Heterologous and Engineered Biosynthesis of Nematocidal Polyketide–Nonribosomal Peptide Hybrid Macrolactone from Extreme Thermophilic Fungi
Fungal polyketide–nonribosomal peptide (PK–NRP) hybrid macrolactones are a growing family of natural products with biomedical and agricultural activities. One of the most important families is the thermolides, which are produced by extreme thermophilic fungi and exhibit strong nematocidal activity....
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 4; pp. 1957 - 1965 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
29.01.2020
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fungal polyketide–nonribosomal peptide (PK–NRP) hybrid macrolactones are a growing family of natural products with biomedical and agricultural activities. One of the most important families is the thermolides, which are produced by extreme thermophilic fungi and exhibit strong nematocidal activity. We show here that the genes ThmABCE from Talaromyces thermophilus NRRL 2155 are critical for thermolide synthesis. Two separate single-module hrPKS (ThmA) and NRPS (ThmB) enzymes collaborate to synthesize the core macrolactone backbone (6 or 7), and the NRPS ThmB-CT domain catalyzes the key macrocyclization step in PK–NRP intermediate release via ester bond formation, representing a novel function of fungal NRPS C domains. We also show that heterologous and engineered expression of the Thm genes in the type strains of Aspergillus nidulans and Escherichia coli not only dramatically enhances the yields of thermolides but also affords different esterified analogues, such as butyryl- (thermolides J and K, 15 and 16), hexanoyl-, and octanyl- derivatives or mixed thermolides. Thermolides L and M (18 and 19), discovered via genome mining-based combinatorial biosynthesis, represent the first l-phenylalanine-based thermolides. Our work shows a unique biosynthetic mechanism of PK–NRP hybrid macrolactones from extremophiles, which led to the discovery of novel compounds and furthers our biosynthetic knowledge. |
---|---|
AbstractList | Fungal polyketide-nonribosomal peptide (PK-NRP) hybrid macrolactones are a growing family of natural products with biomedical and agricultural activities. One of the most important families is the thermolides, which are produced by extreme thermophilic fungi and exhibit strong nematocidal activity. We show here that the genes ThmABCE from Talaromyces thermophilus NRRL 2155 are critical for thermolide synthesis. Two separate single-module hrPKS (ThmA) and NRPS (ThmB) enzymes collaborate to synthesize the core macrolactone backbone (6 or 7), and the NRPS ThmB-C-T domain catalyzes the key macrocyclization step in PK-NRP intermediate release via ester bond formation, representing a novel function of fungal NRPS C domains. We also show that heterologous and engineered expression of the Thm genes in the type strains of Aspergillus nidulans and Escherichia coli not only dramatically enhances the yields of thermolides but also affords different esterified analogues, such as butyryl- (thermolides J and K, 15 and 16), hexanoyl-, and octanyl- derivatives or mixed thermolides. Thermolides L and M (18 and 19), discovered via genome mining-based combinatorial biosynthesis, represent the first L-phenylalanine-based thermolides. Our work shows a unique biosynthetic mechanism of PK-NRP hybrid macrolactones from extremophiles, which led to the discovery of novel compounds and furthers our biosynthetic knowledge. Fungal polyketide–nonribosomal peptide (PK–NRP) hybrid macrolactones are a growing family of natural products with biomedical and agricultural activities. One of the most important families is the thermolides, which are produced by extreme thermophilic fungi and exhibit strong nematocidal activity. We show here that the genes ThmABCE from Talaromyces thermophilus NRRL 2155 are critical for thermolide synthesis. Two separate single-module hrPKS (ThmA) and NRPS (ThmB) enzymes collaborate to synthesize the core macrolactone backbone (6 or 7), and the NRPS ThmB-CT domain catalyzes the key macrocyclization step in PK–NRP intermediate release via ester bond formation, representing a novel function of fungal NRPS C domains. We also show that heterologous and engineered expression of the Thm genes in the type strains of Aspergillus nidulans and Escherichia coli not only dramatically enhances the yields of thermolides but also affords different esterified analogues, such as butyryl- (thermolides J and K, 15 and 16), hexanoyl-, and octanyl- derivatives or mixed thermolides. Thermolides L and M (18 and 19), discovered via genome mining-based combinatorial biosynthesis, represent the first l-phenylalanine-based thermolides. Our work shows a unique biosynthetic mechanism of PK–NRP hybrid macrolactones from extremophiles, which led to the discovery of novel compounds and furthers our biosynthetic knowledge. Fungal polyketide-nonribosomal peptide (PK-NRP) hybrid macrolactones are a growing family of natural products with biomedical and agricultural activities. One of the most important families is the thermolides, which are produced by extreme thermophilic fungi and exhibit strong nematocidal activity. We show here that the genes ThmABCE from Talaromyces thermophilus NRRL 2155 are critical for thermolide synthesis. Two separate single-module hrPKS (ThmA) and NRPS (ThmB) enzymes collaborate to synthesize the core macrolactone backbone (6 or 7), and the NRPS ThmB-CT domain catalyzes the key macrocyclization step in PK-NRP intermediate release via ester bond formation, representing a novel function of fungal NRPS C domains. We also show that heterologous and engineered expression of the Thm genes in the type strains of Aspergillus nidulans and Escherichia coli not only dramatically enhances the yields of thermolides but also affords different esterified analogues, such as butyryl- (thermolides J and K, 15 and 16), hexanoyl-, and octanyl- derivatives or mixed thermolides. Thermolides L and M (18 and 19), discovered via genome mining-based combinatorial biosynthesis, represent the first l-phenylalanine-based thermolides. Our work shows a unique biosynthetic mechanism of PK-NRP hybrid macrolactones from extremophiles, which led to the discovery of novel compounds and furthers our biosynthetic knowledge.Fungal polyketide-nonribosomal peptide (PK-NRP) hybrid macrolactones are a growing family of natural products with biomedical and agricultural activities. One of the most important families is the thermolides, which are produced by extreme thermophilic fungi and exhibit strong nematocidal activity. We show here that the genes ThmABCE from Talaromyces thermophilus NRRL 2155 are critical for thermolide synthesis. Two separate single-module hrPKS (ThmA) and NRPS (ThmB) enzymes collaborate to synthesize the core macrolactone backbone (6 or 7), and the NRPS ThmB-CT domain catalyzes the key macrocyclization step in PK-NRP intermediate release via ester bond formation, representing a novel function of fungal NRPS C domains. We also show that heterologous and engineered expression of the Thm genes in the type strains of Aspergillus nidulans and Escherichia coli not only dramatically enhances the yields of thermolides but also affords different esterified analogues, such as butyryl- (thermolides J and K, 15 and 16), hexanoyl-, and octanyl- derivatives or mixed thermolides. Thermolides L and M (18 and 19), discovered via genome mining-based combinatorial biosynthesis, represent the first l-phenylalanine-based thermolides. Our work shows a unique biosynthetic mechanism of PK-NRP hybrid macrolactones from extremophiles, which led to the discovery of novel compounds and furthers our biosynthetic knowledge. Fungal polyketide-nonribosomal peptide (PK-NRP) hybrid macrolactones are a growing family of natural products with biomedical and agricultural activities. One of the most important families is the thermolides, which are produced by extreme thermophilic fungi and exhibit strong nematocidal activity. We show here that the genes from NRRL 2155 are critical for thermolide synthesis. Two separate single-module hrPKS (ThmA) and NRPS (ThmB) enzymes collaborate to synthesize the core macrolactone backbone ( or ), and the NRPS ThmB-C domain catalyzes the key macrocyclization step in PK-NRP intermediate release via ester bond formation, representing a novel function of fungal NRPS C domains. We also show that heterologous and engineered expression of the genes in the type strains of and not only dramatically enhances the yields of thermolides but also affords different esterified analogues, such as butyryl- (thermolides J and K, and ), hexanoyl-, and octanyl- derivatives or mixed thermolides. Thermolides L and M ( and ), discovered via genome mining-based combinatorial biosynthesis, represent the first l-phenylalanine-based thermolides. Our work shows a unique biosynthetic mechanism of PK-NRP hybrid macrolactones from extremophiles, which led to the discovery of novel compounds and furthers our biosynthetic knowledge. |
Author | Liu, Xuan Zhang, Jin-Mei Zou, Yi Wang, Hang-Hang Hu, Chang-Hua |
AuthorAffiliation | College of Pharmaceutical Sciences |
AuthorAffiliation_xml | – name: College of Pharmaceutical Sciences |
Author_xml | – sequence: 1 givenname: Jin-Mei surname: Zhang fullname: Zhang, Jin-Mei – sequence: 2 givenname: Hang-Hang surname: Wang fullname: Wang, Hang-Hang – sequence: 3 givenname: Xuan surname: Liu fullname: Liu, Xuan – sequence: 4 givenname: Chang-Hua surname: Hu fullname: Hu, Chang-Hua – sequence: 5 givenname: Yi orcidid: 0000-0002-1742-9650 surname: Zou fullname: Zou, Yi email: zouyi31@swu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31904941$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkr1uFDEUhS0URDaBjhq5RIIJ_p2fElYbFikEilCPPPadrJcZe7E9gu14ASrekCfBo11SIBBUV77-zrV1zj1DJ847QOgxJReUMPpiq3S8aDpKBSX30IJKRgpJWXmCFoQQVlR1yU_RWYzbfBSspg_QKacNEY2gC_RtDQmCH_ytnyJWzuCVu7UOIIDBr6yPe5c2EG3EvsfXMKrktTVqwO_9sP8IyRr48fX7tXfBdj76cb6B3dzG630XrMFvlc7zlU7527gPfsSrLynACPhmA2H0u40drMaXU373IbrfqyHCo2M9Rx8uVzfLdXH17vWb5curQgnGU1ExRklXdbkKIktDjOg7KVjflcBr0cimlE3fQ82l0cpQqKq6IrUgjCktOfBz9PQwdxf8pwliakcbNQyDcpB9aFmTTStJWdX_RjkXTNRC0ow-OaJTN4Jpd8GOKuzbX25n4NkB-Ayd76O24DTcYTkeSYmc6RwUz3T9__TSJpWsd0s_uZSlzw_SbH2MAfo7GSXtvDXtvDXtcWsyzn7D9XFcCsoOfxMdjZmbWz8FlxP7M_oTRdPTMw |
CitedBy_id | crossref_primary_10_2174_1568026623666230601142757 crossref_primary_10_1016_j_ymben_2024_02_009 crossref_primary_10_1039_D0NP00098A crossref_primary_10_1002_anie_202404000 crossref_primary_10_1039_D2NP00074A crossref_primary_10_1038_s41429_021_00478_3 crossref_primary_10_1039_D4NP00050A crossref_primary_10_1039_D1NP00056J crossref_primary_10_1016_j_cbpa_2020_06_003 crossref_primary_10_1021_acs_joc_2c03000 crossref_primary_10_1039_D2NP00050D crossref_primary_10_1002_anie_202308887 crossref_primary_10_1016_j_biortech_2024_131703 crossref_primary_10_1021_acs_orglett_0c01975 crossref_primary_10_3390_toxins14120849 crossref_primary_10_1002_ange_202404000 crossref_primary_10_1002_anie_202110658 crossref_primary_10_1590_1678_4499_20230263 crossref_primary_10_1021_acs_orglett_4c03675 crossref_primary_10_1016_j_procbio_2021_06_006 crossref_primary_10_1021_acs_jnatprod_2c00487 crossref_primary_10_1016_j_ejmech_2021_114067 crossref_primary_10_1186_s12934_024_02378_1 crossref_primary_10_1021_jacs_4c01284 crossref_primary_10_1021_acs_jnatprod_0c00501 crossref_primary_10_1002_cbic_202400387 crossref_primary_10_1002_anie_202015442 crossref_primary_10_1002_chem_202004650 crossref_primary_10_1002_pro_3979 crossref_primary_10_1038_s41467_022_34340_3 crossref_primary_10_1007_s15010_021_01648_z crossref_primary_10_1016_j_fgb_2020_103477 crossref_primary_10_1016_j_tetlet_2023_154865 crossref_primary_10_1007_s00253_022_12046_2 crossref_primary_10_1021_acs_chemrev_4c00567 crossref_primary_10_1002_ange_202015442 crossref_primary_10_1002_ange_202110658 crossref_primary_10_1021_acs_orglett_2c01172 crossref_primary_10_1016_j_toxicon_2022_107007 crossref_primary_10_1111_1751_7915_13743 crossref_primary_10_3390_md21020095 crossref_primary_10_1021_acscatal_0c05319 crossref_primary_10_1039_D1OB01501J crossref_primary_10_1128_AEM_01486_20 crossref_primary_10_1016_j_cclet_2023_108968 crossref_primary_10_1016_j_copbio_2023_103003 crossref_primary_10_1016_j_synbio_2024_05_006 crossref_primary_10_1186_s40694_023_00152_3 crossref_primary_10_1002_ange_202308887 |
Cites_doi | 10.1021/ja402828w 10.1007/s00792-014-0707-0 10.1039/c2np00084a 10.1021/bi901597j 10.1021/jacs.9b02204 10.1021/ja803078z 10.1093/nar/gkz310 10.1016/bs.mie.2018.01.035 10.1021/ol503179v 10.1038/nchembio.1047 10.1021/jacs.6b10452 10.1021/jacs.8b00056 10.1021/ja107084d 10.1039/C8NP00022K 10.1002/slct.201702958 10.3390/md15070206 10.1016/j.fgb.2014.12.004 10.1021/acs.orglett.8b00293 10.1007/s13659-015-0081-3 10.1002/anie.201404804 10.1021/ja206914q 10.1021/np2007044 10.1038/nchembio.1527 10.1021/ja3104044 10.1021/bi901123r 10.1021/ol501595z 10.1111/j.1365-2958.2007.05947.x 10.1021/jacs.8b12010 10.1021/ja204200x 10.1021/ja807052c 10.1021/acs.orglett.5b02435 10.1038/ncomms9758 10.1021/jacs.7b13350 10.1038/nature23882 10.1021/ja511087p 10.1002/cbic.201200624 10.1016/j.tetlet.2018.06.020 10.1016/j.chembiol.2013.07.004 10.1039/c3ra42661k 10.1002/anie.201600940 10.1128/MMBR.00010-13 10.1007/s00253-015-7234-5 10.1038/nchembio.2202 10.1002/anie.201909052 10.1073/pnas.0808880106 10.1039/B912037H 10.1021/jacs.9b08898 10.1007/s00253-015-7233-6 10.1039/c8np00022k 10.1038/NCHEMBIO.1047 10.1039/b912037h 10.1038/NCHEMBIO.1527 |
ContentType | Journal Article |
DBID | AAYXX CITATION 17B 1KM AOWDO BLEPL DTL EGQ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.9b11410 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2020 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Web of Science MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 1965 |
ExternalDocumentID | 31904941 000510531900043 10_1021_jacs_9b11410 h65937219 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 31870022 – fundername: Venture & Innovation Support Program for Chongqing Overseas Returnees grantid: cx2018006 – fundername: Scientific Research Starting Foundation of Southwest University grantid: SWU117034 – fundername: Thousand Young Talents Program of China; Chinese Academy of Sciences |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 17B 1KM AAYWT BLEPL DTL GROUPED_WOS_WEB_OF_SCIENCE CGR CUY CVF ECM EIF NPM YIN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a423t-72210b7b7224056d0d4fb542fb6e384959659ffe835dcad1e7787084022ac53e3 |
IEDL.DBID | ACS |
ISICitedReferencesCount | 48 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000510531900043 |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Jul 10 19:56:30 EDT 2025 Fri Jul 11 04:39:29 EDT 2025 Wed Feb 19 02:29:56 EST 2025 Wed Aug 06 11:13:20 EDT 2025 Fri Aug 29 15:48:50 EDT 2025 Tue Jul 01 03:21:56 EDT 2025 Thu Apr 24 23:09:50 EDT 2025 Thu Aug 27 22:10:49 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | SYNTHASE ELUCIDATION METABOLITES ACID NATURAL-PRODUCTS THERMOLIDES GENES GENERATION TRANS |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-a423t-72210b7b7224056d0d4fb542fb6e384959659ffe835dcad1e7787084022ac53e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1742-9650 |
PMID | 31904941 |
PQID | 2334248451 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1021_jacs_9b11410 webofscience_primary_000510531900043 acs_journals_10_1021_jacs_9b11410 crossref_citationtrail_10_1021_jacs_9b11410 pubmed_primary_31904941 webofscience_primary_000510531900043CitationCount proquest_miscellaneous_2986360678 proquest_miscellaneous_2334248451 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-29 |
PublicationDateYYYYMMDD | 2020-01-29 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | WASHINGTON |
PublicationPlace_xml | – name: WASHINGTON – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAbbrev | J AM CHEM SOC |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society Amer Chemical Soc |
Publisher_xml | – name: American Chemical Society – name: Amer Chemical Soc |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 Liu, XY (WOS:000269485500028) 2009; 48 Gao, X (WOS:000309056200007) 2012; 8 de Oliveira, TB (WOS:000346657500003) 2015; 19 Tan, D (WOS:000456350300010) 2019; 141 Du, LC (WOS:000274073100004) 2010; 27 Li, L (WOS:000425475300021) 2018; 140 Fisch, KM (WOS:000295997500055) 2011; 133 Röttig, A (WOS:000319789000007) 2013; 77 Hansen, FT (WOS:000350781000003) 2015; 75 Niu, XM (WOS:000339367300034) 2014; 16 Blin, K (WOS:000475901600012) 2019; 47 Lin, SJ (WOS:000264278800026) 2009; 106 Sanchez, JF (WOS:000300251800002) 2012; 29 Kakule, TB (WOS:000347139200026) 2014; 136 Hai, Y (WOS:000491220300007) 2019; 141 Ishiuchi, K (WOS:000319250200041) 2013; 135 Baccile, JA (WOS:000483958600001) 2019; 58 Yamamoto, T (WOS:000377918400011) 2016; 55 Shi, YM (WOS:000428003600021) 2018; 20 Satyanarayana, V (WOS:000423764200005) 2018; 3 Fisch, KM (WOS:000325006600003) 2013; 3 Xu, W (WOS:000282864100014) 2010; 132 Niehaus, EM (WOS:000330271500011) 2013; 20 Yakasai, AA (WOS:000293113200052) 2011; 133 Bertin, MJ (WOS:000406685900014) 2017; 15 Yun, CS (WOS:000364939700003) 2015; 6 Satyanarayana, V (WOS:000438321300014) 2018; 59 Hai, Y (WOS:000424313000021) 2018; 140 Zhai, MM (WOS:000393543900001) 2016; 6 Miyanaga, A (WOS:000450437100003) 2018; 35 Hu, YC (WOS:000337871200012) 2014; 10 Sims, JW (WOS:000258415900060) 2008; 130 Zou, Y (WOS:000346759900032) 2014; 16 Degenkolb, T (WOS:000373744000001) 2016; 100 Fujita, Y (WOS:000250647800001) 2007; 66 Zhang, Z (WOS:000464769000016) 2019; 141 Skiba, MA (WOS:000436466700003) 2018; 604 Boettger, D (WOS:000313780500003) 2013; 14 Liu, XY (WOS:000271756300021) 2009; 48 Li, L (WOS:000389962800011) 2016; 138 Zhang, JR (WOS:000388582900006) 2016; 12 Krasnoff, SB (WOS:000300601500010) 2012; 75 Ohashi, M (WOS:000411930000046) 2017; 549 Yamamoto, T (WOS:000363225000016) 2015; 17 Tsunematsu, Y (WOS:000340522700040) 2014; 53 Halo, LM (WOS:000263320900057) 2008; 130 Guo, JP (WOS:000312430700026) 2012; 134 |
References_xml | – ident: ref4/cit4 doi: 10.1021/ja402828w – ident: ref31/cit31 doi: 10.1007/s00792-014-0707-0 – ident: ref38/cit38 doi: 10.1039/c2np00084a – ident: ref14/cit14 doi: 10.1021/bi901597j – ident: ref13/cit13 doi: 10.1021/jacs.9b02204 – ident: ref15/cit15 doi: 10.1021/ja803078z – ident: ref39/cit39 doi: 10.1093/nar/gkz310 – ident: ref22/cit22 doi: 10.1016/bs.mie.2018.01.035 – ident: ref21/cit21 doi: 10.1021/ol503179v – ident: ref40/cit40 doi: 10.1038/nchembio.1047 – ident: ref8/cit8 doi: 10.1021/jacs.6b10452 – ident: ref11/cit11 doi: 10.1021/jacs.8b00056 – ident: ref17/cit17 doi: 10.1021/ja107084d – ident: ref26/cit26 doi: 10.1039/C8NP00022K – ident: ref36/cit36 doi: 10.1002/slct.201702958 – ident: ref30/cit30 doi: 10.3390/md15070206 – ident: ref47/cit47 doi: 10.1016/j.fgb.2014.12.004 – ident: ref29/cit29 doi: 10.1021/acs.orglett.8b00293 – ident: ref34/cit34 doi: 10.1007/s13659-015-0081-3 – ident: ref6/cit6 doi: 10.1002/anie.201404804 – ident: ref18/cit18 doi: 10.1021/ja206914q – ident: ref28/cit28 doi: 10.1021/np2007044 – ident: ref5/cit5 doi: 10.1038/nchembio.1527 – ident: ref27/cit27 doi: 10.1021/ja3104044 – ident: ref23/cit23 doi: 10.1021/bi901123r – ident: ref32/cit32 doi: 10.1021/ol501595z – ident: ref46/cit46 doi: 10.1111/j.1365-2958.2007.05947.x – ident: ref12/cit12 doi: 10.1021/jacs.8b12010 – ident: ref19/cit19 doi: 10.1021/ja204200x – ident: ref3/cit3 doi: 10.1021/ja807052c – ident: ref7/cit7 doi: 10.1021/acs.orglett.5b02435 – ident: ref25/cit25 doi: 10.1038/ncomms9758 – ident: ref24/cit24 doi: 10.1021/jacs.7b13350 – ident: ref10/cit10 doi: 10.1038/nature23882 – ident: ref20/cit20 doi: 10.1021/ja511087p – ident: ref1/cit1 doi: 10.1002/cbic.201200624 – ident: ref35/cit35 doi: 10.1016/j.tetlet.2018.06.020 – ident: ref37/cit37 doi: 10.1016/j.chembiol.2013.07.004 – ident: ref2/cit2 doi: 10.1039/c3ra42661k – ident: ref9/cit9 doi: 10.1002/anie.201600940 – ident: ref45/cit45 doi: 10.1128/MMBR.00010-13 – ident: ref33/cit33 doi: 10.1007/s00253-015-7234-5 – ident: ref41/cit41 doi: 10.1038/nchembio.2202 – ident: ref43/cit43 doi: 10.1002/anie.201909052 – ident: ref44/cit44 doi: 10.1073/pnas.0808880106 – ident: ref16/cit16 doi: 10.1039/B912037H – ident: ref42/cit42 doi: 10.1021/jacs.9b08898 – volume: 100 start-page: 3799 year: 2016 ident: WOS:000373744000001 article-title: Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes publication-title: APPLIED MICROBIOLOGY AND BIOTECHNOLOGY doi: 10.1007/s00253-015-7233-6 – volume: 59 start-page: 2828 year: 2018 ident: WOS:000438321300014 article-title: Stereoselective synthesis of C12-C21 common fragment of thermolides 1-5 publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2018.06.020 – volume: 3 start-page: 18228 year: 2013 ident: WOS:000325006600003 article-title: Biosynthesis of natural products by microbial iterative hybrid PKS-NRPS publication-title: RSC ADVANCES doi: 10.1039/c3ra42661k – volume: 141 start-page: 16222 year: 2019 ident: WOS:000491220300007 article-title: Complete Stereoinversion of L-Tryptophan by a Fungal Single-Module Nonribosomal Peptide Synthetase publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b08898 – volume: 19 start-page: 31 year: 2015 ident: WOS:000346657500003 article-title: Thermophilic fungi in the new age of fungal taxonomy publication-title: EXTREMOPHILES doi: 10.1007/s00792-014-0707-0 – volume: 47 start-page: W81 year: 2019 ident: WOS:000475901600012 article-title: antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline publication-title: NUCLEIC ACIDS RESEARCH doi: 10.1093/nar/gkz310 – volume: 48 start-page: 11032 year: 2009 ident: WOS:000271756300021 article-title: Characterization of cyclo-Acetoacetyl-L-Tryptophan Dimethylallyltransferase in Cyclopiazonic Acid Biosynthesis: Substrate Promiscuity and Site Directed Mutagenesis Studies publication-title: BIOCHEMISTRY doi: 10.1021/bi901597j – volume: 75 start-page: 175 year: 2012 ident: WOS:000300601500010 article-title: Metacridamides A and B, Macrocycles from Conidia of the Entomopathogenic Fungus Metarhizium acridum publication-title: JOURNAL OF NATURAL PRODUCTS doi: 10.1021/np2007044 – volume: 20 start-page: 1563 year: 2018 ident: WOS:000428003600021 article-title: Georatusin, a Specific Antiparasitic Polyketide-Peptide Hybrid from the Fungus Geomyces auratus publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.8b00293 – volume: 35 start-page: 1185 year: 2018 ident: WOS:000450437100003 article-title: Protein-protein interactions in polyketide synthase-nonribosomal peptide synthetase hybrid assembly lines publication-title: NATURAL PRODUCT REPORTS doi: 10.1039/c8np00022k – volume: 16 start-page: 3744 year: 2014 ident: WOS:000339367300034 article-title: Characterization of Thermolide Biosynthetic Genes and a New Thermolide from Sister Thermophilic Fungi publication-title: ORGANIC LETTERS doi: 10.1021/ol501595z – volume: 3 start-page: 1000 year: 2018 ident: WOS:000423764200005 article-title: Studies towards the Synthesis of Thermolide-6' publication-title: CHEMISTRYSELECT doi: 10.1002/slct.201702958 – volume: 132 start-page: 13604 year: 2010 ident: WOS:000282864100014 article-title: Analysis of Intact and Dissected Fungal Polyketide Synthase-Nonribosomal Peptide Synthetase in Vitro and in Saccharomyces cerevisiae publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja107084d – volume: 549 start-page: 502 year: 2017 ident: WOS:000411930000046 article-title: SAM-dependent enzyme-catalysed pericyclic reactions in natural product biosynthesis publication-title: NATURE doi: 10.1038/nature23882 – volume: 135 start-page: 7371 year: 2013 ident: WOS:000319250200041 article-title: Combinatorial Generation of Complexity by Redox Enzymes in the Chaetoglobosin A Biosynthesis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja402828w – volume: 130 start-page: 11149 year: 2008 ident: WOS:000258415900060 article-title: Thioesterase-like role for fungal PKS-NRPS hybrid reductive domains publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja803078z – volume: 15 start-page: ARTN 206 year: 2017 ident: WOS:000406685900014 article-title: Tricholides A and B and Unnarmicin D: New Hybrid PKS-NRPS Macrocycles Isolated from an Environmental Collection of Trichodesmium thiebautii publication-title: MARINE DRUGS doi: 10.3390/md15070206 – volume: 604 start-page: 45 year: 2018 ident: WOS:000436466700003 article-title: PKS-NRPS Enzymology and Structural Biology: Considerations in Protein Production publication-title: MARINE ENZYMES AND SPECIALIZED METABOLISM, PT A doi: 10.1016/bs.mie.2018.01.035 – volume: 133 start-page: 10990 year: 2011 ident: WOS:000293113200052 article-title: Nongenetic Reprogramming of a Fungal Highly Reducing Polyketide Synthase publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja204200x – volume: 8 start-page: 823 year: 2012 ident: WOS:000309056200007 article-title: Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain publication-title: NATURE CHEMICAL BIOLOGY doi: 10.1038/NCHEMBIO.1047 – volume: 106 start-page: 4183 year: 2009 ident: WOS:000264278800026 article-title: A free-standing condensation enzyme catalyzing ester bond formation in C-1027 biosynthesis publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.0808880106 – volume: 141 start-page: 769 year: 2019 ident: WOS:000456350300010 article-title: Genome-Mined Diels-Alderase Catalyzes Formation of the cis-Octahydrodecalins of Varicidin A and B publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b12010 – volume: 140 start-page: 1271 year: 2018 ident: WOS:000424313000021 article-title: Biosynthesis of Long-Chain N-Acyl Amide by a Truncated Polyketide Synthase-Nonribosomal Peptide Synthetase Hybrid Megasynthase in Fungi publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b13350 – volume: 16 start-page: 6390 year: 2014 ident: WOS:000346759900032 article-title: Methylation-Dependent Acyl Transfer between Polyketide Synthase and Nonribosomal Peptide Synthetase Modules in Fungal Natural Product Biosynthesis publication-title: ORGANIC LETTERS doi: 10.1021/ol503179v – volume: 29 start-page: 351 year: 2012 ident: WOS:000300251800002 article-title: Advances in Aspergillus secondary metabolite research in the post-genomic era publication-title: NATURAL PRODUCT REPORTS doi: 10.1039/c2np00084a – volume: 138 start-page: 15837 year: 2016 ident: WOS:000389962800011 article-title: Biochemical Characterization of a Eukaryotic Decalin-Forming Diels-Alderase publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b10452 – volume: 6 start-page: ARTN 8758 year: 2015 ident: WOS:000364939700003 article-title: Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms9758 – volume: 27 start-page: 255 year: 2010 ident: WOS:000274073100004 article-title: PKS and NRPS release mechanisms publication-title: NATURAL PRODUCT REPORTS doi: 10.1039/b912037h – volume: 17 start-page: 4992 year: 2015 ident: WOS:000363225000016 article-title: Elucidation of Pyranonigrin Biosynthetic Pathway Reveals a Mode of Tetramic Acid, Fused γ-Pyrone, and exo-Methylene Formation publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.5b02435 – volume: 133 start-page: 16635 year: 2011 ident: WOS:000295997500055 article-title: Rational Domain Swaps Decipher Programming in Fungal Highly Reducing Polyketide Synthases and Resurrect an Extinct Metabolite publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja206914q – volume: 6 start-page: 1 year: 2016 ident: WOS:000393543900001 article-title: The Bioactive Secondary Metabolites from Talaromyces species publication-title: NATURAL PRODUCTS AND BIOPROSPECTING doi: 10.1007/s13659-015-0081-3 – volume: 75 start-page: 20 year: 2015 ident: WOS:000350781000003 article-title: An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium publication-title: FUNGAL GENETICS AND BIOLOGY doi: 10.1016/j.fgb.2014.12.004 – volume: 130 start-page: 17988 year: 2008 ident: WOS:000263320900057 article-title: Late Stage Oxidations during the Biosynthesis of the 2-Pyridone Tenellin in the Entomopathogenic Fungus Beauveria bassiana publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja807052c – volume: 136 start-page: 17882 year: 2014 ident: WOS:000347139200026 article-title: Combinatorialization of Fungal Polyketide Synthase-Peptide Synthetase Hybrid Proteins publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja511087p – volume: 12 start-page: 1001 year: 2016 ident: WOS:000388582900006 article-title: Structural basis of nonribosomal peptide macrocyclization in fungi publication-title: NATURE CHEMICAL BIOLOGY doi: 10.1038/nchembio.2202 – volume: 10 start-page: 552 year: 2014 ident: WOS:000337871200012 article-title: A carbonate-forming Baeyer-Villiger monooxygenase publication-title: NATURE CHEMICAL BIOLOGY doi: 10.1038/NCHEMBIO.1527 – volume: 134 start-page: 20306 year: 2012 ident: WOS:000312430700026 article-title: Thermolides, Potent Nematocidal PKS-NRPS Hybrid Metabolites from Thermophilic Fungus Talaromyces thermophilus publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja3104044 – volume: 77 start-page: 277 year: 2013 ident: WOS:000319789000007 article-title: Acyltransferases in Bacteria publication-title: MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS doi: 10.1128/MMBR.00010-13 – volume: 55 start-page: 6207 year: 2016 ident: WOS:000377918400011 article-title: Oxidative trans to cis Isomerization of Olefins in Polyketide Biosynthesis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201600940 – volume: 53 start-page: 8475 year: 2014 ident: WOS:000340522700040 article-title: Elucidation of Pseurotin Biosynthetic Pathway Points to Trans-Acting C-Methyltransferase: Generation of Chemical Diversity publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201404804 – volume: 66 start-page: 829 year: 2007 ident: WOS:000250647800001 article-title: Regulation of fatty acid metabolism in bacteria publication-title: MOLECULAR MICROBIOLOGY doi: 10.1111/j.1365-2958.2007.05947.x – volume: 48 start-page: 8746 year: 2009 ident: WOS:000269485500028 article-title: Cyclopiazonic Acid Biosynthesis in Aspergillus sp.: Characterization of a Reductase-like R* Domain in Cyclopiazonate Synthetase That Forms and Releases cyclo-Acetoacetyl-L-tryptophan publication-title: BIOCHEMISTRY doi: 10.1021/bi901123r – volume: 58 start-page: 14589 year: 2019 ident: WOS:000483958600001 article-title: Diketopiperazine Formation in Fungi Requires Dedicated Cyclization and Thiolation Domains publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201909052 – volume: 14 start-page: 28 year: 2013 ident: WOS:000313780500003 article-title: Molecular Diversity Sculpted by Fungal PKS-NRPS Hybrids publication-title: CHEMBIOCHEM doi: 10.1002/cbic.201200624 – volume: 20 start-page: 1055 year: 2013 ident: WOS:000330271500011 article-title: Genetic Manipulation of the Fusarium fujikuroi Fusarin Gene Cluster Yields Insight into the Complex Regulation and Fusarin Biosynthetic Pathway publication-title: CHEMISTRY & BIOLOGY doi: 10.1016/j.chembiol.2013.07.004 – volume: 141 start-page: 5659 year: 2019 ident: WOS:000464769000016 article-title: Enzyme-Catalyzed Inverse-Electron Demand Diels-Alder Reaction in the Biosynthesis of Antifungal Ilicicolin H publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b02204 – volume: 140 start-page: 2067 year: 2018 ident: WOS:000425475300021 article-title: Genome Mining and Assembly-Line Biosynthesis of the UCS1025A Pyrrolizidinone Family of Fungal Alkaloids publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b00056 |
SSID | ssj0004281 |
Score | 2.527368 |
Snippet | Fungal polyketide–nonribosomal peptide (PK–NRP) hybrid macrolactones are a growing family of natural products with biomedical and agricultural activities. One... Fungal polyketide-nonribosomal peptide (PK-NRP) hybrid macrolactones are a growing family of natural products with biomedical and agricultural activities. One... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1957 |
SubjectTerms | Antinematodal Agents - metabolism Aspergillus nidulans Aspergillus nidulans - genetics biosynthesis catalytic activity Chemistry Chemistry, Multidisciplinary Cyclization enzymes Escherichia coli Escherichia coli - genetics Esterification genes lactones Lactones - metabolism macrocyclization reactions nematicidal properties peptides Peptides - metabolism Physical Sciences Polyketides - metabolism Science & Technology Talaromyces Talaromyces - metabolism thermophilic fungi |
Title | Heterologous and Engineered Biosynthesis of Nematocidal Polyketide–Nonribosomal Peptide Hybrid Macrolactone from Extreme Thermophilic Fungi |
URI | http://dx.doi.org/10.1021/jacs.9b11410 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000510531900043 https://www.ncbi.nlm.nih.gov/pubmed/31904941 https://www.proquest.com/docview/2334248451 https://www.proquest.com/docview/2986360678 |
Volume | 142 |
WOS | 000510531900043 |
WOSCitedRecordID | wos000510531900043 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEF6VcoBL-YdQQFupnJCj7HrXXh9L1BAhESFBpd6s_ZWipnYVO1LTU1-AE2_YJ-mMY6elpdCrPbbl3dmZb3ZmviVkVzKfKq1YJDHrLnTmI5VxGYFrSUzKmM18UyA7ScYH4uuhPLwqkL2ZwefID2SrfmYYFiQ-IA95AusXIdDwx1X_I1esg7mpSuK2wP3m0-iAbPWnA7qFKv_qgBpnM3pCvnQtO6sak6P-ojZ9e3abwfE___GUbLV4k-6tFOQZ2fDFc_Jo2B3z9oL8GmNBDJrAclFRXTjaURR6Rz9Py2pZAEasphUtA50gwytMp4NXfi9nS2yYdv7i_PekLOZTU1blMd7BShnn6XiJ7WD0m4aRmOG5PoWn2M5C909r3JakoKPz4_IE93QsHYHZmb4kB6P9n8Nx1J7REGkAYnWUcogZTWpShAYycQMngpGCB5P4WEH0hYSFIXgAes5qB5qBFgKiSs61lbGPX5HNAj7_hlDAOsEGpxJnhNAiNiwNPglCYkzoB6xHdmAI83aNVXmTPucQvuDVdmB75FM3ubltSc7xrI3ZHdIf19InK3KPO-R2Oj3JYXYwpaILD7OS8zgWXCgh2T9kMoWkbIAKeuT1SsnWXwMDiAQ98PTuda1b328gdmMnm5xtj7D7iA3bP0dag_rtPYZtmzzmuI8wYBHP3pHNer7w7wFs1eZDs9IuARZrI_A |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELagHMoFyv9CAVcqJ5Rq7diJc2xXXQVoIyRaqbcojm1p1W1SbbISy4kX4MQb8iSd8SZbKBTtNZn82ZOZbzwznwnZlczGqlAskJh1F0ViA5VwGYBriXTMWJlYXyCbRemp-Hgmz7pmdeyFgZdo4E6NT-JfswsgTRAcTDTDusS75B7gEI4KvT_6ct0GyRXr0W6sorCrc795NfqhsvnTD_0FLv_ph7zPGT8k2eptfanJ-d681XvltxtEjmt_zhZ50KFPur9Ul0fkjq0ek81Rv-nbE_IjxfIYNIj1vKFFZWhPWGgNPZjUzaICxNhMGlo7miHfK0yugVt-rqcLbJ829tf3n1ldzSa6buoLPIN1M8bSdIHNYfS4gAGZ4i4_laXY3EIPv7a4SElBY2cX9SWu8JR0DEZo8pScjg9PRmnQ7dgQFADL2iDmEEHqWMcIFGRkhkY4LQV3OrKhglgM6QudswD7TFkY0BO0FxBjcl6UMrThM7JRweNfEArIx5XOqMhoIQoRahY7GzkhMUK0QzYgOzCEeffHNblPpnMIZvBoN7AD8r6f47zsKM9x543pLdLvVtKXS6qPW-R2enXJYXYwwVJUFmYl52EouFBCsv_IJAop2gAjDMjzpa6tngbmEOl64Ord35Vvdd4Dbm81fQZ3QNg6YqPuy5HkoH25xrC9JZvpyfFRfvQh-_SK3Oe4wjBkAU-2yUY7m9vXAMNa_cb_fFcDZyxR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3o_l6UrlhFKtHTtxjmXpanmtKqBSb1Ec29KKbbLaZCWWE3-gp_7D_pLOZJMFCkXlGjsvezzzjWfmM8C24i7WmeaBoqi7zBIX6ESoAE1LZGLO88Q1CbLjaHQg3x2qww3gXS0MfkSFT6qaID6t6pn1LcMAUQVhQ2I45SZegasUsSOh3h18_lkKKTTvEG-so7DNdT9_N9mivPrdFv0BMP9qixq7M7wFn9Zf3KSbfN1Z1GYn_36OzPG_fuk23GxRKNtdic0d2HDFXbg-6A5_uwfHI0qTIcVYLiqWFZZ1xIXOsteTsloWiByrScVKz8bE-4qTbPGR--V0SWXU1p3-OBmXxXxiyqo8ohbKn7GOjZZUJMY-ZjgoUzrtp3CMilzY3reaNisZSu78qJzRTk_OhqiMJvfhYLj3ZTAK2pMbggzhWR3EAj1JE5uYAIOKbN9Kb5QU3kQu1OiTEY2h9w7hn80zi_JCegN9TSGyXIUufACbBb7-ETBEQD73VkfWSJnJ0PDYu8hLRZ6i6_MebOEQpu3Kq9ImqC7QqaGr7cD24FU3z2neUp_TCRzTC3q_XPeerSg_Lui31YlMirNDgZascDgrqQhDKaSWiv-jT6KJqg2xQg8eruRt_TZUi0Tbg3dv_yqA6_YGeDfas4nk9oBfptug_XMiO6gfX2LYXsC1_TfD9MPb8fsncEPQRkOfByJ5Cpv1fOGeIRqrzfNm_Z0BnR8u1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterologous+and+Engineered+Biosynthesis+of+Nematocidal+Polyketide%E2%80%93Nonribosomal+Peptide+Hybrid+Macrolactone+from+Extreme+Thermophilic+Fungi&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhang%2C+Jin-Mei&rft.au=Wang%2C+Hang-Hang&rft.au=Liu%2C+Xuan&rft.au=Hu%2C+Chang-Hua&rft.date=2020-01-29&rft.issn=1520-5126&rft.volume=142&rft.issue=4+p.1957-1965&rft.spage=1957&rft.epage=1965&rft_id=info:doi/10.1021%2Fjacs.9b11410&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |