mobileOG-db: a Manually Curated Database of Protein Families Mediating the Life Cycle of Bacterial Mobile Genetic Elements

The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and co...

Full description

Saved in:
Bibliographic Details
Published inApplied and environmental microbiology Vol. 88; no. 18; pp. 1 - 10
Main Authors Brown, Connor L., Mullet, James, Hindi, Fadi, Stoll, James E., Gupta, Suraj, Choi, Minyoung, Keenum, Ishi, Vikesland, Peter, Pruden, Amy, Zhang, Liqing
Format Journal Article
LanguageEnglish
Published 1752 N St., N.W., Washington, DC American Society for Microbiology 22.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the “life cycle” (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome. IMPORTANCE The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. To bridge this gap, we systematically analyzed 10,776,849 proteins derived from eight databases of MGEs to identify 6,140 MGE protein families that can serve as candidate hallmarks, i.e., proteins that can be used as “signatures” of MGEs to aid annotation. The resulting resource, mobileOG-db, provides a multilevel classification scheme that encompasses plasmid, phage, integrative, and transposable element protein families categorized into five major mobileOG categories and more than 50 minor categories. mobileOG-db thus provides a rich resource for simple and intuitive element annotation that can be integrated seamlessly into existing MGE detection pipelines and colocalization analyses.
AbstractList Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the "life cycle" (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome. IMPORTANCE The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. To bridge this gap, we systematically analyzed 10,776,849 proteins derived from eight databases of MGEs to identify 6,140 MGE protein families that can serve as candidate hallmarks, i.e., proteins that can be used as "signatures" of MGEs to aid annotation. The resulting resource, mobileOG-db, provides a multilevel classification scheme that encompasses plasmid, phage, integrative, and transposable element protein families categorized into five major mobileOG categories and more than 50 minor categories. mobileOG-db thus provides a rich resource for simple and intuitive element annotation that can be integrated seamlessly into existing MGE detection pipelines and colocalization analyses.Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the "life cycle" (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome. IMPORTANCE The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. To bridge this gap, we systematically analyzed 10,776,849 proteins derived from eight databases of MGEs to identify 6,140 MGE protein families that can serve as candidate hallmarks, i.e., proteins that can be used as "signatures" of MGEs to aid annotation. The resulting resource, mobileOG-db, provides a multilevel classification scheme that encompasses plasmid, phage, integrative, and transposable element protein families categorized into five major mobileOG categories and more than 50 minor categories. mobileOG-db thus provides a rich resource for simple and intuitive element annotation that can be integrated seamlessly into existing MGE detection pipelines and colocalization analyses.
Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the “life cycle” (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome. IMPORTANCE The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. To bridge this gap, we systematically analyzed 10,776,849 proteins derived from eight databases of MGEs to identify 6,140 MGE protein families that can serve as candidate hallmarks, i.e., proteins that can be used as “signatures” of MGEs to aid annotation. The resulting resource, mobileOG-db, provides a multilevel classification scheme that encompasses plasmid, phage, integrative, and transposable element protein families categorized into five major mobileOG categories and more than 50 minor categories. mobileOG-db thus provides a rich resource for simple and intuitive element annotation that can be integrated seamlessly into existing MGE detection pipelines and colocalization analyses.
Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the "life cycle" (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome.
Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the “life cycle” (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome. IMPORTANCE The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. To bridge this gap, we systematically analyzed 10,776,849 proteins derived from eight databases of MGEs to identify 6,140 MGE protein families that can serve as candidate hallmarks, i.e., proteins that can be used as “signatures” of MGEs to aid annotation. The resulting resource, mobileOG-db, provides a multilevel classification scheme that encompasses plasmid, phage, integrative, and transposable element protein families categorized into five major mobileOG categories and more than 50 minor categories. mobileOG-db thus provides a rich resource for simple and intuitive element annotation that can be integrated seamlessly into existing MGE detection pipelines and colocalization analyses.
The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are often only transiently associated with the element. The presence of these accessory genes, which are often close homologs to primarily immobile genes, incur high rates of false positives and, therefore, limits the usability of these databases for MGE annotation. To overcome this limitation, we analyzed 10,776,849 protein sequences derived from eight MGE databases to compile a comprehensive set of 6,140 manually curated protein families that are linked to the “life cycle” (integration/excision, replication/recombination/repair, transfer, stability/transfer/defense, and phage-specific processes) of plasmids, phages, integrative, transposable, and conjugative elements. We overlay experimental information where available to create a tiered annotation scheme of high-quality annotations and annotations inferred exclusively through bioinformatic evidence. We additionally provide an MGE-class label for each entry (e.g., plasmid or integrative element), and assign to each entry a major and minor category. The resulting database, mobileOG-db (for mobile orthologous groups), comprises over 700,000 deduplicated sequences encompassing five major mobileOG categories and more than 50 minor categories, providing a structured language and interpretable basis for an array of MGE-centered analyses. mobileOG-db can be accessed at mobileogdb.flsi.cloud.vt.edu/, where users can select, refine, and analyze custom subsets of the dynamic mobilome. IMPORTANCE The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance, phenotypic or metabolic diversity, and the evolution of bacterial genera. Existing methods for MGE annotation pose high barriers of biological and computational expertise to properly harness. To bridge this gap, we systematically analyzed 10,776,849 proteins derived from eight databases of MGEs to identify 6,140 MGE protein families that can serve as candidate hallmarks, i.e., proteins that can be used as “signatures” of MGEs to aid annotation. The resulting resource, mobileOG-db, provides a multilevel classification scheme that encompasses plasmid, phage, integrative, and transposable element protein families categorized into five major mobileOG categories and more than 50 minor categories. mobileOG-db thus provides a rich resource for simple and intuitive element annotation that can be integrated seamlessly into existing MGE detection pipelines and colocalization analyses.
Author Hindi, Fadi
Gupta, Suraj
Pruden, Amy
Stoll, James E.
Vikesland, Peter
Keenum, Ishi
Brown, Connor L.
