Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium Nanoclusters
The limitations of the Haber–Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N2 electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol gcat –1 h–1), a...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 15; pp. 7036 - 7046 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The limitations of the Haber–Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N2 electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol gcat –1 h–1), a small partial current density (<1 mA cm–2), and a high-selectivity hydrogen-evolving side reaction. Herein, we report that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate (5.56 mol gcat –1 h–1) than the Haber–Bosch process. The primary contributor to such performance is hydrogen radicals, which are generated by suppressing hydrogen–hydrogen dimerization during water splitting enabled by the tensile lattice strains. The radicals expedite nitrate-to-ammonia conversion by hydrogenating intermediates of the rate-limiting steps at lower kinetic barriers. The strained nanostructures can maintain nearly 100% ammonia-evolving selectivity at >120 mA cm–2 current densities for 100 h due to the robust subsurface Ru–O coordination. These findings highlight the potential of nitrate electroreduction in real-world, low-temperature ammonia synthesis. |
---|---|
AbstractList | The limitations of the Haber–Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N₂ electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol gcₐₜ–¹ h–¹), a small partial current density (<1 mA cm–²), and a high-selectivity hydrogen-evolving side reaction. Herein, we report that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate (5.56 mol gcₐₜ–¹ h–¹) than the Haber–Bosch process. The primary contributor to such performance is hydrogen radicals, which are generated by suppressing hydrogen–hydrogen dimerization during water splitting enabled by the tensile lattice strains. The radicals expedite nitrate-to-ammonia conversion by hydrogenating intermediates of the rate-limiting steps at lower kinetic barriers. The strained nanostructures can maintain nearly 100% ammonia-evolving selectivity at >120 mA cm–² current densities for 100 h due to the robust subsurface Ru–O coordination. These findings highlight the potential of nitrate electroreduction in real-world, low-temperature ammonia synthesis. The limitations of the Haber-Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol g h ), a small partial current density (<1 mA cm ), and a high-selectivity hydrogen-evolving side reaction. Herein, we report that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate (5.56 mol g h ) than the Haber-Bosch process. The primary contributor to such performance is hydrogen radicals, which are generated by suppressing hydrogen-hydrogen dimerization during water splitting enabled by the tensile lattice strains. The radicals expedite nitrate-to-ammonia conversion by hydrogenating intermediates of the rate-limiting steps at lower kinetic barriers. The strained nanostructures can maintain nearly 100% ammonia-evolving selectivity at >120 mA cm current densities for 100 h due to the robust subsurface Ru-O coordination. These findings highlight the potential of nitrate electroreduction in real-world, low-temperature ammonia synthesis. The limitations of the Haber-Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N2 electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol gcat-1 h-1), a small partial current density (<1 mA cm-2), and a high-selectivity hydrogen-evolving side reaction. Herein, we report that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate (5.56 mol gcat-1 h-1) than the Haber-Bosch process. The primary contributor to such performance is hydrogen radicals, which are generated by suppressing hydrogen-hydrogen dimerization during water splitting enabled by the tensile lattice strains. The radicals expedite nitrate-to-ammonia conversion by hydrogenating intermediates of the rate-limiting steps at lower kinetic barriers. The strained nanostructures can maintain nearly 100% ammonia-evolving selectivity at >120 mA cm-2 current densities for 100 h due to the robust subsurface Ru-O coordination. These findings highlight the potential of nitrate electroreduction in real-world, low-temperature ammonia synthesis.The limitations of the Haber-Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N2 electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol gcat-1 h-1), a small partial current density (<1 mA cm-2), and a high-selectivity hydrogen-evolving side reaction. Herein, we report that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate (5.56 mol gcat-1 h-1) than the Haber-Bosch process. The primary contributor to such performance is hydrogen radicals, which are generated by suppressing hydrogen-hydrogen dimerization during water splitting enabled by the tensile lattice strains. The radicals expedite nitrate-to-ammonia conversion by hydrogenating intermediates of the rate-limiting steps at lower kinetic barriers. The strained nanostructures can maintain nearly 100% ammonia-evolving selectivity at >120 mA cm-2 current densities for 100 h due to the robust subsurface Ru-O coordination. These findings highlight the potential of nitrate electroreduction in real-world, low-temperature ammonia synthesis. The limitations of the Haber–Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N2 electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol gcat –1 h–1), a small partial current density (<1 mA cm–2), and a high-selectivity hydrogen-evolving side reaction. Herein, we report that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate (5.56 mol gcat –1 h–1) than the Haber–Bosch process. The primary contributor to such performance is hydrogen radicals, which are generated by suppressing hydrogen–hydrogen dimerization during water splitting enabled by the tensile lattice strains. The radicals expedite nitrate-to-ammonia conversion by hydrogenating intermediates of the rate-limiting steps at lower kinetic barriers. The strained nanostructures can maintain nearly 100% ammonia-evolving selectivity at >120 mA cm–2 current densities for 100 h due to the robust subsurface Ru–O coordination. These findings highlight the potential of nitrate electroreduction in real-world, low-temperature ammonia synthesis. |
Author | Quan, Fengjiao Zhang, Lizhi Xu, Liangpang Wang, Jianfang Lei, Fengcai Shi, Yanbiao Yu, Jimmy C Yang, Jianhua Hao, Weichang Li, Lejing Liu, Yang Wong, Po Keung Wang, Bo Mao, Chengliang Li, Jie Chan, Alice W. M Zhan, Guangming Du, Yi Dou, Shi-Xue |
AuthorAffiliation | Department of Chemistry Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry School of Physics, BUAA-UOW Joint Research Centre School of Life Sciences Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Department of Physics |
AuthorAffiliation_xml | – name: Department of Chemistry – name: School of Physics, BUAA-UOW Joint Research Centre – name: Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) – name: Department of Physics – name: School of Life Sciences – name: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry |
Author_xml | – sequence: 1 givenname: Jie surname: Li fullname: Li, Jie – sequence: 2 givenname: Guangming surname: Zhan fullname: Zhan, Guangming organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry – sequence: 3 givenname: Jianhua surname: Yang fullname: Yang, Jianhua – sequence: 4 givenname: Fengjiao surname: Quan fullname: Quan, Fengjiao organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry – sequence: 5 givenname: Chengliang surname: Mao fullname: Mao, Chengliang organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry – sequence: 6 givenname: Yang surname: Liu fullname: Liu, Yang – sequence: 7 givenname: Bo surname: Wang fullname: Wang, Bo – sequence: 8 givenname: Fengcai surname: Lei fullname: Lei, Fengcai – sequence: 9 givenname: Lejing orcidid: 0000-0001-7144-9305 surname: Li fullname: Li, Lejing – sequence: 10 givenname: Alice W. M surname: Chan fullname: Chan, Alice W. M – sequence: 11 givenname: Liangpang surname: Xu fullname: Xu, Liangpang – sequence: 12 givenname: Yanbiao surname: Shi fullname: Shi, Yanbiao organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry – sequence: 13 givenname: Yi surname: Du fullname: Du, Yi organization: School of Physics, BUAA-UOW Joint Research Centre – sequence: 14 givenname: Weichang orcidid: 0000-0002-1597-7151 surname: Hao fullname: Hao, Weichang organization: School of Physics, BUAA-UOW Joint Research Centre – sequence: 15 givenname: Po Keung orcidid: 0000-0003-3081-960X surname: Wong fullname: Wong, Po Keung – sequence: 16 givenname: Jianfang orcidid: 0000-0002-2467-8751 surname: Wang fullname: Wang, Jianfang – sequence: 17 givenname: Shi-Xue surname: Dou fullname: Dou, Shi-Xue organization: School of Physics, BUAA-UOW Joint Research Centre – sequence: 18 givenname: Lizhi orcidid: 0000-0002-6842-9167 surname: Zhang fullname: Zhang, Lizhi email: zhanglz@mail.ccnu.edu.cn organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry – sequence: 19 givenname: Jimmy C orcidid: 0000-0001-9886-3725 surname: Yu fullname: Yu, Jimmy C email: jimyu@cuhk.edu.hk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32223152$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1P5DAQhi3ECZaFjhqlpLhw_k5SIrQcSOhO4o7a8jpj4VVig-0U--9xtEuDQFTz9cxo9L4n6NAHDwidE3xFMCW_NtqkK2ww5qQ9QAsiKK4FofIQLTDGtG5ayY7RSUqbUnLakiN0zCilrJAL9Liy1hkHPlfX4xi809VqAJNjSFufnyG5VNkYxuqPy1FnqIKv_pXMeeirx6kQ3k1lqn0ww5QyxHSKflg9JDjbxyV6ul39v7mrH_7-vr-5fqg1pyzXay5sY0DzTmIm16KBpsOia4AxYq2wnAgw0lCKmx4aKpteAud83WkGRMqeLdHl7u5LDK8TpKxGlwwMg_YQpqRo1wrR0Y7L71HW8pZ0gszoxR6d1iP06iW6UcetepesAHQHmKJRimCVcVlnF_wsy6AIVrMvavZF7X0pSz8_LL3f_QLf_zs3N2GKvgj5OfoGALObvQ |
CitedBy_id | crossref_primary_10_1002_cplu_202100356 crossref_primary_10_1016_j_rser_2023_113197 crossref_primary_10_1002_anie_202415259 crossref_primary_10_1016_j_cej_2022_141060 crossref_primary_10_1021_jacs_3c12783 crossref_primary_10_1002_cssc_202002596 crossref_primary_10_1002_aenm_202302274 crossref_primary_10_1021_acscatal_4c01398 crossref_primary_10_1016_j_jechem_2024_03_043 crossref_primary_10_1007_s40843_023_2582_6 crossref_primary_10_1021_acscatal_3c01963 crossref_primary_10_1039_D4CC06290F crossref_primary_10_1039_D1EE03097C crossref_primary_10_1039_D3NR06151E crossref_primary_10_1016_j_jiec_2025_02_029 crossref_primary_10_1016_S1872_2067_22_64090_7 crossref_primary_10_1021_acscatal_2c04584 crossref_primary_10_1002_smll_202106961 crossref_primary_10_1016_j_apcatb_2024_123864 crossref_primary_10_1016_j_cej_2025_161528 crossref_primary_10_2139_ssrn_3968857 crossref_primary_10_1021_acscatal_2c03004 crossref_primary_10_1016_j_gee_2022_09_007 crossref_primary_10_1002_ange_202400289 crossref_primary_10_15212_bioi_2024_0004 crossref_primary_10_1016_j_cej_2024_151883 crossref_primary_10_1016_j_electacta_2024_144955 crossref_primary_10_1021_acs_iecr_4c04465 crossref_primary_10_1002_cnl2_8 crossref_primary_10_1016_j_apcatb_2023_123577 crossref_primary_10_1039_D4EE02775B crossref_primary_10_1002_smll_202207661 crossref_primary_10_1016_j_apcatb_2023_122480 crossref_primary_10_3390_met13040799 crossref_primary_10_1039_D3CC00864A crossref_primary_10_1016_j_cej_2024_149560 crossref_primary_10_1016_j_matre_2023_100216 crossref_primary_10_1016_j_apcatb_2024_124741 crossref_primary_10_1002_smll_202308311 crossref_primary_10_1021_jacs_3c00334 crossref_primary_10_1002_anie_202109785 crossref_primary_10_1016_j_jece_2024_112348 crossref_primary_10_1002_tcr_202400206 crossref_primary_10_1002_ange_202401386 crossref_primary_10_1007_s12274_024_6726_y crossref_primary_10_1002_cssc_202402031 crossref_primary_10_1002_adma_202201670 crossref_primary_10_1002_cssc_202300202 crossref_primary_10_1039_D4CC01399A crossref_primary_10_1002_ange_202422072 crossref_primary_10_1002_celc_202300419 crossref_primary_10_1016_j_apcatb_2022_122193 crossref_primary_10_1007_s43979_023_00055_7 crossref_primary_10_2139_ssrn_4144002 crossref_primary_10_1038_s41467_022_32933_6 crossref_primary_10_1002_ange_202415300 crossref_primary_10_1016_j_btre_2025_e00874 crossref_primary_10_1039_D2DT01431A crossref_primary_10_1021_jacs_3c06904 crossref_primary_10_1021_acs_est_4c09970 crossref_primary_10_1021_acs_est_4c09975 crossref_primary_10_1039_D0CY02025G crossref_primary_10_1002_smll_202310467 crossref_primary_10_1021_acsaem_4c02975 crossref_primary_10_1021_jacs_3c08084 crossref_primary_10_1021_acsami_4c14621 crossref_primary_10_1360_TB_2023_0356 crossref_primary_10_1016_j_apcatb_2022_121094 crossref_primary_10_1002_adma_202407889 crossref_primary_10_3390_app14198986 crossref_primary_10_1016_j_apcatb_2023_123554 crossref_primary_10_1007_s40820_023_01217_z crossref_primary_10_1021_acs_inorgchem_4c02578 crossref_primary_10_1038_s41467_022_33779_8 crossref_primary_10_1002_smll_202400036 crossref_primary_10_1016_j_cej_2021_133190 crossref_primary_10_1063_5_0069736 crossref_primary_10_1021_acs_inorgchem_4c04780 crossref_primary_10_1021_acssuschemeng_3c01084 crossref_primary_10_1021_acsami_1c10946 crossref_primary_10_1016_j_apcatb_2023_122473 crossref_primary_10_1039_D3EY00058C crossref_primary_10_1021_acsnano_3c05946 crossref_primary_10_1016_j_apcatb_2023_122687 crossref_primary_10_1002_smll_202404881 crossref_primary_10_1016_j_apcatb_2024_124943 crossref_primary_10_1021_acsnano_3c10058 crossref_primary_10_1007_s11426_022_1411_0 crossref_primary_10_1002_adma_202303050 crossref_primary_10_1002_cphc_202100785 crossref_primary_10_1016_j_mtchem_2024_102326 crossref_primary_10_1002_ange_202313746 crossref_primary_10_1038_s41467_022_35664_w crossref_primary_10_1021_acs_inorgchem_2c02499 crossref_primary_10_1039_D1QI01472B crossref_primary_10_1016_j_chemosphere_2021_131501 crossref_primary_10_1016_j_checat_2022_01_022 crossref_primary_10_1021_acs_inorgchem_4c02353 crossref_primary_10_1002_anie_202317414 crossref_primary_10_1038_s41467_021_23115_x crossref_primary_10_1016_j_jcis_2023_06_073 crossref_primary_10_1021_prechem_3c00107 crossref_primary_10_1002_cssc_202301570 crossref_primary_10_1007_s40843_022_2263_x crossref_primary_10_1016_j_rinp_2023_107259 crossref_primary_10_1002_adma_202405660 crossref_primary_10_1021_acs_est_1c04363 crossref_primary_10_1039_D3QM01038D crossref_primary_10_1016_j_cej_2023_145546 crossref_primary_10_1016_j_isci_2023_107009 crossref_primary_10_1016_j_jhazmat_2024_134261 crossref_primary_10_1002_ange_202303327 crossref_primary_10_1016_j_nanoen_2022_107866 crossref_primary_10_1016_j_envres_2025_121123 crossref_primary_10_1021_acs_nanolett_3c02259 crossref_primary_10_1002_advs_202302623 crossref_primary_10_1002_ange_202300054 crossref_primary_10_1039_D2QI01791A crossref_primary_10_1002_smll_202303732 crossref_primary_10_1039_D1TA05718A crossref_primary_10_1021_acs_jpcc_1c07689 crossref_primary_10_1002_anie_202411068 crossref_primary_10_1021_jacs_3c10516 crossref_primary_10_1002_cctc_202401690 crossref_primary_10_1002_ange_202405370 crossref_primary_10_1021_acs_est_4c02445 crossref_primary_10_1016_j_apcatb_2023_122677 crossref_primary_10_1016_j_chempr_2023_08_001 crossref_primary_10_1038_s41467_022_29926_w crossref_primary_10_1016_j_ccr_2024_216061 crossref_primary_10_1002_ange_202215938 crossref_primary_10_1021_acs_est_2c01057 crossref_primary_10_1016_j_apcatb_2025_125268 crossref_primary_10_1016_j_jcis_2024_11_026 crossref_primary_10_1016_j_elecom_2021_107094 crossref_primary_10_1002_adma_202417623 crossref_primary_10_1021_acssuschemeng_2c05885 crossref_primary_10_1002_smll_202311336 crossref_primary_10_1016_j_apcatb_2024_123810 crossref_primary_10_1039_D2NJ02427F crossref_primary_10_1016_j_jece_2023_110927 crossref_primary_10_1016_j_jcis_2024_02_211 crossref_primary_10_1002_ange_202202604 crossref_primary_10_1002_adma_202204306 crossref_primary_10_1016_j_checat_2023_100751 crossref_primary_10_1021_acs_jpclett_1c03938 crossref_primary_10_1002_smll_202300437 crossref_primary_10_1016_j_mattod_2021_01_029 crossref_primary_10_1021_acsomega_0c05975 crossref_primary_10_1002_ange_202307952 crossref_primary_10_1016_j_cej_2023_143571 crossref_primary_10_1039_D2TA04707A crossref_primary_10_1002_aenm_202301136 crossref_primary_10_1039_D1CC06690K crossref_primary_10_1016_j_jece_2024_114554 crossref_primary_10_1038_s41467_023_39366_9 crossref_primary_10_1039_D1CY01075A crossref_primary_10_1038_s41565_022_01121_4 crossref_primary_10_1039_D3EY00184A crossref_primary_10_1021_acsnano_2c07260 crossref_primary_10_1002_aenm_202303321 crossref_primary_10_1016_j_jcis_2024_05_084 crossref_primary_10_1016_j_scib_2023_07_036 crossref_primary_10_1016_j_jechem_2023_07_006 crossref_primary_10_1007_s11783_023_1626_z crossref_primary_10_1016_j_nanoen_2025_110683 crossref_primary_10_1002_ange_202305719 crossref_primary_10_1002_anie_202218717 crossref_primary_10_1016_j_jcis_2022_09_016 crossref_primary_10_1002_smll_202412089 crossref_primary_10_1016_j_seppur_2023_125129 crossref_primary_10_1016_j_jechem_2024_01_062 crossref_primary_10_1002_anie_202308775 crossref_primary_10_1021_acscatal_4c00919 crossref_primary_10_1002_aenm_202201500 crossref_primary_10_1039_D2EE03502B crossref_primary_10_1021_acsmaterialslett_3c00007 crossref_primary_10_1016_j_checat_2023_100786 crossref_primary_10_1080_03067319_2022_2118588 crossref_primary_10_1021_acs_jpclett_1c00855 crossref_primary_10_1016_j_cej_2024_152543 crossref_primary_10_1002_aenm_202401834 crossref_primary_10_1039_D1GC01913A crossref_primary_10_1002_ange_202107858 crossref_primary_10_1039_D3QI01113E crossref_primary_10_1021_acssuschemeng_4c00251 crossref_primary_10_1021_acsami_3c06739 crossref_primary_10_1021_acs_langmuir_0c02770 crossref_primary_10_1515_pac_2021_0204 crossref_primary_10_1016_S1872_2067_21_63834_2 crossref_primary_10_1021_acssuschemeng_4c01335 crossref_primary_10_1021_acsami_2c12175 crossref_primary_10_1002_anie_202403633 crossref_primary_10_1021_jacs_4c13707 crossref_primary_10_3390_su16229609 crossref_primary_10_1002_celc_202400605 crossref_primary_10_1016_S1872_2067_24_60059_8 crossref_primary_10_1007_s12274_024_6543_3 crossref_primary_10_1021_acs_est_1c08442 crossref_primary_10_1002_anie_202422585 crossref_primary_10_1016_j_surfin_2024_105308 crossref_primary_10_1039_D2EE04095F crossref_primary_10_1002_ange_202409799 crossref_primary_10_1016_j_coelec_2023_101402 crossref_primary_10_1021_acs_jpcc_3c01242 crossref_primary_10_1039_D2DT03189B crossref_primary_10_1016_j_colsurfa_2022_130549 crossref_primary_10_1002_anie_202416910 crossref_primary_10_1016_j_apcatb_2024_124150 crossref_primary_10_1002_adfm_202413070 crossref_primary_10_1002_anie_202204117 crossref_primary_10_1002_elsa_202100220 crossref_primary_10_1002_adma_202207305 crossref_primary_10_1002_smll_202107136 crossref_primary_10_1039_D3CY01441J crossref_primary_10_6023_A23040133 crossref_primary_10_1002_adfm_202401094 crossref_primary_10_1021_acsnano_2c07911 crossref_primary_10_1002_ange_202418272 crossref_primary_10_1039_D3QM00627A crossref_primary_10_1039_D1CC06215H crossref_primary_10_1016_j_cej_2021_131317 crossref_primary_10_1002_cctc_202402050 crossref_primary_10_1002_smtd_202100460 crossref_primary_10_1021_acsnano_4c09247 crossref_primary_10_1002_sstr_202200308 crossref_primary_10_1021_acs_nanolett_3c01905 crossref_primary_10_1016_j_cej_2024_157518 crossref_primary_10_1039_D4NR02387K crossref_primary_10_1039_D3TA03548D crossref_primary_10_1021_acsaem_1c03969 crossref_primary_10_1039_D3GC03092J crossref_primary_10_1002_ange_202305246 crossref_primary_10_1002_cssc_202400648 crossref_primary_10_1021_acs_iecr_1c03072 crossref_primary_10_1007_s10008_022_05228_5 crossref_primary_10_1016_j_jmst_2021_09_009 crossref_primary_10_1002_cssc_202401979 crossref_primary_10_1002_adma_202207522 crossref_primary_10_1002_anie_202423661 crossref_primary_10_1002_elsa_202100201 crossref_primary_10_1039_D3SE00901G crossref_primary_10_1016_j_mtphys_2023_101162 crossref_primary_10_1016_j_cclet_2024_109958 crossref_primary_10_1016_j_nanoen_2021_106088 crossref_primary_10_1088_2053_1583_adb43e crossref_primary_10_1039_D4CC03051F crossref_primary_10_1016_j_apsusc_2022_152556 crossref_primary_10_1002_anie_202305246 crossref_primary_10_1038_s41929_023_00951_2 crossref_primary_10_1016_j_jechem_2025_01_075 crossref_primary_10_1039_D3TA03675H crossref_primary_10_1002_adfm_202107651 crossref_primary_10_1021_acsnano_1c08652 crossref_primary_10_1002_ange_202114538 crossref_primary_10_1002_ange_202317414 crossref_primary_10_1016_j_jhazmat_2022_129828 crossref_primary_10_1021_acsomega_2c03588 crossref_primary_10_1002_ange_202423661 crossref_primary_10_1016_j_jhazmat_2023_132282 crossref_primary_10_1021_acs_inorgchem_3c01046 crossref_primary_10_1038_s41929_024_01133_4 crossref_primary_10_1002_adfm_202313548 crossref_primary_10_1002_adma_202211856 crossref_primary_10_1016_j_resconrec_2022_106687 crossref_primary_10_1002_aenm_202302515 crossref_primary_10_1039_D2TA06316F crossref_primary_10_1002_adfm_202401287 crossref_primary_10_1021_acs_inorgchem_2c02716 crossref_primary_10_1039_D3DT01705B crossref_primary_10_1016_j_cej_2024_158814 crossref_primary_10_1016_j_coelec_2022_101179 crossref_primary_10_1016_j_jechem_2024_07_033 crossref_primary_10_1016_j_jechem_2023_12_024 crossref_primary_10_1002_smll_202200436 crossref_primary_10_1021_acsanm_3c00681 crossref_primary_10_1021_acs_nanolett_2c02026 crossref_primary_10_1002_anie_202418272 crossref_primary_10_1002_adma_202313548 crossref_primary_10_1002_aesr_202300173 crossref_primary_10_1039_D4TA04389H crossref_primary_10_1016_j_cclet_2025_111066 crossref_primary_10_1021_acs_nanolett_2c04444 crossref_primary_10_1016_j_apcatb_2022_121750 crossref_primary_10_1149_1945_7111_ac7c95 crossref_primary_10_1002_anie_202305695 crossref_primary_10_1021_acsaem_3c02892 crossref_primary_10_1016_j_jece_2022_108362 crossref_primary_10_1021_acsenergylett_2c02175 crossref_primary_10_1021_acs_nanolett_4c03319 crossref_primary_10_1002_aesr_202200192 crossref_primary_10_1016_j_chempr_2024_07_006 crossref_primary_10_1016_j_cej_2024_153108 crossref_primary_10_1002_ange_202305695 crossref_primary_10_1016_j_chemosphere_2024_143707 crossref_primary_10_1016_j_jcis_2024_11_204 crossref_primary_10_1016_j_apcatb_2022_121981 crossref_primary_10_1002_smll_202400505 crossref_primary_10_1021_jacs_3c03432 crossref_primary_10_1021_acs_inorgchem_4c00766 crossref_primary_10_1007_s10562_024_04709_8 crossref_primary_10_1016_j_electacta_2024_145429 crossref_primary_10_1021_acs_est_4c06263 crossref_primary_10_1039_D1CS00116G crossref_primary_10_1038_s41467_022_28740_8 crossref_primary_10_1039_D3QI00554B crossref_primary_10_1039_D2TA02006H crossref_primary_10_1002_smll_202004526 crossref_primary_10_1016_j_cej_2022_135104 crossref_primary_10_1016_j_ces_2024_120526 crossref_primary_10_1021_acssuschemeng_4c09648 crossref_primary_10_1039_D3NJ00021D crossref_primary_10_1002_anie_202308044 crossref_primary_10_1073_pnas_2405236121 crossref_primary_10_1007_s11426_023_1580_2 crossref_primary_10_1063_5_0230248 crossref_primary_10_1039_D3CP01077E crossref_primary_10_1016_j_jhazmat_2021_127319 crossref_primary_10_1039_D4QI00614C crossref_primary_10_1016_j_cogsc_2024_100986 crossref_primary_10_1021_acs_nanolett_3c01978 crossref_primary_10_1002_adfm_202304468 crossref_primary_10_1021_jacs_4c14773 crossref_primary_10_1007_s12598_024_02833_3 crossref_primary_10_1002_cjoc_202100426 crossref_primary_10_1360_TB_2022_0408 crossref_primary_10_1002_aenm_202402294 crossref_primary_10_1016_j_jece_2023_111462 crossref_primary_10_1007_s11356_022_24372_z crossref_primary_10_1002_anie_202409799 crossref_primary_10_1016_j_cclet_2023_109277 crossref_primary_10_1007_s11426_022_1511_2 crossref_primary_10_1016_j_mtphys_2022_100619 crossref_primary_10_1002_adfm_202312079 crossref_primary_10_1021_acs_nanolett_2c00446 crossref_primary_10_1002_smll_202203335 crossref_primary_10_1126_sciadv_adm9325 crossref_primary_10_1002_adfm_202401941 crossref_primary_10_1021_jacs_2c01272 crossref_primary_10_1007_s42824_021_00039_x crossref_primary_10_1016_j_apsusc_2024_159397 crossref_primary_10_1002_ange_202422585 crossref_primary_10_1007_s12678_023_00851_w crossref_primary_10_1039_D1EE01731D crossref_primary_10_1002_ange_202109785 crossref_primary_10_1016_j_jpowsour_2022_232523 crossref_primary_10_1002_ange_202416910 crossref_primary_10_1016_j_checat_2024_101060 crossref_primary_10_1016_j_mattod_2024_01_009 crossref_primary_10_1016_j_jcat_2021_05_022 crossref_primary_10_1016_j_chempr_2024_06_014 crossref_primary_10_1039_D3QI01536J crossref_primary_10_1016_j_jiec_2023_11_039 crossref_primary_10_1016_j_jwpe_2021_102174 crossref_primary_10_1002_anie_202405370 crossref_primary_10_1016_j_cej_2022_138890 crossref_primary_10_1016_j_checat_2024_101054 crossref_primary_10_1002_aesr_202400083 crossref_primary_10_1016_j_cclet_2024_110514 crossref_primary_10_1021_jacs_4c03680 crossref_primary_10_1016_j_apcatb_2024_124528 crossref_primary_10_1021_acs_nanolett_2c04828 crossref_primary_10_1002_adfm_202315324 crossref_primary_10_1002_ange_202308775 crossref_primary_10_1038_s41467_024_48035_4 crossref_primary_10_1016_j_electacta_2024_144124 crossref_primary_10_1039_D3EN00403A crossref_primary_10_1016_j_jcis_2024_08_105 crossref_primary_10_1016_j_jece_2023_110122 crossref_primary_10_1002_ntls_20220047 crossref_primary_10_1016_j_jhazmat_2022_128909 crossref_primary_10_1039_D2CC00245K crossref_primary_10_1038_s41467_022_35533_6 crossref_primary_10_1039_D1RA08002D crossref_primary_10_1016_j_fuel_2024_133394 crossref_primary_10_1002_adma_202202952 crossref_primary_10_1016_j_cej_2022_137341 crossref_primary_10_1073_pnas_2408187121 crossref_primary_10_1002_cssc_202102180 crossref_primary_10_1002_ange_202403633 crossref_primary_10_1021_acs_nanolett_3c03962 crossref_primary_10_1039_D3CY01072D crossref_primary_10_1016_j_apsusc_2022_153213 crossref_primary_10_1016_j_jcis_2021_05_061 crossref_primary_10_1021_jacs_2c05673 crossref_primary_10_1016_j_jhazmat_2024_134909 crossref_primary_10_1002_adma_202303107 crossref_primary_10_1021_acsami_1c12512 crossref_primary_10_1016_j_mtchem_2025_102570 crossref_primary_10_1016_j_checat_2025_101328 crossref_primary_10_1016_j_jechem_2024_06_062 crossref_primary_10_1002_aenm_202400065 crossref_primary_10_1039_D0QI01014F crossref_primary_10_1016_j_cclet_2024_110506 crossref_primary_10_1039_D4EE03970J crossref_primary_10_1016_j_jechem_2024_05_023 crossref_primary_10_1039_D2EE03461A crossref_primary_10_1021_acsanm_4c05949 crossref_primary_10_1016_j_chemosphere_2021_130386 crossref_primary_10_1021_acsami_1c21691 crossref_primary_10_1007_s40843_023_2552_1 crossref_primary_10_1016_j_coelec_2023_101292 crossref_primary_10_1002_anie_202202604 crossref_primary_10_1038_s41467_023_43179_1 crossref_primary_10_1002_adsu_202400507 crossref_primary_10_1002_cctc_202400415 crossref_primary_10_1021_acs_jpclett_1c01691 crossref_primary_10_1039_D3QI00732D crossref_primary_10_1039_D4DT01956C crossref_primary_10_1002_anie_202305719 crossref_primary_10_1016_j_cej_2024_149226 crossref_primary_10_1002_smll_202411005 crossref_primary_10_1021_acscatal_3c02951 crossref_primary_10_1021_acsaenm_3c00334 crossref_primary_10_1002_adma_202306633 crossref_primary_10_1016_j_apsusc_2022_155057 crossref_primary_10_1021_acs_jpcc_2c07813 crossref_primary_10_1016_j_apcatb_2022_122090 crossref_primary_10_1021_acscatal_2c02282 crossref_primary_10_1016_j_jpowsour_2021_230463 crossref_primary_10_1016_j_ceja_2024_100683 crossref_primary_10_1021_acscatal_2c02033 crossref_primary_10_1039_D4NR02852J crossref_primary_10_2139_ssrn_4172820 crossref_primary_10_1038_s41467_024_47765_9 crossref_primary_10_1039_D2GC02527B crossref_primary_10_1021_jacs_3c01319 crossref_primary_10_1039_D2QI02764J crossref_primary_10_1016_j_cej_2024_153713 crossref_primary_10_1021_acsami_3c16456 crossref_primary_10_1039_D2TA01772E crossref_primary_10_1039_D2GC03083G crossref_primary_10_1039_D3TA01063E crossref_primary_10_1002_ange_202210980 crossref_primary_10_1021_acs_jpcc_1c10781 crossref_primary_10_1016_j_jcat_2020_12_031 crossref_primary_10_1002_ange_202411068 crossref_primary_10_1038_s41467_024_50670_w crossref_primary_10_1021_jacs_3c13517 crossref_primary_10_1016_j_cej_2020_126269 crossref_primary_10_1038_s41467_023_40174_4 crossref_primary_10_1021_acs_est_0c08552 crossref_primary_10_1039_D2CS00931E crossref_primary_10_1039_D2MA00279E crossref_primary_10_1021_acscatal_4c04340 crossref_primary_10_1002_adfm_202501057 crossref_primary_10_1016_j_jece_2022_108839 crossref_primary_10_1016_j_nanoen_2025_110708 crossref_primary_10_1002_anie_202307952 crossref_primary_10_3390_nano14010102 crossref_primary_10_1021_acsanm_4c00763 crossref_primary_10_1016_j_watres_2023_120256 crossref_primary_10_1002_aenm_202202105 crossref_primary_10_1016_j_chemosphere_2024_142161 crossref_primary_10_1039_D4TA07261H crossref_primary_10_1016_j_fuel_2022_126106 crossref_primary_10_1016_j_ijhydene_2024_06_038 crossref_primary_10_1016_j_apcatb_2022_122293 crossref_primary_10_1002_ece2_60 crossref_primary_10_1039_D1TA04743D crossref_primary_10_1039_D3NR03310D crossref_primary_10_1002_aenm_202303054 crossref_primary_10_1039_D1RA06136D crossref_primary_10_1007_s11581_024_05578_2 crossref_primary_10_1002_smll_202300530 crossref_primary_10_1002_ange_202210958 crossref_primary_10_1002_ange_202308044 crossref_primary_10_1002_anie_202315109 crossref_primary_10_1016_j_jcis_2025_02_210 crossref_primary_10_1021_acs_inorgchem_3c00857 crossref_primary_10_1016_j_ccr_2025_216610 crossref_primary_10_1021_acscatal_2c03163 crossref_primary_10_1039_D2TA04295A crossref_primary_10_1021_acsami_1c19412 crossref_primary_10_1016_j_apcatb_2024_123735 crossref_primary_10_1039_D2TA07475C crossref_primary_10_1002_anie_202215938 crossref_primary_10_1002_aenm_202203891 crossref_primary_10_1002_adma_202305598 crossref_primary_10_1039_D1CS00857A crossref_primary_10_1039_D4TA02299H crossref_primary_10_1002_adma_202304021 crossref_primary_10_3390_ma16247647 crossref_primary_10_1002_aenm_202403295 crossref_primary_10_1016_j_jelechem_2021_115256 crossref_primary_10_2139_ssrn_4156149 crossref_primary_10_1002_adsu_202400934 crossref_primary_10_1039_D3DT01412F crossref_primary_10_1002_ange_202217337 crossref_primary_10_1002_solr_202300880 crossref_primary_10_1016_j_apcatb_2024_124812 crossref_primary_10_1016_j_cclet_2024_110347 crossref_primary_10_1039_D4CC02012J crossref_primary_10_1016_j_apcatb_2024_123967 crossref_primary_10_1039_D4TA07397E crossref_primary_10_1021_acs_est_2c07968 crossref_primary_10_1016_j_jechem_2024_08_020 crossref_primary_10_1016_j_cej_2021_133680 crossref_primary_10_1002_anie_202422072 crossref_primary_10_1016_j_checat_2022_09_001 crossref_primary_10_1039_D4CC04193C crossref_primary_10_1002_adfm_202008533 crossref_primary_10_1016_j_jcis_2024_07_055 crossref_primary_10_1016_j_apcatb_2023_122540 crossref_primary_10_1016_j_apsusc_2023_157118 crossref_primary_10_1021_acs_est_2c04456 crossref_primary_10_1021_acscatal_4c05235 crossref_primary_10_1002_anie_202309930 crossref_primary_10_26599_NRE_2022_9120010 crossref_primary_10_1002_anie_202415300 crossref_primary_10_1073_pnas_2306461120 crossref_primary_10_1039_D0EE03596C crossref_primary_10_1007_s40820_023_01091_9 crossref_primary_10_1016_j_scitotenv_2021_149645 crossref_primary_10_1002_smll_202404792 crossref_primary_10_1016_j_cclet_2023_108864 crossref_primary_10_1016_j_electacta_2020_137121 crossref_primary_10_1002_adma_202205767 crossref_primary_10_1002_ange_202408758 crossref_primary_10_1007_s10563_023_09408_9 crossref_primary_10_1016_j_apmt_2024_102536 crossref_primary_10_1002_adfm_202212236 crossref_primary_10_1073_pnas_2115504119 crossref_primary_10_1002_smtd_202400604 crossref_primary_10_1016_j_cej_2024_152460 crossref_primary_10_1039_D1EE00806D crossref_primary_10_1039_D4EE02747G crossref_primary_10_1002_anie_202401386 crossref_primary_10_1002_ange_202415259 crossref_primary_10_1002_adfm_202303803 crossref_primary_10_1002_anie_202101522 crossref_primary_10_1039_D2EE02647C crossref_primary_10_1039_D3QI00718A crossref_primary_10_1002_anie_202411160 crossref_primary_10_1039_D3CC02023A crossref_primary_10_1021_acsami_1c01098 crossref_primary_10_1016_j_seppur_2022_120721 crossref_primary_10_1021_acsami_4c05818 crossref_primary_10_1016_j_checat_2023_100638 crossref_primary_10_1016_j_susmat_2024_e00917 crossref_primary_10_1021_acscatal_2c05136 crossref_primary_10_1038_s41467_023_44469_4 crossref_primary_10_1021_acssuschemeng_4c05859 crossref_primary_10_1002_anie_202400289 crossref_primary_10_1016_j_apcatb_2023_122778 crossref_primary_10_1021_acscatal_4c05225 crossref_primary_10_1021_acscatal_4c05465 crossref_primary_10_1021_acsnano_2c00101 crossref_primary_10_1002_smll_202300794 crossref_primary_10_1016_j_apcatb_2023_122772 crossref_primary_10_1038_s41598_024_72529_2 crossref_primary_10_1039_D2FD00145D crossref_primary_10_1016_j_cej_2023_145861 crossref_primary_10_1039_D2QI00827K crossref_primary_10_1002_adfm_202300512 crossref_primary_10_1016_j_nanoen_2022_107705 crossref_primary_10_1016_j_jelechem_2022_116022 crossref_primary_10_1021_acscatal_3c00716 crossref_primary_10_1002_adma_202412031 crossref_primary_10_1002_ange_202401924 crossref_primary_10_1021_acs_est_1c02278 crossref_primary_10_1021_acsanm_4c07317 crossref_primary_10_1021_acsami_1c15206 crossref_primary_10_1016_j_fuel_2024_132746 crossref_primary_10_1039_D4MH00593G crossref_primary_10_1016_j_jes_2024_07_005 crossref_primary_10_1021_acsami_2c02048 crossref_primary_10_2139_ssrn_4008068 crossref_primary_10_1016_j_fmre_2023_03_019 crossref_primary_10_1002_cssc_202402331 crossref_primary_10_1039_D4EY00282B crossref_primary_10_1002_adfm_202008983 crossref_primary_10_1016_j_jhazmat_2022_130651 crossref_primary_10_1016_j_joule_2020_12_025 crossref_primary_10_1016_j_mtener_2022_101112 crossref_primary_10_1021_acs_jpclett_2c03900 crossref_primary_10_1021_acsenergylett_3c01139 crossref_primary_10_1039_D4EE01727G crossref_primary_10_1038_s41467_024_52780_x crossref_primary_10_1063_5_0162029 crossref_primary_10_1016_j_jece_2024_114694 crossref_primary_10_1021_acsnano_4c01958 crossref_primary_10_3390_ma16114000 crossref_primary_10_1016_j_ccr_2024_216174 crossref_primary_10_1021_acsmaterialslett_3c01218 crossref_primary_10_1002_anie_202420063 crossref_primary_10_1039_D4DT01578A crossref_primary_10_1016_j_jcis_2024_04_145 crossref_primary_10_1039_D1QI01062J crossref_primary_10_1016_j_ecoenv_2023_115236 crossref_primary_10_1002_adma_202401133 crossref_primary_10_1002_smtd_202300169 crossref_primary_10_1021_acsanm_4c04066 crossref_primary_10_1007_s12274_024_6863_3 crossref_primary_10_1016_j_jhazmat_2022_129653 crossref_primary_10_1016_j_cej_2024_152659 crossref_primary_10_1016_j_apcatb_2022_121346 crossref_primary_10_1016_j_jechem_2024_09_004 crossref_primary_10_1021_acs_est_4c03949 crossref_primary_10_1016_j_jhazmat_2022_129504 crossref_primary_10_1016_j_cclet_2023_109327 crossref_primary_10_1016_j_jhazmat_2022_128892 crossref_primary_10_1002_anie_202410251 crossref_primary_10_1038_s41467_024_45534_2 crossref_primary_10_1002_adma_202415632 crossref_primary_10_1002_aenm_202402301 crossref_primary_10_1002_anie_202114538 crossref_primary_10_1016_j_ces_2024_120021 crossref_primary_10_1016_j_ijhydene_2023_06_127 crossref_primary_10_1039_D4NJ03470H crossref_primary_10_1021_acs_jpcc_4c06598 crossref_primary_10_1016_j_apcatb_2022_121683 crossref_primary_10_1016_j_apcatb_2022_121682 crossref_primary_10_1002_adma_202412363 crossref_primary_10_1002_adma_202312746 crossref_primary_10_1021_acs_nanolett_3c04049 crossref_primary_10_1002_ange_202101522 crossref_primary_10_1016_j_apcatb_2024_124278 crossref_primary_10_1021_acssuschemeng_3c01688 crossref_primary_10_1016_j_ccr_2024_215723 crossref_primary_10_1002_anie_202500389 crossref_primary_10_1007_s11426_023_1924_7 crossref_primary_10_1039_D2CY00050D crossref_primary_10_1016_j_jcis_2022_01_002 crossref_primary_10_1021_acssuschemeng_1c00063 crossref_primary_10_34133_2022_9837012 crossref_primary_10_1038_s41929_023_01094_0 crossref_primary_10_1038_s41467_022_28728_4 crossref_primary_10_1038_s41467_025_55889_9 crossref_primary_10_1039_D2NR02545K crossref_primary_10_1007_s42823_024_00790_6 crossref_primary_10_1016_j_jechem_2022_11_024 crossref_primary_10_1016_j_jcis_2022_09_049 crossref_primary_10_1021_acs_est_3c09811 crossref_primary_10_1021_acsanm_3c04957 crossref_primary_10_1016_j_jece_2024_115182 crossref_primary_10_1002_aic_18654 crossref_primary_10_1039_D2NR03767J crossref_primary_10_1021_jacs_4c07061 crossref_primary_10_1002_anie_202404819 crossref_primary_10_1016_j_jechem_2023_05_032 crossref_primary_10_1002_adfm_202406438 crossref_primary_10_1016_j_jhazmat_2022_128887 crossref_primary_10_1002_ange_202500389 crossref_primary_10_1080_21663831_2023_2209156 crossref_primary_10_1039_D4CY01511H crossref_primary_10_1021_acsenergylett_1c01614 crossref_primary_10_1016_j_checat_2023_100595 crossref_primary_10_1039_D3TA08036F crossref_primary_10_1021_acs_energyfuels_3c04371 crossref_primary_10_1002_cctc_202301545 crossref_primary_10_1016_j_cclet_2022_107908 crossref_primary_10_1039_D1TA06664A crossref_primary_10_1016_j_mser_2024_100796 crossref_primary_10_1038_s43246_024_00535_y crossref_primary_10_1002_anie_202217337 crossref_primary_10_1016_j_apcatb_2024_124247 crossref_primary_10_1002_ange_202315109 crossref_primary_10_1002_adfm_202308072 crossref_primary_10_1002_anie_202210958 crossref_primary_10_1007_s11244_024_01933_9 crossref_primary_10_1002_adma_202402767 crossref_primary_10_1002_cssc_202102450 crossref_primary_10_1016_j_ces_2022_117735 crossref_primary_10_1016_j_ensm_2022_10_007 crossref_primary_10_1021_acsami_2c08534 crossref_primary_10_1016_j_apcatb_2024_124262 crossref_primary_10_1016_j_jallcom_2024_177180 crossref_primary_10_1680_jsuin_22_00040 crossref_primary_10_1007_s40820_023_01169_4 crossref_primary_10_1016_j_apcatb_2022_121626 crossref_primary_10_1021_acs_jpcc_2c02816 crossref_primary_10_1002_aesr_202300056 crossref_primary_10_1039_D1QM00456E crossref_primary_10_1002_smll_202302266 crossref_primary_10_1039_D4TA05443A crossref_primary_10_1016_j_cej_2023_143134 crossref_primary_10_1016_j_apcatb_2022_121618 crossref_primary_10_1016_j_checat_2021_08_014 crossref_primary_10_1039_D4SC05936K crossref_primary_10_2139_ssrn_4049524 crossref_primary_10_1002_smll_202408566 crossref_primary_10_1016_j_nanoen_2024_110088 crossref_primary_10_1016_j_mattod_2023_03_011 crossref_primary_10_1002_cey2_345 crossref_primary_10_1002_cssc_202102234 crossref_primary_10_1016_j_ccr_2023_215609 crossref_primary_10_1039_D4EY00002A crossref_primary_10_1016_j_cej_2023_143371 crossref_primary_10_1002_ange_202309930 crossref_primary_10_1007_s12598_024_02954_9 crossref_primary_10_1002_anie_202313746 crossref_primary_10_1016_j_scitotenv_2023_163938 crossref_primary_10_1038_s41467_024_53529_2 crossref_primary_10_1016_j_chempr_2025_102441 crossref_primary_10_1002_anie_202210980 crossref_primary_10_1021_jacs_4c14420 crossref_primary_10_1007_s41918_024_00236_7 crossref_primary_10_1002_anie_202401924 crossref_primary_10_1039_D1CY01217G crossref_primary_10_1002_ece2_33 crossref_primary_10_1021_acs_iecr_2c02495 crossref_primary_10_1016_j_envres_2024_120422 crossref_primary_10_1002_ange_202420063 crossref_primary_10_1002_adfm_202423612 crossref_primary_10_1039_D3TA00227F crossref_primary_10_1039_D4CC01834F crossref_primary_10_1016_j_jechem_2023_03_037 crossref_primary_10_1039_D1NR02339J crossref_primary_10_1039_D3CC03293K crossref_primary_10_1002_anie_202107858 crossref_primary_10_1021_acs_jpclett_2c02452 crossref_primary_10_1039_D3QI00568B crossref_primary_10_1016_j_apcatb_2023_123292 crossref_primary_10_1016_j_cej_2023_141601 crossref_primary_10_1002_adma_202304508 crossref_primary_10_1002_ange_202204117 crossref_primary_10_1039_D2DT01542K crossref_primary_10_1038_s41893_021_00741_3 crossref_primary_10_1039_D3TA03160H crossref_primary_10_1021_acsnano_3c03692 crossref_primary_10_1002_aic_17969 crossref_primary_10_1002_aenm_202101699 crossref_primary_10_1016_j_cclet_2024_110657 crossref_primary_10_1038_s44160_023_00258_x crossref_primary_10_1016_j_jhazmat_2023_132106 crossref_primary_10_3390_catal12121561 crossref_primary_10_1016_j_apcatb_2024_124224 crossref_primary_10_1021_jacs_4c13117 crossref_primary_10_1002_cssc_202200231 crossref_primary_10_1016_j_cej_2021_130759 crossref_primary_10_1002_smll_202206966 crossref_primary_10_1016_j_apcatb_2021_120829 crossref_primary_10_1039_D2QI02290G crossref_primary_10_1016_j_jece_2023_109275 crossref_primary_10_1002_aenm_202202247 crossref_primary_10_1002_adfm_202303480 crossref_primary_10_1021_acsestengg_2c00052 crossref_primary_10_1016_j_chempr_2023_05_037 crossref_primary_10_1016_j_jelechem_2024_118499 crossref_primary_10_1002_smll_202307506 crossref_primary_10_1038_s41467_024_52830_4 crossref_primary_10_1002_ange_202410251 crossref_primary_10_1002_ange_202404819 crossref_primary_10_1021_acscatal_3c01315 crossref_primary_10_1021_acs_inorgchem_4c01737 crossref_primary_10_1073_pnas_2311326121 crossref_primary_10_1021_acsenergylett_4c00707 crossref_primary_10_1021_acsanm_4c03622 crossref_primary_10_1021_jacs_2c07742 crossref_primary_10_1002_ange_202411160 crossref_primary_10_1007_s40843_023_2475_6 crossref_primary_10_1016_j_cej_2024_148734 crossref_primary_10_1021_acsnano_5c00187 crossref_primary_10_1021_acs_jpclett_4c03301 crossref_primary_10_1002_adma_202410537 crossref_primary_10_1021_acsnano_4c06754 crossref_primary_10_1016_j_cej_2024_158785 crossref_primary_10_1002_anie_202408758 crossref_primary_10_1016_j_apcata_2022_118596 crossref_primary_10_1002_cssc_202102049 crossref_primary_10_1016_j_apcatb_2022_121811 crossref_primary_10_1021_acs_nanolett_4c06083 crossref_primary_10_1016_j_comptc_2023_114225 crossref_primary_10_1002_adfm_202211537 crossref_primary_10_1016_j_apcatb_2023_123280 crossref_primary_10_1021_acsaem_3c03207 crossref_primary_10_1039_D4CC05246C crossref_primary_10_1002_smll_202409239 crossref_primary_10_1155_2024_5685619 crossref_primary_10_1002_sstr_202200202 crossref_primary_10_1016_j_jcat_2021_12_031 crossref_primary_10_1021_acs_jpclett_4c00054 crossref_primary_10_1002_anie_202303327 crossref_primary_10_1021_acscatal_4c02698 crossref_primary_10_1002_anie_202300054 crossref_primary_10_1021_acscentsci_1c00370 crossref_primary_10_1039_D3NJ01670F crossref_primary_10_1021_acscatal_2c01144 crossref_primary_10_1016_j_cej_2024_148952 crossref_primary_10_1002_adma_202303455 crossref_primary_10_1039_D2NR05001C crossref_primary_10_1021_acscatal_4c00479 crossref_primary_10_1039_D2CY01427K crossref_primary_10_1021_acssuschemeng_2c07101 crossref_primary_10_1016_j_jelechem_2023_117295 crossref_primary_10_1016_S1872_2067_23_64413_4 crossref_primary_10_1038_s41467_023_44131_z crossref_primary_10_1016_j_apcatb_2020_119580 crossref_primary_10_1002_advs_202004523 crossref_primary_10_1021_acs_jpclett_1c02236 crossref_primary_10_1016_j_chphma_2025_01_001 crossref_primary_10_1016_j_seppur_2023_124962 crossref_primary_10_1021_jacsau_2c00502 crossref_primary_10_1002_ange_202218717 crossref_primary_10_1039_D2NR02813A crossref_primary_10_1021_acs_inorgchem_5c00444 crossref_primary_10_1039_D3EE00371J crossref_primary_10_1016_j_coelec_2021_100721 crossref_primary_10_1021_acs_est_3c03922 crossref_primary_10_1016_j_apcatb_2024_124659 crossref_primary_10_1002_aenm_202204236 crossref_primary_10_1016_j_apcatb_2024_124419 crossref_primary_10_1002_cssc_202301050 crossref_primary_10_1016_j_cej_2023_147574 crossref_primary_10_1002_chem_202402562 |
Cites_doi | 10.1038/nmat3601 10.1002/celc.201300135 10.1038/natrevmats.2017.59 10.1038/s41929-019-0246-2 10.1021/acscatal.9b02179 10.1002/adma.201707301 10.1038/nmat4636 10.1016/j.jcat.2008.05.013 10.3109/10715768909073424 10.1038/s41467-017-01872-y 10.1016/j.apcatb.2017.04.045 10.1002/anie.201915992 10.1126/science.aar6611 10.1021/acs.jpcc.7b00281 10.1038/s41929-019-0365-9 10.1016/j.apcatb.2017.02.016 10.1038/s41586-019-1899-3 10.1002/smtd.201800001 10.1126/science.aaf1525 10.1038/s41467-019-08419-3 10.1021/cr8003696 10.1021/jacs.7b13612 10.1126/science.aad4998 10.1021/acs.nanolett.8b04921 10.1021/jp105691v 10.1002/anie.201305812 10.1021/acssuschemeng.9b05983 10.1016/S0013-4686(98)00290-4 10.1021/jacs.6b01377 10.1542/peds.2009-0752 10.1021/jacs.9b03811 10.1021/ja071330n 10.1021/acsenergylett.8b00454 10.3164/jcbn.10-130 10.1021/acscatal.7b01371 10.1002/anie.201809689 10.1021/acs.jpcc.5b06096 10.1038/ncomms12272 10.1021/acscatal.7b00611 10.1002/anie.201808177 10.1021/jacs.9b07963 10.1002/anie.201508613 10.1038/nature19060 10.1007/s11426-018-9273-1 10.1126/science.aaf7680 10.1016/j.nanoen.2016.06.024 10.1039/C8CS00846A 10.1021/jacs.6b11291 10.1016/j.jcat.2010.07.013 10.1016/S0022-0728(02)01443-2 10.1016/j.electacta.2016.12.147 10.1038/s41929-018-0054-0 10.1126/science.aah6133 10.1002/adma.201903616 10.1021/ja407115p 10.1021/acscatal.9b05260 10.1002/adma.201807001 10.1021/jacs.7b13542 10.1103/PhysRevLett.93.156801 10.1039/C3CC49224A 10.1038/nchem.1411 10.1002/anie.201706645 10.1038/s41929-019-0306-7 10.1021/jacs.7b06808 10.1039/c2ee23062c |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.0c00418 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 7046 |
ExternalDocumentID | 32223152 10_1021_jacs_0c00418 i7901399 |
Genre | Journal Article |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a423t-b45f7cea496036b57e790597e331ff5f415ec6c2207de7267d6e444b9a3e166d3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 13:05:03 EDT 2025 Thu Jul 10 17:38:09 EDT 2025 Wed Feb 19 02:31:07 EST 2025 Tue Jul 01 03:22:00 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Thu Aug 27 22:10:25 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a423t-b45f7cea496036b57e790597e331ff5f415ec6c2207de7267d6e444b9a3e166d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6842-9167 0000-0002-1597-7151 0000-0001-7144-9305 0000-0002-2467-8751 0000-0001-9886-3725 0000-0003-3081-960X |
PMID | 32223152 |
PQID | 2384819516 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2985592946 proquest_miscellaneous_2384819516 pubmed_primary_32223152 crossref_citationtrail_10_1021_jacs_0c00418 crossref_primary_10_1021_jacs_0c00418 acs_journals_10_1021_jacs_0c00418 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-15 |
PublicationDateYYYYMMDD | 2020-04-15 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 Haber F. (ref2/cit2) 1913; 19 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref26/cit26 doi: 10.1038/nmat3601 – ident: ref22/cit22 doi: 10.1002/celc.201300135 – ident: ref30/cit30 doi: 10.1038/natrevmats.2017.59 – ident: ref37/cit37 doi: 10.1038/s41929-019-0246-2 – ident: ref25/cit25 doi: 10.1021/acscatal.9b02179 – ident: ref33/cit33 doi: 10.1002/adma.201707301 – ident: ref63/cit63 doi: 10.1038/nmat4636 – ident: ref47/cit47 doi: 10.1016/j.jcat.2008.05.013 – ident: ref65/cit65 doi: 10.3109/10715768909073424 – ident: ref49/cit49 doi: 10.1038/s41467-017-01872-y – ident: ref58/cit58 doi: 10.1016/j.apcatb.2017.04.045 – ident: ref15/cit15 doi: 10.1002/anie.201915992 – ident: ref1/cit1 doi: 10.1126/science.aar6611 – ident: ref46/cit46 doi: 10.1021/acs.jpcc.7b00281 – ident: ref51/cit51 doi: 10.1038/s41929-019-0365-9 – ident: ref55/cit55 doi: 10.1016/j.apcatb.2017.02.016 – ident: ref53/cit53 doi: 10.1038/s41586-019-1899-3 – ident: ref39/cit39 doi: 10.1002/smtd.201800001 – ident: ref27/cit27 doi: 10.1126/science.aaf1525 – ident: ref56/cit56 doi: 10.1038/s41467-019-08419-3 – ident: ref9/cit9 doi: 10.1021/cr8003696 – ident: ref36/cit36 doi: 10.1021/jacs.7b13612 – ident: ref8/cit8 doi: 10.1126/science.aad4998 – ident: ref35/cit35 doi: 10.1021/acs.nanolett.8b04921 – ident: ref61/cit61 doi: 10.1021/jp105691v – ident: ref3/cit3 doi: 10.1002/anie.201305812 – ident: ref16/cit16 doi: 10.1021/acssuschemeng.9b05983 – ident: ref17/cit17 doi: 10.1016/S0013-4686(98)00290-4 – ident: ref50/cit50 doi: 10.1021/jacs.6b01377 – ident: ref12/cit12 doi: 10.1542/peds.2009-0752 – ident: ref6/cit6 doi: 10.1021/jacs.9b03811 – ident: ref24/cit24 doi: 10.1021/ja071330n – ident: ref45/cit45 doi: 10.1021/acsenergylett.8b00454 – ident: ref62/cit62 doi: 10.3164/jcbn.10-130 – ident: ref23/cit23 doi: 10.1021/acscatal.7b01371 – ident: ref38/cit38 doi: 10.1002/anie.201809689 – ident: ref42/cit42 doi: 10.1021/acs.jpcc.5b06096 – ident: ref60/cit60 doi: 10.1038/ncomms12272 – ident: ref10/cit10 doi: 10.1021/acscatal.7b00611 – ident: ref4/cit4 doi: 10.1002/anie.201808177 – ident: ref5/cit5 doi: 10.1021/jacs.9b07963 – ident: ref40/cit40 doi: 10.1002/anie.201508613 – ident: ref66/cit66 doi: 10.1038/nature19060 – ident: ref7/cit7 doi: 10.1007/s11426-018-9273-1 – ident: ref34/cit34 doi: 10.1126/science.aaf7680 – ident: ref19/cit19 doi: 10.1016/j.nanoen.2016.06.024 – ident: ref31/cit31 doi: 10.1039/C8CS00846A – ident: ref59/cit59 doi: 10.1021/jacs.6b11291 – volume: 19 start-page: 53 year: 1913 ident: ref2/cit2 publication-title: Z. Elektrochem. Angew. Phys. Chem. – ident: ref20/cit20 doi: 10.1016/j.jcat.2010.07.013 – ident: ref13/cit13 doi: 10.1016/S0022-0728(02)01443-2 – ident: ref14/cit14 doi: 10.1016/j.electacta.2016.12.147 – ident: ref44/cit44 doi: 10.1038/s41929-018-0054-0 – ident: ref32/cit32 doi: 10.1126/science.aah6133 – ident: ref43/cit43 doi: 10.1002/adma.201903616 – ident: ref57/cit57 doi: 10.1021/ja407115p – ident: ref18/cit18 doi: 10.1021/acscatal.9b05260 – ident: ref52/cit52 doi: 10.1002/adma.201807001 – ident: ref64/cit64 doi: 10.1021/jacs.7b13542 – ident: ref41/cit41 doi: 10.1103/PhysRevLett.93.156801 – ident: ref21/cit21 doi: 10.1039/C3CC49224A – ident: ref29/cit29 doi: 10.1038/nchem.1411 – ident: ref48/cit48 doi: 10.1002/anie.201706645 – ident: ref54/cit54 doi: 10.1038/s41929-019-0306-7 – ident: ref28/cit28 doi: 10.1021/jacs.7b06808 – ident: ref11/cit11 doi: 10.1039/c2ee23062c |
SSID | ssj0004281 |
Score | 2.7201717 |
Snippet | The limitations of the Haber–Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis... The limitations of the Haber-Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7036 |
SubjectTerms | ambient temperature ammonia catalytic activity dimerization electrosynthesis free radicals hydrogen nanoparticles nitrates nitrogen ruthenium |
Title | Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium Nanoclusters |
URI | http://dx.doi.org/10.1021/jacs.0c00418 https://www.ncbi.nlm.nih.gov/pubmed/32223152 https://www.proquest.com/docview/2384819516 https://www.proquest.com/docview/2985592946 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODC-zFeyiQ4oU5rkibtEU2DCYkdeEjcqjRNpYmpQ7Q9wK_H7mMTQwOuras2tiN_rp3PhFxI4xpprecIPzAOOIVxNGRhWIOXlgkVJBH-GrgfyeGzuHvxXuYNsosVfIb8QCbr9gwSQ_mrZI1J2L8IgfqP8_OPzHcbmKt8yesG98WnMQCZ7HsAWoIqy-hys0VumzM6VVPJa7fIo675_EnZ-MeHb5PNGmDS68ojdsiKTXfJer-Z67ZHHgYlawQEG3qNTjjWdFDNwsk-UoCD2TijeOiEjsYlcy2dpvSxnCRhY1o2xKfjAu7qdGomBfIsZPvk-Wbw1B869WQFMATjuRMJL1HGagH5C5eRpyzydAXKcu4miZdAVLdGGsZ6KraKSRVLK4SIAs2tK2XMD0grnab2iNDEkzx2fQVpFBM6DnQg3VgYl_W8ntWRapMO6CGsd0YWlkVvBkkHXq210yZXjUlCU1OT47omS6QvZ9JvFSXHErlOY90QVIyFEJ3aaZGFAFME1g9d-YtM4EOyxQIBMoeVa8zehtUpDsDn-B9rOyEbDFN0pIf0Tkkrfy_sGeCYPDovnfgLn0TrEQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI54HODC-_0KEpxQ0ZqkSXucpk3jtQMPiVuVpqk0MXWIrAf49dhZtwmkIa6p2yaOK3-u48-EXEgTGmltFIg4MQEYhQk0RGGYg5eWCZUUGf4aeOjJ7ou4fY1e62J1rIWBSTh4kvNJ_Bm7ANIEwWDDID9UvEiWAYcwNOhm62lWBsnicIJ2VSx5fc79993oh4z76YfmgEvvZDrrpDednj9b8nZdjbJr8_WLufHf898gazXcpM2xfWySBVtukZXWpMvbNnlsew4JcD20iSbZ17Q97ozjPksAh67vKJag0F7f89jSYUmffF8Jm1N_PL7sV3BVl0MzqJB1we2Ql077udUN6j4LsC2Mj4JMRIUyVguIZrjMImWRtStRlvOwKKICfLw10jDWULlVTKpcWiFElmhuQylzvkuWymFp9wktIsnzMFYQVDGh80QnMsyFCVkjalidqQNyDnpI6-_EpT4FziAEwdFaOwfkarIzqamJynFdgznSl1Pp9zFBxxy588kmp6BiTIvo0g4rlwJoEZhNDOUfMkkMoRdLBMjsjS1k-jbMVXGAQYf_WNsZWek-P9yn9ze9uyOyyjB4R-LI6JgsjT4qewIIZ5Sderv-Bmor83I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVoJeeBVKoYArwQlltX7ETo6r7a5aHivUUqm3yHEcaUWVrfDmAL-eGW-yiEpbtdd48rA91nyTz_4G4IN23Gnv00RluUvQKVxiMQsjDl57oUxel_Rr4NtMn1yoz5fp5Rbw_iwMfkTAJ4VI4tOqvq7qTmGApIKwYehIIyp7ADvE2JFTj8bn_45Cioz3iNdkWnZ73W_eTbHIhf9j0QaAGQPN9AmcrT8x7i_5OWiX5cD9uaHeeK8-PIXHHexko5WfPIMt3zyHR-O-2tsenE2ilgSGIDYi15xbNllVyAm_GwSJYR4YHUVhs3nUs2WLhp3H-hK-YnGbfDNvsdU2C3fVkvpCeAEX08mP8UnS1VvA6RFymZQqrY3zVmFWI3WZGk_qXbnxUvK6TmuM9d5pJ8TQVN4IbSrtlVJlbqXnWlfyJWw3i8a_AlanWlY8M5hcCWWr3OaaV8pxMUyH3pbmAI5wHIpuvYQiUuECUxG62o3OAXzqZ6dwnWA59etqg_XHtfX1Sqhjg91RP9EFDjHRI7bxizYUCF4UsYpc32KTZ5iCiVyhzf7KS9ZvI85KIhx6fYe-vYeH34-nxdfT2Zc3sCsohyf9yPQQtpe_Wv8Wgc6yfBdd-y9okvX1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Ammonia+Electrosynthesis+from+Nitrate+on+Strained+Ruthenium+Nanoclusters&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Li%2C+Jie&rft.au=Zhan%2C+Guangming&rft.au=Yang%2C+Jianhua&rft.au=Quan%2C+Fengjiao&rft.date=2020-04-15&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=142&rft.issue=15&rft.spage=7036&rft.epage=7046&rft_id=info:doi/10.1021%2Fjacs.0c00418&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_0c00418 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |