FRESH 3D Bioprinting a Full-Size Model of the Human Heart
Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using hydrogels with mechanical properties comparable to native tissues and organs in the human body. The advantage of approaches such as Freeform Reve...
Saved in:
Published in | ACS biomaterials science & engineering Vol. 6; no. 11; pp. 6453 - 6459 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2373-9878 2373-9878 |
DOI | 10.1021/acsbiomaterials.0c01133 |
Cover
Loading…
Abstract | Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using hydrogels with mechanical properties comparable to native tissues and organs in the human body. The advantage of approaches such as Freeform Reversible Embedding of Suspended Hydrogels (FRESH) printing is the ability to embed soft biomaterials in a thermoreversible support bath at sizes ranging from a few millimeters to centimeters. In this study, we were able to expand this printable size range by FRESH bioprinting a full-size model of an adult human heart from patient-derived magnetic resonance imaging (MRI) data sets. We used alginate as the printing biomaterial to mimic the elastic modulus of cardiac tissue. In addition to achieving high print fidelity on a low-cost printer platform, FRESH-printed alginate proved to create mechanically tunable and suturable models. This demonstrates that large-scale 3D bioprinting of soft hydrogels is possible using FRESH and that cardiac tissue constructs can be produced with potential future applications in surgical training and planning. |
---|---|
AbstractList | Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using hydrogels with mechanical properties comparable to native tissues and organs in the human body. The advantage of approaches such as Freeform Reversible Embedding of Suspended Hydrogels (FRESH) printing is the ability to embed soft biomaterials in a thermoreversible support bath at sizes ranging from a few millimeters to centimeters. In this study, we were able to expand this printable size range by FRESH bioprinting a full-size model of an adult human heart from patient-derived magnetic resonance imaging (MRI) data sets. We used alginate as the printing biomaterial to mimic the elastic modulus of cardiac tissue. In addition to achieving high print fidelity on a low-cost printer platform, FRESH-printed alginate proved to create mechanically tunable and suturable models. This demonstrates that large-scale 3D bioprinting of soft hydrogels is possible using FRESH and that cardiac tissue constructs can be produced with potential future applications in surgical training and planning. Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using hydrogels with mechanical properties comparable to native tissues and organs in the human body. The advantage of approaches such as Freeform Reversible Embedding of Suspended Hydrogels (FRESH) printing is the ability to embed soft biomaterials in a thermoreversible support bath at sizes ranging from a few millimeters to centimeters. In this study, we were able to expand this printable size range by FRESH bioprinting a full-size model of an adult human heart from patient-derived magnetic resonance imaging (MRI) data sets. We used alginate as the printing biomaterial to mimic the elastic modulus of cardiac tissue. In addition to achieving high print fidelity on a low-cost printer platform, FRESH-printed alginate proved to create mechanically tunable and suturable models. This demonstrates that large-scale 3D bioprinting of soft hydrogels is possible using FRESH and that cardiac tissue constructs can be produced with potential future applications in surgical training and planning.Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using hydrogels with mechanical properties comparable to native tissues and organs in the human body. The advantage of approaches such as Freeform Reversible Embedding of Suspended Hydrogels (FRESH) printing is the ability to embed soft biomaterials in a thermoreversible support bath at sizes ranging from a few millimeters to centimeters. In this study, we were able to expand this printable size range by FRESH bioprinting a full-size model of an adult human heart from patient-derived magnetic resonance imaging (MRI) data sets. We used alginate as the printing biomaterial to mimic the elastic modulus of cardiac tissue. In addition to achieving high print fidelity on a low-cost printer platform, FRESH-printed alginate proved to create mechanically tunable and suturable models. This demonstrates that large-scale 3D bioprinting of soft hydrogels is possible using FRESH and that cardiac tissue constructs can be produced with potential future applications in surgical training and planning. |
Author | Shiwarski, Daniel J Mirdamadi, Eman Tashman, Joshua W Palchesko, Rachelle N Feinberg, Adam W |
AuthorAffiliation | Department of Biomedical Engineering Carnegie Mellon University Department of Materials Science & Engineering |
AuthorAffiliation_xml | – name: Carnegie Mellon University – name: Department of Biomedical Engineering – name: Department of Materials Science & Engineering |
Author_xml | – sequence: 1 givenname: Eman surname: Mirdamadi fullname: Mirdamadi, Eman organization: Department of Biomedical Engineering – sequence: 2 givenname: Joshua W surname: Tashman fullname: Tashman, Joshua W organization: Department of Biomedical Engineering – sequence: 3 givenname: Daniel J surname: Shiwarski fullname: Shiwarski, Daniel J organization: Department of Biomedical Engineering – sequence: 4 givenname: Rachelle N surname: Palchesko fullname: Palchesko, Rachelle N organization: Department of Biomedical Engineering – sequence: 5 givenname: Adam W orcidid: 0000-0003-3338-5456 surname: Feinberg fullname: Feinberg, Adam W email: feinberg@andrew.cmu.edu organization: Carnegie Mellon University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33449644$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1PAyEQhonR-P0XlKOXVWBogYMHrdaa1Jj4cSZAWcXsLgrsQX-9a1oT46WnmWSeZybz7qHNLnYeoWNKTilh9My4bENsTfEpmCafEkcoBdhAuwwEVEoKufmn30GHOb8RQijIEed8G-0AcK7GnO8iNX24fpxhuMKXIb6n0JXQvWCDp33TVI_hy-O7uPANjjUurx7P-tZ0eOZNKgdoqx6u-8NV3UfP0-unyaya39_cTi7mleEMSuUWDJRfGGrV2CohxpaCB6idk9YZaxmnRjI5tkIYBUySmrMREQSEFIwrC_voZLn3PcWP3uei25CdbxrT-dhnzbiQIyU4UQN6tEJ72_qFHv5pTfrUv-8OwPkScCnmnHytXSimhNiVZEKjKdE_Cet_CetVwoMv_vm_J9absDQHQL_FPnU_03XWN8_qlPQ |
CitedBy_id | crossref_primary_10_1088_2516_1091_ad10b4 crossref_primary_10_1063_5_0141269 crossref_primary_10_32604_biocell_2024_057259 crossref_primary_10_3390_cells12131698 crossref_primary_10_1016_j_tibtech_2022_07_001 crossref_primary_10_1097_MAT_0000000000001389 crossref_primary_10_1053_j_jvca_2021_09_012 crossref_primary_10_1016_j_carbpol_2022_120267 crossref_primary_10_15283_ijsc23146 crossref_primary_10_1016_j_bioactmat_2024_02_020 crossref_primary_10_1016_j_bprint_2022_e00221 crossref_primary_10_1088_1758_5090_adb4a4 crossref_primary_10_1007_s40472_021_00319_0 crossref_primary_10_1002_cpz1_320 crossref_primary_10_1016_j_bprint_2024_e00342 crossref_primary_10_1088_1758_5090_ad6d8e crossref_primary_10_1088_1758_5090_ad6d8f crossref_primary_10_1002_adma_202101321 crossref_primary_10_1088_1748_605X_abf1a7 crossref_primary_10_1108_RPJ_04_2021_0079 crossref_primary_10_1016_j_actbio_2024_09_056 crossref_primary_10_1016_j_addma_2024_104353 crossref_primary_10_1016_j_cirp_2022_06_001 crossref_primary_10_1073_pnas_2313464121 crossref_primary_10_1002_admt_202301837 crossref_primary_10_1007_s42242_023_00251_5 crossref_primary_10_1002_adhm_202101679 crossref_primary_10_1088_2516_1091_ad2d59 crossref_primary_10_3390_ma16237461 crossref_primary_10_1016_j_smaim_2024_01_001 crossref_primary_10_3389_fcvm_2021_709871 crossref_primary_10_3390_mi15121529 crossref_primary_10_1002_smsc_202400335 crossref_primary_10_1007_s10055_023_00777_0 crossref_primary_10_1038_s41598_022_16008_6 crossref_primary_10_1088_1758_5090_acd95e crossref_primary_10_1146_annurev_chembioeng_092220_015404 crossref_primary_10_1021_acsbiomaterials_0c01549 crossref_primary_10_3390_cancers13030507 crossref_primary_10_3390_children10020319 crossref_primary_10_1088_1758_5090_ad7906 crossref_primary_10_2217_3dp_2022_0023 crossref_primary_10_3389_fbioe_2023_1161804 crossref_primary_10_1016_j_eurpolymj_2022_111549 crossref_primary_10_1002_admt_202201542 crossref_primary_10_1016_j_addr_2025_115524 crossref_primary_10_1016_j_addr_2024_115347 crossref_primary_10_1016_j_pmatsci_2024_101377 crossref_primary_10_1016_j_mtcomm_2023_105696 crossref_primary_10_1038_s43586_022_00124_8 crossref_primary_10_1002_adfm_202303659 crossref_primary_10_1016_j_apmt_2022_101729 crossref_primary_10_1089_ten_teb_2020_0343 crossref_primary_10_3390_app131810269 crossref_primary_10_1089_ten_tec_2024_0309 crossref_primary_10_1088_1758_5090_ad9fe0 crossref_primary_10_1002_adhm_202200243 crossref_primary_10_1021_acsbiomaterials_4c01824 crossref_primary_10_1016_j_mtbio_2023_100726 crossref_primary_10_1089_ten_teb_2021_0088 crossref_primary_10_1007_s42600_025_00400_y crossref_primary_10_1016_j_isci_2025_111882 crossref_primary_10_1021_acsapm_1c00567 crossref_primary_10_1088_2631_7990_ad996d crossref_primary_10_3389_frobt_2021_673533 crossref_primary_10_1021_acsami_1c20209 crossref_primary_10_3390_ijms22115731 crossref_primary_10_3390_ijms24031912 crossref_primary_10_1016_j_actbio_2021_11_048 crossref_primary_10_1039_D4BM00550C crossref_primary_10_1016_j_stlm_2024_100181 crossref_primary_10_1016_j_bprint_2022_e00242 crossref_primary_10_1016_j_bprint_2025_e00403 crossref_primary_10_1016_j_tibtech_2024_03_006 crossref_primary_10_1016_j_biomaterials_2021_121298 crossref_primary_10_1557_s43577_023_00541_4 crossref_primary_10_3390_biom14070861 crossref_primary_10_1039_D3TB01847D crossref_primary_10_1002_smtd_202301325 crossref_primary_10_1016_j_matdes_2024_112886 crossref_primary_10_1007_s13770_022_00495_9 crossref_primary_10_3390_mi13030469 crossref_primary_10_1007_s00104_024_02197_5 crossref_primary_10_1016_j_bprint_2024_e00329 crossref_primary_10_1126_scitranslmed_abo7047 crossref_primary_10_1002_btm2_10503 crossref_primary_10_1208_s12249_022_02279_9 crossref_primary_10_1016_j_colsurfa_2023_131288 crossref_primary_10_1016_j_yjmcc_2022_04_017 crossref_primary_10_1002_admt_202201926 crossref_primary_10_1088_2516_1091_adb254 crossref_primary_10_3390_gels10100644 crossref_primary_10_1038_s41569_021_00603_7 crossref_primary_10_1016_j_jmrt_2021_12_023 crossref_primary_10_1002_admt_202300001 crossref_primary_10_1016_j_eng_2024_04_023 crossref_primary_10_1016_j_ijpharm_2024_124898 crossref_primary_10_1002_adma_202206958 crossref_primary_10_1002_adma_202400364 crossref_primary_10_1016_j_coco_2025_102275 crossref_primary_10_1007_s11936_025_01074_6 crossref_primary_10_1016_j_addr_2024_115485 crossref_primary_10_1089_ten_tea_2022_29036_abstracts crossref_primary_10_3389_fbioe_2021_732130 crossref_primary_10_1088_1758_5090_ad5d18 crossref_primary_10_1016_j_yjmcc_2022_06_013 crossref_primary_10_1186_s41205_022_00167_3 crossref_primary_10_1016_j_ijbiomac_2023_123450 crossref_primary_10_1557_s43577_022_00348_9 crossref_primary_10_1155_2023_6661452 crossref_primary_10_2217_3dp_2023_0003 crossref_primary_10_1042_EBC20200153 crossref_primary_10_1088_1758_5090_ac975e crossref_primary_10_1038_s41598_022_26809_4 crossref_primary_10_1038_s42003_024_06567_x crossref_primary_10_1016_j_mfglet_2024_09_167 crossref_primary_10_1080_17460751_2025_2469433 crossref_primary_10_1002_adbi_202300124 crossref_primary_10_1088_1758_5090_adb7c3 crossref_primary_10_1126_scirobotics_adr6472 crossref_primary_10_3390_jcdd9050125 crossref_primary_10_1039_D2BM00632D crossref_primary_10_1002_adfm_202100628 crossref_primary_10_3390_polym13030366 crossref_primary_10_1088_1758_5090_ac7909 crossref_primary_10_1002_adem_202101481 crossref_primary_10_1007_s42242_021_00165_0 crossref_primary_10_1016_j_tibtech_2021_08_007 crossref_primary_10_1002_masy_202200050 crossref_primary_10_1016_j_precisioneng_2022_09_004 crossref_primary_10_1007_s42242_022_00183_6 crossref_primary_10_54033_cadpedv22n1_129 crossref_primary_10_1002_jbm_b_35312 crossref_primary_10_1088_1758_5090_ad5b1b crossref_primary_10_1016_j_apmt_2023_102035 crossref_primary_10_1016_j_matt_2022_08_013 crossref_primary_10_1021_acsami_3c00370 crossref_primary_10_1021_acsbiomaterials_1c00598 crossref_primary_10_1088_1758_5090_acb73c crossref_primary_10_1088_1758_5090_ad52f1 crossref_primary_10_1016_j_stem_2022_04_012 crossref_primary_10_3390_mi14081648 crossref_primary_10_1002_adfm_202410311 crossref_primary_10_1021_acsbiomaterials_1c00910 crossref_primary_10_3390_polym14112229 crossref_primary_10_1016_j_celrep_2024_115068 crossref_primary_10_1109_MPULS_2021_3094252 crossref_primary_10_1039_D1MA00525A crossref_primary_10_1039_D1SM00926E crossref_primary_10_1177_11795972241288099 crossref_primary_10_1177_09544119241232122 crossref_primary_10_1016_j_bioadv_2022_212916 crossref_primary_10_1016_j_trim_2021_101446 crossref_primary_10_34133_cbsystems_0043 crossref_primary_10_1002_smsc_202300280 crossref_primary_10_1016_j_matpr_2022_09_272 crossref_primary_10_1088_1758_5090_ac6bbe crossref_primary_10_1007_s12551_021_00838_1 crossref_primary_10_1016_j_precisioneng_2023_06_006 crossref_primary_10_1016_j_ohx_2020_e00170 crossref_primary_10_1557_s43578_023_01193_5 crossref_primary_10_1016_j_matpr_2022_08_549 crossref_primary_10_3390_bioengineering9030109 crossref_primary_10_1007_s10741_023_10367_6 crossref_primary_10_1016_j_eng_2024_01_028 crossref_primary_10_1038_s41467_024_50224_0 crossref_primary_10_3389_fchem_2021_680836 crossref_primary_10_1002_adfm_202313088 crossref_primary_10_1007_s00424_021_02557_8 crossref_primary_10_1016_j_addma_2022_103243 crossref_primary_10_1016_j_bprint_2022_e00209 crossref_primary_10_1021_acsbiomaterials_1c00908 crossref_primary_10_1088_1758_5090_ac58be crossref_primary_10_1063_5_0032777 crossref_primary_10_3389_fbioe_2022_849831 crossref_primary_10_1111_nyas_14896 crossref_primary_10_1007_s10853_023_09256_y crossref_primary_10_1089_ten_tec_2022_0214 crossref_primary_10_3390_bioengineering9120807 crossref_primary_10_1088_1748_605X_ad3f60 crossref_primary_10_1039_D1TB02554F crossref_primary_10_1126_science_abl6395 crossref_primary_10_1002_adhm_202200866 crossref_primary_10_1016_j_addma_2025_104667 crossref_primary_10_1002_adma_202313776 crossref_primary_10_1063_5_0061361 crossref_primary_10_1016_j_bioactmat_2023_10_012 crossref_primary_10_1177_20417314211027677 crossref_primary_10_1016_j_msec_2021_112057 crossref_primary_10_3389_fcvm_2023_1248300 crossref_primary_10_1016_j_medntd_2023_100211 |
Cites_doi | 10.1088/1758-5090/aacdc7 10.1126/sciadv.1500758 10.1007/s11886-018-0992-9 10.1016/S0142-9612(00)00201-5 10.1177/2150135118771323 10.1016/j.ohx.2018.02.001 10.1089/ten.teb.2010.0520 10.1007/s10856-019-6265-3 10.1186/s12896-015-0147-7 10.1002/mp.13058 10.9790/9622-0710021619 10.1111/chd.12238 10.1101/825794 10.1016/j.jmbbm.2018.03.032 10.1016/j.biomaterials.2004.06.044 10.1039/C3TB21280G 10.1016/J.ENG.2017.05.013 10.1089/3dp.2018.0175 10.4103/JMU.JMU_4_19 10.1126/science.aav9051 10.1016/j.susc.2004.06.179 10.1016/j.jtcvs.2012.12.030 10.3390/nano9010078 10.1007/s11548-010-0476-x 10.1021/acsbiomaterials.6b00170 10.1109/58.484478 10.1002/adhm.201901735 10.1002/term.2686 |
ContentType | Journal Article |
Copyright | 2020 American
Chemical Society |
Copyright_xml | – notice: 2020 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsbiomaterials.0c01133 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2373-9878 |
EndPage | 6459 |
ExternalDocumentID | 33449644 10_1021_acsbiomaterials_0c01133 b358468858 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: F32 HL142229 |
GroupedDBID | ABMVS ABUCX ACGFS ACS AEESW AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS UI2 VF5 VG9 W1F 53G AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a423t-cd239eda1b96b9776b13e33fcc8bcabb241a8286b77a93280f4250703787249b3 |
IEDL.DBID | ACS |
ISSN | 2373-9878 |
IngestDate | Thu Jul 10 17:28:36 EDT 2025 Wed Feb 19 02:28:11 EST 2025 Tue Jul 01 00:45:29 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 Wed Nov 11 03:10:54 EST 2020 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Keywords | alginate FRESH printing tissue phantom surgical training and planning embedded printing bioprinting |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a423t-cd239eda1b96b9776b13e33fcc8bcabb241a8286b77a93280f4250703787249b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3338-5456 |
PMID | 33449644 |
PQID | 2478597409 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2478597409 pubmed_primary_33449644 crossref_citationtrail_10_1021_acsbiomaterials_0c01133 crossref_primary_10_1021_acsbiomaterials_0c01133 acs_journals_10_1021_acsbiomaterials_0c01133 |
ProviderPackageCode | ACS AEESW AFEFF VF5 VG9 ABMVS ABUCX AQSVZ W1F UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-09 |
PublicationDateYYYYMMDD | 2020-11-09 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS biomaterials science & engineering |
PublicationTitleAlternate | ACS Biomater. Sci. Eng |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref4/cit4 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref10/cit10 doi: 10.1088/1758-5090/aacdc7 – ident: ref12/cit12 doi: 10.1126/sciadv.1500758 – ident: ref2/cit2 doi: 10.1007/s11886-018-0992-9 – ident: ref20/cit20 doi: 10.1016/S0142-9612(00)00201-5 – ident: ref6/cit6 doi: 10.1177/2150135118771323 – ident: ref14/cit14 doi: 10.1016/j.ohx.2018.02.001 – ident: ref17/cit17 doi: 10.1089/ten.teb.2010.0520 – ident: ref16/cit16 doi: 10.1007/s10856-019-6265-3 – ident: ref26/cit26 doi: 10.1186/s12896-015-0147-7 – ident: ref3/cit3 doi: 10.1002/mp.13058 – ident: ref22/cit22 doi: 10.9790/9622-0710021619 – ident: ref5/cit5 doi: 10.1111/chd.12238 – ident: ref23/cit23 doi: 10.1101/825794 – ident: ref25/cit25 doi: 10.1016/j.jmbbm.2018.03.032 – ident: ref21/cit21 doi: 10.1016/j.biomaterials.2004.06.044 – ident: ref11/cit11 doi: 10.1039/C3TB21280G – ident: ref7/cit7 doi: 10.1016/J.ENG.2017.05.013 – ident: ref9/cit9 doi: 10.1089/3dp.2018.0175 – ident: ref8/cit8 doi: 10.4103/JMU.JMU_4_19 – ident: ref13/cit13 doi: 10.1126/science.aav9051 – ident: ref18/cit18 doi: 10.1016/j.susc.2004.06.179 – ident: ref4/cit4 doi: 10.1016/j.jtcvs.2012.12.030 – ident: ref15/cit15 doi: 10.3390/nano9010078 – ident: ref1/cit1 doi: 10.1007/s11548-010-0476-x – ident: ref27/cit27 doi: 10.1021/acsbiomaterials.6b00170 – ident: ref19/cit19 doi: 10.1109/58.484478 – ident: ref28/cit28 doi: 10.1002/adhm.201901735 – ident: ref24/cit24 doi: 10.1002/term.2686 |
SSID | ssj0001385444 |
Score | 2.581346 |
Snippet | Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6453 |
SubjectTerms | Alginates Bioprinting Humans Hydrogels Manufacturing, Technology, and Devices Printing, Three-Dimensional Tissue Scaffolds |
Title | FRESH 3D Bioprinting a Full-Size Model of the Human Heart |
URI | http://dx.doi.org/10.1021/acsbiomaterials.0c01133 https://www.ncbi.nlm.nih.gov/pubmed/33449644 https://www.proquest.com/docview/2478597409 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGuMCB92O8FCSOdLRJ1scRBlOFBAfGpN2qJEulialDrLvs12O33XhpAn6AKyW26--zYxvgIhJWDjyhaU6lcqTVrqOQNzipoD4QFaqoGMfw8OjHPXnfb_Vr4C2p4HPvSpkJdaKrvNRI0zVokkKswCr3EWwTGmp3P9IqImzJYoUrF4FwkFGH81ddy79FkclMvkamJXCzCDudTXiaN--Ur01emtNcN83s5yzHv59oCzYqEMquS6vZhprNdmD902jCXYg6qJqYiVt2MxxT8o-eRzPFiLI63eHMMtqiNmLjlCGEZEUtgMXoNvke9Dp3z-3YqdYsoFa4yB0z4CKyA-XpyNcIB31NmVGRGhNqo7TGGK-o2VwHgUK0F7op-jn9KdDXkbxpsQ_1bJzZQ2CBJ7lBxmV8biXJi4D7A6N9RH3cpEEDLvHwSeUmk6SogHMv-XYjSXUjDfDnGklMNbKcNmeMfhd0F4Kv5dSO30XO5ypP0MOobKIyO55OEi6DkGiXGzXgoLSFxUeFkDJCSHn0v4Mdwxon3k7p6egE6vnb1J4iuMn1WWHO7z359Is |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYGHIAD78d4BokjHW0S-jjymspju8CkcaqSLJUm0Ipod-HXY3fdeEhogmslR0ls15_t2AY4joSVPU9o6lOpHGm16yj0G5xUUB2IClVUtmNotf24I2-7Z90ahONaGNxEjivlZRL_s7uAd4rfqCBdFSPGNFyDkinEDMwhJOH0mO_88uEzuiLCM1lOcuUiEA461uH4cdfva5GBMvl3A_UL6iytT3MZnib7Lh-dPDeGhW6Y9x8tHf9zsBVYqiApOx_J0CrU7GANFr80KlyHqImMipm4Yhf9jEKB9FiaKUYOrPPQf7eMZqq9sCxlCChZmRlgMSpRsQGd5vXjZexUQxeQR1wUjulxEdme8nTkawSHvqY4qUiNCbVRWqPFV1R6roNAIfYL3RS1nv4bqPnoymmxCbODbGC3gQWe5Ab9L-NzK4leBNzvGe0jBuQmDepwgodPKqXJkzIfzr3kx40k1Y3UwR8zJjFVA3Oao_EyndCdEL6OenhMJzkacz5BfaMkihrYbJgnXAYhOWFuVIetkUhMFhVCyggB5s7fDnYI8_Fj6z65v2nf7cICJ4-eAtfRHswWb0O7j7Cn0AelhH8A7kn87A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwNBDA5aQfTB-6jnCD66dXdmugf44lXqiVAFX2SZmZ2FYmmLu33x15tst_UAKfq6kGFmk0y-JJME4DASViae0NSnUjnSatdR6Dc4qaA6EBWqqGjHcHfvN5_k9XP9eQpORrUwuIkMV8qKJD5pdT9Jyw4D3jF-p6J0lQ-ZU3MNSqcQ0zBDyTt60Hd63vqMsIiwLotprlwEwkHnOhw98Pp9LTJSJvtupH5BnoUFaizCy3jvxcOT19og1zXz_qOt438PtwQLJTRlp0NZWoYp212B-S8NC1chaiDDmkxcsLN2j0KC9GiaKUaOrNNqv1tGs9U6rJcyBJasyBCwJipTvgZPjcvH86ZTDl9AXnGROybhIrKJ8nTkawSJvqZ4qUiNCbVRWqPlV1SCroNAIQYM3RS1n-4PvAHQpdNiHSrdXtduAgs8yQ36YcbnVhK9CLifGO0jFuQmDapwhIePS-XJ4iIvzr34xx-Jyz9SBX_EnNiUjcxpnkZnMqE7JuwPe3lMJjkYcT9GvaNkiura3iCLuQxCcsbcqAobQ7EYLyqElBECza2_HWwfZh8uGvHt1f3NNsxxcuwpfh3tQCV_G9hdRD-53iuE_AMjUf9v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FRESH+3D+Bioprinting+a+Full-Size+Model+of+the+Human+Heart&rft.jtitle=ACS+biomaterials+science+%26+engineering&rft.au=Mirdamadi%2C+Eman&rft.au=Tashman%2C+Joshua+W&rft.au=Shiwarski%2C+Daniel+J&rft.au=Palchesko%2C+Rachelle+N&rft.date=2020-11-09&rft.issn=2373-9878&rft.eissn=2373-9878&rft.volume=6&rft.issue=11&rft.spage=6453&rft_id=info:doi/10.1021%2Facsbiomaterials.0c01133&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-9878&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-9878&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-9878&client=summon |