Choi, Minyoung
Zhang, Liqing
Mullet, James
Author_xml – sequence: 1
  givenname: Connor L.
  orcidid: 0000-0001-5171-0211
  surname: Brown
  fullname: Brown, Connor L.
  organization: Department of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
– sequence: 2
  givenname: James
  surname: Mullet
  fullname: Mullet, James
  organization: Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
– sequence: 3
  givenname: Fadi
  surname: Hindi
  fullname: Hindi, Fadi
  organization: Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
– sequence: 4
  givenname: James E.
  surname: Stoll
  fullname: Stoll, James E.
  organization: Fralin Life Science Institute, Blacksburg, Virginia, USA
– sequence: 5
  givenname: Suraj
  surname: Gupta
  fullname: Gupta, Suraj
  organization: Department of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
– sequence: 6
  givenname: Minyoung
  surname: Choi
  fullname: Choi, Minyoung
  organization: Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
– sequence: 7
  givenname: Ishi
  surname: Keenum
  fullname: Keenum, Ishi
  organization: Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
– sequence: 8
  givenname: Peter
  surname: Vikesland
  fullname: Vikesland, Peter
  organization: Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
– sequence: 9
  givenname: Amy
  orcidid: 0000-0002-3191-6244
  surname: Pruden
  fullname: Pruden, Amy
  organization: Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
– sequence: 10
  givenname: Liqing
  surname: Zhang
  fullname: Zhang, Liqing
  organization: Department of Computer Science, Virginia Tech, Blacksburg, Virginia, USA
BookMark eNp10d9rFDEQB_AgFXutvvkHBHxR6NYkm_0RHwQ921O4oz7oc5hNZtuU7KZussL1rzd3VxSLPgUmn8xk-J6QozGMSMhLzs45F-1bwOGcMaV4IcQTsuBMtUVVlvURWezKuSrZMTmJ8ZYxJlndPiPHZc3KulJyQe6H0DmPV6vCdu8o0A2MM3i_pct5goSWfoIEHUSkoadfp5DQjfQSBucdRrpB6yC58ZqmG6Rr1yNdbo3f449gEk4OPN3sR9AVjpicoRceBxxTfE6e9uAjvng4T8n3y4tvy8_F-mr1ZflhXYAUZSps3QirOtEaq7hRjJVGQCcNM1yJxorWYseZYVZVUPK-MV3FpEUh-77uStWUp-T9oe_d3A1oTZ49gdd3kxtg2uoATv99M7obfR1-aiWVYkLmBq8fGkzhx4wx6cFFg97DiGGOWjSsaRspRZXpq0f0NszTmNfLimcl2pZl9eagIA7ij-BM7xLVOVG9T1QLke3ZwZopxDhh__vj_-HiETcu5YjCbjXn__3oF7kZs4g
CitedBy_id crossref_primary_10_1186_s12864_024_10906_x
crossref_primary_10_1021_acs_est_3c03738
crossref_primary_10_1128_aem_02349_23
crossref_primary_10_1016_j_jgar_2024_07_009
crossref_primary_10_1016_j_crmicr_2025_100350
crossref_primary_10_1099_mgen_0_001306
crossref_primary_10_1016_j_micres_2025_128048
crossref_primary_10_1089_mdr_2024_0212
crossref_primary_10_1021_acs_est_3c07935
crossref_primary_10_1186_s12864_024_10921_y
crossref_primary_10_1016_j_ijantimicag_2025_107458
crossref_primary_10_1016_j_jhazmat_2023_133333
crossref_primary_10_1038_s41467_024_51617_x
crossref_primary_10_3390_biom15010086
crossref_primary_10_1016_j_genrep_2025_102198
crossref_primary_10_1128_aem_01725_24
crossref_primary_10_1038_s41467_025_57276_w
crossref_primary_10_1111_1758_2229_70032
crossref_primary_10_1128_mra_00866_24
crossref_primary_10_1093_femsec_fiae155
crossref_primary_10_3390_foods13010107
crossref_primary_10_3390_genes14091710
crossref_primary_10_1016_j_ygeno_2023_110579
crossref_primary_10_1038_s41598_024_51819_9
crossref_primary_10_1016_j_envint_2023_108268
crossref_primary_10_1016_j_watres_2024_122730
crossref_primary_10_1038_s41598_024_84870_7
crossref_primary_10_1016_j_nmni_2025_101576
crossref_primary_10_3390_ani14192833
crossref_primary_10_3390_biology13050339
crossref_primary_10_3389_fsybi_2024_1513580
crossref_primary_10_1099_ijsem_0_006369
crossref_primary_10_3390_ijms241210134
crossref_primary_10_1016_j_foodres_2024_114840
crossref_primary_10_1021_acsestwater_4c00790
crossref_primary_10_1111_1462_2920_70066
crossref_primary_10_3390_v16121903
crossref_primary_10_3390_microorganisms12081549
crossref_primary_10_1007_s00203_023_03746_y
crossref_primary_10_3389_fgene_2023_1219297
crossref_primary_10_3390_pathogens13090794
crossref_primary_10_3390_ijms252312930
crossref_primary_10_1016_j_biortech_2023_130267
crossref_primary_10_1016_j_scitotenv_2024_172995
crossref_primary_10_1038_s41598_024_64443_4
crossref_primary_10_1186_s12864_024_10110_x
crossref_primary_10_1264_jsme2_ME23105
crossref_primary_10_1021_acs_est_3c10491
crossref_primary_10_1016_j_ijmm_2024_151628
crossref_primary_10_3390_microorganisms12020250
crossref_primary_10_3390_microorganisms12050986
crossref_primary_10_1016_j_jhazmat_2025_137559
crossref_primary_10_1016_j_jgar_2023_11_014
crossref_primary_10_3390_antibiotics12071206
crossref_primary_10_3390_fermentation10010016
crossref_primary_10_1016_j_envres_2023_115866
crossref_primary_10_1016_j_scitotenv_2023_162031
crossref_primary_10_1093_lambio_ovad097
crossref_primary_10_1016_j_marpolbul_2024_116495
crossref_primary_10_1080_19490976_2024_2341635
crossref_primary_10_1093_jac_dkae460
crossref_primary_10_1021_acs_est_3c05905
crossref_primary_10_3390_foods13111773
crossref_primary_10_3390_microorganisms13030697
crossref_primary_10_3390_microorganisms12122662
crossref_primary_10_1016_j_cub_2025_01_003
crossref_primary_10_1016_j_envint_2025_109374
crossref_primary_10_1016_j_envres_2024_119056
crossref_primary_10_1016_j_csbj_2023_10_016
crossref_primary_10_1016_j_envint_2024_108946
crossref_primary_10_1038_s41598_023_49194_y
crossref_primary_10_1016_j_microb_2025_100282
crossref_primary_10_1016_j_envint_2024_109239
crossref_primary_10_1016_j_envint_2024_109238
crossref_primary_10_1021_acs_est_3c07761
crossref_primary_10_1099_mgen_0_001182
crossref_primary_10_1128_mra_00440_24
crossref_primary_10_3389_fgene_2025_1460508
crossref_primary_10_1128_msystems_01372_24
crossref_primary_10_1016_j_ijheh_2024_114423
crossref_primary_10_1021_acs_est_4c10879
crossref_primary_10_1016_j_ebiom_2025_105630
crossref_primary_10_1016_j_jhin_2023_09_013
crossref_primary_10_1016_j_csbj_2023_09_043
crossref_primary_10_3390_microorganisms12112227
crossref_primary_10_3389_fmicb_2023_1138751
crossref_primary_10_1038_s41467_024_54237_7
crossref_primary_10_1371_journal_pone_0301642
crossref_primary_10_1093_nar_gkad317
crossref_primary_10_3389_fcimb_2023_1180194
crossref_primary_10_3390_foods13111766
crossref_primary_10_1101_gr_279226_124
crossref_primary_10_1128_msystems_00795_23
crossref_primary_10_1128_msphere_00209_24
crossref_primary_10_1016_j_cej_2024_158144
crossref_primary_10_1021_acs_est_4c02497
crossref_primary_10_1111_ele_70064
crossref_primary_10_3390_life14121691
crossref_primary_10_1016_j_jhazmat_2024_135675
crossref_primary_10_1021_acs_est_3c07974
crossref_primary_10_1038_s41598_025_90414_4
crossref_primary_10_1099_acmi_0_000820_v4
crossref_primary_10_1016_j_micpath_2025_107344
crossref_primary_10_1038_s41598_024_59148_7
crossref_primary_10_1002_imt2_70001
crossref_primary_10_1016_j_heliyon_2024_e38723
crossref_primary_10_1093_nar_gkae891
crossref_primary_10_1186_s42523_024_00364_x
crossref_primary_10_1128_spectrum_01101_23
crossref_primary_10_1038_s41467_024_45638_9
crossref_primary_10_1038_s41467_024_49851_4
crossref_primary_10_1016_j_scitotenv_2024_173554
crossref_primary_10_1186_s42523_023_00274_4
crossref_primary_10_1016_j_scitotenv_2024_171530
crossref_primary_10_1016_j_watres_2024_121289
crossref_primary_10_1093_nar_gkad326
crossref_primary_10_1016_j_heliyon_2024_e26723
crossref_primary_10_1089_mdr_2024_0144
crossref_primary_10_1016_j_jhazmat_2024_137046
crossref_primary_10_3390_antibiotics14040329
crossref_primary_10_1186_s40793_024_00658_2
crossref_primary_10_3389_fmicb_2025_1527546
crossref_primary_10_1186_s40168_023_01679_8
crossref_primary_10_1155_2024_6239250
crossref_primary_10_3389_fmicb_2024_1392333
crossref_primary_10_1038_s41598_024_69275_w
crossref_primary_10_3390_antibiotics13080762
crossref_primary_10_1186_s12864_023_09855_8
crossref_primary_10_1186_s40168_024_01807_y
crossref_primary_10_1016_j_foodres_2024_115299
crossref_primary_10_1021_acsenvironau_4c00071
crossref_primary_10_1038_s41522_024_00574_w
crossref_primary_10_1186_s12879_024_10056_1
crossref_primary_10_3389_fmicb_2024_1415723
crossref_primary_10_1038_s43247_025_02139_x
crossref_primary_10_3390_microorganisms12122476
crossref_primary_10_1038_s41564_024_01705_x
crossref_primary_10_1186_s12864_024_10736_x
crossref_primary_10_1016_j_envpol_2024_124598
crossref_primary_10_1016_j_jhazmat_2024_135730
crossref_primary_10_1016_j_aquaculture_2025_742379
crossref_primary_10_1111_1462_2920_16681
crossref_primary_10_1016_j_rvsc_2024_105396
crossref_primary_10_1093_jac_dkad058
crossref_primary_10_3390_microorganisms12030494
crossref_primary_10_3390_microorganisms11122872
crossref_primary_10_1016_j_envpol_2024_124482
crossref_primary_10_1186_s12864_023_09945_7
crossref_primary_10_1016_j_micpath_2025_107415
crossref_primary_10_1016_j_jenvman_2023_119303
crossref_primary_10_1016_j_jenvman_2023_119144
crossref_primary_10_1021_acsagscitech_4c00159
crossref_primary_10_1038_s41467_024_49742_8
crossref_primary_10_1128_mra_00546_24
crossref_primary_10_1016_j_heliyon_2024_e33823
crossref_primary_10_1016_j_jhazmat_2025_137127
crossref_primary_10_1093_jambio_lxaf048
Cites_doi 10.1038/nbt.3988
10.1093/nar/gkj014
10.1093/nar/gkt1223
10.1016/j.cell.2021.01.029
10.1371/journal.pone.0223680
10.1038/ismej.2016.155
10.1111/mmi.14670
10.1128/mmbr.00016-10
10.1111/mmi.12885
10.1016/0006-291x(60)90081-4
10.15252/msb.20209880
10.1128/CMR.00088-17
10.1126/sciadv.aau9124
10.1073/pnas.2008731118
10.1093/nar/gkw975
10.1093/nar/gkab1111
10.1016/j.chom.2019.10.022
10.3389/fcimb.2017.00007
10.1038/s41564-020-0777-y
10.1038/hdy.2010.24
10.1038/s41598-020-59938-9
10.1038/s41467-021-22757-1
10.1093/nar/gkl842
10.1038/nmeth.3176
10.3389/fmicb.2019.01916
10.1016/j.watres.2020.116592
10.3389/fmicb.2020.00483
10.1016/j.plasmid.2017.03.002
10.1128/AEM.01001-19
10.1093/femsec/fiy079
10.1016/bs.aivir.2018.09.003
10.1006/jmbi.2001.4513
10.1128/mBio.02060-21
10.1007/s12275-020-9309-y
10.1186/s40168-017-0387-y
10.1093/nar/gky1123
10.1128/microbiolspec.MDNA3-0062-2014
10.1093/bioinformatics/bty053
10.1128/JB.182.6.1659-1670.2000
10.1186/s40168-019-0703-9
10.1093/nar/gkx1321
10.1111/1574-6976.12067
10.1186/s40168-019-0663-0
10.1128/MMBR.63.3.507-522.1999
10.1093/nar/gkv1248
10.3389/fmicb.2020.01376
10.1186/1471-2105-11-119
10.1093/nar/gkab064
10.1128/microbiolspec.MDNA3-0019-2014
ContentType Journal Article
Copyright Copyright © 2022 Brown et al.
Copyright American Society for Microbiology Sep 2022
Copyright © 2022 Brown et al. 2022 Brown et al.
Copyright_xml – notice: Copyright © 2022 Brown et al.
– notice: Copyright American Society for Microbiology Sep 2022
– notice: Copyright © 2022 Brown et al. 2022 Brown et al.
DBID AAYXX
CITATION
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1128/aem.00991-22
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Virology and AIDS Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
EISSN 1098-5336
Editor Nojiri, Hideaki
Editor_xml – sequence: 1
  givenname: Hideaki
  surname: Nojiri
  fullname: Nojiri, Hideaki
ExternalDocumentID PMC9499024
00991-22
10_1128_aem_00991_22
GrantInformation_xml – fundername: U.S. Department of Agriculture (USDA)
  grantid: 2017-68003-26498
  funderid: https://doi.org/10.13039/100000199
– fundername: National Science Foundation (NSF)
  grantid: 1545756
  funderid: https://doi.org/10.13039/100000001
– fundername: Water Research Foundation (WRF)
  grantid: 4961
  funderid: https://doi.org/10.13039/100005612
– fundername: National Science Foundation (NSF)
  grantid: 2004751
  funderid: https://doi.org/10.13039/100000001
– fundername: National Science Foundation (NSF)
  grantid: 2125798
  funderid: https://doi.org/10.13039/100000001
– fundername: ;
  grantid: 2125798
– fundername: ;
  grantid: 2017-68003-26498
– fundername: ;
  grantid: 1545756
– fundername: ;
  grantid: 2004751
– fundername: ;
  grantid: 4961
GroupedDBID ---
-~X
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
85S
AAGFI
AAYXX
AAZTW
ABOGM
ABPPZ
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
ADUKH
AENEX
AFRAH
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CS3
D0L
DIK
E.-
E3Z
EBS
F5P
GX1
H13
HYE
HZ~
K-O
KQ8
L7B
O9-
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TN5
TR2
TWZ
UHB
W8F
WH7
WOQ
X6Y
~02
~KM
AAPBV
ABFLS
ABPTK
ABRJW
PQEST
RHF
TAF
UCJ
ZA5
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-a423t-d672d9b28cd91c9003c2ab4c0c1927d28deb10c0d95a31f7cb504de24ff6b3973
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 18:39:48 EDT 2025
Fri Jul 11 07:40:21 EDT 2025
Mon Jun 30 10:23:57 EDT 2025
Tue Sep 27 18:21:51 EDT 2022
Thu Apr 24 22:58:40 EDT 2025
Tue Jul 01 04:29:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords integrative elements
insertion sequence
antibiotic resistance
metagenomics
bacteriophages
mobile genetic elements
transposons
plasmids
mobilome
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a423t-d672d9b28cd91c9003c2ab4c0c1927d28deb10c0d95a31f7cb504de24ff6b3973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0002-3191-6244
0000-0001-5171-0211
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9499024
PMID 36036594
PQID 2717872880
PQPubID 42251
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9499024
proquest_miscellaneous_2707874425
proquest_journals_2717872880
asm2_journals_10_1128_aem_00991_22
crossref_primary_10_1128_aem_00991_22
crossref_citationtrail_10_1128_aem_00991_22
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220922
PublicationDateYYYYMMDD 2022-09-22
PublicationDate_xml – month: 09
  year: 2022
  text: 20220922
  day: 22
PublicationDecade 2020
PublicationPlace 1752 N St., N.W., Washington, DC
PublicationPlace_xml – name: 1752 N St., N.W., Washington, DC
– name: Washington
PublicationTitle Applied and environmental microbiology
PublicationTitleAbbrev Appl Environ Microbiol
PublicationYear 2022
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
Leplae R (e_1_3_3_24_2) 2009; 38
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
Alcock BP (e_1_3_3_16_2) 2020; 48
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
Chandler M (e_1_3_3_49_2) 2015
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
Hui, W, Zhang, W, Kwok, L-Y, Zhang, H, Kong, J, Sun, T (B41) 2019; 85
Smyshlyaev, G, Bateman, A, Barabas, O (B38) 2021; 17
Finn, RD, Bateman, A, Clements, J, Coggill, P, Eberhardt, RY, Eddy, SR, Heger, A, Hetherington, K, Holm, L, Mistry, J, Sonnhammer, ELL, Tate, J, Punta, M (B54) 2014; 40
Siguier, P, Perochon, J, Lestrade, L, Mahillon, J, Chandler, M (B19) 2006; 34
Mustard, JA, Little, JW (B36) 2000; 182
Davies, J (B2) 1996
Slizovskiy, IB, Mukherjee, K, Dean, CJ, Boucher, C, Noyes, NR (B10) 2020; 11
Nakaya, R, Nakamura, A, Murata, Y (B4) 1960; 3
Liu, M, Li, X, Xie, Y, Bi, D, Sun, J, Li, J, Tai, C, Deng, Z, Ou, HY (B11) 2019; 47
Pfeifer, E, Moura De Sousa, JA, Touchon, M, Rocha, EPC (B34) 2021; 49
Krawczyk, PS, Lipinski, L, Dziembowski, A (B12) 2018; 46
Partridge, SR, Kwong, SM, Firth, N, Jensen, SO (B39) 2018; 31
Ellabaan, MMH, Munck, C, Porse, A, Imamovic, L, Sommer, MOA (B25) 2021; 12
Huerta-Cepas, J, Szklarczyk, D, Forslund, K, Cook, H, Heller, D, Walter, MC, Rattei, T, Mende, DR, Sunagawa, S, Kuhn, M, Jensen, LJ, von Mering, C, Bork, P (B53) 2016; 44
Li, L-G, Xia, Y, Zhang, T (B26) 2017; 11
Oh, M, Pruden, A, Chen, C, Heath, LS, Xia, K, Zhang, L (B8) 2018; 94
Orlek, A, Phan, H, Sheppard, AE, Doumith, M, Ellington, M, Peto, T, Crook, D, Walker, AS, Woodford, N, Anjum, MF, Stoesser, N (B40) 2017; 91
Pärnänen, KMM, Narciso-da-Rocha, C, Kneis, D, Berendonk, TU, Cacace, D, Do, TT, Elpers, C, Fatta-Kassinos, D, Henriques, I, Jaeger, T, Karkman, A, Martinez, JL, Michael, SG, Michael-Kordatou, I, O'Sullivan, K, Rodriguez-Mozaz, S, Schwartz, T, Sheng, H, Sørum, H, Stedtfeld, RD, Tiedje, JM, Giustina, SVD, Walsh, F, Vaz-Moreira, I, Virta, M, Manaia, CM (B7) 2019; 5
Calderón-Franco, D, van Loosdrecht, MCM, Abeel, T, Weissbrodt, DG (B14) 2021; 189
Buchfink, B, Xie, C, Huson, DH (B50) 2015; 12
B3
Yin, X, Jiang, XT, Chai, B, Li, L, Yang, Y, Cole, JR, Tiedje, JM, Zhang, T (B16) 2018; 34
Chandler, M, Gellert, M, Lambowitz, AM, Rice, PA, Sandmeyer, SB (B48) 2015
B6
Escudero, JA, Loot, C, Nivina, A, Mazel, D (B28) 2015; 3
Siguier, P, Gourbeyre, E, Chandler, M (B27) 2014; 38
Che, Y, Yang, Y, Xu, X, Brinda, K, Polz, MF, Hanage, WP, Zhang, T (B47) 2021; 118
Craig, NL (B29) 2015
Chen, SH, Byrne, RT, Wood, EA, Cox, MM (B43) 2015; 95
Yoo, K, Yoo, H, Lee, J, Choi, EJ, Park, J (B32) 2020; 58
Ross, K, Varani, AM, Snesrud, E, Huang, H, Alvarenga, DO, Zhang, J, Wu, C, McGann, P, Chandler, M (B46) 2021; 12
Schmartz, GP, Hartung, A, Hirsch, P, Kern, F, Fehlmann, T, Müller, R, Keller, A (B45) 2022; 50
Rankin, DJ, Rocha, EPC, Brown, SP (B1) 2011; 106
Lanza, VF, Baquero, F, Martínez, JL, Ramos-Ruíz, R, González-Zorn, B, Andremont, A, Sánchez-Valenzuela, A, Ehrlich, SD, Kennedy, S, Ruppé, E, van Schaik, W, Willems, RJ, de la Cruz, F, Coque, TM (B33) 2018; 6
Pruitt, KD, Tatusova, T, Maglott, DR (B22) 2007; 35
Hyatt, D, Chen, GL, LoCascio, PF, Land, ML, Larimer, FW, Hauser, LJ (B49) 2010; 11
Liebert, CA, Hall, RM, Summers, AO (B5) 1999; 63
Millman, A, Melamed, S, Amitai, G, Sorek, R (B42) 2020; 5
Durrant, MG, Li, MM, Siranosian, BA, Montgomery, SB, Bhatt, AS (B24) 2020; 27
Steinegger, M, Söding, J (B51) 2017; 35
Lu, Y, Zeng, J, Wu, B, Shunmei, E, Wang, L, Cai, R, Zhang, N, Li, Y, Huang, X, Huang, B, Chen, C (B35) 2017; 7
Leplae, R, Lima-Mendez, G, Toussaint, A (B23) 2009; 38
Chen, J, Li, J, Zhang, H, Shi, W, Liu, Y (B31) 2019; 10
Alcock, BP, Raphenya, AR, Lau, TTY, Tsang, KK, Bouchard, M, Edalatmand, A, Huynh, W, Nguyen, A-LV, Cheng, AA, Liu, S, Min, SY, Miroshnichenko, A, Tran, H-K, Werfalli, RE, Nasir, JA, Oloni, M, Speicher, DJ, Florescu, A, Singh, B, Faltyn, M, Hernandez-Koutoucheva, A, Sharma, AN, Bordeleau, E, Pawlowski, AC, Zubyk, HL, Dooley, D, Griffiths, E, Maguire, F, Winsor, GL, Beiko, RG, Brinkman, FSL, Hsiao, WWL, Domselaar, GV, McArthur, AG (B15) 2020; 48
Todd, AE, Orengo, CA, Thornton, JM (B52) 2001; 307
Camarillo-Guerrero, LF, Almeida, A, Rangel-Pineros, G, Finn, RD, Lawley, TD (B18) 2021; 184
Grazziotin, AL, Koonin, EV, Kristensen, DM (B17) 2017; 45
Arango-Argoty, GA, Dai, D, Pruden, A, Vikesland, P, Heath, LS, Zhang, L (B9) 2019; 7
Veress, A, Nagy, T, Wilk, T, Kömüves, J, Olasz, F, Kiss, J (B30) 2020; 10
Douarre, PE, Mallet, L, Radomski, N, Felten, A, Mistou, MY (B21) 2020; 11
Cahill, J, Young, R (B37) 2019; 103
Jiang, X, Hall, AB, Xavier, RJ, Alm, EJ (B20) 2019; 14
Costa, TRD, Harb, L, Khara, P, Zeng, L, Hu, B, Christie, PJ (B44) 2021; 115
Che, Y, Xia, Y, Liu, L, Li, AD, Yang, Y, Zhang, T (B13) 2019; 7
References_xml – ident: e_1_3_3_52_2
  doi: 10.1038/nbt.3988
– ident: e_1_3_3_20_2
  doi: 10.1093/nar/gkj014
– ident: e_1_3_3_55_2
  doi: 10.1093/nar/gkt1223
– ident: e_1_3_3_19_2
  doi: 10.1016/j.cell.2021.01.029
– ident: e_1_3_3_21_2
  doi: 10.1371/journal.pone.0223680
– ident: e_1_3_3_27_2
  doi: 10.1038/ismej.2016.155
– ident: e_1_3_3_7_2
– ident: e_1_3_3_45_2
  doi: 10.1111/mmi.14670
– ident: e_1_3_3_3_2
  doi: 10.1128/mmbr.00016-10
– volume-title: Mobile DNA III.
  year: 2015
  ident: e_1_3_3_49_2
– ident: e_1_3_3_44_2
  doi: 10.1111/mmi.12885
– ident: e_1_3_3_5_2
  doi: 10.1016/0006-291x(60)90081-4
– ident: e_1_3_3_39_2
  doi: 10.15252/msb.20209880
– ident: e_1_3_3_40_2
  doi: 10.1128/CMR.00088-17
– ident: e_1_3_3_8_2
  doi: 10.1126/sciadv.aau9124
– ident: e_1_3_3_48_2
  doi: 10.1073/pnas.2008731118
– ident: e_1_3_3_18_2
  doi: 10.1093/nar/gkw975
– ident: e_1_3_3_46_2
  doi: 10.1093/nar/gkab1111
– ident: e_1_3_3_25_2
  doi: 10.1016/j.chom.2019.10.022
– ident: e_1_3_3_36_2
  doi: 10.3389/fcimb.2017.00007
– ident: e_1_3_3_43_2
  doi: 10.1038/s41564-020-0777-y
– ident: e_1_3_3_2_2
  doi: 10.1038/hdy.2010.24
– ident: e_1_3_3_31_2
  doi: 10.1038/s41598-020-59938-9
– ident: e_1_3_3_26_2
  doi: 10.1038/s41467-021-22757-1
– volume: 48
  start-page: D517
  year: 2020
  ident: e_1_3_3_16_2
  article-title: CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database
  publication-title: Nucleic Acids Res
– ident: e_1_3_3_23_2
  doi: 10.1093/nar/gkl842
– ident: e_1_3_3_51_2
  doi: 10.1038/nmeth.3176
– ident: e_1_3_3_32_2
  doi: 10.3389/fmicb.2019.01916
– ident: e_1_3_3_15_2
  doi: 10.1016/j.watres.2020.116592
– ident: e_1_3_3_22_2
  doi: 10.3389/fmicb.2020.00483
– volume: 38
  year: 2009
  ident: e_1_3_3_24_2
  article-title: ACLAME: a classification of mobile genetic elements, update 2010
  publication-title: Nucleic Acids Res
– ident: e_1_3_3_41_2
  doi: 10.1016/j.plasmid.2017.03.002
– ident: e_1_3_3_42_2
  doi: 10.1128/AEM.01001-19
– ident: e_1_3_3_9_2
  doi: 10.1093/femsec/fiy079
– ident: e_1_3_3_38_2
  doi: 10.1016/bs.aivir.2018.09.003
– ident: e_1_3_3_53_2
  doi: 10.1006/jmbi.2001.4513
– ident: e_1_3_3_47_2
  doi: 10.1128/mBio.02060-21
– ident: e_1_3_3_4_2
– ident: e_1_3_3_33_2
  doi: 10.1007/s12275-020-9309-y
– ident: e_1_3_3_34_2
  doi: 10.1186/s40168-017-0387-y
– ident: e_1_3_3_12_2
  doi: 10.1093/nar/gky1123
– ident: e_1_3_3_30_2
  doi: 10.1128/microbiolspec.MDNA3-0062-2014
– ident: e_1_3_3_17_2
  doi: 10.1093/bioinformatics/bty053
– ident: e_1_3_3_37_2
  doi: 10.1128/JB.182.6.1659-1670.2000
– ident: e_1_3_3_10_2
  doi: 10.1186/s40168-019-0703-9
– ident: e_1_3_3_13_2
  doi: 10.1093/nar/gkx1321
– ident: e_1_3_3_28_2
  doi: 10.1111/1574-6976.12067
– ident: e_1_3_3_14_2
  doi: 10.1186/s40168-019-0663-0
– ident: e_1_3_3_6_2
  doi: 10.1128/MMBR.63.3.507-522.1999
– ident: e_1_3_3_54_2
  doi: 10.1093/nar/gkv1248
– ident: e_1_3_3_11_2
  doi: 10.3389/fmicb.2020.01376
– ident: e_1_3_3_50_2
  doi: 10.1186/1471-2105-11-119
– ident: e_1_3_3_35_2
  doi: 10.1093/nar/gkab064
– ident: e_1_3_3_29_2
  doi: 10.1128/microbiolspec.MDNA3-0019-2014
– year: 2015
  ident: B48
  publication-title: Mobile DNA III. ;Wiley
– volume: 17
  year: 2021
  ident: B38
  article-title: Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20209880
– volume: 12
  start-page: 59
  year: 2015
  end-page: 60
  ident: B50
  article-title: Fast and sensitive protein alignment using DIAMOND
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3176
– volume: 7
  start-page: 7
  year: 2017
  ident: B35
  article-title: Quorum sensing N-acyl homoserine lactones-SdiA suppresses Escherichia coli-Pseudomonas aeruginosa conjugation through inhibiting traI expression
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2017.00007
– ident: B3
  article-title: General Assembly of the United Nations . 2016 . High-level meeting on antimicrobial resistance general assembly of the United Nations . https://www.un.org/pga/71/event-latest/high-level-meeting-on-antimicrobial-resistance/ . Retrieved 26 October 2021 .
– volume: 49
  start-page: 2655
  year: 2021
  end-page: 2673
  ident: B34
  article-title: Bacteria have numerous distinctive groups of phage-plasmids with conserved phage and variable plasmid gene repertoires
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab064
– volume: 10
  start-page: 1916
  year: 2019
  ident: B31
  article-title: Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in northern China
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.01916
– volume: 106
  start-page: 1
  year: 2011
  end-page: 10
  ident: B1
  article-title: What traits are carried on mobile genetic elements, and why
  publication-title: Heredity (Edinb)
  doi: 10.1038/hdy.2010.24
– volume: 94
  year: 2018
  ident: B8
  article-title: Meta compare: a computational pipeline for prioritizing environmental resistome risk
  publication-title: FEMS Microbiol Ecol
  doi: 10.1093/femsec/fiy079
– volume: 46
  year: 2018
  ident: B12
  article-title: PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1321
– volume: 11
  start-page: 1376
  year: 2020
  ident: B10
  article-title: Mobilization of antibiotic resistance: are current approaches for colocalizing resistomes and mobilomes useful?
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.01376
– volume: 14
  year: 2019
  ident: B20
  article-title: Comprehensive analysis of chromosomal mobile genetic elements in the gut microbiome reveals phylum-level niche-adaptive gene pools
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0223680
– volume: 115
  start-page: 436
  year: 2021
  end-page: 452
  ident: B44
  article-title: Type IV secretion systems: advances in structure, function, and activation
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.14670
– volume: 44
  start-page: D286
  year: 2016
  end-page: D293
  ident: B53
  article-title: eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1248
– volume: 85
  year: 2019
  ident: B41
  article-title: A novel bacteriophage exclusion (BREX) system encoded by the pglX gene in Lactobacillus casei Zhang
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01001-19
– volume: 10
  year: 2020
  ident: B30
  article-title: Abundance of mobile genetic elements in an Acinetobacter lwoffii strain isolated from Transylvanian honey sample
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-59938-9
– volume: 45
  start-page: D491
  year: 2017
  end-page: D498
  ident: B17
  article-title: Prokaryotic virus orthologous groups (pVOGs): a resource for comparative genomics and protein family annotation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw975
– volume: 3
  start-page: 654
  year: 1960
  end-page: 659
  ident: B4
  article-title: Resistance transfer agents in Shigella
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/0006-291x(60)90081-4
– volume: 182
  start-page: 1659
  year: 2000
  end-page: 1670
  ident: B36
  article-title: Analysis of Escherichia coli RecA interactions with LexA, λ CI, and UmuD by site-directed mutagenesis of recA
  publication-title: J Bacteriol
  doi: 10.1128/JB.182.6.1659-1670.2000
– volume: 5
  start-page: 1608
  year: 2020
  end-page: 1615
  ident: B42
  article-title: Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-020-0777-y
– volume: 12
  start-page: 1
  year: 2021
  end-page: 10
  ident: B25
  article-title: Forecasting the dissemination of antibiotic resistance genes across bacterial genomes
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22757-1
– volume: 35
  start-page: D61
  year: 2007
  end-page: D65
  ident: B22
  article-title: NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl842
– volume: 48
  start-page: D517
  year: 2020
  end-page: D525
  ident: B15
  article-title: CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database
  publication-title: Nucleic Acids Res
– volume: 91
  start-page: 42
  year: 2017
  end-page: 52
  ident: B40
  article-title: Ordering the mob: insights into replicon and MOB typing schemes from analysis of a curated dataset of publicly available plasmids
  publication-title: Plasmid
  doi: 10.1016/j.plasmid.2017.03.002
– volume: 184
  start-page: 1098
  year: 2021
  end-page: 1109.e9
  ident: B18
  article-title: Massive expansion of human gut bacteriophage diversity
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.029
– volume: 103
  start-page: 33
  year: 2019
  end-page: 70
  ident: B37
  article-title: Phage lysis: multiple genes for multiple barriers
  publication-title: Adv Virus Res
  doi: 10.1016/bs.aivir.2018.09.003
– volume: 5
  year: 2019
  ident: B7
  article-title: Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aau9124
– volume: 38
  year: 2009
  ident: B23
  article-title: ACLAME: a classification of mobile genetic elements, update 2010
  publication-title: Nucleic Acids Res
– volume: 31
  year: 2018
  ident: B39
  article-title: Mobile genetic elements associated with antimicrobial resistance
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.00088-17
– volume: 58
  start-page: 123
  year: 2020
  end-page: 130
  ident: B32
  article-title: Exploring the antibiotic resistome in activated sludge and anaerobic digestion sludge in an urban wastewater treatment plant via metagenomic analysis
  publication-title: J Microbiol
  doi: 10.1007/s12275-020-9309-y
– volume: 6
  start-page: 11
  year: 2018
  end-page: 14
  ident: B33
  article-title: In-depth resistome analysis by targeted metagenomics
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0387-y
– volume: 50
  start-page: D273
  year: 2022
  end-page: D278
  ident: B45
  article-title: PLSDB: advancing a comprehensive database of bacterial plasmids
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab1111
– volume: 40
  year: 2014
  ident: B54
  article-title: Pfam: the protein families database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1223
– start-page: 3
  year: 2015
  end-page: 39
  ident: B29
  article-title: A moveable feast: an introduction to mobile DNA
  publication-title: Mobile DNA III. ;Wiley
– volume: 7
  year: 2019
  ident: B9
  article-title: NanoARG: a web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomes
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0703-9
– volume: 118
  year: 2021
  ident: B47
  article-title: Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes
  publication-title: Proc Natl Acad Sci USA
– volume: 34
  start-page: 2263
  year: 2018
  end-page: 2270
  ident: B16
  article-title: ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty053
– volume: 95
  start-page: 754
  year: 2015
  end-page: 768
  ident: B43
  article-title: Escherichia coli radD(yejH) gene: a novel function involved in radiation resistance and double-strand break repair
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.12885
– volume: 189
  start-page: 116592
  year: 2021
  ident: B14
  article-title: Free-floating extracellular DNA: systematic profiling of mobile genetic elements and antibiotic resistance from wastewater
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.116592
– ident: B6
  article-title: CDC . 2019 . Biggest threats and data. Antibiotic/antimicrobial resistance . CDC . https://www.cdc.gov/drugresistance/biggest-threats.html . Retrieved 26 October 2021 .
– volume: 27
  start-page: 140
  year: 2020
  end-page: 153.e9
  ident: B24
  article-title: A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2019.10.022
– volume: 11
  start-page: 651
  year: 2017
  end-page: 662
  ident: B26
  article-title: Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection
  publication-title: ISME J
  doi: 10.1038/ismej.2016.155
– volume: 38
  start-page: 865
  year: 2014
  end-page: 891
  ident: B27
  article-title: Bacterial insertion sequences: their genomic impact and diversity
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/1574-6976.12067
– volume: 47
  start-page: D660
  year: 2019
  end-page: D665
  ident: B11
  article-title: ICEberg 2.0: an updated database of bacterial integrative and conjugative elements
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1123
– volume: 35
  start-page: 1026
  year: 2017
  end-page: 1028
  ident: B51
  article-title: MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3988
– volume: 34
  year: 2006
  ident: B19
  article-title: ISfinder: the reference centre for bacterial insertion sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj014
– volume: 11
  start-page: 483
  year: 2020
  ident: B21
  article-title: Analysis of COMPASS, a new comprehensive plasmid database revealed prevalence of multireplicon and extensive diversity of IncF plasmids
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00483
– volume: 12
  year: 2021
  ident: B46
  article-title: TnCentral: a prokaryotic transposable element database and web portal for transposon analysis
  publication-title: mBio
  doi: 10.1128/mBio.02060-21
– volume: 63
  start-page: 507
  year: 1999
  end-page: 522
  ident: B5
  article-title: Transposon Tn 21, flagship of the floating genome
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.63.3.507-522.1999
– volume: 11
  start-page: 119
  year: 2010
  ident: B49
  article-title: Prodigal: prokaryotic gene recognition and translation initiation site identification
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-119
– volume: 7
  year: 2019
  ident: B13
  article-title: Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0663-0
– volume: 307
  start-page: 1113
  year: 2001
  end-page: 1143
  ident: B52
  article-title: Evolution of function in protein superfamilies, from a structural perspective
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.4513
– year: 1996
  ident: B2
  article-title: Origins and evolution of antibiotic resistance
  publication-title: Microbiologia
  doi: 10.1128/mmbr.00016-10
– volume: 3
  year: 2015
  ident: B28
  article-title: The integron: adaptation on demand
  publication-title: Microbiol Spectr
  doi: 10.1128/microbiolspec.MDNA3-0019-2014
SSID ssj0004068
Score 2.7065215
Snippet The analysis of bacterial mobile genetic elements (MGEs) in genomic data is a critical step toward profiling the root causes of antibiotic resistance,...
Bacterial mobile genetic elements (MGEs) encode functional modules that perform both core and accessory functions for the element, the latter of which are...
SourceID pubmedcentral
proquest
asm2
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Annotations
Evolutionary and Genomic Microbiology
Functionals
Genes
Homology
Life cycles
Microbial Genetics
Phages
Plasmids
Protein families
Proteins
Recombination
Title mobileOG-db: a Manually Curated Database of Protein Families Mediating the Life Cycle of Bacterial Mobile Genetic Elements
URI https://journals.asm.org/doi/10.1128/aem.00991-22
https://www.proquest.com/docview/2717872880
https://www.proquest.com/docview/2707874425
https://pubmed.ncbi.nlm.nih.gov/PMC9499024
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIgQcEAQQgYIWBKfIrb1x4g03qBIqFNpLIuVm7cvCErFR4xzaX8DPZma9aztqKxUuVmSPdq3Mt57HznxLyEc5HU9ZBpEq6F4EcRzKgHMzCUYa7E3EJgnLLNvn2eR0FX9fj9e93p9O1dKukkfq6sa-kv_RKtwDvWKX7D9othkUbsBv0C9cQcNwvZOON6WERX3-LdCyblr-IZBhFBmLd0gBoUGplUBDZUvdkJIhL-qzLiBAtps0ovL9Uos8M8OTS1VXG36tWZyxc9dOYvmpkdx1Vtebb7terXdlMQnf6ZzDxpS8JXq6Fvnbo64vhotW6UgF3tTutlnxQtuag7nQeZMRqkpXnoOirp_CZS8g8MUNnU5CM0I-U3A5HR32DffcV5rzLhp555tr0MuN6kGvGwSGTQ7CbI6slJ97j3f77DydrxaLdDlbL--R-wwCDubzPr7DNnRNle7NfAsF48fdscGui-2G7fs4beCyX3bb8WOWT8kTF4DQLzWanpGeKfrkQX0k6WWfPPSd6ts-edwhq3xOrjpo-0wF9VijDmvUY42WGXVYox5rtMEaBaxRxBq1WEPhBmu0xhp1WKMeay_Iaj5bnpwG7uSOQIB7XgUa1rieSsaVnkYKk-WKCRmrUEFAkWjGNbgIoQr1dCxGUZYoOQ5jbVicZRMJHvLoJTkoysK8IpRxE8pYciX0KB7LkUwSHDWR0pgonOgB-YB_eeqW5Ta1US3jKegltXpJGRuQoVdIqhz3PR7B8usW6U-N9O-a8-UWuUOv23Z6lkRgAxmYxQF53zyGbzZuxInClDuUAcc8icFcDkiyh4lmPmR9339S5D8t-zuySYFj_foOo78hj9o1d0gOqoudeQs-dCXfWXj_BcxZyOU
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=mobileOG-db%3A+a+Manually+Curated+Database+of+Protein+Families+Mediating+the+Life+Cycle+of+Bacterial+Mobile+Genetic+Elements&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Brown%2C+Connor+L&rft.au=Mullet%2C+James&rft.au=Hindi%2C+Fadi&rft.au=Stoll%2C+James+E&rft.date=2022-09-22&rft.issn=1098-5336&rft.eissn=1098-5336&rft.volume=88&rft.issue=18&rft.spage=e0099122&rft_id=info:doi/10.1128%2Faem.00991-22&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon