3D Porphyrin-Based Covalent Organic Frameworks
The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahed...
Saved in:
Published in | Journal of the American Chemical Society Vol. 139; no. 25; pp. 8705 - 8709 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
28.06.2017
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-T d) and square (2D-C 4) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc21 space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photocatalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future. |
---|---|
AbstractList | The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-T d) and square (2D-C 4) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc21 space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photocatalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future. The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-T ) and square (2D-C ) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc2 space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photocatalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future. The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-Td) and square (2D-C₄) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc2₁ space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photocatalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future. The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-Td) and square (2D-C4) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc21 space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photocatalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future.The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-Td) and square (2D-C4) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc21 space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photocatalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future. The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-T-d) and square (2D-C-4) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc2(1) space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photo catalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future. |
Author | Lin, Guiqing Wang, Cheng Peng, Zhengkang Ding, Huimin Chen, Rufan Wang, Baoshan |
AuthorAffiliation | Key Laboratory of Biomedical Polymers (Ministry of Education), College of Chemistry and Molecular Sciences |
AuthorAffiliation_xml | – name: Key Laboratory of Biomedical Polymers (Ministry of Education), College of Chemistry and Molecular Sciences |
Author_xml | – sequence: 1 givenname: Guiqing surname: Lin fullname: Lin, Guiqing – sequence: 2 givenname: Huimin surname: Ding fullname: Ding, Huimin – sequence: 3 givenname: Rufan surname: Chen fullname: Chen, Rufan – sequence: 4 givenname: Zhengkang surname: Peng fullname: Peng, Zhengkang – sequence: 5 givenname: Baoshan orcidid: 0000-0003-3417-9283 surname: Wang fullname: Wang, Baoshan – sequence: 6 givenname: Cheng orcidid: 0000-0003-0326-2674 surname: Wang fullname: Wang, Cheng email: chengwang@whu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28595005$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0TtPwzAQB3ALgegDNmaUEQlS_IrtjBAoIFUqA8yR4ziQktrFTqj67UnU0AGBYPJDv7uT7j8C-8YaDcAJghMEMbpcSOUnPIMUUbQHhijCMIwQZvtgCCHEIReMDMDI-0X7pFigQzDAIoojCKMhmJCb4NG61evGlSa8ll7nQWI_ZKVNHczdizSlCqZOLvXaujd_BA4KWXl93J9j8Dy9fUruw9n87iG5moWSYlKHtJCRUjkUChdCCcgUJxkhVNI4JjTLBSGME0iLosg5V4zFhItcMCZxHGEZkzE42_ZdOfveaF-ny9IrXVXSaNv4FCPEBG-7sD8piqGghCPCW3ra0yZb6jxduXIp3Sb9WkcLxBasdWYLr0ptlN6xbn-QChiz7iaSspZ1aU1iG1O3pef_L231xVYrZ713uthJBNMu1rSLNe1jbTn-xlU_vHayrH4r6hfTfS5s40yb2M_0E_nYrbA |
CitedBy_id | crossref_primary_10_1002_chem_202302474 crossref_primary_10_1039_D1SC01692J crossref_primary_10_1021_acs_chemmater_9b02718 crossref_primary_10_1002_asia_202200624 crossref_primary_10_1002_ange_201813999 crossref_primary_10_1002_advs_201801116 crossref_primary_10_1002_ange_201710633 crossref_primary_10_1002_ange_202207130 crossref_primary_10_1039_D4YA00082J crossref_primary_10_1002_marc_201900060 crossref_primary_10_1016_j_ccr_2022_214968 crossref_primary_10_1007_s12274_022_4615_9 crossref_primary_10_1016_j_aca_2022_340207 crossref_primary_10_1080_02603594_2018_1542597 crossref_primary_10_1039_D2QM00949H crossref_primary_10_1039_C8CC00203G crossref_primary_10_1039_D1CS00983D crossref_primary_10_1080_10826076_2022_2066689 crossref_primary_10_1515_revac_2017_0023 crossref_primary_10_1002_ange_202102051 crossref_primary_10_1038_s41467_021_22141_z crossref_primary_10_1039_D1TA00802A crossref_primary_10_1016_j_apcatb_2018_03_079 crossref_primary_10_1016_j_cclet_2022_02_065 crossref_primary_10_1002_ange_201915569 crossref_primary_10_1021_jacs_9b06908 crossref_primary_10_1002_adfm_202000516 crossref_primary_10_1002_chem_202002150 crossref_primary_10_1002_anie_202004796 crossref_primary_10_1039_C9PY01623F crossref_primary_10_1002_ange_202401014 crossref_primary_10_1021_jacs_4c08951 crossref_primary_10_1039_C8SC03393E crossref_primary_10_1002_ange_202314763 crossref_primary_10_1021_acscatal_1c03634 crossref_primary_10_1039_D4BM00214H crossref_primary_10_1016_j_apsusc_2021_151798 crossref_primary_10_1021_acssensors_0c00495 crossref_primary_10_1021_acs_jpcc_2c09094 crossref_primary_10_1021_acs_macromol_8b01814 crossref_primary_10_1039_D4CC01485E crossref_primary_10_1016_j_tet_2020_131664 crossref_primary_10_1016_S1872_2067_24_60196_8 crossref_primary_10_1038_s44160_025_00742_6 crossref_primary_10_1016_j_ccr_2023_215097 crossref_primary_10_1246_bcsj_20200389 crossref_primary_10_1002_ange_202200820 crossref_primary_10_1016_j_chempr_2017_12_011 crossref_primary_10_1021_jacs_0c12505 crossref_primary_10_1039_C8NJ00667A crossref_primary_10_1021_jacs_4c17548 crossref_primary_10_1039_D0ME00156B crossref_primary_10_1007_s40242_021_1295_z crossref_primary_10_1016_j_talanta_2024_126709 crossref_primary_10_1002_anie_201905591 crossref_primary_10_1016_j_trechm_2020_01_003 crossref_primary_10_1038_s41467_023_39580_5 crossref_primary_10_1016_j_enchem_2020_100035 crossref_primary_10_1007_s10118_020_2394_x crossref_primary_10_1016_j_bioactmat_2022_08_016 crossref_primary_10_1016_j_ccr_2023_215066 crossref_primary_10_1021_acsami_1c16366 crossref_primary_10_1038_s41467_020_18844_4 crossref_primary_10_3390_nano13030558 crossref_primary_10_1002_ijch_202400025 crossref_primary_10_1039_D0SC01747G crossref_primary_10_1002_ange_202004796 crossref_primary_10_1021_acsami_1c05234 crossref_primary_10_1039_C9TA07194F crossref_primary_10_1039_D0CS00278J crossref_primary_10_1002_ange_201800230 crossref_primary_10_1016_j_progpolymsci_2020_101288 crossref_primary_10_1007_s11426_017_9162_3 crossref_primary_10_1039_D3TA04395A crossref_primary_10_1002_anie_201813999 crossref_primary_10_3390_membranes13080696 crossref_primary_10_1002_ange_201902543 crossref_primary_10_1002_adfm_202419010 crossref_primary_10_1002_anie_201913091 crossref_primary_10_1016_j_apcatb_2020_119174 crossref_primary_10_1021_acssuschemeng_1c00419 crossref_primary_10_1002_chem_202402383 crossref_primary_10_1016_j_apcatb_2021_120337 crossref_primary_10_1021_acs_analchem_1c05426 crossref_primary_10_1002_anie_201710633 crossref_primary_10_1360_SSC_2022_0017 crossref_primary_10_3390_biomimetics8020171 crossref_primary_10_1039_D2TA03978H crossref_primary_10_1016_j_cej_2020_127136 crossref_primary_10_1002_cctc_201900894 crossref_primary_10_1002_anie_201800230 crossref_primary_10_1016_j_jclepro_2021_125822 crossref_primary_10_1039_D3OB01887C crossref_primary_10_1007_s10847_019_00924_8 crossref_primary_10_1016_j_ccr_2025_216614 crossref_primary_10_1016_j_chempr_2022_10_013 crossref_primary_10_1021_jacs_3c03897 crossref_primary_10_1016_j_optmat_2023_113672 crossref_primary_10_1021_acsami_0c14678 crossref_primary_10_1016_j_ces_2023_118472 crossref_primary_10_1007_s10118_020_2384_z crossref_primary_10_1002_adfm_201909267 crossref_primary_10_1002_smll_202310791 crossref_primary_10_3390_polym15051279 crossref_primary_10_1039_D1CC04846E crossref_primary_10_1039_C9NJ04017J crossref_primary_10_1039_D4QI02101K crossref_primary_10_1039_D3TB02017G crossref_primary_10_1021_acs_inorgchem_1c01975 crossref_primary_10_1016_j_apsusc_2021_151363 crossref_primary_10_1039_C8CS00978C crossref_primary_10_20517_cs_2023_61 crossref_primary_10_1021_acsami_0c16116 crossref_primary_10_1021_jacs_8b09705 crossref_primary_10_1002_ange_202422814 crossref_primary_10_1002_elt2_39 crossref_primary_10_1016_j_jece_2024_113263 crossref_primary_10_1016_j_chemosphere_2023_141028 crossref_primary_10_1002_smll_202501327 crossref_primary_10_1039_C9TC05297F crossref_primary_10_1016_j_biomaterials_2019_119707 crossref_primary_10_1002_ange_201913091 crossref_primary_10_1021_jacs_7b12110 crossref_primary_10_1016_j_nantod_2021_101146 crossref_primary_10_1007_s40242_022_2001_5 crossref_primary_10_1039_C9NJ05172D crossref_primary_10_1002_er_8327 crossref_primary_10_1039_C9GC04033A crossref_primary_10_1016_j_chempr_2020_10_002 crossref_primary_10_1007_s40242_022_1513_3 crossref_primary_10_1016_j_ccr_2024_216068 crossref_primary_10_1016_j_ccr_2022_214563 crossref_primary_10_1021_acs_accounts_8b00302 crossref_primary_10_1039_C9CC01548E crossref_primary_10_1016_j_jcis_2024_11_028 crossref_primary_10_1039_D2TA01646J crossref_primary_10_1039_D4EE03704A crossref_primary_10_1016_j_jssc_2020_121252 crossref_primary_10_1002_chem_202500202 crossref_primary_10_1002_anie_201902543 crossref_primary_10_1002_anie_202415759 crossref_primary_10_26599_NR_2025_94907161 crossref_primary_10_1002_pol_20230090 crossref_primary_10_1016_j_memsci_2024_122700 crossref_primary_10_1021_acsanm_2c00510 crossref_primary_10_1016_j_ccr_2021_213778 crossref_primary_10_1002_anie_202100434 crossref_primary_10_1039_C8QO00790J crossref_primary_10_1021_acsapm_2c00547 crossref_primary_10_1016_j_checat_2022_06_006 crossref_primary_10_1039_D3CP00007A crossref_primary_10_1016_j_mattod_2022_02_001 crossref_primary_10_1002_chem_202001211 crossref_primary_10_1021_cbe_3c00119 crossref_primary_10_1038_s41598_023_49628_7 crossref_primary_10_1002_anie_202213203 crossref_primary_10_1002_anie_202401014 crossref_primary_10_1021_jacs_2c09369 crossref_primary_10_1039_C9QM00316A crossref_primary_10_26599_NRE_2024_9120149 crossref_primary_10_1002_smm2_1309 crossref_primary_10_1016_j_jcis_2021_08_059 crossref_primary_10_1016_j_mattod_2023_05_023 crossref_primary_10_1038_s41467_023_38283_1 crossref_primary_10_3390_molecules27010035 crossref_primary_10_1038_am_2017_241 crossref_primary_10_1021_acsnano_2c10423 crossref_primary_10_1080_00958972_2022_2103687 crossref_primary_10_1016_j_jphotochem_2022_114292 crossref_primary_10_1039_D2TC02170F crossref_primary_10_1039_D4QM00499J crossref_primary_10_1002_anie_201915569 crossref_primary_10_1016_j_msec_2020_110864 crossref_primary_10_1021_acs_macromol_8b01632 crossref_primary_10_1002_chem_202302201 crossref_primary_10_3390_chemosensors11040214 crossref_primary_10_1002_smll_202207798 crossref_primary_10_1016_j_ccr_2022_214889 crossref_primary_10_1039_C9QM00781D crossref_primary_10_1021_acsami_2c07739 crossref_primary_10_1039_C8TA00494C crossref_primary_10_1016_j_eti_2022_102972 crossref_primary_10_1038_s41467_023_37156_x crossref_primary_10_1021_jacs_2c03959 crossref_primary_10_1016_j_jcis_2021_09_150 crossref_primary_10_1016_j_isci_2019_03_028 crossref_primary_10_1016_j_jpha_2020_12_006 crossref_primary_10_1016_j_apcatb_2022_121488 crossref_primary_10_1021_acs_joc_7b02070 crossref_primary_10_20517_cs_2024_96 crossref_primary_10_1002_adpr_202200008 crossref_primary_10_1016_j_jhazmat_2020_123860 crossref_primary_10_1007_s10853_020_05380_1 crossref_primary_10_1002_advs_202206239 crossref_primary_10_1016_j_cplett_2024_141383 crossref_primary_10_1002_chem_201806400 crossref_primary_10_1142_S1088424621500504 crossref_primary_10_1007_s42114_024_01177_x crossref_primary_10_1021_acs_analchem_5c00330 crossref_primary_10_2139_ssrn_4056692 crossref_primary_10_1002_smll_202303632 crossref_primary_10_1016_j_apmt_2024_102548 crossref_primary_10_1039_C9QM00555B crossref_primary_10_1039_D4CS00521J crossref_primary_10_1002_cctc_202001179 crossref_primary_10_1016_j_jorganchem_2018_01_054 crossref_primary_10_1021_acsanm_9b01787 crossref_primary_10_1002_ange_202114244 crossref_primary_10_1021_acsanm_9b01781 crossref_primary_10_1016_j_apcatb_2018_10_038 crossref_primary_10_1021_jacs_3c12995 crossref_primary_10_1039_D2NJ03749A crossref_primary_10_2139_ssrn_4056688 crossref_primary_10_1016_j_jcis_2024_06_087 crossref_primary_10_1021_acs_cgd_9b00409 crossref_primary_10_1021_jacs_2c01996 crossref_primary_10_1002_adfm_202415629 crossref_primary_10_1016_j_cclet_2024_110189 crossref_primary_10_1021_acssuschemeng_0c09205 crossref_primary_10_3390_polym14030370 crossref_primary_10_1002_cptc_201900089 crossref_primary_10_1039_C8TB03192D crossref_primary_10_1007_s11224_025_02458_x crossref_primary_10_1016_j_ccr_2024_215944 crossref_primary_10_1002_ange_202400985 crossref_primary_10_1002_ange_202017153 crossref_primary_10_1021_jacs_9b10625 crossref_primary_10_1007_s11426_021_1030_7 crossref_primary_10_1039_D3CC05196J crossref_primary_10_1021_acsami_4c04468 crossref_primary_10_1021_acsanm_8b00983 crossref_primary_10_1002_adfm_202310195 crossref_primary_10_1021_acs_chemmater_1c02382 crossref_primary_10_1016_j_jhazmat_2022_128303 crossref_primary_10_1002_tcr_202300285 crossref_primary_10_1134_S1061933X21050094 crossref_primary_10_1002_idm2_12140 crossref_primary_10_1021_acsami_7b19835 crossref_primary_10_2139_ssrn_4163687 crossref_primary_10_1002_adma_202210952 crossref_primary_10_1021_acs_chemmater_1c04436 crossref_primary_10_1021_jacs_0c06605 crossref_primary_10_1039_D0NA00537A crossref_primary_10_1002_ange_202005277 crossref_primary_10_1016_j_microc_2020_104912 crossref_primary_10_1039_C9TA14023A crossref_primary_10_1002_ange_202100434 crossref_primary_10_1002_smll_201804419 crossref_primary_10_1002_anie_202303086 crossref_primary_10_1002_anie_202414943 crossref_primary_10_1002_slct_202301145 crossref_primary_10_1007_s12274_023_6027_x crossref_primary_10_1038_s41467_022_31524_9 crossref_primary_10_1016_j_cej_2022_140319 crossref_primary_10_1016_j_colsurfa_2020_125888 crossref_primary_10_1039_C9MH00856J crossref_primary_10_1002_aenm_201703278 crossref_primary_10_1016_j_mtchem_2022_101357 crossref_primary_10_1039_D0QM00846J crossref_primary_10_1021_acs_chemmater_8b02882 crossref_primary_10_1016_j_apcatb_2019_01_078 crossref_primary_10_1002_ange_202103729 crossref_primary_10_1039_C9CS00911F crossref_primary_10_1016_j_jssc_2021_122771 crossref_primary_10_1002_ange_202303086 crossref_primary_10_1038_s41467_019_14237_4 crossref_primary_10_1021_jacs_2c13655 crossref_primary_10_1021_acs_analchem_4c05606 crossref_primary_10_1002_adfm_202004680 crossref_primary_10_1016_j_giant_2021_100054 crossref_primary_10_1016_j_cej_2021_132401 crossref_primary_10_1002_adma_202312889 crossref_primary_10_1016_j_mtchem_2022_101225 crossref_primary_10_1002_anie_202316092 crossref_primary_10_1016_j_snb_2018_11_032 crossref_primary_10_1016_j_biomaterials_2019_119462 crossref_primary_10_1039_C9CS00827F crossref_primary_10_1002_cnma_202000591 crossref_primary_10_1016_j_ccr_2021_213957 crossref_primary_10_1002_ange_202414943 crossref_primary_10_1002_smll_202307853 crossref_primary_10_1016_j_cis_2020_102108 crossref_primary_10_1002_anie_202103729 crossref_primary_10_1039_D0CS01482F crossref_primary_10_1002_ange_202213203 crossref_primary_10_1039_C9RA03487K crossref_primary_10_3390_nano8010015 crossref_primary_10_1021_acs_chemrev_9b00550 crossref_primary_10_1002_anie_202400985 crossref_primary_10_1021_acscatal_3c05454 crossref_primary_10_1039_C9NJ05802H crossref_primary_10_3390_nano8110916 crossref_primary_10_1016_j_ccst_2025_100365 crossref_primary_10_1021_acscatal_3c04464 crossref_primary_10_1007_s42452_020_1979_x crossref_primary_10_1002_anie_201710190 crossref_primary_10_1039_C9CS00299E crossref_primary_10_1002_anie_202017153 crossref_primary_10_1016_j_chemphys_2021_111278 crossref_primary_10_1021_acs_chemmater_1c02564 crossref_primary_10_1021_acscatal_3c05441 crossref_primary_10_1063_5_0189579 crossref_primary_10_1016_j_est_2023_109518 crossref_primary_10_1016_j_mcat_2024_114127 crossref_primary_10_1002_anie_202005277 crossref_primary_10_1016_j_polymer_2022_124752 crossref_primary_10_1021_acs_inorgchem_8b02315 crossref_primary_10_1002_ange_201905591 crossref_primary_10_1016_j_ccr_2021_213875 crossref_primary_10_1016_j_dyepig_2024_112531 crossref_primary_10_1016_j_enchem_2022_100094 crossref_primary_10_1002_ange_201710190 crossref_primary_10_1002_smll_202307828 crossref_primary_10_1039_C9CC05710B crossref_primary_10_1039_D0CS00620C crossref_primary_10_2139_ssrn_3967902 crossref_primary_10_1016_j_cej_2022_140121 crossref_primary_10_1039_D0TA00818D crossref_primary_10_1016_S1872_2067_18_63057_8 crossref_primary_10_1002_anie_202200820 crossref_primary_10_1039_C9SC04875H crossref_primary_10_1016_j_cej_2023_141740 crossref_primary_10_1002_cplu_202400139 crossref_primary_10_1021_jacs_8b00571 crossref_primary_10_1002_chem_202005167 crossref_primary_10_1039_D0NJ01735C crossref_primary_10_1002_ange_202316092 crossref_primary_10_1039_C9QO00382G crossref_primary_10_1002_cnma_202100049 crossref_primary_10_1016_j_snb_2019_127372 crossref_primary_10_1038_s42004_018_0098_8 crossref_primary_10_1021_acscatal_2c01114 crossref_primary_10_1016_j_ccr_2024_215659 crossref_primary_10_1016_j_ijhydene_2020_03_254 crossref_primary_10_1002_asia_202401434 crossref_primary_10_1002_anie_202102051 crossref_primary_10_1016_j_ccr_2024_215894 crossref_primary_10_1039_D0CS01027H crossref_primary_10_1039_D2TA03579K crossref_primary_10_1039_D3CS00287J crossref_primary_10_1039_C8CC05225E crossref_primary_10_1021_acsanm_1c02053 crossref_primary_10_1080_25740881_2025_2472400 crossref_primary_10_1021_jacs_9b00665 crossref_primary_10_1007_s12274_023_5475_7 crossref_primary_10_1016_j_micron_2024_103595 crossref_primary_10_1021_acscatal_4c02738 crossref_primary_10_1002_smll_202409580 crossref_primary_10_1039_D0TA10024B crossref_primary_10_1016_j_mtcomm_2021_102612 crossref_primary_10_1021_acs_chemrev_0c01184 crossref_primary_10_1016_j_ccr_2024_215680 crossref_primary_10_1021_acsami_0c21370 crossref_primary_10_1002_asia_201901527 crossref_primary_10_1002_marc_202000469 crossref_primary_10_1039_D0QM00274G crossref_primary_10_1007_s11581_019_03277_x crossref_primary_10_1002_chem_201904731 crossref_primary_10_1002_smll_202102957 crossref_primary_10_1021_acsami_8b19087 crossref_primary_10_1002_sstr_202000108 crossref_primary_10_1016_j_cej_2018_08_184 crossref_primary_10_1039_C9NJ00830F crossref_primary_10_1021_jacs_9b13824 crossref_primary_10_1021_jacs_3c11182 crossref_primary_10_1039_C9DT01599J crossref_primary_10_1021_acsami_1c00335 crossref_primary_10_1039_D0GC02670K crossref_primary_10_1016_j_trechm_2019_03_001 crossref_primary_10_1002_smll_202102944 crossref_primary_10_1021_jacs_9b10787 crossref_primary_10_1038_s41467_018_07670_4 crossref_primary_10_1039_D0NR02994G crossref_primary_10_1021_acsanm_0c01242 crossref_primary_10_1002_ange_202415759 crossref_primary_10_1016_j_ensm_2018_01_018 crossref_primary_10_1039_D0CS00009D crossref_primary_10_1016_j_jcis_2021_05_087 crossref_primary_10_1039_C9SC04882K crossref_primary_10_1016_j_comptc_2024_114503 crossref_primary_10_1039_D4RA02277G crossref_primary_10_1002_agt2_420 crossref_primary_10_1016_j_electacta_2020_136918 crossref_primary_10_1002_smll_202100756 crossref_primary_10_1002_adma_202405079 crossref_primary_10_1021_jacs_3c13172 crossref_primary_10_1002_anie_202314763 crossref_primary_10_1039_D3TA06144B crossref_primary_10_1088_1402_4896_acae40 crossref_primary_10_1021_acs_chemmater_1c02973 crossref_primary_10_1016_j_bios_2021_113553 crossref_primary_10_1039_C9TA13980J crossref_primary_10_3390_polym15040887 crossref_primary_10_1002_adtp_201900059 crossref_primary_10_1002_anie_202114244 crossref_primary_10_1039_D1TA10991J crossref_primary_10_1002_adhm_202100775 crossref_primary_10_1016_j_jhazmat_2021_127987 crossref_primary_10_1016_j_envres_2023_118018 crossref_primary_10_1039_C9SC04663A crossref_primary_10_1002_asia_202401423 crossref_primary_10_1039_D1TA00396H crossref_primary_10_1021_jacs_3c14230 crossref_primary_10_1021_acsami_0c01763 crossref_primary_10_1021_jacs_8b06291 crossref_primary_10_1039_C8CC05369C crossref_primary_10_1002_adma_202302122 crossref_primary_10_1016_j_ijoes_2023_100225 crossref_primary_10_1002_anie_202422814 crossref_primary_10_1016_j_jece_2023_111553 crossref_primary_10_1021_jacs_0c10919 crossref_primary_10_1038_s41578_021_00287_y crossref_primary_10_1002_anie_202207130 crossref_primary_10_1021_acsami_0c18062 crossref_primary_10_1021_acs_accounts_0c00357 crossref_primary_10_1016_j_aca_2022_340615 crossref_primary_10_1016_j_desal_2024_118206 crossref_primary_10_1134_S1070363223010255 |
Cites_doi | 10.1073/pnas.1221824110 10.1111/j.1751-1097.1978.tb07704.x 10.1021/jacs.6b10629 10.1126/science.1120411 10.1039/C4DT02756F 10.1002/anie.201600087 10.1038/nchem.2352 10.1039/C4CS00001C 10.1021/jacs.6b01244 10.1039/C5SC00512D 10.1126/science.aal1585 10.1021/ja5037868 10.1021/jacs.5b09487 10.1002/adma.201505004 10.1038/nchem.695 10.1021/jacs.6b05568 10.1002/anie.201108462 10.1039/c3py01430d 10.1021/ja8096256 10.1039/b901221d 10.1021/acs.chemrev.6b00439 10.1021/jacs.6b00652 10.1002/anie.201106203 10.1021/acs.chemmater.5b02902 10.1038/ncomms9508 10.1021/jacs.5b10754 10.1021/jacs.6b10316 10.1021/ja053689m 10.1002/anie.201509014 10.1039/C3CC47652A 10.1038/nchem.1730 10.1126/science.aac8343 10.1126/science.aad4011 10.1021/jacs.6b06546 10.1021/ar800124u 10.1039/C5CS00878F 10.1002/cssc.201700120 10.1021/ja805064f 10.1021/jacs.6b07714 10.1021/ja409033p 10.1039/c3cc45217d 10.1002/anie.201606155 10.1021/jacs.5b04147 10.1039/C3CS60443H 10.1021/cm201140r 10.1246/cl.1993.949 10.1038/nchem.2444 10.1002/chem.201203753 10.1021/jacs.6b07516 10.1039/C2CS35072F 10.1002/anie.201310500 10.1016/j.cclet.2016.05.020 10.1021/ja510926w 10.1039/C3CC46767H 10.1021/acsmacrolett.6b00805 10.1002/ijch.201500026 10.1039/C6CC05748A 10.1016/j.elecom.2015.01.021 10.1021/acscentsci.6b00220 10.1021/jacs.6b09563 10.1021/ja5092936 10.1002/chem.201405330 10.1126/science.1139915 10.1038/natrevmats.2016.68 10.1002/anie.201208514 10.1039/c5sc00512d 10.1039/c3cc46767h 10.1039/c4cs00001c 10.1039/c6cc05748a 10.1038/NCHEM.695 10.1038/NCHEM.2352 10.1039/c3cs60443h 10.1039/c4dt02756f 10.1038/NCHEM.1730 10.1039/c3cc47652a 10.1038/NCHEM.2444 10.1039/c5cs00878f |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION 17B 1KM BLEPL DTL EGQ GYRTJ NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.7b04141 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2017 PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Web of Science PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 8709 |
ExternalDocumentID | 28595005 000404809600048 10_1021_jacs_7b04141 a477792863 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Outstanding Youth Foundation of Hubei Province grantid: 2015CFA045 – fundername: Beijing National Laboratory for Molecular Sciences – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 21572170; 21573165 |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 17B 1KM AAYWT BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a423t-4fa5ccd08c2f8c806c73b334a49934bd83367304fffd77c669378d866a2952a93 |
IEDL.DBID | ACS |
ISICitedReferencesCount | 405 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000404809600048 |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 04:36:12 EDT 2025 Mon Jul 21 09:26:08 EDT 2025 Thu Apr 03 07:01:33 EDT 2025 Wed Aug 06 04:13:57 EDT 2025 Fri Aug 29 16:03:47 EDT 2025 Thu Apr 24 23:09:50 EDT 2025 Tue Jul 01 03:21:15 EDT 2025 Thu Aug 27 13:42:53 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | PLATFORM CATALYSIS DESIGN REDUCTION DIFFERENT KINDS CONSTRUCTION POLYMERIZATION GENERATION CRYSTALLINE STORAGE APPLICATIONS |
Language | English |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-a423t-4fa5ccd08c2f8c806c73b334a49934bd83367304fffd77c669378d866a2952a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0326-2674 0000-0003-3417-9283 |
PMID | 28595005 |
PQID | 1908437137 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | pubmed_primary_28595005 proquest_miscellaneous_1908437137 webofscience_primary_000404809600048 crossref_primary_10_1021_jacs_7b04141 acs_journals_10_1021_jacs_7b04141 crossref_citationtrail_10_1021_jacs_7b04141 webofscience_primary_000404809600048CitationCount proquest_miscellaneous_2116873366 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-28 |
PublicationDateYYYYMMDD | 2017-06-28 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | WASHINGTON |
PublicationPlace_xml | – name: WASHINGTON – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAbbrev | J AM CHEM SOC |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2017 |
Publisher | American Chemical Society Amer Chemical Soc |
Publisher_xml | – name: American Chemical Society – name: Amer Chemical Soc |
References | ref17/cit17b ref1/cit1e ref1/cit1d ref17/cit17a ref13/cit13a ref16/cit16 ref13/cit13b ref13/cit13c ref13/cit13d ref13/cit13e ref13/cit13f ref23/cit23 ref2/cit2 ref1/cit1a ref1/cit1c ref1/cit1b ref20/cit20 ref5/cit5b ref5/cit5c ref5/cit5a ref19/cit19 ref21/cit21 ref7/cit7e ref7/cit7d ref3/cit3b ref3/cit3c ref11/cit11b ref3/cit3a ref3/cit3d ref11/cit11a ref7/cit7c ref7/cit7b ref7/cit7a ref18/cit18 ref15/cit15a ref9/cit9c ref9/cit9b ref9/cit9a ref15/cit15b ref8/cit8a ref10/cit10a ref10/cit10b ref8/cit8b ref10/cit10c ref9/cit9i ref9/cit9h ref14/cit14 ref9/cit9g ref9/cit9f ref9/cit9e ref9/cit9d ref6/cit6d ref4/cit4a ref6/cit6e ref4/cit4b ref4/cit4c ref24/cit24c ref24/cit24b ref12/cit12 ref24/cit24a ref4/cit4d ref4/cit4e ref6/cit6a ref6/cit6b ref6/cit6c Ding, SY (WOS:000371945800035) 2016; 138 Liu, YZ (WOS:000368440500035) 2016; 351 OSUKA, A (WOS:A1993LH55800008) 1993 Pang, ZF (WOS:000374274100003) 2016; 138 Diercks, CS (WOS:000395181700031) 2017; 355 Che, CM (WOS:000267571100002) 2009 Cote, AP (WOS:000233437300040) 2005; 310 Jeong, HG (WOS:000371987400002) 2016; 56 Ma, WJ (WOS:000352850700015) 2015; 52 Dogru, M (WOS:000335460800001) 2014; 50 Fang, QR (WOS:000332270000006) 2014; 53 Ganesan, P (WOS:000232780900001) 2005; 127 Xu, H (WOS:000363468600012) 2015; 7 Zhou, TY (WOS:000344906100020) 2014; 136 Hunt, JR (WOS:000258950500019) 2008; 130 Zeng, YF (WOS:000348690100004) 2015; 137 Segura, JL (WOS:000385181300007) 2016; 45 Fang, QR (WOS:000357964400010) 2015; 137 Zhang, YB (WOS:000326774300024) 2013; 135 Tan, J (WOS:000387016200010) 2016; 55 Bunck, DN (WOS:000300446100025) 2012; 51 Wang, HM (WOS:000385327300033) 2016; 27 Lin, S (WOS:000360968400039) 2015; 349 Wan, S (WOS:000295058600002) 2011; 23 Huang, N (WOS:000386259300004) 2016; 1 Feng, LJ (WOS:000333122600048) 2014; 5 Rabbani, MG (WOS:000315399700012) 2013; 19 Crowe, JW (WOS:000381715700014) 2016; 138 Xu, HS (WOS:000383410700017) 2016; 138 Vazquez-Molina, DA (WOS:000381332300008) 2016; 138 Li, H (WOS:000387625300041) 2016; 138 Dogru, M (WOS:000315503800027) 2013; 52 Kang, ZX (WOS:000371852000006) 2016; 28 Du, Y (WOS:000369854000023) 2016; 55 Alahakoon, SB (WOS:000402122100002) 2017; 10 Ding, S. Y. (000404809600048.15) 2013; 42 CANNISTRARO, S (WOS:A1978FP84900018) 1978; 28 Vyas, VS (WOS:000363149200001) 2015; 6 O'Keeffe, M (WOS:000261767600022) 2008; 41 Higashino, T (WOS:000346412500002) 2015; 44 Ding, HM (WOS:000344358900012) 2014; 20 Gao, WY (WOS:000340514600019) 2014; 43 Zeng, YF (WOS:000374336700001) 2016; 28 Zhang, YW (WOS:000384202000011) 2016; 52 Bertrand, GHV (WOS:000318031900025) 2013; 110 Uribe-Romo, FJ (WOS:000264806300009) 2009; 131 Tanaka, T (WOS:000349317100008) 2015; 44 Halder, A (WOS:000383252900038) 2016; 55 Ascherl, L (WOS:000372505500008) 2016; 8 Wang, XR (WOS:000384518400008) 2016; 138 Ma, HP (WOS:000324928000020) 2013; 49 Spitler, EL (WOS:000280199500019) 2010; 2 El-Kaderi, HM (WOS:000245654500048) 2007; 316 Beaudoin, D (WOS:000324829200007) 2013; 5 Das, G (WOS:000356176200034) 2015; 6 Sun, Q (WOS:000389623800041) 2016; 138 Baldwin, LA (WOS:000388913600010) 2016; 138 Das, S (WOS:000393845700009) 2017; 117 Zhu, YL (WOS:000364355900013) 2015; 137 Lin, GQ (WOS:000372477700011) 2016; 138 Smith, BJ (WOS:000337720200044) 2014; 136 Mulzer, CR (WOS:000384750900017) 2016; 2 Feng, X (WOS:000301173800011) 2012; 51 Cai, SL (WOS:000390621100010) 2016; 5 Song, JR (WOS:000328884500006) 2014; 50 |
References_xml | – ident: ref6/cit6c doi: 10.1073/pnas.1221824110 – ident: ref23/cit23 doi: 10.1111/j.1751-1097.1978.tb07704.x – ident: ref9/cit9d doi: 10.1021/jacs.6b10629 – ident: ref2/cit2 doi: 10.1126/science.1120411 – ident: ref15/cit15a doi: 10.1039/C4DT02756F – ident: ref9/cit9f doi: 10.1002/anie.201600087 – ident: ref4/cit4c doi: 10.1038/nchem.2352 – ident: ref24/cit24a doi: 10.1039/C4CS00001C – ident: ref9/cit9b doi: 10.1021/jacs.6b01244 – ident: ref5/cit5c doi: 10.1039/C5SC00512D – ident: ref1/cit1a doi: 10.1126/science.aal1585 – ident: ref8/cit8b doi: 10.1021/ja5037868 – ident: ref9/cit9h doi: 10.1021/jacs.5b09487 – ident: ref3/cit3a doi: 10.1002/adma.201505004 – ident: ref6/cit6e doi: 10.1038/nchem.695 – ident: ref7/cit7c doi: 10.1021/jacs.6b05568 – ident: ref10/cit10b doi: 10.1002/anie.201108462 – ident: ref24/cit24b doi: 10.1039/c3py01430d – ident: ref10/cit10c doi: 10.1021/ja8096256 – ident: ref24/cit24c doi: 10.1039/b901221d – ident: ref1/cit1b doi: 10.1021/acs.chemrev.6b00439 – ident: ref14/cit14 doi: 10.1021/jacs.6b00652 – ident: ref17/cit17a doi: 10.1002/anie.201106203 – ident: ref3/cit3b doi: 10.1021/acs.chemmater.5b02902 – ident: ref4/cit4d doi: 10.1038/ncomms9508 – ident: ref5/cit5a doi: 10.1021/jacs.5b10754 – ident: ref13/cit13b doi: 10.1021/jacs.6b10316 – ident: ref18/cit18 doi: 10.1021/ja053689m – ident: ref7/cit7a doi: 10.1002/anie.201509014 – ident: ref3/cit3c doi: 10.1039/C3CC47652A – ident: ref13/cit13e doi: 10.1038/nchem.1730 – ident: ref4/cit4e doi: 10.1126/science.aac8343 – ident: ref13/cit13c doi: 10.1126/science.aad4011 – ident: ref9/cit9i doi: 10.1021/jacs.6b06546 – ident: ref20/cit20 doi: 10.1021/ar800124u – ident: ref1/cit1c doi: 10.1039/C5CS00878F – ident: ref7/cit7d doi: 10.1002/cssc.201700120 – ident: ref13/cit13f doi: 10.1021/ja805064f – ident: ref4/cit4b doi: 10.1021/jacs.6b07714 – ident: ref10/cit10a doi: 10.1021/ja409033p – ident: ref13/cit13d doi: 10.1039/c3cc45217d – ident: ref9/cit9e doi: 10.1002/anie.201606155 – ident: ref13/cit13a doi: 10.1021/jacs.5b04147 – ident: ref15/cit15b doi: 10.1039/C3CS60443H – ident: ref17/cit17b doi: 10.1021/cm201140r – ident: ref19/cit19 doi: 10.1246/cl.1993.949 – ident: ref8/cit8a doi: 10.1038/nchem.2444 – ident: ref3/cit3d doi: 10.1002/chem.201203753 – ident: ref4/cit4a doi: 10.1021/jacs.6b07516 – ident: ref1/cit1e doi: 10.1039/C2CS35072F – ident: ref11/cit11b doi: 10.1002/anie.201310500 – ident: ref16/cit16 doi: 10.1016/j.cclet.2016.05.020 – ident: ref9/cit9g doi: 10.1021/ja510926w – ident: ref6/cit6a doi: 10.1039/C3CC46767H – ident: ref9/cit9a doi: 10.1021/acsmacrolett.6b00805 – ident: ref21/cit21 doi: 10.1002/ijch.201500026 – ident: ref5/cit5b doi: 10.1039/C6CC05748A – ident: ref7/cit7e doi: 10.1016/j.elecom.2015.01.021 – ident: ref7/cit7b doi: 10.1021/acscentsci.6b00220 – ident: ref11/cit11a doi: 10.1021/jacs.6b09563 – ident: ref9/cit9c doi: 10.1021/ja5092936 – ident: ref6/cit6b doi: 10.1002/chem.201405330 – ident: ref12/cit12 doi: 10.1126/science.1139915 – ident: ref1/cit1d doi: 10.1038/natrevmats.2016.68 – ident: ref6/cit6d doi: 10.1002/anie.201208514 – volume: 28 start-page: 257 year: 1978 ident: WOS:A1978FP84900018 article-title: EPR STUDIES ON SINGLET OXYGEN PRODUCTION BY PORPHYRINS publication-title: PHOTOCHEMISTRY AND PHOTOBIOLOGY – volume: 138 start-page: 3031 year: 2016 ident: WOS:000371945800035 article-title: Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(II) publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b10754 – volume: 110 start-page: 4923 year: 2013 ident: WOS:000318031900025 article-title: Thiophene-based covalent organic frameworks publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.1221824110 – volume: 2 start-page: 667 year: 2016 ident: WOS:000384750900017 article-title: Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework publication-title: ACS CENTRAL SCIENCE doi: 10.1021/acscentsci.6b00220 – volume: 138 start-page: 4710 year: 2016 ident: WOS:000374274100003 article-title: Construction of Covalent Organic Frameworks Bearing Three Different Kinds of Pores through the Heterostructural Mixed Linker Strategy publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b01244 – volume: 136 start-page: 8783 year: 2014 ident: WOS:000337720200044 article-title: Mechanistic Studies of Two-Dimensional Covalent Organic Frameworks Rapidly Polymerized from Initially Homogenous Conditions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja5037868 – volume: 51 start-page: 1885 year: 2012 ident: WOS:000300446100025 article-title: Internal Functionalization of Three-Dimensional Covalent Organic Frameworks publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201108462 – volume: 137 start-page: 1020 year: 2015 ident: WOS:000348690100004 article-title: Covalent Organic Frameworks Formed with Two Types of Covalent Bonds Based on Orthogonal Reactions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja510926w – volume: 6 start-page: 3931 year: 2015 ident: WOS:000356176200034 article-title: Chemical sensing in two dimensional porous covalent organic nanosheets publication-title: CHEMICAL SCIENCE doi: 10.1039/c5sc00512d – volume: 50 start-page: 5531 year: 2014 ident: WOS:000335460800001 article-title: On the road towards electroactive covalent organic frameworks publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c3cc46767h – volume: 43 start-page: 5841 year: 2014 ident: WOS:000340514600019 article-title: Metal-metalloporphyrin frameworks: a resurging class of functional materials publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c4cs00001c – start-page: 949 year: 1993 ident: WOS:A1993LH55800008 article-title: AN EFFICIENT ONE-POT SYNTHETIC PROCEDURE OF MULTIPLE PORPHYRIN-CYCLIZATION publication-title: CHEMISTRY LETTERS – volume: 27 start-page: 1376 year: 2016 ident: WOS:000385327300033 article-title: Two-dimensional porphyrin- and phthalocyanine-based covalent organic frameworks publication-title: CHINESE CHEMICAL LETTERS doi: 10.1016/j.cclet.2016.05.020 – volume: 28 start-page: 2855 year: 2016 ident: WOS:000374336700001 article-title: Covalent Organic Frameworks for CO2 Capture publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201505004 – volume: 6 start-page: ARTN 8508 year: 2015 ident: WOS:000363149200001 article-title: A tunable azine covalent organic framework platform for visible light-induced hydrogen generation publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms9508 – volume: 138 start-page: 10120 year: 2016 ident: WOS:000381715700014 article-title: Luminescent Covalent Organic Frameworks Containing a Homogeneous and Heterogeneous Distribution of Dehydrobenzoannulene Vertex Units publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b06546 – volume: 56 start-page: 110 year: 2016 ident: WOS:000371987400002 article-title: Design and Properties of Porphyrin-based Singlet Oxygen Generator publication-title: ISRAEL JOURNAL OF CHEMISTRY doi: 10.1002/ijch.201500026 – volume: 316 start-page: 268 year: 2007 ident: WOS:000245654500048 article-title: Designed synthesis of 3D covalent organic frameworks publication-title: SCIENCE doi: 10.1126/science.1139915 – volume: 19 start-page: 3324 year: 2013 ident: WOS:000315399700012 article-title: A 2D Mesoporous Imine-Linked Covalent Organic Framework for High Pressure Gas Storage Applications publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201203753 – volume: 52 start-page: 11088 year: 2016 ident: WOS:000384202000011 article-title: Covalent organic frameworks as pH responsive signaling scaffolds publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c6cc05748a – volume: 23 start-page: 4094 year: 2011 ident: WOS:000295058600002 article-title: Covalent Organic Frameworks with High Charge Carrier Mobility publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/cm201140r – volume: 52 start-page: 53 year: 2015 ident: WOS:000352850700015 article-title: An efficient electrocatalyst for oxygen reduction reaction derived from a Co-porphyrin-based covalent organic framework publication-title: ELECTROCHEMISTRY COMMUNICATIONS doi: 10.1016/j.elecom.2015.01.021 – volume: 138 start-page: 9767 year: 2016 ident: WOS:000381332300008 article-title: Mechanically Shaped Two-Dimensional Covalent Organic Frameworks Reveal Crystallographic Alignment and Fast Li-Ion Conductivity publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b05568 – volume: 117 start-page: 1515 year: 2017 ident: WOS:000393845700009 article-title: Porous Organic Materials: Strategic Design and Structure-Function Correlation publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00439 – volume: 2 start-page: 672 year: 2010 ident: WOS:000280199500019 article-title: Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.695 – volume: 55 start-page: 1737 year: 2016 ident: WOS:000369854000023 article-title: Ionic Covalent Organic Frameworks with Spiroborate Linkage publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201509014 – volume: 137 start-page: 8352 year: 2015 ident: WOS:000357964400010 article-title: 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b04147 – volume: 52 start-page: 2920 year: 2013 ident: WOS:000315503800027 article-title: A Photoconductive Thienothiophene-Based Covalent Organic Framework Showing Charge Transfer Towards Included Fullerene publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201208514 – volume: 10 start-page: 2116 year: 2017 ident: WOS:000402122100002 article-title: Design Principles for Covalent Organic Frameworks in Energy Storage Applications publication-title: CHEMSUSCHEM doi: 10.1002/cssc.201700120 – volume: 310 start-page: 1166 year: 2005 ident: WOS:000233437300040 article-title: Porous, crystalline, covalent organic frameworks publication-title: SCIENCE doi: 10.1126/science.1120411 – volume: 137 start-page: 13772 year: 2015 ident: WOS:000364355900013 article-title: Desymmetrized Vertex Design for the Synthesis of Covalent Organic Frameworks with Periodically Heterogeneous Pore Structures publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b09487 – volume: 349 start-page: 1208 year: 2015 ident: WOS:000360968400039 article-title: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water publication-title: SCIENCE doi: 10.1126/science.aac8343 – start-page: 3996 year: 2009 ident: WOS:000267571100002 article-title: Metalloporphyrin-based oxidation systems: from biomimetic reactions to application in organic synthesis publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/b901221d – volume: 7 start-page: 905 year: 2015 ident: WOS:000363468600012 article-title: Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.2352 – volume: 44 start-page: 943 year: 2015 ident: WOS:000349317100008 article-title: Conjugated porphyrin arrays: synthesis, properties and applications for functional materials publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c3cs60443h – volume: 51 start-page: 2618 year: 2012 ident: WOS:000301173800011 article-title: High-Rate Charge-Carrier Transport in Porphyrin Covalent Organic Frameworks: Switching from Hole to Electron to Ambipolar Conduction publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201106203 – volume: 351 start-page: 365 year: 2016 ident: WOS:000368440500035 article-title: Weaving of organic threads into a crystalline covalent organic framework publication-title: SCIENCE doi: 10.1126/science.aad4011 – volume: 5 start-page: 1348 year: 2016 ident: WOS:000390621100010 article-title: Rationally Designed 2D Covalent Organic Framework with a Brick-Wall Topology publication-title: ACS MACRO LETTERS doi: 10.1021/acsmacrolett.6b00805 – volume: 138 start-page: 15790 year: 2016 ident: WOS:000389623800041 article-title: Flexibility Matters: Cooperative Active Sites in Covalent Organic Framework and Threaded Ionic Polymer publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b10629 – volume: 135 start-page: 16336 year: 2013 ident: WOS:000326774300024 article-title: Single-Crystal Structure of a Covalent Organic Framework publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja409033p – volume: 55 start-page: 7806 year: 2016 ident: WOS:000383252900038 article-title: Decoding the Morphological Diversity in Two Dimensional Crystalline Porous Polymers by Core Planarity Modulation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201600087 – volume: 28 start-page: 1277 year: 2016 ident: WOS:000371852000006 article-title: Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO2 Separation publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/acs.chemmater.5b02902 – volume: 138 start-page: 3302 year: 2016 ident: WOS:000372477700011 article-title: A Pyrene-Based, Fluorescent Three-Dimensional Covalent Organic Framework publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b00652 – volume: 44 start-page: 448 year: 2015 ident: WOS:000346412500002 article-title: Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights publication-title: DALTON TRANSACTIONS doi: 10.1039/c4dt02756f – volume: 5 start-page: 830 year: 2013 ident: WOS:000324829200007 article-title: Constructing monocrystalline covalent organic networks by polymerization publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.1730 – volume: 138 start-page: 11489 year: 2016 ident: WOS:000383410700017 article-title: Constructing Crystalline Covalent Organic Frameworks from Chiral Building Blocks publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b07516 – volume: 50 start-page: 788 year: 2014 ident: WOS:000328884500006 article-title: Thermally/hydrolytically stable covalent organic frameworks from a rigid macrocyclic host publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c3cc47652a – volume: 130 start-page: 11872 year: 2008 ident: WOS:000258950500019 article-title: Reticular synthesis of covalent organic borosilicate frameworks publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja805064f – volume: 355 start-page: ARTN eaal1585 year: 2017 ident: WOS:000395181700031 article-title: The atom, the molecule, and the covalent organic framework publication-title: SCIENCE doi: 10.1126/science.aal1585 – volume: 53 start-page: 2878 year: 2014 ident: WOS:000332270000006 article-title: 3D Microporous Base-Functionalized Covalent Organic Frameworks for Size-Selective Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201310500 – volume: 131 start-page: 4570 year: 2009 ident: WOS:000264806300009 article-title: A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja8096256 – volume: 127 start-page: 14530 year: 2005 ident: WOS:000232780900001 article-title: Tetrahedral n-type materials: Efficient quenching of the excitation of p-type polymers in amorphous films publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja053689m – volume: 8 start-page: 310 year: 2016 ident: WOS:000372505500008 article-title: Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.2444 – volume: 138 start-page: 14783 year: 2016 ident: WOS:000387625300041 article-title: Three-Dimensional Covalent Organic Frameworks with Dual Linkages for Bifunctional Cascade Catalysis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b09563 – volume: 138 start-page: 12332 year: 2016 ident: WOS:000384518400008 article-title: Homochiral 2D Porous Covalent Organic Frameworks for Heterogeneous Asymmetric Catalysis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b07714 – volume: 45 start-page: 5635 year: 2016 ident: WOS:000385181300007 article-title: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c5cs00878f – volume: 20 start-page: 14614 year: 2014 ident: WOS:000344358900012 article-title: A Tetrathiafulvalene-Based Electroactive Covalent Organic Framework publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201405330 – volume: 138 start-page: 15134 year: 2016 ident: WOS:000388913600010 article-title: Metalation of a Mesoporous Three-Dimensional Covalent Organic Framework publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b10316 – volume: 5 start-page: 3081 year: 2014 ident: WOS:000333122600048 article-title: Adsorption performance and catalytic activity of porous conjugated polyporphyrins via carbazole-based oxidative coupling polymerization publication-title: POLYMER CHEMISTRY doi: 10.1039/c3py01430d – volume: 42 start-page: 548 year: 2013 ident: 000404809600048.15 publication-title: Chem. Soc. Rev – volume: 41 start-page: 1782 year: 2008 ident: WOS:000261767600022 article-title: The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar800124u – volume: 1 start-page: ARTN 16068 year: 2016 ident: WOS:000386259300004 article-title: Covalent organic frameworks: a materials platform for structural and functional designs publication-title: NATURE REVIEWS MATERIALS doi: 10.1038/natrevmats.2016.68 – volume: 49 start-page: 9773 year: 2013 ident: WOS:000324928000020 article-title: A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C-2 hydrocarbon/CH4 selectivity publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c3cc45217d – volume: 55 start-page: 13979 year: 2016 ident: WOS:000387016200010 article-title: Manipulation of Amorphous-to-Crystalline Transformation: Towards the Construction of Covalent Organic Framework Hybrid Microspheres with NIR Photothermal Conversion Ability publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201606155 – volume: 136 start-page: 15885 year: 2014 ident: WOS:000344906100020 article-title: One-Step Construction of Two Different Kinds of Pores in a 2D Covalent Organic Framework publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja5092936 |
SSID | ssj0004281 |
Score | 2.655487 |
Snippet | The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge.... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8705 |
SubjectTerms | catalysts Chemistry Chemistry, Multidisciplinary condensation reactions imines photocatalysis photosensitivity Physical Sciences porous media porphyrins Science & Technology singlet oxygen topology |
Title | 3D Porphyrin-Based Covalent Organic Frameworks |
URI | http://dx.doi.org/10.1021/jacs.7b04141 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000404809600048 https://www.ncbi.nlm.nih.gov/pubmed/28595005 https://www.proquest.com/docview/1908437137 https://www.proquest.com/docview/2116873366 |
Volume | 139 |
WOS | 000404809600048 |
WOSCitedRecordID | wos000404809600048 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6kHvTi-xFfRNCTpCS7m93NUaO1eBBBC97CZpMFUVKx6cVf72weVVuLvZV0QjKT2Z3vYx4LcMao0CpiuPsZkXtMm9RTYcQ8nqcqD3z8ratqi3veH7C75_D5u0B2OoNP7HwgPeqK1GeB7U9fJlwKS7Iu48fv_kcigxbmCslpU-A-fbcNQHr0OwDNoMo_A1AVbHrrcNu27NQ1Jq_dcZl29efsBMd_9NiAtQZvupe1g2zCUl5swUrcHvO2DV167T4MrbU_XgrvCoNa5sZD9D-MRm7dqandXlvCNdqBQe_mKe57zSEKnkKkVHrMqFDrzJeaGKmlz7WgKaVMIdWhLM0kpRxXOTPGZEJozhGvyExyrkgUEhXRXegUwyLfBzdSyK4MUnFiCAtlpnwaaqF9mlGbDc0cOEUdk2YRjJIqv02QX9irjeYOXLTWT3QzhdwehvE2R_p8Iv1eT9-YI3fafsgEzWdzHqrIh2N8h8iX6I8BFfNlkAOjU6EduAN7tRdMnmbn-4W4Uzlw9tMtJv9b77Nt-UgE7WboQLCIWNxobucOlAcLmO0QVonFEz73iDyCTvkxzo8RDZXpSbUUvgCXB_9t |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOMClUOgjUEqQ4FRlldiO7Rxp2tXyWiEBErfIcWKpapVFJHvh1zOTTZZHWWlvUTJJPPbY84088xngSHBlTSJw9XOqDIR1eWDiRASyzE0ZhXht22yLsRzdirO7-K4rVqdaGGxEjV-q2038Z3YBognCmyoPRURl6muIQxjFWifp9XMZJNNRj3aVlrzLc3_7NvkhW7_2Q_-By3f9UOtzhpswnre2TTX5O5g2-cA-viFyXFqdLfjQoU__ZGYuH2GlrLZhPe0PfduBAf_lX02o7x_-VMFPdHGFn07QGtE3-bO6TesP-4Su-hPcDn_fpKOgO1IhMIibmkA4E1tbhNoyp60OpVU851wYDHy4yAvNucQ5L5xzhVJWSkQvutBSGpbEzCT8M6xWk6r8Cn5iMNZyGJgzx0SsCxPy2Cob8oLT3mjhwSHqmHVTos7a3W6G0Qbd7TT34Ec_CJntOMnpaIx_C6SP59L3My6OBXKH_Xhm2H20A2KqcjLFNiShRuuMuFosgxGx1EQSKT34MjOG-d-I7S_GdcuDo5fWMX9ORkhF-hgW0tLoQbSMWNppTiwEze4S3XYA66Oby4vs4nR8vgcbjJBGKAOmv8Fq8zAt9xEnNfn3dnY8AdiDB90 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcQSNtegME2yscoEnuaemqTNEkfoezExoTQNiTeqjRppGlT70R7L_vrZ_faY3ycxN6q1m3jxI5t2f4F4FhwZU0mcPfzqoqE9WVk0kxEsipNlcR4bbtqi0t5fi2-3KQ3K5AMvTA4iAa_1HRJfNLqqfM9wgBBBeEDVcYioVb1NcrYUbx1kn-_a4VkOhk8XqUl72vdH75Ntsg2923RIwfzSVvU2Z3xBnxbjLgrN_k1mrXlyP55AOb4XyxtwnrvhYYnc7F5DStVvQUv8-Hwt20Y8bPwakJrcPuzjk7R1Lkwn6BUoo0K5_2bNhwPhV3NG7gef_qRn0f90QqRQf-pjYQ3qbUu1pZ5bXUsreIl58JgAMRF6TTnEnVfeO-dUlZK9GK001IalqXMZPwtrNaTutqBMDMYc3kM0JlnItXOxDy1ysbcccqRugCOkMeiV42m6LLeDKMOuttzHsDHYSEK22OT0xEZv5dQf1hQT-eYHEvojoY1LXD6KBNi6moywzFksUYpTbhaToORsdQEFikDeDcXiMXfCPUvxf0rgON_JWTxnASRmvUxPKQtMoDkOWR5zzmhEbS7z5i2Q3hxdTYuvn6-vNiDV4wcjlhGTO_Dans7qw7QXWrL952C_AWQJApg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Porphyrin-Based+Covalent+Organic+Frameworks&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Lin%2C+Guiqing&rft.au=Ding%2C+Huimin&rft.au=Chen%2C+Rufan&rft.au=Peng%2C+Zhengkang&rft.date=2017-06-28&rft.pub=Amer+Chemical+Soc&rft.issn=0002-7863&rft.volume=139&rft.issue=25&rft.spage=8705&rft.epage=8709&rft_id=info:doi/10.1021%2Fjacs.7b04141&rft_id=info%3Apmid%2F28595005&rft.externalDBID=n%2Fa&rft.externalDocID=000404809600048 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |