Spontaneous Reduction-Induced Degradation of Viologen Compounds in Water Microdroplets and Its Inhibition by Host–Guest Complexation
Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic herbicide, are stable in bulk water, whose half-life can be up to 23 weeks in natural water, imposing a severe health risk to mammals. In th...
Saved in:
Published in | Journal of the American Chemical Society Vol. 144; no. 8; pp. 3510 - 3516 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
02.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic herbicide, are stable in bulk water, whose half-life can be up to 23 weeks in natural water, imposing a severe health risk to mammals. In this study, we present the striking results of the spontaneous and ultrafast reduction-induced degradation of three viologen compounds in water microdroplets and provide the concentration, time, temperature dependence, mechanism, and scale-up of the reactions. We postulate that the electrons existing at the air–water interface of the microdroplets due to the unique redox potential therein initiate the reduction, from which further degradation occurs. The host–guest complexation between cucurbit[7]uril and viologens only slightly changes the redox potential of viologens in the bulk but completely inhibits the reactions in microdroplets, adding to the uniqueness of the redox potentials at the air–water interfaces of microdroplets. Taken together, microdroplets might have been functioning as naturally occurring ubiquitous tiny electrochemical cells for a plethora of unique redox reactions that were thought to be impossible in the bulk water. |
---|---|
AbstractList | Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic herbicide, are stable in bulk water, whose half-life can be up to 23 weeks in natural water, imposing a severe health risk to mammals. In this study, we present the striking results of the spontaneous and ultrafast reduction-induced degradation of three viologen compounds in water microdroplets and provide the concentration, time, temperature dependence, mechanism, and scale-up of the reactions. We postulate that the electrons existing at the air–water interface of the microdroplets due to the unique redox potential therein initiate the reduction, from which further degradation occurs. The host–guest complexation between cucurbit[7]uril and viologens only slightly changes the redox potential of viologens in the bulk but completely inhibits the reactions in microdroplets, adding to the uniqueness of the redox potentials at the air–water interfaces of microdroplets. Taken together, microdroplets might have been functioning as naturally occurring ubiquitous tiny electrochemical cells for a plethora of unique redox reactions that were thought to be impossible in the bulk water. Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic herbicide, are stable in bulk water, whose half-life can be up to 23 weeks in natural water, imposing a severe health risk to mammals. In this study, we present the striking results of the spontaneous and ultrafast reduction-induced degradation of three viologen compounds in water microdroplets and provide the concentration, time, temperature dependence, mechanism, and scale-up of the reactions. We postulate that the electrons existing at the air-water interface of the microdroplets due to the unique redox potential therein initiate the reduction, from which further degradation occurs. The host-guest complexation between cucurbit[7]uril and viologens only slightly changes the redox potential of viologens in the bulk but completely inhibits the reactions in microdroplets, adding to the uniqueness of the redox potentials at the air-water interfaces of microdroplets. Taken together, microdroplets might have been functioning as naturally occurring ubiquitous tiny electrochemical cells for a plethora of unique redox reactions that were thought to be impossible in the bulk water.Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic herbicide, are stable in bulk water, whose half-life can be up to 23 weeks in natural water, imposing a severe health risk to mammals. In this study, we present the striking results of the spontaneous and ultrafast reduction-induced degradation of three viologen compounds in water microdroplets and provide the concentration, time, temperature dependence, mechanism, and scale-up of the reactions. We postulate that the electrons existing at the air-water interface of the microdroplets due to the unique redox potential therein initiate the reduction, from which further degradation occurs. The host-guest complexation between cucurbit[7]uril and viologens only slightly changes the redox potential of viologens in the bulk but completely inhibits the reactions in microdroplets, adding to the uniqueness of the redox potentials at the air-water interfaces of microdroplets. Taken together, microdroplets might have been functioning as naturally occurring ubiquitous tiny electrochemical cells for a plethora of unique redox reactions that were thought to be impossible in the bulk water. Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic herbicide, are stable in bulk water, whose half-life can be up to 23 weeks in natural water, imposing a severe health risk to mammals. In this study, we present the striking results of the spontaneous and ultrafast reduction-induced degradation of three viologen compounds in water microdroplets and provide the concentration, time, temperature dependence, mechanism, and scale-up of the reactions. We postulate that the electrons existing at the air–water interface of the microdroplets due to the unique redox potential therein initiate the reduction, from which further degradation occurs. The host–guest complexation between cucurbit[7]uril and viologens only slightly changes the redox potential of viologens in the bulk but completely inhibits the reactions in microdroplets, adding to the uniqueness of the redox potentials at the air–water interfaces of microdroplets. Taken together, microdroplets might have been functioning as naturally occurring ubiquitous tiny electrochemical cells for a plethora of unique redox reactions that were thought to be impossible in the bulk water. |
Author | Li, Danyang Zhang, Dongmei Yuan, Xu Li, Xilai Gong, Chu Zhang, Xinxing Zhao, Lingling Xing, Dong |
AuthorAffiliation | College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Frontiers Science Center for New Organic Matter, Shenzhen Research Institute |
AuthorAffiliation_xml | – name: College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Frontiers Science Center for New Organic Matter, Shenzhen Research Institute |
Author_xml | – sequence: 1 givenname: Chu surname: Gong fullname: Gong, Chu – sequence: 2 givenname: Danyang surname: Li fullname: Li, Danyang – sequence: 3 givenname: Xilai surname: Li fullname: Li, Xilai – sequence: 4 givenname: Dongmei surname: Zhang fullname: Zhang, Dongmei – sequence: 5 givenname: Dong surname: Xing fullname: Xing, Dong – sequence: 6 givenname: Lingling surname: Zhao fullname: Zhao, Lingling – sequence: 7 givenname: Xu surname: Yuan fullname: Yuan, Xu – sequence: 8 givenname: Xinxing orcidid: 0000-0001-5884-2727 surname: Zhang fullname: Zhang, Xinxing email: zhangxx@nankai.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35167288$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9u1DAQxi1URLeFG2fkIwfS2uPEcY5ogXalVkjl39Hy2k7xKmsH25HojRMvwBvyJDi72wuiEqexR7_5NPN9J-jIB28Rek7JGSVAzzdKpzOqKRAQj9CCNkCqhgI_QgtCCFSt4OwYnaS0Kd8aBH2CjllDeQtCLNDPD2PwWXkbpoRvrJl0dsFXK19e1uA39jYqo-YeDj3-7MIQbq3Hy7Adw-RNws7jLyrbiK-djsHEMA42J6y8watSV_6rW7vd_PoOX4aUf__4dTHZlHcag_2-E3-KHvdqSPbZoZ6iT-_eflxeVlfvL1bL11eVqoHlcpdoFaFdS0nHGG8NgLad4B03TGmoDTembQmsObXGKGJ73dR930DTNrz4w07Ry73uGMO3eQu5dUnbYdg7IIFzShhrxP-g0DFRQz2jLw7otN5aI8fotireyXubCwB7oFiUUrS91C7vDs9RuUFSIucs5ZylPGRZhl79NXSv-wB-2HdubsIUfTHy3-gfv-mvdQ |
CitedBy_id | crossref_primary_10_1002_ejoc_202400404 crossref_primary_10_1021_acs_jpca_3c00865 crossref_primary_10_1021_jacs_2c02890 crossref_primary_10_1021_jacs_2c07385 crossref_primary_10_1021_jacs_4c08018 crossref_primary_10_1021_acs_analchem_2c03518 crossref_primary_10_1021_jacs_2c12731 crossref_primary_10_1002_cphc_202300429 crossref_primary_10_1021_jacs_2c10830 crossref_primary_10_1002_ange_202316131 crossref_primary_10_1039_D3CS00763D crossref_primary_10_1002_ange_202414746 crossref_primary_10_1021_acs_jpca_4c02981 crossref_primary_10_1021_acs_jpcb_2c05696 crossref_primary_10_1039_D4SC04519J crossref_primary_10_1002_anie_202304189 crossref_primary_10_1021_acs_joc_4c02395 crossref_primary_10_1002_anie_202413122 crossref_primary_10_1039_D2JA00137C crossref_primary_10_1002_ange_202400118 crossref_primary_10_1021_jacs_3c00037 crossref_primary_10_1039_D5SC00126A crossref_primary_10_1002_anie_202207587 crossref_primary_10_1021_jacsau_4c00804 crossref_primary_10_1073_pnas_2220228120 crossref_primary_10_3389_fchem_2022_903774 crossref_primary_10_1021_acs_jpca_3c04143 crossref_primary_10_1002_ange_202210765 crossref_primary_10_1016_j_heliyon_2023_e17763 crossref_primary_10_1021_jacs_3c04662 crossref_primary_10_1021_acs_langmuir_5c00465 crossref_primary_10_1149_1945_7111_ada640 crossref_primary_10_1021_jacs_3c10784 crossref_primary_10_1002_ange_202207587 crossref_primary_10_1021_jacs_4c15493 crossref_primary_10_1021_acs_est_3c01379 crossref_primary_10_1002_anie_202214090 crossref_primary_10_1016_j_xcrp_2022_100917 crossref_primary_10_1021_jacs_4c09400 crossref_primary_10_1038_s41598_023_35766_5 crossref_primary_10_1002_rcm_9498 crossref_primary_10_1021_jacs_4c09080 crossref_primary_10_1021_acssuschemeng_3c03313 crossref_primary_10_1002_anie_202418593 crossref_primary_10_1002_anse_202300031 crossref_primary_10_1039_D2CC04288F crossref_primary_10_1021_acsaenm_4c00253 crossref_primary_10_1039_D3SC03870J crossref_primary_10_1039_D2OB01438F crossref_primary_10_1021_acs_chemrev_4c00327 crossref_primary_10_1039_D4SC00437J crossref_primary_10_1021_acs_jpclett_4c03613 crossref_primary_10_1021_jacs_4c03315 crossref_primary_10_1002_anie_202316131 crossref_primary_10_1073_pnas_2318408121 crossref_primary_10_1021_acs_joc_3c01660 crossref_primary_10_1021_acs_est_2c07897 crossref_primary_10_1002_ange_202413122 crossref_primary_10_1016_j_xpro_2022_101704 crossref_primary_10_1021_jacs_2c07779 crossref_primary_10_1039_D3CC03503D crossref_primary_10_1021_jacs_3c12586 crossref_primary_10_1021_acssuschemeng_2c05583 crossref_primary_10_1016_j_aca_2024_342380 crossref_primary_10_1021_acssuschemeng_4c03189 crossref_primary_10_1021_jacs_4c13013 crossref_primary_10_1021_acssuschemeng_4c08638 crossref_primary_10_1002_anie_202400118 crossref_primary_10_1016_j_apcatb_2025_125214 crossref_primary_10_1021_jacs_4c00290 crossref_primary_10_1016_j_cis_2025_103436 crossref_primary_10_1016_j_physrep_2022_11_001 crossref_primary_10_1021_jacs_3c08638 crossref_primary_10_1021_jacsau_3c00191 crossref_primary_10_1021_acs_jpclett_4c01819 crossref_primary_10_1360_SSC_2023_0192 crossref_primary_10_1360_SSC_2023_0193 crossref_primary_10_1021_acs_analchem_4c05595 crossref_primary_10_1002_ange_202214090 crossref_primary_10_1021_acs_joc_3c01206 crossref_primary_10_1021_jacs_4c11224 crossref_primary_10_1039_D2EE03774B crossref_primary_10_1002_ange_202304189 crossref_primary_10_1038_s41559_023_02193_8 crossref_primary_10_1002_ange_202418593 crossref_primary_10_1002_anie_202414746 crossref_primary_10_1016_j_jcis_2024_12_017 crossref_primary_10_1021_acs_analchem_4c00371 crossref_primary_10_1021_acs_analchem_2c04469 crossref_primary_10_1016_j_jcis_2022_12_056 crossref_primary_10_1021_acs_est_3c05777 crossref_primary_10_1021_jacs_2c12236 crossref_primary_10_1016_j_ccr_2024_216299 crossref_primary_10_1021_jacs_4c12740 crossref_primary_10_1002_anie_202300604 crossref_primary_10_1002_dro2_139 crossref_primary_10_1021_acs_est_4c03081 crossref_primary_10_1021_acs_jpcc_4c02913 crossref_primary_10_1002_anie_202210765 crossref_primary_10_1039_D4CC06697A crossref_primary_10_1016_j_ccr_2023_215576 crossref_primary_10_1021_jacs_4c01455 crossref_primary_10_1021_jacs_3c07445 crossref_primary_10_1021_jasms_2c00072 crossref_primary_10_1039_D4TA00453A crossref_primary_10_1073_pnas_2309360120 crossref_primary_10_1021_jacs_4c00529 crossref_primary_10_1002_chem_202400825 crossref_primary_10_1016_j_ccr_2024_216042 crossref_primary_10_1021_acs_joc_4c01568 crossref_primary_10_1017_qrd_2024_9 crossref_primary_10_1021_jacs_4c07712 crossref_primary_10_1016_j_apsusc_2024_160451 crossref_primary_10_1021_jacs_4c02819 crossref_primary_10_1002_ange_202300604 |
Cites_doi | 10.1038/nature16989 10.1038/s41467-021-27941-x 10.1039/D1SC06465G 10.1002/anie.201602270 10.1002/chem.201703348 10.1002/anie.202001355 10.1073/pnas.1209307109 10.1038/s41570-020-0203-2 10.1021/ac0615807 10.1002/anie.201200656 10.1021/jacs.9b03227 10.1073/pnas.1200949109 10.1039/C8SC05538F 10.1016/0038-0717(80)90025-5 10.1039/C6AN02225A 10.1039/D0SC03189E 10.1073/pnas.1911883116 10.1039/C9SC06265C 10.1007/s13361-018-1908-z 10.1146/annurev-physchem-121319-110654 10.1038/nchem.2651 10.1039/qr9672100079 10.1021/ar020254k 10.1021/ja00896a012 10.1021/acs.jpca.9b05703 10.1149/1.2981931 10.1038/s41467-020-14877-x 10.1073/pnas.062656699 10.1002/anie.201913069 10.1126/sciadv.aba0181 10.1021/acs.jpcb.0c07718 10.1021/acs.jpclett.0c02061 10.1021/acs.jpclett.1c02953 10.1017/qrd.2020.2 10.1021/ja043481l 10.1021/acs.jpclett.8b01129 10.1021/ja993376p 10.1017/S0033583515000086 10.1039/C9SC02702E 10.1177/096032718700600105 10.1039/C9SC03701B 10.3762/bjoc.9.234 10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2 10.1021/acs.energyfuels.0c00068 10.1021/acs.accounts.8b00051 10.1021/acs.jpclett.1c02904 10.1021/ja101176r 10.1063/5.0006550 10.1038/nchem.1556 10.1073/pnas.96.22.12760 10.1146/annurev-biochem-061516-044432 10.1073/pnas.1714896114 10.1039/C9SC00991D 10.1021/acs.jafc.9b01106 10.1038/s41467-018-04023-z 10.1038/344419a0 10.1039/D0SC05625A |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.1c12028 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 3516 |
ExternalDocumentID | 35167288 10_1021_jacs_1c12028 d111553911 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ET F5P GGK GNL IH2 IH9 JG K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XOL YZZ ZHY --- -DZ -ET -~X .DC .K2 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV CITATION CUPRZ ED~ JG~ XSW YQT ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7X8 AAYWT 7S9 L.6 |
ID | FETCH-LOGICAL-a423t-5187a01971093367d22ce98696d3ac24d6dd7702b61edda0efc54ff5257560283 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 11:01:56 EDT 2025 Sun Aug 24 03:57:29 EDT 2025 Wed Feb 19 02:26:28 EST 2025 Tue Jul 01 00:44:57 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 Fri Mar 04 03:33:25 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a423t-5187a01971093367d22ce98696d3ac24d6dd7702b61edda0efc54ff5257560283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5884-2727 |
PMID | 35167288 |
PQID | 2629384248 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2661033588 proquest_miscellaneous_2629384248 pubmed_primary_35167288 crossref_citationtrail_10_1021_jacs_1c12028 crossref_primary_10_1021_jacs_1c12028 acs_journals_10_1021_jacs_1c12028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-02 |
PublicationDateYYYYMMDD | 2022-03-02 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1038/nature16989 – ident: ref15/cit15 doi: 10.1038/s41467-021-27941-x – ident: ref22/cit22 doi: 10.1039/D1SC06465G – ident: ref3/cit3 doi: 10.1002/anie.201602270 – ident: ref51/cit51 doi: 10.1002/chem.201703348 – ident: ref56/cit56 doi: 10.1002/anie.202001355 – ident: ref17/cit17 doi: 10.1073/pnas.1209307109 – ident: ref20/cit20 doi: 10.1038/s41570-020-0203-2 – ident: ref42/cit42 doi: 10.1021/ac0615807 – ident: ref55/cit55 doi: 10.1002/anie.201200656 – ident: ref7/cit7 doi: 10.1021/jacs.9b03227 – ident: ref18/cit18 doi: 10.1073/pnas.1200949109 – ident: ref23/cit23 doi: 10.1039/C8SC05538F – ident: ref39/cit39 doi: 10.1016/0038-0717(80)90025-5 – ident: ref2/cit2 doi: 10.1039/C6AN02225A – ident: ref40/cit40 doi: 10.1039/D0SC03189E – ident: ref8/cit8 doi: 10.1073/pnas.1911883116 – ident: ref26/cit26 doi: 10.1039/C9SC06265C – ident: ref41/cit41 doi: 10.1007/s13361-018-1908-z – ident: ref4/cit4 doi: 10.1146/annurev-physchem-121319-110654 – ident: ref12/cit12 doi: 10.1038/nchem.2651 – ident: ref52/cit52 doi: 10.1039/qr9672100079 – ident: ref48/cit48 doi: 10.1021/ar020254k – ident: ref47/cit47 doi: 10.1021/ja00896a012 – ident: ref43/cit43 doi: 10.1021/acs.jpca.9b05703 – ident: ref59/cit59 doi: 10.1149/1.2981931 – ident: ref32/cit32 doi: 10.1038/s41467-020-14877-x – ident: ref50/cit50 doi: 10.1073/pnas.062656699 – ident: ref38/cit38 – ident: ref28/cit28 doi: 10.1002/anie.201913069 – ident: ref10/cit10 doi: 10.1126/sciadv.aba0181 – ident: ref11/cit11 doi: 10.1021/acs.jpcb.0c07718 – ident: ref6/cit6 doi: 10.1021/acs.jpclett.0c02061 – ident: ref21/cit21 doi: 10.1021/acs.jpclett.1c02953 – ident: ref30/cit30 doi: 10.1017/qrd.2020.2 – ident: ref45/cit45 doi: 10.1021/ja043481l – ident: ref9/cit9 doi: 10.1021/acs.jpclett.8b01129 – ident: ref49/cit49 doi: 10.1021/ja993376p – ident: ref1/cit1 doi: 10.1017/S0033583515000086 – ident: ref25/cit25 doi: 10.1039/C9SC02702E – ident: ref34/cit34 – ident: ref36/cit36 doi: 10.1177/096032718700600105 – ident: ref27/cit27 doi: 10.1039/C9SC03701B – ident: ref46/cit46 doi: 10.3762/bjoc.9.234 – ident: ref57/cit57 doi: 10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2 – ident: ref31/cit31 doi: 10.1021/acs.energyfuels.0c00068 – ident: ref54/cit54 doi: 10.1021/acs.accounts.8b00051 – ident: ref44/cit44 doi: 10.1021/acs.jpclett.1c02904 – ident: ref53/cit53 doi: 10.1021/ja101176r – ident: ref5/cit5 doi: 10.1063/5.0006550 – ident: ref19/cit19 doi: 10.1038/nchem.1556 – ident: ref35/cit35 doi: 10.1073/pnas.96.22.12760 – ident: ref14/cit14 doi: 10.1146/annurev-biochem-061516-044432 – ident: ref33/cit33 doi: 10.1073/pnas.1714896114 – ident: ref24/cit24 doi: 10.1039/C9SC00991D – ident: ref37/cit37 doi: 10.1021/acs.jafc.9b01106 – ident: ref29/cit29 doi: 10.1038/s41467-018-04023-z – ident: ref58/cit58 doi: 10.1038/344419a0 – ident: ref16/cit16 doi: 10.1039/D0SC05625A |
SSID | ssj0004281 |
Score | 2.6437855 |
Snippet | Water serves as an inert environment for the dispersion and application of many kinds of herbicides. Viologen compounds, a type of widely used but highly toxic... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3510 |
SubjectTerms | Animals electrochemistry half life herbicides liquid-air interface Mammals Oxidation-Reduction redox potential risk Temperature toxicity Viologens - chemistry Water - chemistry |
Title | Spontaneous Reduction-Induced Degradation of Viologen Compounds in Water Microdroplets and Its Inhibition by Host–Guest Complexation |
URI | http://dx.doi.org/10.1021/jacs.1c12028 https://www.ncbi.nlm.nih.gov/pubmed/35167288 https://www.proquest.com/docview/2629384248 https://www.proquest.com/docview/2661033588 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaOLQXWiiPLQUZqZxQ0Gac2N4j2haWSnAo0HKL_IpYtcqiTTi0p576B_iH_BJm8gABWtpTpGSc2J5x_I38zQxjH9NEOegPXGSJQpMkNomMCzayqdYyHxhcJBSNfHQsR2fJl_P0_J4g-_gEHyg_kCN6UIxeun7J5kFqRU7W3vDkPv4RdNzBXKWlaAnuj1vTBuTKhxvQDFRZ7y77b9hBF6PTkEp-7F5Vdtf9fpqy8R8df8sWWoDJ9xqLWGQvQrHEXg27um7v2N-Ty0mBkDCgz8-_UuZW0k1ENTxc8PwTZY9oCi3xSc6_1eEsoeD046ASTCUfF_w7ItQpPyIyn58SBb0quSk8P8TrYXExtjURjNtffDQpq5s_1wc0-vodFFBDD5fZ2f7n0-EoaqsxRAYhVxWlsVYGASGRN4WQygO4MNByIL0wDhIvvVeqD1bGwXvTD7lLkzynbKuIqhDFrLC5YlKENcZzHSvhwCpIbYIQwsbGxwa0cyE3CkSPbeHcZe1qKrP6oBzQUaG77Yz22E6nxsy16cypqsbPGdLbd9KXTRqPGXJbnUVkqBY6PGn0kYFEYKSxt8_KIBgVAs28x1Ybc7r7mkhjqUDr9_8xtnX2GijKgqhu8IHNVdOrsIHYp7KbteHfAnnh_5M |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BOZRL-W4XCrgSnFCqjZ3Y3mO1UHahuwfaQm-RvyIqUFJtsgd66ok_0H_YX9KZJLsVlRb1FCmZJI5nHD_Lb94AvEsT5Xh_4CJLFJoksUlkXLCRTbWW-cDgIKFs5MlUjo6TLyfpSZesTrkw2IgKn1Q1m_g36gIkE-SIJRTjYl3fhweIQzittfaGhzdpkFzHC7SrtBQdz_323TQPuerfeWgFuGwmmf1HMF02r-GW_Nqd13bXnd9Sbrxz-x_DRgc32V4bH0_gXiiewvpwUeXtGfw9PCsLBIihnFfsG-m4kqciqujhgmcfSUuiLbvEypx9b5JbQsHoN0IFmSp2WrAfiFdnbELUPj8jQnpdMVN4NsbjuPh5ahtaGLN_2Kis6quLy8_UCc0zKL2GLj6H4_1PR8NR1NVmiAwCsDpKY60MwkOicgohlefchYGWA-mFcTzx0nul-tzKOHhv-iF3aZLnpL2KGAsxzQtYK8oibAHLdayE41bx1CYIKGxsfGy4di7kRnHRgx3su6wbW1XWbJtzXLbQ2a5He_Bh4c3MdeLmVGPj9wrr90vrs1bUY4XdziIwMnQLbaW0_si4RJiksbX_tUFoKgQGfQ8226havk2ksVRc65d3-La3sD46mhxkB-Pp11fwkFP-BZHg-Das1bN5eI2oqLZvmrFwDVyVCAM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEX3o-lPFwJTijV2kls77HasuwCrVBLobfIr4gKlKw22QOcOPUP9B_2lzCTxyIqLYJTpGTi2J6Z-LP8zQzAizRRTgxHLrJEoUkSm0TGBRvZVGuZjww6CUUj7x_I6XHy9iQ92QDex8JgJypsqWoO8cmr5z7vMgxQqiBHTCGOG3Z9Ba7SiR3tt3bHR79DIYXmPeJVWsYd1_3y27QWuerPtWgNwGwWmsktOFx1seGXfN1Z1nbH_biUvfG_xnAbbnawk-22dnIHNkJxF66P-2pv9-DsaF4WCBRDuazYIeVzJY1FVNnDBc_2KKdEW36JlTn71AS5hILR74QKM1XstGCfEbcu2D5R_PyCiOl1xUzh2Qyvs-LLqW3oYcx-Z9Oyqi9-nr-hiWjaoDAbengfjievP46nUVejITIIxOoo5VoZhIlE6YxjqbwQLoy0HEkfGycSL71Xaiis5MF7Mwy5S5M8pxysiLUQ2zyAzaIswiNgueYqdsIqkdoEgYXlxnMjtHMhN0rEA9jGucs6H6uy5vhc4PaF7nYzOoBXvUYz1yU5p1ob39ZIv1xJz9vkHmvktnvjyFAtdKTS6iMTEuGSxt7-VQYhahyj8Q_gYWtZq6_FKZdKaP34H8b2HK592Jtk72cH77bghqAwDOLCiSewWS-W4SmCo9o-a9zhF97HCoY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+Reduction-Induced+Degradation+of+Viologen+Compounds+in+Water+Microdroplets+and+Its+Inhibition+by+Host-Guest+Complexation&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Gong%2C+Chu&rft.au=Li%2C+Danyang&rft.au=Li%2C+Xilai&rft.au=Zhang%2C+Dongmei&rft.date=2022-03-02&rft.eissn=1520-5126&rft.volume=144&rft.issue=8&rft.spage=3510&rft_id=info:doi/10.1021%2Fjacs.1c12028&rft_id=info%3Apmid%2F35167288&rft.externalDocID=35167288 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |