Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium Nanoclusters

The limitations of the Haber–Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N2 electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol gcat –1 h–1), a...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 15; pp. 7036 - 7046
Main Authors Li, Jie, Zhan, Guangming, Yang, Jianhua, Quan, Fengjiao, Mao, Chengliang, Liu, Yang, Wang, Bo, Lei, Fengcai, Li, Lejing, Chan, Alice W. M, Xu, Liangpang, Shi, Yanbiao, Du, Yi, Hao, Weichang, Wong, Po Keung, Wang, Jianfang, Dou, Shi-Xue, Zhang, Lizhi, Yu, Jimmy C
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The limitations of the Haber–Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N2 electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol gcat –1 h–1), a small partial current density (<1 mA cm–2), and a high-selectivity hydrogen-evolving side reaction. Herein, we report that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate (5.56 mol gcat –1 h–1) than the Haber–Bosch process. The primary contributor to such performance is hydrogen radicals, which are generated by suppressing hydrogen–hydrogen dimerization during water splitting enabled by the tensile lattice strains. The radicals expedite nitrate-to-ammonia conversion by hydrogenating intermediates of the rate-limiting steps at lower kinetic barriers. The strained nanostructures can maintain nearly 100% ammonia-evolving selectivity at >120 mA cm–2 current densities for 100 h due to the robust subsurface Ru–O coordination. These findings highlight the potential of nitrate electroreduction in real-world, low-temperature ammonia synthesis.
AbstractList The limitations of the Haber–Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N₂ electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol gcₐₜ–¹ h–¹), a small partial current density (<1 mA cm–²), and a high-selectivity hydrogen-evolving side reaction. Herein, we report that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate (5.56 mol gcₐₜ–¹ h–¹) than the Haber–Bosch process. The primary contributor to such performance is hydrogen radicals, which are generated by suppressing hydrogen–hydrogen dimerization during water splitting enabled by the tensile lattice strains. The radicals expedite nitrate-to-ammonia conversion by hydrogenating intermediates of the rate-limiting steps at lower kinetic barriers. The strained nanostructures can maintain nearly 100% ammonia-evolving selectivity at >120 mA cm–² current densities for 100 h due to the robust subsurface Ru–O coordination. These findings highlight the potential of nitrate electroreduction in real-world, low-temperature ammonia synthesis.
The limitations of the Haber-Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol g h ), a small partial current density (<1 mA cm ), and a high-selectivity hydrogen-evolving side reaction. Herein, we report that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate (5.56 mol g h ) than the Haber-Bosch process. The primary contributor to such performance is hydrogen radicals, which are generated by suppressing hydrogen-hydrogen dimerization during water splitting enabled by the tensile lattice strains. The radicals expedite nitrate-to-ammonia conversion by hydrogenating intermediates of the rate-limiting steps at lower kinetic barriers. The strained nanostructures can maintain nearly 100% ammonia-evolving selectivity at >120 mA cm current densities for 100 h due to the robust subsurface Ru-O coordination. These findings highlight the potential of nitrate electroreduction in real-world, low-temperature ammonia synthesis.
The limitations of the Haber-Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N2 electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol gcat-1 h-1), a small partial current density (<1 mA cm-2), and a high-selectivity hydrogen-evolving side reaction. Herein, we report that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate (5.56 mol gcat-1 h-1) than the Haber-Bosch process. The primary contributor to such performance is hydrogen radicals, which are generated by suppressing hydrogen-hydrogen dimerization during water splitting enabled by the tensile lattice strains. The radicals expedite nitrate-to-ammonia conversion by hydrogenating intermediates of the rate-limiting steps at lower kinetic barriers. The strained nanostructures can maintain nearly 100% ammonia-evolving selectivity at >120 mA cm-2 current densities for 100 h due to the robust subsurface Ru-O coordination. These findings highlight the potential of nitrate electroreduction in real-world, low-temperature ammonia synthesis.The limitations of the Haber-Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N2 electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol gcat-1 h-1), a small partial current density (<1 mA cm-2), and a high-selectivity hydrogen-evolving side reaction. Herein, we report that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate (5.56 mol gcat-1 h-1) than the Haber-Bosch process. The primary contributor to such performance is hydrogen radicals, which are generated by suppressing hydrogen-hydrogen dimerization during water splitting enabled by the tensile lattice strains. The radicals expedite nitrate-to-ammonia conversion by hydrogenating intermediates of the rate-limiting steps at lower kinetic barriers. The strained nanostructures can maintain nearly 100% ammonia-evolving selectivity at >120 mA cm-2 current densities for 100 h due to the robust subsurface Ru-O coordination. These findings highlight the potential of nitrate electroreduction in real-world, low-temperature ammonia synthesis.
The limitations of the Haber–Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N2 electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol gcat –1 h–1), a small partial current density (<1 mA cm–2), and a high-selectivity hydrogen-evolving side reaction. Herein, we report that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate (5.56 mol gcat –1 h–1) than the Haber–Bosch process. The primary contributor to such performance is hydrogen radicals, which are generated by suppressing hydrogen–hydrogen dimerization during water splitting enabled by the tensile lattice strains. The radicals expedite nitrate-to-ammonia conversion by hydrogenating intermediates of the rate-limiting steps at lower kinetic barriers. The strained nanostructures can maintain nearly 100% ammonia-evolving selectivity at >120 mA cm–2 current densities for 100 h due to the robust subsurface Ru–O coordination. These findings highlight the potential of nitrate electroreduction in real-world, low-temperature ammonia synthesis.
Author Quan, Fengjiao
Zhang, Lizhi
Xu, Liangpang
Wang, Jianfang
Lei, Fengcai
Shi, Yanbiao
Yu, Jimmy C
Yang, Jianhua
Hao, Weichang
Li, Lejing
Liu, Yang
Wong, Po Keung
Wang, Bo
Mao, Chengliang
Li, Jie
Chan, Alice W. M
Zhan, Guangming
Du, Yi
Dou, Shi-Xue
AuthorAffiliation Department of Chemistry
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry
School of Physics, BUAA-UOW Joint Research Centre
School of Life Sciences
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM)
Department of Physics
AuthorAffiliation_xml – name: Department of Chemistry
– name: School of Physics, BUAA-UOW Joint Research Centre
– name: Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM)
– name: Department of Physics
– name: School of Life Sciences
– name: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry
Author_xml – sequence: 1
  givenname: Jie
  surname: Li
  fullname: Li, Jie
– sequence: 2
  givenname: Guangming
  surname: Zhan
  fullname: Zhan, Guangming
  organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry
– sequence: 3
  givenname: Jianhua
  surname: Yang
  fullname: Yang, Jianhua
– sequence: 4
  givenname: Fengjiao
  surname: Quan
  fullname: Quan, Fengjiao
  organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry
– sequence: 5
  givenname: Chengliang
  surname: Mao
  fullname: Mao, Chengliang
  organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry
– sequence: 6
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 7
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
– sequence: 8
  givenname: Fengcai
  surname: Lei
  fullname: Lei, Fengcai
– sequence: 9
  givenname: Lejing
  orcidid: 0000-0001-7144-9305
  surname: Li
  fullname: Li, Lejing
– sequence: 10
  givenname: Alice W. M
  surname: Chan
  fullname: Chan, Alice W. M
– sequence: 11
  givenname: Liangpang
  surname: Xu
  fullname: Xu, Liangpang
– sequence: 12
  givenname: Yanbiao
  surname: Shi
  fullname: Shi, Yanbiao
  organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry
– sequence: 13
  givenname: Yi
  surname: Du
  fullname: Du, Yi
  organization: School of Physics, BUAA-UOW Joint Research Centre
– sequence: 14
  givenname: Weichang
  orcidid: 0000-0002-1597-7151
  surname: Hao
  fullname: Hao, Weichang
  organization: School of Physics, BUAA-UOW Joint Research Centre
– sequence: 15
  givenname: Po Keung
  orcidid: 0000-0003-3081-960X
  surname: Wong
  fullname: Wong, Po Keung
– sequence: 16
  givenname: Jianfang
  orcidid: 0000-0002-2467-8751
  surname: Wang
  fullname: Wang, Jianfang
– sequence: 17
  givenname: Shi-Xue
  surname: Dou
  fullname: Dou, Shi-Xue
  organization: School of Physics, BUAA-UOW Joint Research Centre
– sequence: 18
  givenname: Lizhi
  orcidid: 0000-0002-6842-9167
  surname: Zhang
  fullname: Zhang, Lizhi
  email: zhanglz@mail.ccnu.edu.cn
  organization: Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry
– sequence: 19
  givenname: Jimmy C
  orcidid: 0000-0001-9886-3725
  surname: Yu
  fullname: Yu, Jimmy C
  email: jimyu@cuhk.edu.hk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32223152$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1P5DAQhi3ECZaFjhqlpLhw_k5SIrQcSOhO4o7a8jpj4VVig-0U--9xtEuDQFTz9cxo9L4n6NAHDwidE3xFMCW_NtqkK2ww5qQ9QAsiKK4FofIQLTDGtG5ayY7RSUqbUnLakiN0zCilrJAL9Liy1hkHPlfX4xi809VqAJNjSFufnyG5VNkYxuqPy1FnqIKv_pXMeeirx6kQ3k1lqn0ww5QyxHSKflg9JDjbxyV6ul39v7mrH_7-vr-5fqg1pyzXay5sY0DzTmIm16KBpsOia4AxYq2wnAgw0lCKmx4aKpteAud83WkGRMqeLdHl7u5LDK8TpKxGlwwMg_YQpqRo1wrR0Y7L71HW8pZ0gszoxR6d1iP06iW6UcetepesAHQHmKJRimCVcVlnF_wsy6AIVrMvavZF7X0pSz8_LL3f_QLf_zs3N2GKvgj5OfoGALObvQ
CitedBy_id crossref_primary_10_1002_cplu_202100356
crossref_primary_10_1016_j_rser_2023_113197
crossref_primary_10_1002_anie_202415259
crossref_primary_10_1016_j_cej_2022_141060
crossref_primary_10_1021_jacs_3c12783
crossref_primary_10_1002_cssc_202002596
crossref_primary_10_1002_aenm_202302274
crossref_primary_10_1021_acscatal_4c01398
crossref_primary_10_1016_j_jechem_2024_03_043
crossref_primary_10_1007_s40843_023_2582_6
crossref_primary_10_1021_acscatal_3c01963
crossref_primary_10_1039_D4CC06290F
crossref_primary_10_1039_D1EE03097C
crossref_primary_10_1039_D3NR06151E
crossref_primary_10_1016_j_jiec_2025_02_029
crossref_primary_10_1016_S1872_2067_22_64090_7
crossref_primary_10_1021_acscatal_2c04584
crossref_primary_10_1002_smll_202106961
crossref_primary_10_1016_j_apcatb_2024_123864
crossref_primary_10_1016_j_cej_2025_161528
crossref_primary_10_2139_ssrn_3968857
crossref_primary_10_1021_acscatal_2c03004
crossref_primary_10_1016_j_gee_2022_09_007
crossref_primary_10_1002_ange_202400289
crossref_primary_10_15212_bioi_2024_0004
crossref_primary_10_1016_j_cej_2024_151883
crossref_primary_10_1016_j_electacta_2024_144955
crossref_primary_10_1021_acs_iecr_4c04465
crossref_primary_10_1002_cnl2_8
crossref_primary_10_1016_j_apcatb_2023_123577
crossref_primary_10_1039_D4EE02775B
crossref_primary_10_1002_smll_202207661
crossref_primary_10_1016_j_apcatb_2023_122480
crossref_primary_10_3390_met13040799
crossref_primary_10_1039_D3CC00864A
crossref_primary_10_1016_j_cej_2024_149560
crossref_primary_10_1016_j_matre_2023_100216
crossref_primary_10_1016_j_apcatb_2024_124741
crossref_primary_10_1002_smll_202308311
crossref_primary_10_1021_jacs_3c00334
crossref_primary_10_1002_anie_202109785
crossref_primary_10_1016_j_jece_2024_112348
crossref_primary_10_1002_tcr_202400206
crossref_primary_10_1002_ange_202401386
crossref_primary_10_1007_s12274_024_6726_y
crossref_primary_10_1002_cssc_202402031
crossref_primary_10_1002_adma_202201670
crossref_primary_10_1002_cssc_202300202
crossref_primary_10_1039_D4CC01399A
crossref_primary_10_1002_ange_202422072
crossref_primary_10_1002_celc_202300419
crossref_primary_10_1016_j_apcatb_2022_122193
crossref_primary_10_1007_s43979_023_00055_7
crossref_primary_10_2139_ssrn_4144002
crossref_primary_10_1038_s41467_022_32933_6
crossref_primary_10_1002_ange_202415300
crossref_primary_10_1016_j_btre_2025_e00874
crossref_primary_10_1039_D2DT01431A
crossref_primary_10_1021_jacs_3c06904
crossref_primary_10_1021_acs_est_4c09970
crossref_primary_10_1021_acs_est_4c09975
crossref_primary_10_1039_D0CY02025G
crossref_primary_10_1002_smll_202310467
crossref_primary_10_1021_acsaem_4c02975
crossref_primary_10_1021_jacs_3c08084
crossref_primary_10_1021_acsami_4c14621
crossref_primary_10_1360_TB_2023_0356
crossref_primary_10_1016_j_apcatb_2022_121094
crossref_primary_10_1002_adma_202407889
crossref_primary_10_3390_app14198986
crossref_primary_10_1016_j_apcatb_2023_123554
crossref_primary_10_1007_s40820_023_01217_z
crossref_primary_10_1021_acs_inorgchem_4c02578
crossref_primary_10_1038_s41467_022_33779_8
crossref_primary_10_1002_smll_202400036
crossref_primary_10_1016_j_cej_2021_133190
crossref_primary_10_1063_5_0069736
crossref_primary_10_1021_acs_inorgchem_4c04780
crossref_primary_10_1021_acssuschemeng_3c01084
crossref_primary_10_1021_acsami_1c10946
crossref_primary_10_1016_j_apcatb_2023_122473
crossref_primary_10_1039_D3EY00058C
crossref_primary_10_1021_acsnano_3c05946
crossref_primary_10_1016_j_apcatb_2023_122687
crossref_primary_10_1002_smll_202404881
crossref_primary_10_1016_j_apcatb_2024_124943
crossref_primary_10_1021_acsnano_3c10058
crossref_primary_10_1007_s11426_022_1411_0
crossref_primary_10_1002_adma_202303050
crossref_primary_10_1002_cphc_202100785
crossref_primary_10_1016_j_mtchem_2024_102326
crossref_primary_10_1002_ange_202313746
crossref_primary_10_1038_s41467_022_35664_w
crossref_primary_10_1021_acs_inorgchem_2c02499
crossref_primary_10_1039_D1QI01472B
crossref_primary_10_1016_j_chemosphere_2021_131501
crossref_primary_10_1016_j_checat_2022_01_022
crossref_primary_10_1021_acs_inorgchem_4c02353
crossref_primary_10_1002_anie_202317414
crossref_primary_10_1038_s41467_021_23115_x
crossref_primary_10_1016_j_jcis_2023_06_073
crossref_primary_10_1021_prechem_3c00107
crossref_primary_10_1002_cssc_202301570
crossref_primary_10_1007_s40843_022_2263_x
crossref_primary_10_1016_j_rinp_2023_107259
crossref_primary_10_1002_adma_202405660
crossref_primary_10_1021_acs_est_1c04363
crossref_primary_10_1039_D3QM01038D
crossref_primary_10_1016_j_cej_2023_145546
crossref_primary_10_1016_j_isci_2023_107009
crossref_primary_10_1016_j_jhazmat_2024_134261
crossref_primary_10_1002_ange_202303327
crossref_primary_10_1016_j_nanoen_2022_107866
crossref_primary_10_1016_j_envres_2025_121123
crossref_primary_10_1021_acs_nanolett_3c02259
crossref_primary_10_1002_advs_202302623
crossref_primary_10_1002_ange_202300054
crossref_primary_10_1039_D2QI01791A
crossref_primary_10_1002_smll_202303732
crossref_primary_10_1039_D1TA05718A
crossref_primary_10_1021_acs_jpcc_1c07689
crossref_primary_10_1002_anie_202411068
crossref_primary_10_1021_jacs_3c10516
crossref_primary_10_1002_cctc_202401690
crossref_primary_10_1002_ange_202405370
crossref_primary_10_1021_acs_est_4c02445
crossref_primary_10_1016_j_apcatb_2023_122677
crossref_primary_10_1016_j_chempr_2023_08_001
crossref_primary_10_1038_s41467_022_29926_w
crossref_primary_10_1016_j_ccr_2024_216061
crossref_primary_10_1002_ange_202215938
crossref_primary_10_1021_acs_est_2c01057
crossref_primary_10_1016_j_apcatb_2025_125268
crossref_primary_10_1016_j_jcis_2024_11_026
crossref_primary_10_1016_j_elecom_2021_107094
crossref_primary_10_1002_adma_202417623
crossref_primary_10_1021_acssuschemeng_2c05885
crossref_primary_10_1002_smll_202311336
crossref_primary_10_1016_j_apcatb_2024_123810
crossref_primary_10_1039_D2NJ02427F
crossref_primary_10_1016_j_jece_2023_110927
crossref_primary_10_1016_j_jcis_2024_02_211
crossref_primary_10_1002_ange_202202604
crossref_primary_10_1002_adma_202204306
crossref_primary_10_1016_j_checat_2023_100751
crossref_primary_10_1021_acs_jpclett_1c03938
crossref_primary_10_1002_smll_202300437
crossref_primary_10_1016_j_mattod_2021_01_029
crossref_primary_10_1021_acsomega_0c05975
crossref_primary_10_1002_ange_202307952
crossref_primary_10_1016_j_cej_2023_143571
crossref_primary_10_1039_D2TA04707A
crossref_primary_10_1002_aenm_202301136
crossref_primary_10_1039_D1CC06690K
crossref_primary_10_1016_j_jece_2024_114554
crossref_primary_10_1038_s41467_023_39366_9
crossref_primary_10_1039_D1CY01075A
crossref_primary_10_1038_s41565_022_01121_4
crossref_primary_10_1039_D3EY00184A
crossref_primary_10_1021_acsnano_2c07260
crossref_primary_10_1002_aenm_202303321
crossref_primary_10_1016_j_jcis_2024_05_084
crossref_primary_10_1016_j_scib_2023_07_036
crossref_primary_10_1016_j_jechem_2023_07_006
crossref_primary_10_1007_s11783_023_1626_z
crossref_primary_10_1016_j_nanoen_2025_110683
crossref_primary_10_1002_ange_202305719
crossref_primary_10_1002_anie_202218717
crossref_primary_10_1016_j_jcis_2022_09_016
crossref_primary_10_1002_smll_202412089
crossref_primary_10_1016_j_seppur_2023_125129
crossref_primary_10_1016_j_jechem_2024_01_062
crossref_primary_10_1002_anie_202308775
crossref_primary_10_1021_acscatal_4c00919
crossref_primary_10_1002_aenm_202201500
crossref_primary_10_1039_D2EE03502B
crossref_primary_10_1021_acsmaterialslett_3c00007
crossref_primary_10_1016_j_checat_2023_100786
crossref_primary_10_1080_03067319_2022_2118588
crossref_primary_10_1021_acs_jpclett_1c00855
crossref_primary_10_1016_j_cej_2024_152543
crossref_primary_10_1002_aenm_202401834
crossref_primary_10_1039_D1GC01913A
crossref_primary_10_1002_ange_202107858
crossref_primary_10_1039_D3QI01113E
crossref_primary_10_1021_acssuschemeng_4c00251
crossref_primary_10_1021_acsami_3c06739
crossref_primary_10_1021_acs_langmuir_0c02770
crossref_primary_10_1515_pac_2021_0204
crossref_primary_10_1016_S1872_2067_21_63834_2
crossref_primary_10_1021_acssuschemeng_4c01335
crossref_primary_10_1021_acsami_2c12175
crossref_primary_10_1002_anie_202403633
crossref_primary_10_1021_jacs_4c13707
crossref_primary_10_3390_su16229609
crossref_primary_10_1002_celc_202400605
crossref_primary_10_1016_S1872_2067_24_60059_8
crossref_primary_10_1007_s12274_024_6543_3
crossref_primary_10_1021_acs_est_1c08442
crossref_primary_10_1002_anie_202422585
crossref_primary_10_1016_j_surfin_2024_105308
crossref_primary_10_1039_D2EE04095F
crossref_primary_10_1002_ange_202409799
crossref_primary_10_1016_j_coelec_2023_101402
crossref_primary_10_1021_acs_jpcc_3c01242
crossref_primary_10_1039_D2DT03189B
crossref_primary_10_1016_j_colsurfa_2022_130549
crossref_primary_10_1002_anie_202416910
crossref_primary_10_1016_j_apcatb_2024_124150
crossref_primary_10_1002_adfm_202413070
crossref_primary_10_1002_anie_202204117
crossref_primary_10_1002_elsa_202100220
crossref_primary_10_1002_adma_202207305
crossref_primary_10_1002_smll_202107136
crossref_primary_10_1039_D3CY01441J
crossref_primary_10_6023_A23040133
crossref_primary_10_1002_adfm_202401094
crossref_primary_10_1021_acsnano_2c07911
crossref_primary_10_1002_ange_202418272
crossref_primary_10_1039_D3QM00627A
crossref_primary_10_1039_D1CC06215H
crossref_primary_10_1016_j_cej_2021_131317
crossref_primary_10_1002_cctc_202402050
crossref_primary_10_1002_smtd_202100460
crossref_primary_10_1021_acsnano_4c09247
crossref_primary_10_1002_sstr_202200308
crossref_primary_10_1021_acs_nanolett_3c01905
crossref_primary_10_1016_j_cej_2024_157518
crossref_primary_10_1039_D4NR02387K
crossref_primary_10_1039_D3TA03548D
crossref_primary_10_1021_acsaem_1c03969
crossref_primary_10_1039_D3GC03092J
crossref_primary_10_1002_ange_202305246
crossref_primary_10_1002_cssc_202400648
crossref_primary_10_1021_acs_iecr_1c03072
crossref_primary_10_1007_s10008_022_05228_5
crossref_primary_10_1016_j_jmst_2021_09_009
crossref_primary_10_1002_cssc_202401979
crossref_primary_10_1002_adma_202207522
crossref_primary_10_1002_anie_202423661
crossref_primary_10_1002_elsa_202100201
crossref_primary_10_1039_D3SE00901G
crossref_primary_10_1016_j_mtphys_2023_101162
crossref_primary_10_1016_j_cclet_2024_109958
crossref_primary_10_1016_j_nanoen_2021_106088
crossref_primary_10_1088_2053_1583_adb43e
crossref_primary_10_1039_D4CC03051F
crossref_primary_10_1016_j_apsusc_2022_152556
crossref_primary_10_1002_anie_202305246
crossref_primary_10_1038_s41929_023_00951_2
crossref_primary_10_1016_j_jechem_2025_01_075
crossref_primary_10_1039_D3TA03675H
crossref_primary_10_1002_adfm_202107651
crossref_primary_10_1021_acsnano_1c08652
crossref_primary_10_1002_ange_202114538
crossref_primary_10_1002_ange_202317414
crossref_primary_10_1016_j_jhazmat_2022_129828
crossref_primary_10_1021_acsomega_2c03588
crossref_primary_10_1002_ange_202423661
crossref_primary_10_1016_j_jhazmat_2023_132282
crossref_primary_10_1021_acs_inorgchem_3c01046
crossref_primary_10_1038_s41929_024_01133_4
crossref_primary_10_1002_adfm_202313548
crossref_primary_10_1002_adma_202211856
crossref_primary_10_1016_j_resconrec_2022_106687
crossref_primary_10_1002_aenm_202302515
crossref_primary_10_1039_D2TA06316F
crossref_primary_10_1002_adfm_202401287
crossref_primary_10_1021_acs_inorgchem_2c02716
crossref_primary_10_1039_D3DT01705B
crossref_primary_10_1016_j_cej_2024_158814
crossref_primary_10_1016_j_coelec_2022_101179
crossref_primary_10_1016_j_jechem_2024_07_033
crossref_primary_10_1016_j_jechem_2023_12_024
crossref_primary_10_1002_smll_202200436
crossref_primary_10_1021_acsanm_3c00681
crossref_primary_10_1021_acs_nanolett_2c02026
crossref_primary_10_1002_anie_202418272
crossref_primary_10_1002_adma_202313548
crossref_primary_10_1002_aesr_202300173
crossref_primary_10_1039_D4TA04389H
crossref_primary_10_1016_j_cclet_2025_111066
crossref_primary_10_1021_acs_nanolett_2c04444
crossref_primary_10_1016_j_apcatb_2022_121750
crossref_primary_10_1149_1945_7111_ac7c95
crossref_primary_10_1002_anie_202305695
crossref_primary_10_1021_acsaem_3c02892
crossref_primary_10_1016_j_jece_2022_108362
crossref_primary_10_1021_acsenergylett_2c02175
crossref_primary_10_1021_acs_nanolett_4c03319
crossref_primary_10_1002_aesr_202200192
crossref_primary_10_1016_j_chempr_2024_07_006
crossref_primary_10_1016_j_cej_2024_153108
crossref_primary_10_1002_ange_202305695
crossref_primary_10_1016_j_chemosphere_2024_143707
crossref_primary_10_1016_j_jcis_2024_11_204
crossref_primary_10_1016_j_apcatb_2022_121981
crossref_primary_10_1002_smll_202400505
crossref_primary_10_1021_jacs_3c03432
crossref_primary_10_1021_acs_inorgchem_4c00766
crossref_primary_10_1007_s10562_024_04709_8
crossref_primary_10_1016_j_electacta_2024_145429
crossref_primary_10_1021_acs_est_4c06263
crossref_primary_10_1039_D1CS00116G
crossref_primary_10_1038_s41467_022_28740_8
crossref_primary_10_1039_D3QI00554B
crossref_primary_10_1039_D2TA02006H
crossref_primary_10_1002_smll_202004526
crossref_primary_10_1016_j_cej_2022_135104
crossref_primary_10_1016_j_ces_2024_120526
crossref_primary_10_1021_acssuschemeng_4c09648
crossref_primary_10_1039_D3NJ00021D
crossref_primary_10_1002_anie_202308044
crossref_primary_10_1073_pnas_2405236121
crossref_primary_10_1007_s11426_023_1580_2
crossref_primary_10_1063_5_0230248
crossref_primary_10_1039_D3CP01077E
crossref_primary_10_1016_j_jhazmat_2021_127319
crossref_primary_10_1039_D4QI00614C
crossref_primary_10_1016_j_cogsc_2024_100986
crossref_primary_10_1021_acs_nanolett_3c01978
crossref_primary_10_1002_adfm_202304468
crossref_primary_10_1021_jacs_4c14773
crossref_primary_10_1007_s12598_024_02833_3
crossref_primary_10_1002_cjoc_202100426
crossref_primary_10_1360_TB_2022_0408
crossref_primary_10_1002_aenm_202402294
crossref_primary_10_1016_j_jece_2023_111462
crossref_primary_10_1007_s11356_022_24372_z
crossref_primary_10_1002_anie_202409799
crossref_primary_10_1016_j_cclet_2023_109277
crossref_primary_10_1007_s11426_022_1511_2
crossref_primary_10_1016_j_mtphys_2022_100619
crossref_primary_10_1002_adfm_202312079
crossref_primary_10_1021_acs_nanolett_2c00446
crossref_primary_10_1002_smll_202203335
crossref_primary_10_1126_sciadv_adm9325
crossref_primary_10_1002_adfm_202401941
crossref_primary_10_1021_jacs_2c01272
crossref_primary_10_1007_s42824_021_00039_x
crossref_primary_10_1016_j_apsusc_2024_159397
crossref_primary_10_1002_ange_202422585
crossref_primary_10_1007_s12678_023_00851_w
crossref_primary_10_1039_D1EE01731D
crossref_primary_10_1002_ange_202109785
crossref_primary_10_1016_j_jpowsour_2022_232523
crossref_primary_10_1002_ange_202416910
crossref_primary_10_1016_j_checat_2024_101060
crossref_primary_10_1016_j_mattod_2024_01_009
crossref_primary_10_1016_j_jcat_2021_05_022
crossref_primary_10_1016_j_chempr_2024_06_014
crossref_primary_10_1039_D3QI01536J
crossref_primary_10_1016_j_jiec_2023_11_039
crossref_primary_10_1016_j_jwpe_2021_102174
crossref_primary_10_1002_anie_202405370
crossref_primary_10_1016_j_cej_2022_138890
crossref_primary_10_1016_j_checat_2024_101054
crossref_primary_10_1002_aesr_202400083
crossref_primary_10_1016_j_cclet_2024_110514
crossref_primary_10_1021_jacs_4c03680
crossref_primary_10_1016_j_apcatb_2024_124528
crossref_primary_10_1021_acs_nanolett_2c04828
crossref_primary_10_1002_adfm_202315324
crossref_primary_10_1002_ange_202308775
crossref_primary_10_1038_s41467_024_48035_4
crossref_primary_10_1016_j_electacta_2024_144124
crossref_primary_10_1039_D3EN00403A
crossref_primary_10_1016_j_jcis_2024_08_105
crossref_primary_10_1016_j_jece_2023_110122
crossref_primary_10_1002_ntls_20220047
crossref_primary_10_1016_j_jhazmat_2022_128909
crossref_primary_10_1039_D2CC00245K
crossref_primary_10_1038_s41467_022_35533_6
crossref_primary_10_1039_D1RA08002D
crossref_primary_10_1016_j_fuel_2024_133394
crossref_primary_10_1002_adma_202202952
crossref_primary_10_1016_j_cej_2022_137341
crossref_primary_10_1073_pnas_2408187121
crossref_primary_10_1002_cssc_202102180
crossref_primary_10_1002_ange_202403633
crossref_primary_10_1021_acs_nanolett_3c03962
crossref_primary_10_1039_D3CY01072D
crossref_primary_10_1016_j_apsusc_2022_153213
crossref_primary_10_1016_j_jcis_2021_05_061
crossref_primary_10_1021_jacs_2c05673
crossref_primary_10_1016_j_jhazmat_2024_134909
crossref_primary_10_1002_adma_202303107
crossref_primary_10_1021_acsami_1c12512
crossref_primary_10_1016_j_mtchem_2025_102570
crossref_primary_10_1016_j_checat_2025_101328
crossref_primary_10_1016_j_jechem_2024_06_062
crossref_primary_10_1002_aenm_202400065
crossref_primary_10_1039_D0QI01014F
crossref_primary_10_1016_j_cclet_2024_110506
crossref_primary_10_1039_D4EE03970J
crossref_primary_10_1016_j_jechem_2024_05_023
crossref_primary_10_1039_D2EE03461A
crossref_primary_10_1021_acsanm_4c05949
crossref_primary_10_1016_j_chemosphere_2021_130386
crossref_primary_10_1021_acsami_1c21691
crossref_primary_10_1007_s40843_023_2552_1
crossref_primary_10_1016_j_coelec_2023_101292
crossref_primary_10_1002_anie_202202604
crossref_primary_10_1038_s41467_023_43179_1
crossref_primary_10_1002_adsu_202400507
crossref_primary_10_1002_cctc_202400415
crossref_primary_10_1021_acs_jpclett_1c01691
crossref_primary_10_1039_D3QI00732D
crossref_primary_10_1039_D4DT01956C
crossref_primary_10_1002_anie_202305719
crossref_primary_10_1016_j_cej_2024_149226
crossref_primary_10_1002_smll_202411005
crossref_primary_10_1021_acscatal_3c02951
crossref_primary_10_1021_acsaenm_3c00334
crossref_primary_10_1002_adma_202306633
crossref_primary_10_1016_j_apsusc_2022_155057
crossref_primary_10_1021_acs_jpcc_2c07813
crossref_primary_10_1016_j_apcatb_2022_122090
crossref_primary_10_1021_acscatal_2c02282
crossref_primary_10_1016_j_jpowsour_2021_230463
crossref_primary_10_1016_j_ceja_2024_100683
crossref_primary_10_1021_acscatal_2c02033
crossref_primary_10_1039_D4NR02852J
crossref_primary_10_2139_ssrn_4172820
crossref_primary_10_1038_s41467_024_47765_9
crossref_primary_10_1039_D2GC02527B
crossref_primary_10_1021_jacs_3c01319
crossref_primary_10_1039_D2QI02764J
crossref_primary_10_1016_j_cej_2024_153713
crossref_primary_10_1021_acsami_3c16456
crossref_primary_10_1039_D2TA01772E
crossref_primary_10_1039_D2GC03083G
crossref_primary_10_1039_D3TA01063E
crossref_primary_10_1002_ange_202210980
crossref_primary_10_1021_acs_jpcc_1c10781
crossref_primary_10_1016_j_jcat_2020_12_031
crossref_primary_10_1002_ange_202411068
crossref_primary_10_1038_s41467_024_50670_w
crossref_primary_10_1021_jacs_3c13517
crossref_primary_10_1016_j_cej_2020_126269
crossref_primary_10_1038_s41467_023_40174_4
crossref_primary_10_1021_acs_est_0c08552
crossref_primary_10_1039_D2CS00931E
crossref_primary_10_1039_D2MA00279E
crossref_primary_10_1021_acscatal_4c04340
crossref_primary_10_1002_adfm_202501057
crossref_primary_10_1016_j_jece_2022_108839
crossref_primary_10_1016_j_nanoen_2025_110708
crossref_primary_10_1002_anie_202307952
crossref_primary_10_3390_nano14010102
crossref_primary_10_1021_acsanm_4c00763
crossref_primary_10_1016_j_watres_2023_120256
crossref_primary_10_1002_aenm_202202105
crossref_primary_10_1016_j_chemosphere_2024_142161
crossref_primary_10_1039_D4TA07261H
crossref_primary_10_1016_j_fuel_2022_126106
crossref_primary_10_1016_j_ijhydene_2024_06_038
crossref_primary_10_1016_j_apcatb_2022_122293
crossref_primary_10_1002_ece2_60
crossref_primary_10_1039_D1TA04743D
crossref_primary_10_1039_D3NR03310D
crossref_primary_10_1002_aenm_202303054
crossref_primary_10_1039_D1RA06136D
crossref_primary_10_1007_s11581_024_05578_2
crossref_primary_10_1002_smll_202300530
crossref_primary_10_1002_ange_202210958
crossref_primary_10_1002_ange_202308044
crossref_primary_10_1002_anie_202315109
crossref_primary_10_1016_j_jcis_2025_02_210
crossref_primary_10_1021_acs_inorgchem_3c00857
crossref_primary_10_1016_j_ccr_2025_216610
crossref_primary_10_1021_acscatal_2c03163
crossref_primary_10_1039_D2TA04295A
crossref_primary_10_1021_acsami_1c19412
crossref_primary_10_1016_j_apcatb_2024_123735
crossref_primary_10_1039_D2TA07475C
crossref_primary_10_1002_anie_202215938
crossref_primary_10_1002_aenm_202203891
crossref_primary_10_1002_adma_202305598
crossref_primary_10_1039_D1CS00857A
crossref_primary_10_1039_D4TA02299H
crossref_primary_10_1002_adma_202304021
crossref_primary_10_3390_ma16247647
crossref_primary_10_1002_aenm_202403295
crossref_primary_10_1016_j_jelechem_2021_115256
crossref_primary_10_2139_ssrn_4156149
crossref_primary_10_1002_adsu_202400934
crossref_primary_10_1039_D3DT01412F
crossref_primary_10_1002_ange_202217337
crossref_primary_10_1002_solr_202300880
crossref_primary_10_1016_j_apcatb_2024_124812
crossref_primary_10_1016_j_cclet_2024_110347
crossref_primary_10_1039_D4CC02012J
crossref_primary_10_1016_j_apcatb_2024_123967
crossref_primary_10_1039_D4TA07397E
crossref_primary_10_1021_acs_est_2c07968
crossref_primary_10_1016_j_jechem_2024_08_020
crossref_primary_10_1016_j_cej_2021_133680
crossref_primary_10_1002_anie_202422072
crossref_primary_10_1016_j_checat_2022_09_001
crossref_primary_10_1039_D4CC04193C
crossref_primary_10_1002_adfm_202008533
crossref_primary_10_1016_j_jcis_2024_07_055
crossref_primary_10_1016_j_apcatb_2023_122540
crossref_primary_10_1016_j_apsusc_2023_157118
crossref_primary_10_1021_acs_est_2c04456
crossref_primary_10_1021_acscatal_4c05235
crossref_primary_10_1002_anie_202309930
crossref_primary_10_26599_NRE_2022_9120010
crossref_primary_10_1002_anie_202415300
crossref_primary_10_1073_pnas_2306461120
crossref_primary_10_1039_D0EE03596C
crossref_primary_10_1007_s40820_023_01091_9
crossref_primary_10_1016_j_scitotenv_2021_149645
crossref_primary_10_1002_smll_202404792
crossref_primary_10_1016_j_cclet_2023_108864
crossref_primary_10_1016_j_electacta_2020_137121
crossref_primary_10_1002_adma_202205767
crossref_primary_10_1002_ange_202408758
crossref_primary_10_1007_s10563_023_09408_9
crossref_primary_10_1016_j_apmt_2024_102536
crossref_primary_10_1002_adfm_202212236
crossref_primary_10_1073_pnas_2115504119
crossref_primary_10_1002_smtd_202400604
crossref_primary_10_1016_j_cej_2024_152460
crossref_primary_10_1039_D1EE00806D
crossref_primary_10_1039_D4EE02747G
crossref_primary_10_1002_anie_202401386
crossref_primary_10_1002_ange_202415259
crossref_primary_10_1002_adfm_202303803
crossref_primary_10_1002_anie_202101522
crossref_primary_10_1039_D2EE02647C
crossref_primary_10_1039_D3QI00718A
crossref_primary_10_1002_anie_202411160
crossref_primary_10_1039_D3CC02023A
crossref_primary_10_1021_acsami_1c01098
crossref_primary_10_1016_j_seppur_2022_120721
crossref_primary_10_1021_acsami_4c05818
crossref_primary_10_1016_j_checat_2023_100638
crossref_primary_10_1016_j_susmat_2024_e00917
crossref_primary_10_1021_acscatal_2c05136
crossref_primary_10_1038_s41467_023_44469_4
crossref_primary_10_1021_acssuschemeng_4c05859
crossref_primary_10_1002_anie_202400289
crossref_primary_10_1016_j_apcatb_2023_122778
crossref_primary_10_1021_acscatal_4c05225
crossref_primary_10_1021_acscatal_4c05465
crossref_primary_10_1021_acsnano_2c00101
crossref_primary_10_1002_smll_202300794
crossref_primary_10_1016_j_apcatb_2023_122772
crossref_primary_10_1038_s41598_024_72529_2
crossref_primary_10_1039_D2FD00145D
crossref_primary_10_1016_j_cej_2023_145861
crossref_primary_10_1039_D2QI00827K
crossref_primary_10_1002_adfm_202300512
crossref_primary_10_1016_j_nanoen_2022_107705
crossref_primary_10_1016_j_jelechem_2022_116022
crossref_primary_10_1021_acscatal_3c00716
crossref_primary_10_1002_adma_202412031
crossref_primary_10_1002_ange_202401924
crossref_primary_10_1021_acs_est_1c02278
crossref_primary_10_1021_acsanm_4c07317
crossref_primary_10_1021_acsami_1c15206
crossref_primary_10_1016_j_fuel_2024_132746
crossref_primary_10_1039_D4MH00593G
crossref_primary_10_1016_j_jes_2024_07_005
crossref_primary_10_1021_acsami_2c02048
crossref_primary_10_2139_ssrn_4008068
crossref_primary_10_1016_j_fmre_2023_03_019
crossref_primary_10_1002_cssc_202402331
crossref_primary_10_1039_D4EY00282B
crossref_primary_10_1002_adfm_202008983
crossref_primary_10_1016_j_jhazmat_2022_130651
crossref_primary_10_1016_j_joule_2020_12_025
crossref_primary_10_1016_j_mtener_2022_101112
crossref_primary_10_1021_acs_jpclett_2c03900
crossref_primary_10_1021_acsenergylett_3c01139
crossref_primary_10_1039_D4EE01727G
crossref_primary_10_1038_s41467_024_52780_x
crossref_primary_10_1063_5_0162029
crossref_primary_10_1016_j_jece_2024_114694
crossref_primary_10_1021_acsnano_4c01958
crossref_primary_10_3390_ma16114000
crossref_primary_10_1016_j_ccr_2024_216174
crossref_primary_10_1021_acsmaterialslett_3c01218
crossref_primary_10_1002_anie_202420063
crossref_primary_10_1039_D4DT01578A
crossref_primary_10_1016_j_jcis_2024_04_145
crossref_primary_10_1039_D1QI01062J
crossref_primary_10_1016_j_ecoenv_2023_115236
crossref_primary_10_1002_adma_202401133
crossref_primary_10_1002_smtd_202300169
crossref_primary_10_1021_acsanm_4c04066
crossref_primary_10_1007_s12274_024_6863_3
crossref_primary_10_1016_j_jhazmat_2022_129653
crossref_primary_10_1016_j_cej_2024_152659
crossref_primary_10_1016_j_apcatb_2022_121346
crossref_primary_10_1016_j_jechem_2024_09_004
crossref_primary_10_1021_acs_est_4c03949
crossref_primary_10_1016_j_jhazmat_2022_129504
crossref_primary_10_1016_j_cclet_2023_109327
crossref_primary_10_1016_j_jhazmat_2022_128892
crossref_primary_10_1002_anie_202410251
crossref_primary_10_1038_s41467_024_45534_2
crossref_primary_10_1002_adma_202415632
crossref_primary_10_1002_aenm_202402301
crossref_primary_10_1002_anie_202114538
crossref_primary_10_1016_j_ces_2024_120021
crossref_primary_10_1016_j_ijhydene_2023_06_127
crossref_primary_10_1039_D4NJ03470H
crossref_primary_10_1021_acs_jpcc_4c06598
crossref_primary_10_1016_j_apcatb_2022_121683
crossref_primary_10_1016_j_apcatb_2022_121682
crossref_primary_10_1002_adma_202412363
crossref_primary_10_1002_adma_202312746
crossref_primary_10_1021_acs_nanolett_3c04049
crossref_primary_10_1002_ange_202101522
crossref_primary_10_1016_j_apcatb_2024_124278
crossref_primary_10_1021_acssuschemeng_3c01688
crossref_primary_10_1016_j_ccr_2024_215723
crossref_primary_10_1002_anie_202500389
crossref_primary_10_1007_s11426_023_1924_7
crossref_primary_10_1039_D2CY00050D
crossref_primary_10_1016_j_jcis_2022_01_002
crossref_primary_10_1021_acssuschemeng_1c00063
crossref_primary_10_34133_2022_9837012
crossref_primary_10_1038_s41929_023_01094_0
crossref_primary_10_1038_s41467_022_28728_4
crossref_primary_10_1038_s41467_025_55889_9
crossref_primary_10_1039_D2NR02545K
crossref_primary_10_1007_s42823_024_00790_6
crossref_primary_10_1016_j_jechem_2022_11_024
crossref_primary_10_1016_j_jcis_2022_09_049
crossref_primary_10_1021_acs_est_3c09811
crossref_primary_10_1021_acsanm_3c04957
crossref_primary_10_1016_j_jece_2024_115182
crossref_primary_10_1002_aic_18654
crossref_primary_10_1039_D2NR03767J
crossref_primary_10_1021_jacs_4c07061
crossref_primary_10_1002_anie_202404819
crossref_primary_10_1016_j_jechem_2023_05_032
crossref_primary_10_1002_adfm_202406438
crossref_primary_10_1016_j_jhazmat_2022_128887
crossref_primary_10_1002_ange_202500389
crossref_primary_10_1080_21663831_2023_2209156
crossref_primary_10_1039_D4CY01511H
crossref_primary_10_1021_acsenergylett_1c01614
crossref_primary_10_1016_j_checat_2023_100595
crossref_primary_10_1039_D3TA08036F
crossref_primary_10_1021_acs_energyfuels_3c04371
crossref_primary_10_1002_cctc_202301545
crossref_primary_10_1016_j_cclet_2022_107908
crossref_primary_10_1039_D1TA06664A
crossref_primary_10_1016_j_mser_2024_100796
crossref_primary_10_1038_s43246_024_00535_y
crossref_primary_10_1002_anie_202217337
crossref_primary_10_1016_j_apcatb_2024_124247
crossref_primary_10_1002_ange_202315109
crossref_primary_10_1002_adfm_202308072
crossref_primary_10_1002_anie_202210958
crossref_primary_10_1007_s11244_024_01933_9
crossref_primary_10_1002_adma_202402767
crossref_primary_10_1002_cssc_202102450
crossref_primary_10_1016_j_ces_2022_117735
crossref_primary_10_1016_j_ensm_2022_10_007
crossref_primary_10_1021_acsami_2c08534
crossref_primary_10_1016_j_apcatb_2024_124262
crossref_primary_10_1016_j_jallcom_2024_177180
crossref_primary_10_1680_jsuin_22_00040
crossref_primary_10_1007_s40820_023_01169_4
crossref_primary_10_1016_j_apcatb_2022_121626
crossref_primary_10_1021_acs_jpcc_2c02816
crossref_primary_10_1002_aesr_202300056
crossref_primary_10_1039_D1QM00456E
crossref_primary_10_1002_smll_202302266
crossref_primary_10_1039_D4TA05443A
crossref_primary_10_1016_j_cej_2023_143134
crossref_primary_10_1016_j_apcatb_2022_121618
crossref_primary_10_1016_j_checat_2021_08_014
crossref_primary_10_1039_D4SC05936K
crossref_primary_10_2139_ssrn_4049524
crossref_primary_10_1002_smll_202408566
crossref_primary_10_1016_j_nanoen_2024_110088
crossref_primary_10_1016_j_mattod_2023_03_011
crossref_primary_10_1002_cey2_345
crossref_primary_10_1002_cssc_202102234
crossref_primary_10_1016_j_ccr_2023_215609
crossref_primary_10_1039_D4EY00002A
crossref_primary_10_1016_j_cej_2023_143371
crossref_primary_10_1002_ange_202309930
crossref_primary_10_1007_s12598_024_02954_9
crossref_primary_10_1002_anie_202313746
crossref_primary_10_1016_j_scitotenv_2023_163938
crossref_primary_10_1038_s41467_024_53529_2
crossref_primary_10_1016_j_chempr_2025_102441
crossref_primary_10_1002_anie_202210980
crossref_primary_10_1021_jacs_4c14420
crossref_primary_10_1007_s41918_024_00236_7
crossref_primary_10_1002_anie_202401924
crossref_primary_10_1039_D1CY01217G
crossref_primary_10_1002_ece2_33
crossref_primary_10_1021_acs_iecr_2c02495
crossref_primary_10_1016_j_envres_2024_120422
crossref_primary_10_1002_ange_202420063
crossref_primary_10_1002_adfm_202423612
crossref_primary_10_1039_D3TA00227F
crossref_primary_10_1039_D4CC01834F
crossref_primary_10_1016_j_jechem_2023_03_037
crossref_primary_10_1039_D1NR02339J
crossref_primary_10_1039_D3CC03293K
crossref_primary_10_1002_anie_202107858
crossref_primary_10_1021_acs_jpclett_2c02452
crossref_primary_10_1039_D3QI00568B
crossref_primary_10_1016_j_apcatb_2023_123292
crossref_primary_10_1016_j_cej_2023_141601
crossref_primary_10_1002_adma_202304508
crossref_primary_10_1002_ange_202204117
crossref_primary_10_1039_D2DT01542K
crossref_primary_10_1038_s41893_021_00741_3
crossref_primary_10_1039_D3TA03160H
crossref_primary_10_1021_acsnano_3c03692
crossref_primary_10_1002_aic_17969
crossref_primary_10_1002_aenm_202101699
crossref_primary_10_1016_j_cclet_2024_110657
crossref_primary_10_1038_s44160_023_00258_x
crossref_primary_10_1016_j_jhazmat_2023_132106
crossref_primary_10_3390_catal12121561
crossref_primary_10_1016_j_apcatb_2024_124224
crossref_primary_10_1021_jacs_4c13117
crossref_primary_10_1002_cssc_202200231
crossref_primary_10_1016_j_cej_2021_130759
crossref_primary_10_1002_smll_202206966
crossref_primary_10_1016_j_apcatb_2021_120829
crossref_primary_10_1039_D2QI02290G
crossref_primary_10_1016_j_jece_2023_109275
crossref_primary_10_1002_aenm_202202247
crossref_primary_10_1002_adfm_202303480
crossref_primary_10_1021_acsestengg_2c00052
crossref_primary_10_1016_j_chempr_2023_05_037
crossref_primary_10_1016_j_jelechem_2024_118499
crossref_primary_10_1002_smll_202307506
crossref_primary_10_1038_s41467_024_52830_4
crossref_primary_10_1002_ange_202410251
crossref_primary_10_1002_ange_202404819
crossref_primary_10_1021_acscatal_3c01315
crossref_primary_10_1021_acs_inorgchem_4c01737
crossref_primary_10_1073_pnas_2311326121
crossref_primary_10_1021_acsenergylett_4c00707
crossref_primary_10_1021_acsanm_4c03622
crossref_primary_10_1021_jacs_2c07742
crossref_primary_10_1002_ange_202411160
crossref_primary_10_1007_s40843_023_2475_6
crossref_primary_10_1016_j_cej_2024_148734
crossref_primary_10_1021_acsnano_5c00187
crossref_primary_10_1021_acs_jpclett_4c03301
crossref_primary_10_1002_adma_202410537
crossref_primary_10_1021_acsnano_4c06754
crossref_primary_10_1016_j_cej_2024_158785
crossref_primary_10_1002_anie_202408758
crossref_primary_10_1016_j_apcata_2022_118596
crossref_primary_10_1002_cssc_202102049
crossref_primary_10_1016_j_apcatb_2022_121811
crossref_primary_10_1021_acs_nanolett_4c06083
crossref_primary_10_1016_j_comptc_2023_114225
crossref_primary_10_1002_adfm_202211537
crossref_primary_10_1016_j_apcatb_2023_123280
crossref_primary_10_1021_acsaem_3c03207
crossref_primary_10_1039_D4CC05246C
crossref_primary_10_1002_smll_202409239
crossref_primary_10_1155_2024_5685619
crossref_primary_10_1002_sstr_202200202
crossref_primary_10_1016_j_jcat_2021_12_031
crossref_primary_10_1021_acs_jpclett_4c00054
crossref_primary_10_1002_anie_202303327
crossref_primary_10_1021_acscatal_4c02698
crossref_primary_10_1002_anie_202300054
crossref_primary_10_1021_acscentsci_1c00370
crossref_primary_10_1039_D3NJ01670F
crossref_primary_10_1021_acscatal_2c01144
crossref_primary_10_1016_j_cej_2024_148952
crossref_primary_10_1002_adma_202303455
crossref_primary_10_1039_D2NR05001C
crossref_primary_10_1021_acscatal_4c00479
crossref_primary_10_1039_D2CY01427K
crossref_primary_10_1021_acssuschemeng_2c07101
crossref_primary_10_1016_j_jelechem_2023_117295
crossref_primary_10_1016_S1872_2067_23_64413_4
crossref_primary_10_1038_s41467_023_44131_z
crossref_primary_10_1016_j_apcatb_2020_119580
crossref_primary_10_1002_advs_202004523
crossref_primary_10_1021_acs_jpclett_1c02236
crossref_primary_10_1016_j_chphma_2025_01_001
crossref_primary_10_1016_j_seppur_2023_124962
crossref_primary_10_1021_jacsau_2c00502
crossref_primary_10_1002_ange_202218717
crossref_primary_10_1039_D2NR02813A
crossref_primary_10_1021_acs_inorgchem_5c00444
crossref_primary_10_1039_D3EE00371J
crossref_primary_10_1016_j_coelec_2021_100721
crossref_primary_10_1021_acs_est_3c03922
crossref_primary_10_1016_j_apcatb_2024_124659
crossref_primary_10_1002_aenm_202204236
crossref_primary_10_1016_j_apcatb_2024_124419
crossref_primary_10_1002_cssc_202301050
crossref_primary_10_1016_j_cej_2023_147574
crossref_primary_10_1002_chem_202402562
Cites_doi 10.1038/nmat3601
10.1002/celc.201300135
10.1038/natrevmats.2017.59
10.1038/s41929-019-0246-2
10.1021/acscatal.9b02179
10.1002/adma.201707301
10.1038/nmat4636
10.1016/j.jcat.2008.05.013
10.3109/10715768909073424
10.1038/s41467-017-01872-y
10.1016/j.apcatb.2017.04.045
10.1002/anie.201915992
10.1126/science.aar6611
10.1021/acs.jpcc.7b00281
10.1038/s41929-019-0365-9
10.1016/j.apcatb.2017.02.016
10.1038/s41586-019-1899-3
10.1002/smtd.201800001
10.1126/science.aaf1525
10.1038/s41467-019-08419-3
10.1021/cr8003696
10.1021/jacs.7b13612
10.1126/science.aad4998
10.1021/acs.nanolett.8b04921
10.1021/jp105691v
10.1002/anie.201305812
10.1021/acssuschemeng.9b05983
10.1016/S0013-4686(98)00290-4
10.1021/jacs.6b01377
10.1542/peds.2009-0752
10.1021/jacs.9b03811
10.1021/ja071330n
10.1021/acsenergylett.8b00454
10.3164/jcbn.10-130
10.1021/acscatal.7b01371
10.1002/anie.201809689
10.1021/acs.jpcc.5b06096
10.1038/ncomms12272
10.1021/acscatal.7b00611
10.1002/anie.201808177
10.1021/jacs.9b07963
10.1002/anie.201508613
10.1038/nature19060
10.1007/s11426-018-9273-1
10.1126/science.aaf7680
10.1016/j.nanoen.2016.06.024
10.1039/C8CS00846A
10.1021/jacs.6b11291
10.1016/j.jcat.2010.07.013
10.1016/S0022-0728(02)01443-2
10.1016/j.electacta.2016.12.147
10.1038/s41929-018-0054-0
10.1126/science.aah6133
10.1002/adma.201903616
10.1021/ja407115p
10.1021/acscatal.9b05260
10.1002/adma.201807001
10.1021/jacs.7b13542
10.1103/PhysRevLett.93.156801
10.1039/C3CC49224A
10.1038/nchem.1411
10.1002/anie.201706645
10.1038/s41929-019-0306-7
10.1021/jacs.7b06808
10.1039/c2ee23062c
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.0c00418
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 7046
ExternalDocumentID 32223152
10_1021_jacs_0c00418
i7901399
Genre Journal Article
GroupedDBID -
.K2
02
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-a423t-b45f7cea496036b57e790597e331ff5f415ec6c2207de7267d6e444b9a3e166d3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 13:05:03 EDT 2025
Thu Jul 10 17:38:09 EDT 2025
Wed Feb 19 02:31:07 EST 2025
Tue Jul 01 03:22:00 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Thu Aug 27 22:10:25 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a423t-b45f7cea496036b57e790597e331ff5f415ec6c2207de7267d6e444b9a3e166d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6842-9167
0000-0002-1597-7151
0000-0001-7144-9305
0000-0002-2467-8751
0000-0001-9886-3725
0000-0003-3081-960X
PMID 32223152
PQID 2384819516
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2985592946
proquest_miscellaneous_2384819516
pubmed_primary_32223152
crossref_citationtrail_10_1021_jacs_0c00418
crossref_primary_10_1021_jacs_0c00418
acs_journals_10_1021_jacs_0c00418
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-15
PublicationDateYYYYMMDD 2020-04-15
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
Haber F. (ref2/cit2) 1913; 19
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref26/cit26
  doi: 10.1038/nmat3601
– ident: ref22/cit22
  doi: 10.1002/celc.201300135
– ident: ref30/cit30
  doi: 10.1038/natrevmats.2017.59
– ident: ref37/cit37
  doi: 10.1038/s41929-019-0246-2
– ident: ref25/cit25
  doi: 10.1021/acscatal.9b02179
– ident: ref33/cit33
  doi: 10.1002/adma.201707301
– ident: ref63/cit63
  doi: 10.1038/nmat4636
– ident: ref47/cit47
  doi: 10.1016/j.jcat.2008.05.013
– ident: ref65/cit65
  doi: 10.3109/10715768909073424
– ident: ref49/cit49
  doi: 10.1038/s41467-017-01872-y
– ident: ref58/cit58
  doi: 10.1016/j.apcatb.2017.04.045
– ident: ref15/cit15
  doi: 10.1002/anie.201915992
– ident: ref1/cit1
  doi: 10.1126/science.aar6611
– ident: ref46/cit46
  doi: 10.1021/acs.jpcc.7b00281
– ident: ref51/cit51
  doi: 10.1038/s41929-019-0365-9
– ident: ref55/cit55
  doi: 10.1016/j.apcatb.2017.02.016
– ident: ref53/cit53
  doi: 10.1038/s41586-019-1899-3
– ident: ref39/cit39
  doi: 10.1002/smtd.201800001
– ident: ref27/cit27
  doi: 10.1126/science.aaf1525
– ident: ref56/cit56
  doi: 10.1038/s41467-019-08419-3
– ident: ref9/cit9
  doi: 10.1021/cr8003696
– ident: ref36/cit36
  doi: 10.1021/jacs.7b13612
– ident: ref8/cit8
  doi: 10.1126/science.aad4998
– ident: ref35/cit35
  doi: 10.1021/acs.nanolett.8b04921
– ident: ref61/cit61
  doi: 10.1021/jp105691v
– ident: ref3/cit3
  doi: 10.1002/anie.201305812
– ident: ref16/cit16
  doi: 10.1021/acssuschemeng.9b05983
– ident: ref17/cit17
  doi: 10.1016/S0013-4686(98)00290-4
– ident: ref50/cit50
  doi: 10.1021/jacs.6b01377
– ident: ref12/cit12
  doi: 10.1542/peds.2009-0752
– ident: ref6/cit6
  doi: 10.1021/jacs.9b03811
– ident: ref24/cit24
  doi: 10.1021/ja071330n
– ident: ref45/cit45
  doi: 10.1021/acsenergylett.8b00454
– ident: ref62/cit62
  doi: 10.3164/jcbn.10-130
– ident: ref23/cit23
  doi: 10.1021/acscatal.7b01371
– ident: ref38/cit38
  doi: 10.1002/anie.201809689
– ident: ref42/cit42
  doi: 10.1021/acs.jpcc.5b06096
– ident: ref60/cit60
  doi: 10.1038/ncomms12272
– ident: ref10/cit10
  doi: 10.1021/acscatal.7b00611
– ident: ref4/cit4
  doi: 10.1002/anie.201808177
– ident: ref5/cit5
  doi: 10.1021/jacs.9b07963
– ident: ref40/cit40
  doi: 10.1002/anie.201508613
– ident: ref66/cit66
  doi: 10.1038/nature19060
– ident: ref7/cit7
  doi: 10.1007/s11426-018-9273-1
– ident: ref34/cit34
  doi: 10.1126/science.aaf7680
– ident: ref19/cit19
  doi: 10.1016/j.nanoen.2016.06.024
– ident: ref31/cit31
  doi: 10.1039/C8CS00846A
– ident: ref59/cit59
  doi: 10.1021/jacs.6b11291
– volume: 19
  start-page: 53
  year: 1913
  ident: ref2/cit2
  publication-title: Z. Elektrochem. Angew. Phys. Chem.
– ident: ref20/cit20
  doi: 10.1016/j.jcat.2010.07.013
– ident: ref13/cit13
  doi: 10.1016/S0022-0728(02)01443-2
– ident: ref14/cit14
  doi: 10.1016/j.electacta.2016.12.147
– ident: ref44/cit44
  doi: 10.1038/s41929-018-0054-0
– ident: ref32/cit32
  doi: 10.1126/science.aah6133
– ident: ref43/cit43
  doi: 10.1002/adma.201903616
– ident: ref57/cit57
  doi: 10.1021/ja407115p
– ident: ref18/cit18
  doi: 10.1021/acscatal.9b05260
– ident: ref52/cit52
  doi: 10.1002/adma.201807001
– ident: ref64/cit64
  doi: 10.1021/jacs.7b13542
– ident: ref41/cit41
  doi: 10.1103/PhysRevLett.93.156801
– ident: ref21/cit21
  doi: 10.1039/C3CC49224A
– ident: ref29/cit29
  doi: 10.1038/nchem.1411
– ident: ref48/cit48
  doi: 10.1002/anie.201706645
– ident: ref54/cit54
  doi: 10.1038/s41929-019-0306-7
– ident: ref28/cit28
  doi: 10.1021/jacs.7b06808
– ident: ref11/cit11
  doi: 10.1039/c2ee23062c
SSID ssj0004281
Score 2.7201717
Snippet The limitations of the Haber–Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis...
The limitations of the Haber-Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7036
SubjectTerms ambient temperature
ammonia
catalytic activity
dimerization
electrosynthesis
free radicals
hydrogen
nanoparticles
nitrates
nitrogen
ruthenium
Title Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium Nanoclusters
URI http://dx.doi.org/10.1021/jacs.0c00418
https://www.ncbi.nlm.nih.gov/pubmed/32223152
https://www.proquest.com/docview/2384819516
https://www.proquest.com/docview/2985592946
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODC-zFeyiQ4oU5rkibtEU2DCYkdeEjcqjRNpYmpQ7Q9wK_H7mMTQwOuras2tiN_rp3PhFxI4xpprecIPzAOOIVxNGRhWIOXlgkVJBH-GrgfyeGzuHvxXuYNsosVfIb8QCbr9gwSQ_mrZI1J2L8IgfqP8_OPzHcbmKt8yesG98WnMQCZ7HsAWoIqy-hys0VumzM6VVPJa7fIo675_EnZ-MeHb5PNGmDS68ojdsiKTXfJer-Z67ZHHgYlawQEG3qNTjjWdFDNwsk-UoCD2TijeOiEjsYlcy2dpvSxnCRhY1o2xKfjAu7qdGomBfIsZPvk-Wbw1B869WQFMATjuRMJL1HGagH5C5eRpyzydAXKcu4miZdAVLdGGsZ6KraKSRVLK4SIAs2tK2XMD0grnab2iNDEkzx2fQVpFBM6DnQg3VgYl_W8ntWRapMO6CGsd0YWlkVvBkkHXq210yZXjUlCU1OT47omS6QvZ9JvFSXHErlOY90QVIyFEJ3aaZGFAFME1g9d-YtM4EOyxQIBMoeVa8zehtUpDsDn-B9rOyEbDFN0pIf0Tkkrfy_sGeCYPDovnfgLn0TrEQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI54HODC-_0KEpxQ0ZqkSXucpk3jtQMPiVuVpqk0MXWIrAf49dhZtwmkIa6p2yaOK3-u48-EXEgTGmltFIg4MQEYhQk0RGGYg5eWCZUUGf4aeOjJ7ou4fY1e62J1rIWBSTh4kvNJ_Bm7ANIEwWDDID9UvEiWAYcwNOhm62lWBsnicIJ2VSx5fc79993oh4z76YfmgEvvZDrrpDednj9b8nZdjbJr8_WLufHf898gazXcpM2xfWySBVtukZXWpMvbNnlsew4JcD20iSbZ17Q97ozjPksAh67vKJag0F7f89jSYUmffF8Jm1N_PL7sV3BVl0MzqJB1we2Ql077udUN6j4LsC2Mj4JMRIUyVguIZrjMImWRtStRlvOwKKICfLw10jDWULlVTKpcWiFElmhuQylzvkuWymFp9wktIsnzMFYQVDGh80QnMsyFCVkjalidqQNyDnpI6-_EpT4FziAEwdFaOwfkarIzqamJynFdgznSl1Pp9zFBxxy588kmp6BiTIvo0g4rlwJoEZhNDOUfMkkMoRdLBMjsjS1k-jbMVXGAQYf_WNsZWek-P9yn9ze9uyOyyjB4R-LI6JgsjT4qewIIZ5Sderv-Bmor83I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVoJeeBVKoYArwQlltX7ETo6r7a5aHivUUqm3yHEcaUWVrfDmAL-eGW-yiEpbtdd48rA91nyTz_4G4IN23Gnv00RluUvQKVxiMQsjDl57oUxel_Rr4NtMn1yoz5fp5Rbw_iwMfkTAJ4VI4tOqvq7qTmGApIKwYehIIyp7ADvE2JFTj8bn_45Cioz3iNdkWnZ73W_eTbHIhf9j0QaAGQPN9AmcrT8x7i_5OWiX5cD9uaHeeK8-PIXHHexko5WfPIMt3zyHR-O-2tsenE2ilgSGIDYi15xbNllVyAm_GwSJYR4YHUVhs3nUs2WLhp3H-hK-YnGbfDNvsdU2C3fVkvpCeAEX08mP8UnS1VvA6RFymZQqrY3zVmFWI3WZGk_qXbnxUvK6TmuM9d5pJ8TQVN4IbSrtlVJlbqXnWlfyJWw3i8a_AlanWlY8M5hcCWWr3OaaV8pxMUyH3pbmAI5wHIpuvYQiUuECUxG62o3OAXzqZ6dwnWA59etqg_XHtfX1Sqhjg91RP9EFDjHRI7bxizYUCF4UsYpc32KTZ5iCiVyhzf7KS9ZvI85KIhx6fYe-vYeH34-nxdfT2Zc3sCsohyf9yPQQtpe_Wv8Wgc6yfBdd-y9okvX1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Ammonia+Electrosynthesis+from+Nitrate+on+Strained+Ruthenium+Nanoclusters&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Li%2C+Jie&rft.au=Zhan%2C+Guangming&rft.au=Yang%2C+Jianhua&rft.au=Quan%2C+Fengjiao&rft.date=2020-04-15&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=142&rft.issue=15&rft.spage=7036&rft.epage=7046&rft_id=info:doi/10.1021%2Fjacs.0c00418&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_0c00418
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon