Spontaneous Reduction-Induced Degradation of Viologen Compounds in Water Microdroplets and Its Inhibition by Host–Guest Complexation

Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic herbicide, are stable in bulk water, whose half-life can be up to 23 weeks in natural water, imposing a severe health risk to mammals. In th...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 144; no. 8; pp. 3510 - 3516
Main Authors Gong, Chu, Li, Danyang, Li, Xilai, Zhang, Dongmei, Xing, Dong, Zhao, Lingling, Yuan, Xu, Zhang, Xinxing
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic herbicide, are stable in bulk water, whose half-life can be up to 23 weeks in natural water, imposing a severe health risk to mammals. In this study, we present the striking results of the spontaneous and ultrafast reduction-induced degradation of three viologen compounds in water microdroplets and provide the concentration, time, temperature dependence, mechanism, and scale-up of the reactions. We postulate that the electrons existing at the air–water interface of the microdroplets due to the unique redox potential therein initiate the reduction, from which further degradation occurs. The host–guest complexation between cucurbit[7]­uril and viologens only slightly changes the redox potential of viologens in the bulk but completely inhibits the reactions in microdroplets, adding to the uniqueness of the redox potentials at the air–water interfaces of microdroplets. Taken together, microdroplets might have been functioning as naturally occurring ubiquitous tiny electrochemical cells for a plethora of unique redox reactions that were thought to be impossible in the bulk water.
AbstractList Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic herbicide, are stable in bulk water, whose half-life can be up to 23 weeks in natural water, imposing a severe health risk to mammals. In this study, we present the striking results of the spontaneous and ultrafast reduction-induced degradation of three viologen compounds in water microdroplets and provide the concentration, time, temperature dependence, mechanism, and scale-up of the reactions. We postulate that the electrons existing at the air–water interface of the microdroplets due to the unique redox potential therein initiate the reduction, from which further degradation occurs. The host–guest complexation between cucurbit[7]uril and viologens only slightly changes the redox potential of viologens in the bulk but completely inhibits the reactions in microdroplets, adding to the uniqueness of the redox potentials at the air–water interfaces of microdroplets. Taken together, microdroplets might have been functioning as naturally occurring ubiquitous tiny electrochemical cells for a plethora of unique redox reactions that were thought to be impossible in the bulk water.
Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic herbicide, are stable in bulk water, whose half-life can be up to 23 weeks in natural water, imposing a severe health risk to mammals. In this study, we present the striking results of the spontaneous and ultrafast reduction-induced degradation of three viologen compounds in water microdroplets and provide the concentration, time, temperature dependence, mechanism, and scale-up of the reactions. We postulate that the electrons existing at the air-water interface of the microdroplets due to the unique redox potential therein initiate the reduction, from which further degradation occurs. The host-guest complexation between cucurbit[7]uril and viologens only slightly changes the redox potential of viologens in the bulk but completely inhibits the reactions in microdroplets, adding to the uniqueness of the redox potentials at the air-water interfaces of microdroplets. Taken together, microdroplets might have been functioning as naturally occurring ubiquitous tiny electrochemical cells for a plethora of unique redox reactions that were thought to be impossible in the bulk water.Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic herbicide, are stable in bulk water, whose half-life can be up to 23 weeks in natural water, imposing a severe health risk to mammals. In this study, we present the striking results of the spontaneous and ultrafast reduction-induced degradation of three viologen compounds in water microdroplets and provide the concentration, time, temperature dependence, mechanism, and scale-up of the reactions. We postulate that the electrons existing at the air-water interface of the microdroplets due to the unique redox potential therein initiate the reduction, from which further degradation occurs. The host-guest complexation between cucurbit[7]uril and viologens only slightly changes the redox potential of viologens in the bulk but completely inhibits the reactions in microdroplets, adding to the uniqueness of the redox potentials at the air-water interfaces of microdroplets. Taken together, microdroplets might have been functioning as naturally occurring ubiquitous tiny electrochemical cells for a plethora of unique redox reactions that were thought to be impossible in the bulk water.
Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic herbicide, are stable in bulk water, whose half-life can be up to 23 weeks in natural water, imposing a severe health risk to mammals. In this study, we present the striking results of the spontaneous and ultrafast reduction-induced degradation of three viologen compounds in water microdroplets and provide the concentration, time, temperature dependence, mechanism, and scale-up of the reactions. We postulate that the electrons existing at the air–water interface of the microdroplets due to the unique redox potential therein initiate the reduction, from which further degradation occurs. The host–guest complexation between cucurbit[7]­uril and viologens only slightly changes the redox potential of viologens in the bulk but completely inhibits the reactions in microdroplets, adding to the uniqueness of the redox potentials at the air–water interfaces of microdroplets. Taken together, microdroplets might have been functioning as naturally occurring ubiquitous tiny electrochemical cells for a plethora of unique redox reactions that were thought to be impossible in the bulk water.
Author Li, Danyang
Zhang, Dongmei
Yuan, Xu
Li, Xilai
Gong, Chu
Zhang, Xinxing
Zhao, Lingling
Xing, Dong
AuthorAffiliation College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Frontiers Science Center for New Organic Matter, Shenzhen Research Institute
AuthorAffiliation_xml – name: College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Frontiers Science Center for New Organic Matter, Shenzhen Research Institute
Author_xml – sequence: 1
  givenname: Chu
  surname: Gong
  fullname: Gong, Chu
– sequence: 2
  givenname: Danyang
  surname: Li
  fullname: Li, Danyang
– sequence: 3
  givenname: Xilai
  surname: Li
  fullname: Li, Xilai
– sequence: 4
  givenname: Dongmei
  surname: Zhang
  fullname: Zhang, Dongmei
– sequence: 5
  givenname: Dong
  surname: Xing
  fullname: Xing, Dong
– sequence: 6
  givenname: Lingling
  surname: Zhao
  fullname: Zhao, Lingling
– sequence: 7
  givenname: Xu
  surname: Yuan
  fullname: Yuan, Xu
– sequence: 8
  givenname: Xinxing
  orcidid: 0000-0001-5884-2727
  surname: Zhang
  fullname: Zhang, Xinxing
  email: zhangxx@nankai.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35167288$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u1DAQxi1URLeFG2fkIwfS2uPEcY5ogXalVkjl39Hy2k7xKmsH25HojRMvwBvyJDi72wuiEqexR7_5NPN9J-jIB28Rek7JGSVAzzdKpzOqKRAQj9CCNkCqhgI_QgtCCFSt4OwYnaS0Kd8aBH2CjllDeQtCLNDPD2PwWXkbpoRvrJl0dsFXK19e1uA39jYqo-YeDj3-7MIQbq3Hy7Adw-RNws7jLyrbiK-djsHEMA42J6y8watSV_6rW7vd_PoOX4aUf__4dTHZlHcag_2-E3-KHvdqSPbZoZ6iT-_eflxeVlfvL1bL11eVqoHlcpdoFaFdS0nHGG8NgLad4B03TGmoDTembQmsObXGKGJ73dR930DTNrz4w07Ry73uGMO3eQu5dUnbYdg7IIFzShhrxP-g0DFRQz2jLw7otN5aI8fotireyXubCwB7oFiUUrS91C7vDs9RuUFSIucs5ZylPGRZhl79NXSv-wB-2HdubsIUfTHy3-gfv-mvdQ
CitedBy_id crossref_primary_10_1002_ejoc_202400404
crossref_primary_10_1021_acs_jpca_3c00865
crossref_primary_10_1021_jacs_2c02890
crossref_primary_10_1021_jacs_2c07385
crossref_primary_10_1021_jacs_4c08018
crossref_primary_10_1021_acs_analchem_2c03518
crossref_primary_10_1021_jacs_2c12731
crossref_primary_10_1002_cphc_202300429
crossref_primary_10_1021_jacs_2c10830
crossref_primary_10_1002_ange_202316131
crossref_primary_10_1039_D3CS00763D
crossref_primary_10_1002_ange_202414746
crossref_primary_10_1021_acs_jpca_4c02981
crossref_primary_10_1021_acs_jpcb_2c05696
crossref_primary_10_1039_D4SC04519J
crossref_primary_10_1002_anie_202304189
crossref_primary_10_1021_acs_joc_4c02395
crossref_primary_10_1002_anie_202413122
crossref_primary_10_1039_D2JA00137C
crossref_primary_10_1002_ange_202400118
crossref_primary_10_1021_jacs_3c00037
crossref_primary_10_1039_D5SC00126A
crossref_primary_10_1002_anie_202207587
crossref_primary_10_1021_jacsau_4c00804
crossref_primary_10_1073_pnas_2220228120
crossref_primary_10_3389_fchem_2022_903774
crossref_primary_10_1021_acs_jpca_3c04143
crossref_primary_10_1002_ange_202210765
crossref_primary_10_1016_j_heliyon_2023_e17763
crossref_primary_10_1021_jacs_3c04662
crossref_primary_10_1021_acs_langmuir_5c00465
crossref_primary_10_1149_1945_7111_ada640
crossref_primary_10_1021_jacs_3c10784
crossref_primary_10_1002_ange_202207587
crossref_primary_10_1021_jacs_4c15493
crossref_primary_10_1021_acs_est_3c01379
crossref_primary_10_1002_anie_202214090
crossref_primary_10_1016_j_xcrp_2022_100917
crossref_primary_10_1021_jacs_4c09400
crossref_primary_10_1038_s41598_023_35766_5
crossref_primary_10_1002_rcm_9498
crossref_primary_10_1021_jacs_4c09080
crossref_primary_10_1021_acssuschemeng_3c03313
crossref_primary_10_1002_anie_202418593
crossref_primary_10_1002_anse_202300031
crossref_primary_10_1039_D2CC04288F
crossref_primary_10_1021_acsaenm_4c00253
crossref_primary_10_1039_D3SC03870J
crossref_primary_10_1039_D2OB01438F
crossref_primary_10_1021_acs_chemrev_4c00327
crossref_primary_10_1039_D4SC00437J
crossref_primary_10_1021_acs_jpclett_4c03613
crossref_primary_10_1021_jacs_4c03315
crossref_primary_10_1002_anie_202316131
crossref_primary_10_1073_pnas_2318408121
crossref_primary_10_1021_acs_joc_3c01660
crossref_primary_10_1021_acs_est_2c07897
crossref_primary_10_1002_ange_202413122
crossref_primary_10_1016_j_xpro_2022_101704
crossref_primary_10_1021_jacs_2c07779
crossref_primary_10_1039_D3CC03503D
crossref_primary_10_1021_jacs_3c12586
crossref_primary_10_1021_acssuschemeng_2c05583
crossref_primary_10_1016_j_aca_2024_342380
crossref_primary_10_1021_acssuschemeng_4c03189
crossref_primary_10_1021_jacs_4c13013
crossref_primary_10_1021_acssuschemeng_4c08638
crossref_primary_10_1002_anie_202400118
crossref_primary_10_1016_j_apcatb_2025_125214
crossref_primary_10_1021_jacs_4c00290
crossref_primary_10_1016_j_cis_2025_103436
crossref_primary_10_1016_j_physrep_2022_11_001
crossref_primary_10_1021_jacs_3c08638
crossref_primary_10_1021_jacsau_3c00191
crossref_primary_10_1021_acs_jpclett_4c01819
crossref_primary_10_1360_SSC_2023_0192
crossref_primary_10_1360_SSC_2023_0193
crossref_primary_10_1021_acs_analchem_4c05595
crossref_primary_10_1002_ange_202214090
crossref_primary_10_1021_acs_joc_3c01206
crossref_primary_10_1021_jacs_4c11224
crossref_primary_10_1039_D2EE03774B
crossref_primary_10_1002_ange_202304189
crossref_primary_10_1038_s41559_023_02193_8
crossref_primary_10_1002_ange_202418593
crossref_primary_10_1002_anie_202414746
crossref_primary_10_1016_j_jcis_2024_12_017
crossref_primary_10_1021_acs_analchem_4c00371
crossref_primary_10_1021_acs_analchem_2c04469
crossref_primary_10_1016_j_jcis_2022_12_056
crossref_primary_10_1021_acs_est_3c05777
crossref_primary_10_1021_jacs_2c12236
crossref_primary_10_1016_j_ccr_2024_216299
crossref_primary_10_1021_jacs_4c12740
crossref_primary_10_1002_anie_202300604
crossref_primary_10_1002_dro2_139
crossref_primary_10_1021_acs_est_4c03081
crossref_primary_10_1021_acs_jpcc_4c02913
crossref_primary_10_1002_anie_202210765
crossref_primary_10_1039_D4CC06697A
crossref_primary_10_1016_j_ccr_2023_215576
crossref_primary_10_1021_jacs_4c01455
crossref_primary_10_1021_jacs_3c07445
crossref_primary_10_1021_jasms_2c00072
crossref_primary_10_1039_D4TA00453A
crossref_primary_10_1073_pnas_2309360120
crossref_primary_10_1021_jacs_4c00529
crossref_primary_10_1002_chem_202400825
crossref_primary_10_1016_j_ccr_2024_216042
crossref_primary_10_1021_acs_joc_4c01568
crossref_primary_10_1017_qrd_2024_9
crossref_primary_10_1021_jacs_4c07712
crossref_primary_10_1016_j_apsusc_2024_160451
crossref_primary_10_1021_jacs_4c02819
crossref_primary_10_1002_ange_202300604
Cites_doi 10.1038/nature16989
10.1038/s41467-021-27941-x
10.1039/D1SC06465G
10.1002/anie.201602270
10.1002/chem.201703348
10.1002/anie.202001355
10.1073/pnas.1209307109
10.1038/s41570-020-0203-2
10.1021/ac0615807
10.1002/anie.201200656
10.1021/jacs.9b03227
10.1073/pnas.1200949109
10.1039/C8SC05538F
10.1016/0038-0717(80)90025-5
10.1039/C6AN02225A
10.1039/D0SC03189E
10.1073/pnas.1911883116
10.1039/C9SC06265C
10.1007/s13361-018-1908-z
10.1146/annurev-physchem-121319-110654
10.1038/nchem.2651
10.1039/qr9672100079
10.1021/ar020254k
10.1021/ja00896a012
10.1021/acs.jpca.9b05703
10.1149/1.2981931
10.1038/s41467-020-14877-x
10.1073/pnas.062656699
10.1002/anie.201913069
10.1126/sciadv.aba0181
10.1021/acs.jpcb.0c07718
10.1021/acs.jpclett.0c02061
10.1021/acs.jpclett.1c02953
10.1017/qrd.2020.2
10.1021/ja043481l
10.1021/acs.jpclett.8b01129
10.1021/ja993376p
10.1017/S0033583515000086
10.1039/C9SC02702E
10.1177/096032718700600105
10.1039/C9SC03701B
10.3762/bjoc.9.234
10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2
10.1021/acs.energyfuels.0c00068
10.1021/acs.accounts.8b00051
10.1021/acs.jpclett.1c02904
10.1021/ja101176r
10.1063/5.0006550
10.1038/nchem.1556
10.1073/pnas.96.22.12760
10.1146/annurev-biochem-061516-044432
10.1073/pnas.1714896114
10.1039/C9SC00991D
10.1021/acs.jafc.9b01106
10.1038/s41467-018-04023-z
10.1038/344419a0
10.1039/D0SC05625A
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.1c12028
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 3516
ExternalDocumentID 35167288
10_1021_jacs_1c12028
d111553911
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ET
F5P
GGK
GNL
IH2
IH9
JG
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XOL
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
.K2
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
CITATION
CUPRZ
ED~
JG~
XSW
YQT
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7X8
AAYWT
7S9
L.6
ID FETCH-LOGICAL-a423t-5187a01971093367d22ce98696d3ac24d6dd7702b61edda0efc54ff5257560283
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 11:01:56 EDT 2025
Sun Aug 24 03:57:29 EDT 2025
Wed Feb 19 02:26:28 EST 2025
Tue Jul 01 00:44:57 EDT 2025
Thu Apr 24 22:51:23 EDT 2025
Fri Mar 04 03:33:25 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a423t-5187a01971093367d22ce98696d3ac24d6dd7702b61edda0efc54ff5257560283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5884-2727
PMID 35167288
PQID 2629384248
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2661033588
proquest_miscellaneous_2629384248
pubmed_primary_35167288
crossref_citationtrail_10_1021_jacs_1c12028
crossref_primary_10_1021_jacs_1c12028
acs_journals_10_1021_jacs_1c12028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-02
PublicationDateYYYYMMDD 2022-03-02
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1038/nature16989
– ident: ref15/cit15
  doi: 10.1038/s41467-021-27941-x
– ident: ref22/cit22
  doi: 10.1039/D1SC06465G
– ident: ref3/cit3
  doi: 10.1002/anie.201602270
– ident: ref51/cit51
  doi: 10.1002/chem.201703348
– ident: ref56/cit56
  doi: 10.1002/anie.202001355
– ident: ref17/cit17
  doi: 10.1073/pnas.1209307109
– ident: ref20/cit20
  doi: 10.1038/s41570-020-0203-2
– ident: ref42/cit42
  doi: 10.1021/ac0615807
– ident: ref55/cit55
  doi: 10.1002/anie.201200656
– ident: ref7/cit7
  doi: 10.1021/jacs.9b03227
– ident: ref18/cit18
  doi: 10.1073/pnas.1200949109
– ident: ref23/cit23
  doi: 10.1039/C8SC05538F
– ident: ref39/cit39
  doi: 10.1016/0038-0717(80)90025-5
– ident: ref2/cit2
  doi: 10.1039/C6AN02225A
– ident: ref40/cit40
  doi: 10.1039/D0SC03189E
– ident: ref8/cit8
  doi: 10.1073/pnas.1911883116
– ident: ref26/cit26
  doi: 10.1039/C9SC06265C
– ident: ref41/cit41
  doi: 10.1007/s13361-018-1908-z
– ident: ref4/cit4
  doi: 10.1146/annurev-physchem-121319-110654
– ident: ref12/cit12
  doi: 10.1038/nchem.2651
– ident: ref52/cit52
  doi: 10.1039/qr9672100079
– ident: ref48/cit48
  doi: 10.1021/ar020254k
– ident: ref47/cit47
  doi: 10.1021/ja00896a012
– ident: ref43/cit43
  doi: 10.1021/acs.jpca.9b05703
– ident: ref59/cit59
  doi: 10.1149/1.2981931
– ident: ref32/cit32
  doi: 10.1038/s41467-020-14877-x
– ident: ref50/cit50
  doi: 10.1073/pnas.062656699
– ident: ref38/cit38
– ident: ref28/cit28
  doi: 10.1002/anie.201913069
– ident: ref10/cit10
  doi: 10.1126/sciadv.aba0181
– ident: ref11/cit11
  doi: 10.1021/acs.jpcb.0c07718
– ident: ref6/cit6
  doi: 10.1021/acs.jpclett.0c02061
– ident: ref21/cit21
  doi: 10.1021/acs.jpclett.1c02953
– ident: ref30/cit30
  doi: 10.1017/qrd.2020.2
– ident: ref45/cit45
  doi: 10.1021/ja043481l
– ident: ref9/cit9
  doi: 10.1021/acs.jpclett.8b01129
– ident: ref49/cit49
  doi: 10.1021/ja993376p
– ident: ref1/cit1
  doi: 10.1017/S0033583515000086
– ident: ref25/cit25
  doi: 10.1039/C9SC02702E
– ident: ref34/cit34
– ident: ref36/cit36
  doi: 10.1177/096032718700600105
– ident: ref27/cit27
  doi: 10.1039/C9SC03701B
– ident: ref46/cit46
  doi: 10.3762/bjoc.9.234
– ident: ref57/cit57
  doi: 10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2
– ident: ref31/cit31
  doi: 10.1021/acs.energyfuels.0c00068
– ident: ref54/cit54
  doi: 10.1021/acs.accounts.8b00051
– ident: ref44/cit44
  doi: 10.1021/acs.jpclett.1c02904
– ident: ref53/cit53
  doi: 10.1021/ja101176r
– ident: ref5/cit5
  doi: 10.1063/5.0006550
– ident: ref19/cit19
  doi: 10.1038/nchem.1556
– ident: ref35/cit35
  doi: 10.1073/pnas.96.22.12760
– ident: ref14/cit14
  doi: 10.1146/annurev-biochem-061516-044432
– ident: ref33/cit33
  doi: 10.1073/pnas.1714896114
– ident: ref24/cit24
  doi: 10.1039/C9SC00991D
– ident: ref37/cit37
  doi: 10.1021/acs.jafc.9b01106
– ident: ref29/cit29
  doi: 10.1038/s41467-018-04023-z
– ident: ref58/cit58
  doi: 10.1038/344419a0
– ident: ref16/cit16
  doi: 10.1039/D0SC05625A
SSID ssj0004281
Score 2.6437855
Snippet Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3510
SubjectTerms Animals
electrochemistry
half life
herbicides
liquid-air interface
Mammals
Oxidation-Reduction
redox potential
risk
Temperature
toxicity
Viologens - chemistry
Water - chemistry
Title Spontaneous Reduction-Induced Degradation of Viologen Compounds in Water Microdroplets and Its Inhibition by Host–Guest Complexation
URI http://dx.doi.org/10.1021/jacs.1c12028
https://www.ncbi.nlm.nih.gov/pubmed/35167288
https://www.proquest.com/docview/2629384248
https://www.proquest.com/docview/2661033588
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaOLQXWiiPLQUZqZxQ0Gac2N4j2haWSnAo0HKL_IpYtcqiTTi0p576B_iH_BJm8gABWtpTpGSc2J5x_I38zQxjH9NEOegPXGSJQpMkNomMCzayqdYyHxhcJBSNfHQsR2fJl_P0_J4g-_gEHyg_kCN6UIxeun7J5kFqRU7W3vDkPv4RdNzBXKWlaAnuj1vTBuTKhxvQDFRZ7y77b9hBF6PTkEp-7F5Vdtf9fpqy8R8df8sWWoDJ9xqLWGQvQrHEXg27um7v2N-Ty0mBkDCgz8-_UuZW0k1ENTxc8PwTZY9oCi3xSc6_1eEsoeD046ASTCUfF_w7ItQpPyIyn58SBb0quSk8P8TrYXExtjURjNtffDQpq5s_1wc0-vodFFBDD5fZ2f7n0-EoaqsxRAYhVxWlsVYGASGRN4WQygO4MNByIL0wDhIvvVeqD1bGwXvTD7lLkzynbKuIqhDFrLC5YlKENcZzHSvhwCpIbYIQwsbGxwa0cyE3CkSPbeHcZe1qKrP6oBzQUaG77Yz22E6nxsy16cypqsbPGdLbd9KXTRqPGXJbnUVkqBY6PGn0kYFEYKSxt8_KIBgVAs28x1Ybc7r7mkhjqUDr9_8xtnX2GijKgqhu8IHNVdOrsIHYp7KbteHfAnnh_5M
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BOZRL-W4XCrgSnFCqjZ3Y3mO1UHahuwfaQm-RvyIqUFJtsgd66ok_0H_YX9KZJLsVlRb1FCmZJI5nHD_Lb94AvEsT5Xh_4CJLFJoksUlkXLCRTbWW-cDgIKFs5MlUjo6TLyfpSZesTrkw2IgKn1Q1m_g36gIkE-SIJRTjYl3fhweIQzittfaGhzdpkFzHC7SrtBQdz_323TQPuerfeWgFuGwmmf1HMF02r-GW_Nqd13bXnd9Sbrxz-x_DRgc32V4bH0_gXiiewvpwUeXtGfw9PCsLBIihnFfsG-m4kqciqujhgmcfSUuiLbvEypx9b5JbQsHoN0IFmSp2WrAfiFdnbELUPj8jQnpdMVN4NsbjuPh5ahtaGLN_2Kis6quLy8_UCc0zKL2GLj6H4_1PR8NR1NVmiAwCsDpKY60MwkOicgohlefchYGWA-mFcTzx0nul-tzKOHhv-iF3aZLnpL2KGAsxzQtYK8oibAHLdayE41bx1CYIKGxsfGy4di7kRnHRgx3su6wbW1XWbJtzXLbQ2a5He_Bh4c3MdeLmVGPj9wrr90vrs1bUY4XdziIwMnQLbaW0_si4RJiksbX_tUFoKgQGfQ8226havk2ksVRc65d3-La3sD46mhxkB-Pp11fwkFP-BZHg-Das1bN5eI2oqLZvmrFwDVyVCAM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3o-lPFwJTijV2kls77HasuwCrVBLobfIr4gKlKw22QOcOPUP9B_2lzCTxyIqLYJTpGTi2J6Z-LP8zQzAizRRTgxHLrJEoUkSm0TGBRvZVGuZjww6CUUj7x_I6XHy9iQ92QDex8JgJypsqWoO8cmr5z7vMgxQqiBHTCGOG3Z9Ba7SiR3tt3bHR79DIYXmPeJVWsYd1_3y27QWuerPtWgNwGwWmsktOFx1seGXfN1Z1nbH_biUvfG_xnAbbnawk-22dnIHNkJxF66P-2pv9-DsaF4WCBRDuazYIeVzJY1FVNnDBc_2KKdEW36JlTn71AS5hILR74QKM1XstGCfEbcu2D5R_PyCiOl1xUzh2Qyvs-LLqW3oYcx-Z9Oyqi9-nr-hiWjaoDAbengfjievP46nUVejITIIxOoo5VoZhIlE6YxjqbwQLoy0HEkfGycSL71Xaiis5MF7Mwy5S5M8pxysiLUQ2zyAzaIswiNgueYqdsIqkdoEgYXlxnMjtHMhN0rEA9jGucs6H6uy5vhc4PaF7nYzOoBXvUYz1yU5p1ob39ZIv1xJz9vkHmvktnvjyFAtdKTS6iMTEuGSxt7-VQYhahyj8Q_gYWtZq6_FKZdKaP34H8b2HK592Jtk72cH77bghqAwDOLCiSewWS-W4SmCo9o-a9zhF97HCoY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+Reduction-Induced+Degradation+of+Viologen+Compounds+in+Water+Microdroplets+and+Its+Inhibition+by+Host-Guest+Complexation&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Gong%2C+Chu&rft.au=Li%2C+Danyang&rft.au=Li%2C+Xilai&rft.au=Zhang%2C+Dongmei&rft.date=2022-03-02&rft.eissn=1520-5126&rft.volume=144&rft.issue=8&rft.spage=3510&rft_id=info:doi/10.1021%2Fjacs.1c12028&rft_id=info%3Apmid%2F35167288&rft.externalDocID=35167288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon