FRESH 3D Bioprinting a Full-Size Model of the Human Heart

Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using hydrogels with mechanical properties comparable to native tissues and organs in the human body. The advantage of approaches such as Freeform Reve...

Full description

Saved in:
Bibliographic Details
Published inACS biomaterials science & engineering Vol. 6; no. 11; pp. 6453 - 6459
Main Authors Mirdamadi, Eman, Tashman, Joshua W, Shiwarski, Daniel J, Palchesko, Rachelle N, Feinberg, Adam W
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.11.2020
Subjects
Online AccessGet full text
ISSN2373-9878
2373-9878
DOI10.1021/acsbiomaterials.0c01133

Cover

Loading…
Abstract Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using hydrogels with mechanical properties comparable to native tissues and organs in the human body. The advantage of approaches such as Freeform Reversible Embedding of Suspended Hydrogels (FRESH) printing is the ability to embed soft biomaterials in a thermoreversible support bath at sizes ranging from a few millimeters to centimeters. In this study, we were able to expand this printable size range by FRESH bioprinting a full-size model of an adult human heart from patient-derived magnetic resonance imaging (MRI) data sets. We used alginate as the printing biomaterial to mimic the elastic modulus of cardiac tissue. In addition to achieving high print fidelity on a low-cost printer platform, FRESH-printed alginate proved to create mechanically tunable and suturable models. This demonstrates that large-scale 3D bioprinting of soft hydrogels is possible using FRESH and that cardiac tissue constructs can be produced with potential future applications in surgical training and planning.
AbstractList Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using hydrogels with mechanical properties comparable to native tissues and organs in the human body. The advantage of approaches such as Freeform Reversible Embedding of Suspended Hydrogels (FRESH) printing is the ability to embed soft biomaterials in a thermoreversible support bath at sizes ranging from a few millimeters to centimeters. In this study, we were able to expand this printable size range by FRESH bioprinting a full-size model of an adult human heart from patient-derived magnetic resonance imaging (MRI) data sets. We used alginate as the printing biomaterial to mimic the elastic modulus of cardiac tissue. In addition to achieving high print fidelity on a low-cost printer platform, FRESH-printed alginate proved to create mechanically tunable and suturable models. This demonstrates that large-scale 3D bioprinting of soft hydrogels is possible using FRESH and that cardiac tissue constructs can be produced with potential future applications in surgical training and planning.
Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using hydrogels with mechanical properties comparable to native tissues and organs in the human body. The advantage of approaches such as Freeform Reversible Embedding of Suspended Hydrogels (FRESH) printing is the ability to embed soft biomaterials in a thermoreversible support bath at sizes ranging from a few millimeters to centimeters. In this study, we were able to expand this printable size range by FRESH bioprinting a full-size model of an adult human heart from patient-derived magnetic resonance imaging (MRI) data sets. We used alginate as the printing biomaterial to mimic the elastic modulus of cardiac tissue. In addition to achieving high print fidelity on a low-cost printer platform, FRESH-printed alginate proved to create mechanically tunable and suturable models. This demonstrates that large-scale 3D bioprinting of soft hydrogels is possible using FRESH and that cardiac tissue constructs can be produced with potential future applications in surgical training and planning.Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using hydrogels with mechanical properties comparable to native tissues and organs in the human body. The advantage of approaches such as Freeform Reversible Embedding of Suspended Hydrogels (FRESH) printing is the ability to embed soft biomaterials in a thermoreversible support bath at sizes ranging from a few millimeters to centimeters. In this study, we were able to expand this printable size range by FRESH bioprinting a full-size model of an adult human heart from patient-derived magnetic resonance imaging (MRI) data sets. We used alginate as the printing biomaterial to mimic the elastic modulus of cardiac tissue. In addition to achieving high print fidelity on a low-cost printer platform, FRESH-printed alginate proved to create mechanically tunable and suturable models. This demonstrates that large-scale 3D bioprinting of soft hydrogels is possible using FRESH and that cardiac tissue constructs can be produced with potential future applications in surgical training and planning.
Author Shiwarski, Daniel J
Mirdamadi, Eman
Tashman, Joshua W
Palchesko, Rachelle N
Feinberg, Adam W
AuthorAffiliation Department of Biomedical Engineering
Carnegie Mellon University
Department of Materials Science & Engineering
AuthorAffiliation_xml – name: Carnegie Mellon University
– name: Department of Biomedical Engineering
– name: Department of Materials Science & Engineering
Author_xml – sequence: 1
  givenname: Eman
  surname: Mirdamadi
  fullname: Mirdamadi, Eman
  organization: Department of Biomedical Engineering
– sequence: 2
  givenname: Joshua W
  surname: Tashman
  fullname: Tashman, Joshua W
  organization: Department of Biomedical Engineering
– sequence: 3
  givenname: Daniel J
  surname: Shiwarski
  fullname: Shiwarski, Daniel J
  organization: Department of Biomedical Engineering
– sequence: 4
  givenname: Rachelle N
  surname: Palchesko
  fullname: Palchesko, Rachelle N
  organization: Department of Biomedical Engineering
– sequence: 5
  givenname: Adam W
  orcidid: 0000-0003-3338-5456
  surname: Feinberg
  fullname: Feinberg, Adam W
  email: feinberg@andrew.cmu.edu
  organization: Carnegie Mellon University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33449644$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1PAyEQhonR-P0XlKOXVWBogYMHrdaa1Jj4cSZAWcXsLgrsQX-9a1oT46WnmWSeZybz7qHNLnYeoWNKTilh9My4bENsTfEpmCafEkcoBdhAuwwEVEoKufmn30GHOb8RQijIEed8G-0AcK7GnO8iNX24fpxhuMKXIb6n0JXQvWCDp33TVI_hy-O7uPANjjUurx7P-tZ0eOZNKgdoqx6u-8NV3UfP0-unyaya39_cTi7mleEMSuUWDJRfGGrV2CohxpaCB6idk9YZaxmnRjI5tkIYBUySmrMREQSEFIwrC_voZLn3PcWP3uei25CdbxrT-dhnzbiQIyU4UQN6tEJ72_qFHv5pTfrUv-8OwPkScCnmnHytXSimhNiVZEKjKdE_Cet_CetVwoMv_vm_J9absDQHQL_FPnU_03XWN8_qlPQ
CitedBy_id crossref_primary_10_1088_2516_1091_ad10b4
crossref_primary_10_1063_5_0141269
crossref_primary_10_32604_biocell_2024_057259
crossref_primary_10_3390_cells12131698
crossref_primary_10_1016_j_tibtech_2022_07_001
crossref_primary_10_1097_MAT_0000000000001389
crossref_primary_10_1053_j_jvca_2021_09_012
crossref_primary_10_1016_j_carbpol_2022_120267
crossref_primary_10_15283_ijsc23146
crossref_primary_10_1016_j_bioactmat_2024_02_020
crossref_primary_10_1016_j_bprint_2022_e00221
crossref_primary_10_1088_1758_5090_adb4a4
crossref_primary_10_1007_s40472_021_00319_0
crossref_primary_10_1002_cpz1_320
crossref_primary_10_1016_j_bprint_2024_e00342
crossref_primary_10_1088_1758_5090_ad6d8e
crossref_primary_10_1088_1758_5090_ad6d8f
crossref_primary_10_1002_adma_202101321
crossref_primary_10_1088_1748_605X_abf1a7
crossref_primary_10_1108_RPJ_04_2021_0079
crossref_primary_10_1016_j_actbio_2024_09_056
crossref_primary_10_1016_j_addma_2024_104353
crossref_primary_10_1016_j_cirp_2022_06_001
crossref_primary_10_1073_pnas_2313464121
crossref_primary_10_1002_admt_202301837
crossref_primary_10_1007_s42242_023_00251_5
crossref_primary_10_1002_adhm_202101679
crossref_primary_10_1088_2516_1091_ad2d59
crossref_primary_10_3390_ma16237461
crossref_primary_10_1016_j_smaim_2024_01_001
crossref_primary_10_3389_fcvm_2021_709871
crossref_primary_10_3390_mi15121529
crossref_primary_10_1002_smsc_202400335
crossref_primary_10_1007_s10055_023_00777_0
crossref_primary_10_1038_s41598_022_16008_6
crossref_primary_10_1088_1758_5090_acd95e
crossref_primary_10_1146_annurev_chembioeng_092220_015404
crossref_primary_10_1021_acsbiomaterials_0c01549
crossref_primary_10_3390_cancers13030507
crossref_primary_10_3390_children10020319
crossref_primary_10_1088_1758_5090_ad7906
crossref_primary_10_2217_3dp_2022_0023
crossref_primary_10_3389_fbioe_2023_1161804
crossref_primary_10_1016_j_eurpolymj_2022_111549
crossref_primary_10_1002_admt_202201542
crossref_primary_10_1016_j_addr_2025_115524
crossref_primary_10_1016_j_addr_2024_115347
crossref_primary_10_1016_j_pmatsci_2024_101377
crossref_primary_10_1016_j_mtcomm_2023_105696
crossref_primary_10_1038_s43586_022_00124_8
crossref_primary_10_1002_adfm_202303659
crossref_primary_10_1016_j_apmt_2022_101729
crossref_primary_10_1089_ten_teb_2020_0343
crossref_primary_10_3390_app131810269
crossref_primary_10_1089_ten_tec_2024_0309
crossref_primary_10_1088_1758_5090_ad9fe0
crossref_primary_10_1002_adhm_202200243
crossref_primary_10_1021_acsbiomaterials_4c01824
crossref_primary_10_1016_j_mtbio_2023_100726
crossref_primary_10_1089_ten_teb_2021_0088
crossref_primary_10_1007_s42600_025_00400_y
crossref_primary_10_1016_j_isci_2025_111882
crossref_primary_10_1021_acsapm_1c00567
crossref_primary_10_1088_2631_7990_ad996d
crossref_primary_10_3389_frobt_2021_673533
crossref_primary_10_1021_acsami_1c20209
crossref_primary_10_3390_ijms22115731
crossref_primary_10_3390_ijms24031912
crossref_primary_10_1016_j_actbio_2021_11_048
crossref_primary_10_1039_D4BM00550C
crossref_primary_10_1016_j_stlm_2024_100181
crossref_primary_10_1016_j_bprint_2022_e00242
crossref_primary_10_1016_j_bprint_2025_e00403
crossref_primary_10_1016_j_tibtech_2024_03_006
crossref_primary_10_1016_j_biomaterials_2021_121298
crossref_primary_10_1557_s43577_023_00541_4
crossref_primary_10_3390_biom14070861
crossref_primary_10_1039_D3TB01847D
crossref_primary_10_1002_smtd_202301325
crossref_primary_10_1016_j_matdes_2024_112886
crossref_primary_10_1007_s13770_022_00495_9
crossref_primary_10_3390_mi13030469
crossref_primary_10_1007_s00104_024_02197_5
crossref_primary_10_1016_j_bprint_2024_e00329
crossref_primary_10_1126_scitranslmed_abo7047
crossref_primary_10_1002_btm2_10503
crossref_primary_10_1208_s12249_022_02279_9
crossref_primary_10_1016_j_colsurfa_2023_131288
crossref_primary_10_1016_j_yjmcc_2022_04_017
crossref_primary_10_1002_admt_202201926
crossref_primary_10_1088_2516_1091_adb254
crossref_primary_10_3390_gels10100644
crossref_primary_10_1038_s41569_021_00603_7
crossref_primary_10_1016_j_jmrt_2021_12_023
crossref_primary_10_1002_admt_202300001
crossref_primary_10_1016_j_eng_2024_04_023
crossref_primary_10_1016_j_ijpharm_2024_124898
crossref_primary_10_1002_adma_202206958
crossref_primary_10_1002_adma_202400364
crossref_primary_10_1016_j_coco_2025_102275
crossref_primary_10_1007_s11936_025_01074_6
crossref_primary_10_1016_j_addr_2024_115485
crossref_primary_10_1089_ten_tea_2022_29036_abstracts
crossref_primary_10_3389_fbioe_2021_732130
crossref_primary_10_1088_1758_5090_ad5d18
crossref_primary_10_1016_j_yjmcc_2022_06_013
crossref_primary_10_1186_s41205_022_00167_3
crossref_primary_10_1016_j_ijbiomac_2023_123450
crossref_primary_10_1557_s43577_022_00348_9
crossref_primary_10_1155_2023_6661452
crossref_primary_10_2217_3dp_2023_0003
crossref_primary_10_1042_EBC20200153
crossref_primary_10_1088_1758_5090_ac975e
crossref_primary_10_1038_s41598_022_26809_4
crossref_primary_10_1038_s42003_024_06567_x
crossref_primary_10_1016_j_mfglet_2024_09_167
crossref_primary_10_1080_17460751_2025_2469433
crossref_primary_10_1002_adbi_202300124
crossref_primary_10_1088_1758_5090_adb7c3
crossref_primary_10_1126_scirobotics_adr6472
crossref_primary_10_3390_jcdd9050125
crossref_primary_10_1039_D2BM00632D
crossref_primary_10_1002_adfm_202100628
crossref_primary_10_3390_polym13030366
crossref_primary_10_1088_1758_5090_ac7909
crossref_primary_10_1002_adem_202101481
crossref_primary_10_1007_s42242_021_00165_0
crossref_primary_10_1016_j_tibtech_2021_08_007
crossref_primary_10_1002_masy_202200050
crossref_primary_10_1016_j_precisioneng_2022_09_004
crossref_primary_10_1007_s42242_022_00183_6
crossref_primary_10_54033_cadpedv22n1_129
crossref_primary_10_1002_jbm_b_35312
crossref_primary_10_1088_1758_5090_ad5b1b
crossref_primary_10_1016_j_apmt_2023_102035
crossref_primary_10_1016_j_matt_2022_08_013
crossref_primary_10_1021_acsami_3c00370
crossref_primary_10_1021_acsbiomaterials_1c00598
crossref_primary_10_1088_1758_5090_acb73c
crossref_primary_10_1088_1758_5090_ad52f1
crossref_primary_10_1016_j_stem_2022_04_012
crossref_primary_10_3390_mi14081648
crossref_primary_10_1002_adfm_202410311
crossref_primary_10_1021_acsbiomaterials_1c00910
crossref_primary_10_3390_polym14112229
crossref_primary_10_1016_j_celrep_2024_115068
crossref_primary_10_1109_MPULS_2021_3094252
crossref_primary_10_1039_D1MA00525A
crossref_primary_10_1039_D1SM00926E
crossref_primary_10_1177_11795972241288099
crossref_primary_10_1177_09544119241232122
crossref_primary_10_1016_j_bioadv_2022_212916
crossref_primary_10_1016_j_trim_2021_101446
crossref_primary_10_34133_cbsystems_0043
crossref_primary_10_1002_smsc_202300280
crossref_primary_10_1016_j_matpr_2022_09_272
crossref_primary_10_1088_1758_5090_ac6bbe
crossref_primary_10_1007_s12551_021_00838_1
crossref_primary_10_1016_j_precisioneng_2023_06_006
crossref_primary_10_1016_j_ohx_2020_e00170
crossref_primary_10_1557_s43578_023_01193_5
crossref_primary_10_1016_j_matpr_2022_08_549
crossref_primary_10_3390_bioengineering9030109
crossref_primary_10_1007_s10741_023_10367_6
crossref_primary_10_1016_j_eng_2024_01_028
crossref_primary_10_1038_s41467_024_50224_0
crossref_primary_10_3389_fchem_2021_680836
crossref_primary_10_1002_adfm_202313088
crossref_primary_10_1007_s00424_021_02557_8
crossref_primary_10_1016_j_addma_2022_103243
crossref_primary_10_1016_j_bprint_2022_e00209
crossref_primary_10_1021_acsbiomaterials_1c00908
crossref_primary_10_1088_1758_5090_ac58be
crossref_primary_10_1063_5_0032777
crossref_primary_10_3389_fbioe_2022_849831
crossref_primary_10_1111_nyas_14896
crossref_primary_10_1007_s10853_023_09256_y
crossref_primary_10_1089_ten_tec_2022_0214
crossref_primary_10_3390_bioengineering9120807
crossref_primary_10_1088_1748_605X_ad3f60
crossref_primary_10_1039_D1TB02554F
crossref_primary_10_1126_science_abl6395
crossref_primary_10_1002_adhm_202200866
crossref_primary_10_1016_j_addma_2025_104667
crossref_primary_10_1002_adma_202313776
crossref_primary_10_1063_5_0061361
crossref_primary_10_1016_j_bioactmat_2023_10_012
crossref_primary_10_1177_20417314211027677
crossref_primary_10_1016_j_msec_2021_112057
crossref_primary_10_3389_fcvm_2023_1248300
crossref_primary_10_1016_j_medntd_2023_100211
Cites_doi 10.1088/1758-5090/aacdc7
10.1126/sciadv.1500758
10.1007/s11886-018-0992-9
10.1016/S0142-9612(00)00201-5
10.1177/2150135118771323
10.1016/j.ohx.2018.02.001
10.1089/ten.teb.2010.0520
10.1007/s10856-019-6265-3
10.1186/s12896-015-0147-7
10.1002/mp.13058
10.9790/9622-0710021619
10.1111/chd.12238
10.1101/825794
10.1016/j.jmbbm.2018.03.032
10.1016/j.biomaterials.2004.06.044
10.1039/C3TB21280G
10.1016/J.ENG.2017.05.013
10.1089/3dp.2018.0175
10.4103/JMU.JMU_4_19
10.1126/science.aav9051
10.1016/j.susc.2004.06.179
10.1016/j.jtcvs.2012.12.030
10.3390/nano9010078
10.1007/s11548-010-0476-x
10.1021/acsbiomaterials.6b00170
10.1109/58.484478
10.1002/adhm.201901735
10.1002/term.2686
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsbiomaterials.0c01133
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2373-9878
EndPage 6459
ExternalDocumentID 33449644
10_1021_acsbiomaterials_0c01133
b358468858
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: F32 HL142229
GroupedDBID ABMVS
ABUCX
ACGFS
ACS
AEESW
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
UI2
VF5
VG9
W1F
53G
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a423t-cd239eda1b96b9776b13e33fcc8bcabb241a8286b77a93280f4250703787249b3
IEDL.DBID ACS
ISSN 2373-9878
IngestDate Thu Jul 10 17:28:36 EDT 2025
Wed Feb 19 02:28:11 EST 2025
Tue Jul 01 00:45:29 EDT 2025
Thu Apr 24 23:11:55 EDT 2025
Wed Nov 11 03:10:54 EST 2020
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords alginate
FRESH printing
tissue phantom
surgical training and planning
embedded printing
bioprinting
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a423t-cd239eda1b96b9776b13e33fcc8bcabb241a8286b77a93280f4250703787249b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3338-5456
PMID 33449644
PQID 2478597409
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2478597409
pubmed_primary_33449644
crossref_citationtrail_10_1021_acsbiomaterials_0c01133
crossref_primary_10_1021_acsbiomaterials_0c01133
acs_journals_10_1021_acsbiomaterials_0c01133
ProviderPackageCode ACS
AEESW
AFEFF
VF5
VG9
ABMVS
ABUCX
AQSVZ
W1F
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-09
PublicationDateYYYYMMDD 2020-11-09
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS biomaterials science & engineering
PublicationTitleAlternate ACS Biomater. Sci. Eng
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref4/cit4
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref10/cit10
  doi: 10.1088/1758-5090/aacdc7
– ident: ref12/cit12
  doi: 10.1126/sciadv.1500758
– ident: ref2/cit2
  doi: 10.1007/s11886-018-0992-9
– ident: ref20/cit20
  doi: 10.1016/S0142-9612(00)00201-5
– ident: ref6/cit6
  doi: 10.1177/2150135118771323
– ident: ref14/cit14
  doi: 10.1016/j.ohx.2018.02.001
– ident: ref17/cit17
  doi: 10.1089/ten.teb.2010.0520
– ident: ref16/cit16
  doi: 10.1007/s10856-019-6265-3
– ident: ref26/cit26
  doi: 10.1186/s12896-015-0147-7
– ident: ref3/cit3
  doi: 10.1002/mp.13058
– ident: ref22/cit22
  doi: 10.9790/9622-0710021619
– ident: ref5/cit5
  doi: 10.1111/chd.12238
– ident: ref23/cit23
  doi: 10.1101/825794
– ident: ref25/cit25
  doi: 10.1016/j.jmbbm.2018.03.032
– ident: ref21/cit21
  doi: 10.1016/j.biomaterials.2004.06.044
– ident: ref11/cit11
  doi: 10.1039/C3TB21280G
– ident: ref7/cit7
  doi: 10.1016/J.ENG.2017.05.013
– ident: ref9/cit9
  doi: 10.1089/3dp.2018.0175
– ident: ref8/cit8
  doi: 10.4103/JMU.JMU_4_19
– ident: ref13/cit13
  doi: 10.1126/science.aav9051
– ident: ref18/cit18
  doi: 10.1016/j.susc.2004.06.179
– ident: ref4/cit4
  doi: 10.1016/j.jtcvs.2012.12.030
– ident: ref15/cit15
  doi: 10.3390/nano9010078
– ident: ref1/cit1
  doi: 10.1007/s11548-010-0476-x
– ident: ref27/cit27
  doi: 10.1021/acsbiomaterials.6b00170
– ident: ref19/cit19
  doi: 10.1109/58.484478
– ident: ref28/cit28
  doi: 10.1002/adhm.201901735
– ident: ref24/cit24
  doi: 10.1002/term.2686
SSID ssj0001385444
Score 2.581346
Snippet Recent advances in embedded three-dimensional (3D) bioprinting have expanded the design space for fabricating geometrically complex tissue scaffolds using...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6453
SubjectTerms Alginates
Bioprinting
Humans
Hydrogels
Manufacturing, Technology, and Devices
Printing, Three-Dimensional
Tissue Scaffolds
Title FRESH 3D Bioprinting a Full-Size Model of the Human Heart
URI http://dx.doi.org/10.1021/acsbiomaterials.0c01133
https://www.ncbi.nlm.nih.gov/pubmed/33449644
https://www.proquest.com/docview/2478597409
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGuMCB92O8FCSOdLRJ1scRBlOFBAfGpN2qJEulialDrLvs12O33XhpAn6AKyW26--zYxvgIhJWDjyhaU6lcqTVrqOQNzipoD4QFaqoGMfw8OjHPXnfb_Vr4C2p4HPvSpkJdaKrvNRI0zVokkKswCr3EWwTGmp3P9IqImzJYoUrF4FwkFGH81ddy79FkclMvkamJXCzCDudTXiaN--Ur01emtNcN83s5yzHv59oCzYqEMquS6vZhprNdmD902jCXYg6qJqYiVt2MxxT8o-eRzPFiLI63eHMMtqiNmLjlCGEZEUtgMXoNvke9Dp3z-3YqdYsoFa4yB0z4CKyA-XpyNcIB31NmVGRGhNqo7TGGK-o2VwHgUK0F7op-jn9KdDXkbxpsQ_1bJzZQ2CBJ7lBxmV8biXJi4D7A6N9RH3cpEEDLvHwSeUmk6SogHMv-XYjSXUjDfDnGklMNbKcNmeMfhd0F4Kv5dSO30XO5ypP0MOobKIyO55OEi6DkGiXGzXgoLSFxUeFkDJCSHn0v4Mdwxon3k7p6egE6vnb1J4iuMn1WWHO7z359Is
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYGHIAD78d4BokjHW0S-jjymspju8CkcaqSLJUm0Ipod-HXY3fdeEhogmslR0ls15_t2AY4joSVPU9o6lOpHGm16yj0G5xUUB2IClVUtmNotf24I2-7Z90ahONaGNxEjivlZRL_s7uAd4rfqCBdFSPGNFyDkinEDMwhJOH0mO_88uEzuiLCM1lOcuUiEA461uH4cdfva5GBMvl3A_UL6iytT3MZnib7Lh-dPDeGhW6Y9x8tHf9zsBVYqiApOx_J0CrU7GANFr80KlyHqImMipm4Yhf9jEKB9FiaKUYOrPPQf7eMZqq9sCxlCChZmRlgMSpRsQGd5vXjZexUQxeQR1wUjulxEdme8nTkawSHvqY4qUiNCbVRWqPFV1R6roNAIfYL3RS1nv4bqPnoymmxCbODbGC3gQWe5Ab9L-NzK4leBNzvGe0jBuQmDepwgodPKqXJkzIfzr3kx40k1Y3UwR8zJjFVA3Oao_EyndCdEL6OenhMJzkacz5BfaMkihrYbJgnXAYhOWFuVIetkUhMFhVCyggB5s7fDnYI8_Fj6z65v2nf7cICJ4-eAtfRHswWb0O7j7Cn0AelhH8A7kn87A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwNBDA5aQfTB-6jnCD66dXdmugf44lXqiVAFX2SZmZ2FYmmLu33x15tst_UAKfq6kGFmk0y-JJME4DASViae0NSnUjnSatdR6Dc4qaA6EBWqqGjHcHfvN5_k9XP9eQpORrUwuIkMV8qKJD5pdT9Jyw4D3jF-p6J0lQ-ZU3MNSqcQ0zBDyTt60Hd63vqMsIiwLotprlwEwkHnOhw98Pp9LTJSJvtupH5BnoUFaizCy3jvxcOT19og1zXz_qOt438PtwQLJTRlp0NZWoYp212B-S8NC1chaiDDmkxcsLN2j0KC9GiaKUaOrNNqv1tGs9U6rJcyBJasyBCwJipTvgZPjcvH86ZTDl9AXnGROybhIrKJ8nTkawSJvqZ4qUiNCbVRWqPlV1SCroNAIQYM3RS1n-4PvAHQpdNiHSrdXtduAgs8yQ36YcbnVhK9CLifGO0jFuQmDapwhIePS-XJ4iIvzr34xx-Jyz9SBX_EnNiUjcxpnkZnMqE7JuwPe3lMJjkYcT9GvaNkiura3iCLuQxCcsbcqAobQ7EYLyqElBECza2_HWwfZh8uGvHt1f3NNsxxcuwpfh3tQCV_G9hdRD-53iuE_AMjUf9v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FRESH+3D+Bioprinting+a+Full-Size+Model+of+the+Human+Heart&rft.jtitle=ACS+biomaterials+science+%26+engineering&rft.au=Mirdamadi%2C+Eman&rft.au=Tashman%2C+Joshua+W&rft.au=Shiwarski%2C+Daniel+J&rft.au=Palchesko%2C+Rachelle+N&rft.date=2020-11-09&rft.issn=2373-9878&rft.eissn=2373-9878&rft.volume=6&rft.issue=11&rft.spage=6453&rft_id=info:doi/10.1021%2Facsbiomaterials.0c01133&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-9878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-9878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-9878&client=summon