_33_2 doi: 10.1007/s12275-020-9309-y – ident: e_1_3_3_34_2 doi: 10.1186/s40168-017-0387-y – ident: e_1_3_3_12_2 doi: 10.1093/nar/gky1123 – ident: e_1_3_3_30_2 doi: 10.1128/microbiolspec.MDNA3-0062-2014 – ident: e_1_3_3_17_2 doi: 10.1093/bioinformatics/bty053 – ident: e_1_3_3_37_2 doi: 10.1128/JB.182.6.1659-1670.2000 – ident: e_1_3_3_10_2 doi: 10.1186/s40168-019-0703-9 – ident: e_1_3_3_13_2 doi: 10.1093/nar/gkx1321 – ident: e_1_3_3_28_2 doi: 10.1111/1574-6976.12067 – ident: e_1_3_3_14_2 doi: 10.1186/s40168-019-0663-0 – ident: e_1_3_3_6_2 doi: 10.1128/MMBR.63.3.507-522.1999 – ident: e_1_3_3_54_2 doi: 10.1093/nar/gkv1248 – ident: e_1_3_3_11_2 doi: 10.3389/fmicb.2020.01376 – ident: e_1_3_3_50_2 doi: 10.1186/1471-2105-11-119 – ident: e_1_3_3_35_2 doi: 10.1093/nar/gkab064 – ident: e_1_3_3_29_2 doi: 10.1128/microbiolspec.MDNA3-0019-2014 – year: 2015 ident: B48 publication-title: Mobile DNA III. ;Wiley – volume: 17 year: 2021 ident: B38 article-title: Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes publication-title: Mol Syst Biol doi: 10.15252/msb.20209880 – volume: 12 start-page: 59 year: 2015 end-page: 60 ident: B50 article-title: Fast and sensitive protein alignment using DIAMOND publication-title: Nat Methods doi: 10.1038/nmeth.3176 – volume: 7 start-page: 7 year: 2017 ident: B35 article-title: Quorum sensing N-acyl homoserine lactones-SdiA suppresses Escherichia coli-Pseudomonas aeruginosa conjugation through inhibiting traI expression publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2017.00007 – ident: B3 article-title: General Assembly of the United Nations . 2016 . High-level meeting on antimicrobial resistance general assembly of the United Nations . https://www.un.org/pga/71/event-latest/high-level-meeting-on-antimicrobial-resistance/ . Retrieved 26 October 2021 . – volume: 49 start-page: 2655 year: 2021 end-page: 2673 ident: B34 article-title: Bacteria have numerous distinctive groups of phage-plasmids with conserved phage and variable plasmid gene repertoires publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab064 – volume: 10 start-page: 1916 year: 2019 ident: B31 article-title: Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in northern China publication-title: Front Microbiol doi: 10.3389/fmicb.2019.01916 – volume: 106 start-page: 1 year: 2011 end-page: 10 ident: B1 article-title: What traits are carried on mobile genetic elements, and why publication-title: Heredity (Edinb) doi: 10.1038/hdy.2010.24 – volume: 94 year: 2018 ident: B8 article-title: Meta compare: a computational pipeline for prioritizing environmental resistome risk publication-title: FEMS Microbiol Ecol doi: 10.1093/femsec/fiy079 – volume: 46 year: 2018 ident: B12 article-title: PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1321 – volume: 11 start-page: 1376 year: 2020 ident: B10 article-title: Mobilization of antibiotic resistance: are current approaches for colocalizing resistomes and mobilomes useful? publication-title: Front Microbiol doi: 10.3389/fmicb.2020.01376 – volume: 14 year: 2019 ident: B20 article-title: Comprehensive analysis of chromosomal mobile genetic elements in the gut microbiome reveals phylum-level niche-adaptive gene pools publication-title: PLoS One doi: 10.1371/journal.pone.0223680 – volume: 115 start-page: 436 year: 2021 end-page: 452 ident: B44 article-title: Type IV secretion systems: advances in structure, function, and activation publication-title: Mol Microbiol doi: 10.1111/mmi.14670 – volume: 44 start-page: D286 year: 2016 end-page: D293 ident: B53 article-title: eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1248 – volume: 85 year: 2019 ident: B41 article-title: A novel bacteriophage exclusion (BREX) system encoded by the pglX gene in Lactobacillus casei Zhang publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01001-19 – volume: 10 year: 2020 ident: B30 article-title: Abundance of mobile genetic elements in an Acinetobacter lwoffii strain isolated from Transylvanian honey sample publication-title: Sci Rep doi: 10.1038/s41598-020-59938-9 – volume: 45 start-page: D491 year: 2017 end-page: D498 ident: B17 article-title: Prokaryotic virus orthologous groups (pVOGs): a resource for comparative genomics and protein family annotation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw975 – volume: 3 start-page: 654 year: 1960 end-page: 659 ident: B4 article-title: Resistance transfer agents in Shigella publication-title: Biochem Biophys Res Commun doi: 10.1016/0006-291x(60)90081-4 – volume: 182 start-page: 1659 year: 2000 end-page: 1670 ident: B36 article-title: Analysis of Escherichia coli RecA interactions with LexA, λ CI, and UmuD by site-directed mutagenesis of recA publication-title: J Bacteriol doi: 10.1128/JB.182.6.1659-1670.2000 – volume: 5 start-page: 1608 year: 2020 end-page: 1615 ident: B42 article-title: Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems publication-title: Nat Microbiol doi: 10.1038/s41564-020-0777-y – volume: 12 start-page: 1 year: 2021 end-page: 10 ident: B25 article-title: Forecasting the dissemination of antibiotic resistance genes across bacterial genomes publication-title: Nat Commun doi: 10.1038/s41467-021-22757-1 – volume: 35 start-page: D61 year: 2007 end-page: D65 ident: B22 article-title: NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl842 – volume: 48 start-page: D517 year: 2020 end-page: D525 ident: B15 article-title: CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database publication-title: Nucleic Acids Res – volume: 91 start-page: 42 year: 2017 end-page: 52 ident: B40 article-title: Ordering the mob: insights into replicon and MOB typing schemes from analysis of a curated dataset of publicly available plasmids publication-title: Plasmid doi: 10.1016/j.plasmid.2017.03.002 – volume: 184 start-page: 1098 year: 2021 end-page: 1109.e9 ident: B18 article-title: Massive expansion of human gut bacteriophage diversity publication-title: Cell doi: 10.1016/j.cell.2021.01.029 – volume: 103 start-page: 33 year: 2019 end-page: 70 ident: B37 article-title: Phage lysis: multiple genes for multiple barriers publication-title: Adv Virus Res doi: 10.1016/bs.aivir.2018.09.003 – volume: 5 year: 2019 ident: B7 article-title: Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence publication-title: Sci Adv doi: 10.1126/sciadv.aau9124 – volume: 38 year: 2009 ident: B23 article-title: ACLAME: a classification of mobile genetic elements, update 2010 publication-title: Nucleic Acids Res – volume: 31 year: 2018 ident: B39 article-title: Mobile genetic elements associated with antimicrobial resistance publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00088-17 – volume: 58 start-page: 123 year: 2020 end-page: 130 ident: B32 article-title: Exploring the antibiotic resistome in activated sludge and anaerobic digestion sludge in an urban wastewater treatment plant via metagenomic analysis publication-title: J Microbiol doi: 10.1007/s12275-020-9309-y – volume: 6 start-page: 11 year: 2018 end-page: 14 ident: B33 article-title: In-depth resistome analysis by targeted metagenomics publication-title: Microbiome doi: 10.1186/s40168-017-0387-y – volume: 50 start-page: D273 year: 2022 end-page: D278 ident: B45 article-title: PLSDB: advancing a comprehensive database of bacterial plasmids publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab1111 – volume: 40 year: 2014 ident: B54 article-title: Pfam: the protein families database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1223 – start-page: 3 year: 2015 end-page: 39 ident: B29 article-title: A moveable feast: an introduction to mobile DNA publication-title: Mobile DNA III. ;Wiley – volume: 7 year: 2019 ident: B9 article-title: NanoARG: a web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomes publication-title: Microbiome doi: 10.1186/s40168-019-0703-9 – volume: 118 year: 2021 ident: B47 article-title: Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes publication-title: Proc Natl Acad Sci USA – volume: 34 start-page: 2263 year: 2018 end-page: 2270 ident: B16 article-title: ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty053 – volume: 95 start-page: 754 year: 2015 end-page: 768 ident: B43 article-title: Escherichia coli radD(yejH) gene: a novel function involved in radiation resistance and double-strand break repair publication-title: Mol Microbiol doi: 10.1111/mmi.12885 – volume: 189 start-page: 116592 year: 2021 ident: B14 article-title: Free-floating extracellular DNA: systematic profiling of mobile genetic elements and antibiotic resistance from wastewater publication-title: Water Res doi: 10.1016/j.watres.2020.116592 – ident: B6 article-title: CDC . 2019 . Biggest threats and data. Antibiotic/antimicrobial resistance . CDC . https://www.cdc.gov/drugresistance/biggest-threats.html . Retrieved 26 October 2021 . – volume: 27 start-page: 140 year: 2020 end-page: 153.e9 ident: B24 article-title: A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.10.022 – volume: 11 start-page: 651 year: 2017 end-page: 662 ident: B26 article-title: Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection publication-title: ISME J doi: 10.1038/ismej.2016.155 – volume: 38 start-page: 865 year: 2014 end-page: 891 ident: B27 article-title: Bacterial insertion sequences: their genomic impact and diversity publication-title: FEMS Microbiol Rev doi: 10.1111/1574-6976.12067 – volume: 47 start-page: D660 year: 2019 end-page: D665 ident: B11 article-title: ICEberg 2.0: an updated database of bacterial integrative and conjugative elements publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1123 – volume: 35 start-page: 1026 year: 2017 end-page: 1028 ident: B51 article-title: MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets publication-title: Nat Biotechnol doi: 10.1038/nbt.3988 – volume: 34 year: 2006 ident: B19 article-title: ISfinder: the reference centre for bacterial insertion sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj014 – volume: 11 start-page: 483 year: 2020 ident: B21 article-title: Analysis of COMPASS, a new comprehensive plasmid database revealed prevalence of multireplicon and extensive diversity of IncF plasmids publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00483 – volume: 12 year: 2021 ident: B46 article-title: TnCentral: a prokaryotic transposable element database and web portal for transposon analysis publication-title: mBio doi: 10.1128/mBio.02060-21 – volume: 63 start-page: 507 year: 1999 end-page: 522 ident: B5 article-title: Transposon Tn 21, flagship of the floating genome publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.63.3.507-522.1999 – volume: 11 start-page: 119 year: 2010 ident: B49 article-title: Prodigal: prokaryotic gene recognition and translation initiation site identification publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-119 – volume: 7 year: 2019 ident: B13 article-title: Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing publication-title: Microbiome doi: 10.1186/s40168-019-0663-0 – volume: 307 start-page: 1113 year: 2001 end-page: 1143 ident: B52 article-title: Evolution of function in protein superfamilies, from a structural perspective publication-title: J Mol Biol doi: 10.1006/jmbi.2001.4513 – year: 1996 ident: B2 article-title: Origins and evolution of antibiotic resistance publication-title: Microbiologia doi: 10.1128/mmbr.00016-10 – volume: 3 year: 2015 ident: B28 article-title: The integron: adaptation on demand publication-title: Microbiol Spectr doi: 10.1128/microbiolspec.MDNA3-0019-2014 |
SSID | ssj0004068 |
Score | 2.7065215 |
Snippet | The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance,... Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are... |
SourceID | pubmedcentral proquest asm2 crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | Annotations Evolutionary and Genomic Microbiology Functionals Genes Homology Life cycles Microbial Genetics Phages Plasmids Protein families Proteins Recombination |
Title | mobileOG-db: a Manually Curated Database of Protein Families Mediating the Life Cycle of Bacterial Mobile Genetic Elements |
URI | https://journals.asm.org/doi/10.1128/aem.00991-22 https://www.proquest.com/docview/2717872880 https://www.proquest.com/docview/2707874425 https://pubmed.ncbi.nlm.nih.gov/PMC9499024 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIgQcEAQQgYIWBKfIrb1x4g03qBIqFNpLIuVm7cvCErFR4xzaX8DPZma9aztqKxUuVmSPdq3Mt57HznxLyEc5HU9ZBpEq6F4EcRzKgHMzCUYa7E3EJgnLLNvn2eR0FX9fj9e93p9O1dKukkfq6sa-kv_RKtwDvWKX7D9othkUbsBv0C9cQcNwvZOON6WERX3-LdCyblr-IZBhFBmLd0gBoUGplUBDZUvdkJIhL-qzLiBAtps0ovL9Uos8M8OTS1VXG36tWZyxc9dOYvmpkdx1Vtebb7terXdlMQnf6ZzDxpS8JXq6Fvnbo64vhotW6UgF3tTutlnxQtuag7nQeZMRqkpXnoOirp_CZS8g8MUNnU5CM0I-U3A5HR32DffcV5rzLhp555tr0MuN6kGvGwSGTQ7CbI6slJ97j3f77DydrxaLdDlbL--R-wwCDubzPr7DNnRNle7NfAsF48fdscGui-2G7fs4beCyX3bb8WOWT8kTF4DQLzWanpGeKfrkQX0k6WWfPPSd6ts-edwhq3xOrjpo-0wF9VijDmvUY42WGXVYox5rtMEaBaxRxBq1WEPhBmu0xhp1WKMeay_Iaj5bnpwG7uSOQIB7XgUa1rieSsaVnkYKk-WKCRmrUEFAkWjGNbgIoQr1dCxGUZYoOQ5jbVicZRMJHvLoJTkoysK8IpRxE8pYciX0KB7LkUwSHDWR0pgonOgB-YB_eeqW5Ta1US3jKegltXpJGRuQoVdIqhz3PR7B8usW6U-N9O-a8-UWuUOv23Z6lkRgAxmYxQF53zyGbzZuxInClDuUAcc8icFcDkiyh4lmPmR9339S5D8t-zuySYFj_foOo78hj9o1d0gOqoudeQs-dCXfWXj_BcxZyOU |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=mobileOG-db%3A+a+Manually+Curated+Database+of+Protein+Families+Mediating+the+Life+Cycle+of+Bacterial+Mobile+Genetic+Elements&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Brown%2C+Connor+L&rft.au=Mullet%2C+James&rft.au=Hindi%2C+Fadi&rft.au=Stoll%2C+James+E&rft.date=2022-09-22&rft.issn=1098-5336&rft.eissn=1098-5336&rft.volume=88&rft.issue=18&rft.spage=e0099122&rft_id=info:doi/10.1128%2Faem.00991-22&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |