3D Porphyrin-Based Covalent Organic Frameworks

The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahed...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 139; no. 25; pp. 8705 - 8709
Main Authors Lin, Guiqing, Ding, Huimin, Chen, Rufan, Peng, Zhengkang, Wang, Baoshan, Wang, Cheng
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 28.06.2017
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-T d) and square (2D-C 4) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc21 space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photocatalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future.
AbstractList The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-T d) and square (2D-C 4) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc21 space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photocatalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future.
The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-T ) and square (2D-C ) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc2 space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photocatalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future.
The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-Td) and square (2D-C₄) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc2₁ space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photocatalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future.
The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-Td) and square (2D-C4) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc21 space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photocatalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future.The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-Td) and square (2D-C4) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc21 space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photocatalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future.
The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-T-d) and square (2D-C-4) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc2(1) space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photo catalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future.
Author Lin, Guiqing
Wang, Cheng
Peng, Zhengkang
Ding, Huimin
Chen, Rufan
Wang, Baoshan
AuthorAffiliation Key Laboratory of Biomedical Polymers (Ministry of Education), College of Chemistry and Molecular Sciences
AuthorAffiliation_xml – name: Key Laboratory of Biomedical Polymers (Ministry of Education), College of Chemistry and Molecular Sciences
Author_xml – sequence: 1
  givenname: Guiqing
  surname: Lin
  fullname: Lin, Guiqing
– sequence: 2
  givenname: Huimin
  surname: Ding
  fullname: Ding, Huimin
– sequence: 3
  givenname: Rufan
  surname: Chen
  fullname: Chen, Rufan
– sequence: 4
  givenname: Zhengkang
  surname: Peng
  fullname: Peng, Zhengkang
– sequence: 5
  givenname: Baoshan
  orcidid: 0000-0003-3417-9283
  surname: Wang
  fullname: Wang, Baoshan
– sequence: 6
  givenname: Cheng
  orcidid: 0000-0003-0326-2674
  surname: Wang
  fullname: Wang, Cheng
  email: chengwang@whu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28595005$$D View this record in MEDLINE/PubMed
BookMark eNqN0TtPwzAQB3ALgegDNmaUEQlS_IrtjBAoIFUqA8yR4ziQktrFTqj67UnU0AGBYPJDv7uT7j8C-8YaDcAJghMEMbpcSOUnPIMUUbQHhijCMIwQZvtgCCHEIReMDMDI-0X7pFigQzDAIoojCKMhmJCb4NG61evGlSa8ll7nQWI_ZKVNHczdizSlCqZOLvXaujd_BA4KWXl93J9j8Dy9fUruw9n87iG5moWSYlKHtJCRUjkUChdCCcgUJxkhVNI4JjTLBSGME0iLosg5V4zFhItcMCZxHGEZkzE42_ZdOfveaF-ny9IrXVXSaNv4FCPEBG-7sD8piqGghCPCW3ra0yZb6jxduXIp3Sb9WkcLxBasdWYLr0ptlN6xbn-QChiz7iaSspZ1aU1iG1O3pef_L231xVYrZ713uthJBNMu1rSLNe1jbTn-xlU_vHayrH4r6hfTfS5s40yb2M_0E_nYrbA
CitedBy_id crossref_primary_10_1002_chem_202302474
crossref_primary_10_1039_D1SC01692J
crossref_primary_10_1021_acs_chemmater_9b02718
crossref_primary_10_1002_asia_202200624
crossref_primary_10_1002_ange_201813999
crossref_primary_10_1002_advs_201801116
crossref_primary_10_1002_ange_201710633
crossref_primary_10_1002_ange_202207130
crossref_primary_10_1039_D4YA00082J
crossref_primary_10_1002_marc_201900060
crossref_primary_10_1016_j_ccr_2022_214968
crossref_primary_10_1007_s12274_022_4615_9
crossref_primary_10_1016_j_aca_2022_340207
crossref_primary_10_1080_02603594_2018_1542597
crossref_primary_10_1039_D2QM00949H
crossref_primary_10_1039_C8CC00203G
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1080_10826076_2022_2066689
crossref_primary_10_1515_revac_2017_0023
crossref_primary_10_1002_ange_202102051
crossref_primary_10_1038_s41467_021_22141_z
crossref_primary_10_1039_D1TA00802A
crossref_primary_10_1016_j_apcatb_2018_03_079
crossref_primary_10_1016_j_cclet_2022_02_065
crossref_primary_10_1002_ange_201915569
crossref_primary_10_1021_jacs_9b06908
crossref_primary_10_1002_adfm_202000516
crossref_primary_10_1002_chem_202002150
crossref_primary_10_1002_anie_202004796
crossref_primary_10_1039_C9PY01623F
crossref_primary_10_1002_ange_202401014
crossref_primary_10_1021_jacs_4c08951
crossref_primary_10_1039_C8SC03393E
crossref_primary_10_1002_ange_202314763
crossref_primary_10_1021_acscatal_1c03634
crossref_primary_10_1039_D4BM00214H
crossref_primary_10_1016_j_apsusc_2021_151798
crossref_primary_10_1021_acssensors_0c00495
crossref_primary_10_1021_acs_jpcc_2c09094
crossref_primary_10_1021_acs_macromol_8b01814
crossref_primary_10_1039_D4CC01485E
crossref_primary_10_1016_j_tet_2020_131664
crossref_primary_10_1016_S1872_2067_24_60196_8
crossref_primary_10_1038_s44160_025_00742_6
crossref_primary_10_1016_j_ccr_2023_215097
crossref_primary_10_1246_bcsj_20200389
crossref_primary_10_1002_ange_202200820
crossref_primary_10_1016_j_chempr_2017_12_011
crossref_primary_10_1021_jacs_0c12505
crossref_primary_10_1039_C8NJ00667A
crossref_primary_10_1021_jacs_4c17548
crossref_primary_10_1039_D0ME00156B
crossref_primary_10_1007_s40242_021_1295_z
crossref_primary_10_1016_j_talanta_2024_126709
crossref_primary_10_1002_anie_201905591
crossref_primary_10_1016_j_trechm_2020_01_003
crossref_primary_10_1038_s41467_023_39580_5
crossref_primary_10_1016_j_enchem_2020_100035
crossref_primary_10_1007_s10118_020_2394_x
crossref_primary_10_1016_j_bioactmat_2022_08_016
crossref_primary_10_1016_j_ccr_2023_215066
crossref_primary_10_1021_acsami_1c16366
crossref_primary_10_1038_s41467_020_18844_4
crossref_primary_10_3390_nano13030558
crossref_primary_10_1002_ijch_202400025
crossref_primary_10_1039_D0SC01747G
crossref_primary_10_1002_ange_202004796
crossref_primary_10_1021_acsami_1c05234
crossref_primary_10_1039_C9TA07194F
crossref_primary_10_1039_D0CS00278J
crossref_primary_10_1002_ange_201800230
crossref_primary_10_1016_j_progpolymsci_2020_101288
crossref_primary_10_1007_s11426_017_9162_3
crossref_primary_10_1039_D3TA04395A
crossref_primary_10_1002_anie_201813999
crossref_primary_10_3390_membranes13080696
crossref_primary_10_1002_ange_201902543
crossref_primary_10_1002_adfm_202419010
crossref_primary_10_1002_anie_201913091
crossref_primary_10_1016_j_apcatb_2020_119174
crossref_primary_10_1021_acssuschemeng_1c00419
crossref_primary_10_1002_chem_202402383
crossref_primary_10_1016_j_apcatb_2021_120337
crossref_primary_10_1021_acs_analchem_1c05426
crossref_primary_10_1002_anie_201710633
crossref_primary_10_1360_SSC_2022_0017
crossref_primary_10_3390_biomimetics8020171
crossref_primary_10_1039_D2TA03978H
crossref_primary_10_1016_j_cej_2020_127136
crossref_primary_10_1002_cctc_201900894
crossref_primary_10_1002_anie_201800230
crossref_primary_10_1016_j_jclepro_2021_125822
crossref_primary_10_1039_D3OB01887C
crossref_primary_10_1007_s10847_019_00924_8
crossref_primary_10_1016_j_ccr_2025_216614
crossref_primary_10_1016_j_chempr_2022_10_013
crossref_primary_10_1021_jacs_3c03897
crossref_primary_10_1016_j_optmat_2023_113672
crossref_primary_10_1021_acsami_0c14678
crossref_primary_10_1016_j_ces_2023_118472
crossref_primary_10_1007_s10118_020_2384_z
crossref_primary_10_1002_adfm_201909267
crossref_primary_10_1002_smll_202310791
crossref_primary_10_3390_polym15051279
crossref_primary_10_1039_D1CC04846E
crossref_primary_10_1039_C9NJ04017J
crossref_primary_10_1039_D4QI02101K
crossref_primary_10_1039_D3TB02017G
crossref_primary_10_1021_acs_inorgchem_1c01975
crossref_primary_10_1016_j_apsusc_2021_151363
crossref_primary_10_1039_C8CS00978C
crossref_primary_10_20517_cs_2023_61
crossref_primary_10_1021_acsami_0c16116
crossref_primary_10_1021_jacs_8b09705
crossref_primary_10_1002_ange_202422814
crossref_primary_10_1002_elt2_39
crossref_primary_10_1016_j_jece_2024_113263
crossref_primary_10_1016_j_chemosphere_2023_141028
crossref_primary_10_1002_smll_202501327
crossref_primary_10_1039_C9TC05297F
crossref_primary_10_1016_j_biomaterials_2019_119707
crossref_primary_10_1002_ange_201913091
crossref_primary_10_1021_jacs_7b12110
crossref_primary_10_1016_j_nantod_2021_101146
crossref_primary_10_1007_s40242_022_2001_5
crossref_primary_10_1039_C9NJ05172D
crossref_primary_10_1002_er_8327
crossref_primary_10_1039_C9GC04033A
crossref_primary_10_1016_j_chempr_2020_10_002
crossref_primary_10_1007_s40242_022_1513_3
crossref_primary_10_1016_j_ccr_2024_216068
crossref_primary_10_1016_j_ccr_2022_214563
crossref_primary_10_1021_acs_accounts_8b00302
crossref_primary_10_1039_C9CC01548E
crossref_primary_10_1016_j_jcis_2024_11_028
crossref_primary_10_1039_D2TA01646J
crossref_primary_10_1039_D4EE03704A
crossref_primary_10_1016_j_jssc_2020_121252
crossref_primary_10_1002_chem_202500202
crossref_primary_10_1002_anie_201902543
crossref_primary_10_1002_anie_202415759
crossref_primary_10_26599_NR_2025_94907161
crossref_primary_10_1002_pol_20230090
crossref_primary_10_1016_j_memsci_2024_122700
crossref_primary_10_1021_acsanm_2c00510
crossref_primary_10_1016_j_ccr_2021_213778
crossref_primary_10_1002_anie_202100434
crossref_primary_10_1039_C8QO00790J
crossref_primary_10_1021_acsapm_2c00547
crossref_primary_10_1016_j_checat_2022_06_006
crossref_primary_10_1039_D3CP00007A
crossref_primary_10_1016_j_mattod_2022_02_001
crossref_primary_10_1002_chem_202001211
crossref_primary_10_1021_cbe_3c00119
crossref_primary_10_1038_s41598_023_49628_7
crossref_primary_10_1002_anie_202213203
crossref_primary_10_1002_anie_202401014
crossref_primary_10_1021_jacs_2c09369
crossref_primary_10_1039_C9QM00316A
crossref_primary_10_26599_NRE_2024_9120149
crossref_primary_10_1002_smm2_1309
crossref_primary_10_1016_j_jcis_2021_08_059
crossref_primary_10_1016_j_mattod_2023_05_023
crossref_primary_10_1038_s41467_023_38283_1
crossref_primary_10_3390_molecules27010035
crossref_primary_10_1038_am_2017_241
crossref_primary_10_1021_acsnano_2c10423
crossref_primary_10_1080_00958972_2022_2103687
crossref_primary_10_1016_j_jphotochem_2022_114292
crossref_primary_10_1039_D2TC02170F
crossref_primary_10_1039_D4QM00499J
crossref_primary_10_1002_anie_201915569
crossref_primary_10_1016_j_msec_2020_110864
crossref_primary_10_1021_acs_macromol_8b01632
crossref_primary_10_1002_chem_202302201
crossref_primary_10_3390_chemosensors11040214
crossref_primary_10_1002_smll_202207798
crossref_primary_10_1016_j_ccr_2022_214889
crossref_primary_10_1039_C9QM00781D
crossref_primary_10_1021_acsami_2c07739
crossref_primary_10_1039_C8TA00494C
crossref_primary_10_1016_j_eti_2022_102972
crossref_primary_10_1038_s41467_023_37156_x
crossref_primary_10_1021_jacs_2c03959
crossref_primary_10_1016_j_jcis_2021_09_150
crossref_primary_10_1016_j_isci_2019_03_028
crossref_primary_10_1016_j_jpha_2020_12_006
crossref_primary_10_1016_j_apcatb_2022_121488
crossref_primary_10_1021_acs_joc_7b02070
crossref_primary_10_20517_cs_2024_96
crossref_primary_10_1002_adpr_202200008
crossref_primary_10_1016_j_jhazmat_2020_123860
crossref_primary_10_1007_s10853_020_05380_1
crossref_primary_10_1002_advs_202206239
crossref_primary_10_1016_j_cplett_2024_141383
crossref_primary_10_1002_chem_201806400
crossref_primary_10_1142_S1088424621500504
crossref_primary_10_1007_s42114_024_01177_x
crossref_primary_10_1021_acs_analchem_5c00330
crossref_primary_10_2139_ssrn_4056692
crossref_primary_10_1002_smll_202303632
crossref_primary_10_1016_j_apmt_2024_102548
crossref_primary_10_1039_C9QM00555B
crossref_primary_10_1039_D4CS00521J
crossref_primary_10_1002_cctc_202001179
crossref_primary_10_1016_j_jorganchem_2018_01_054
crossref_primary_10_1021_acsanm_9b01787
crossref_primary_10_1002_ange_202114244
crossref_primary_10_1021_acsanm_9b01781
crossref_primary_10_1016_j_apcatb_2018_10_038
crossref_primary_10_1021_jacs_3c12995
crossref_primary_10_1039_D2NJ03749A
crossref_primary_10_2139_ssrn_4056688
crossref_primary_10_1016_j_jcis_2024_06_087
crossref_primary_10_1021_acs_cgd_9b00409
crossref_primary_10_1021_jacs_2c01996
crossref_primary_10_1002_adfm_202415629
crossref_primary_10_1016_j_cclet_2024_110189
crossref_primary_10_1021_acssuschemeng_0c09205
crossref_primary_10_3390_polym14030370
crossref_primary_10_1002_cptc_201900089
crossref_primary_10_1039_C8TB03192D
crossref_primary_10_1007_s11224_025_02458_x
crossref_primary_10_1016_j_ccr_2024_215944
crossref_primary_10_1002_ange_202400985
crossref_primary_10_1002_ange_202017153
crossref_primary_10_1021_jacs_9b10625
crossref_primary_10_1007_s11426_021_1030_7
crossref_primary_10_1039_D3CC05196J
crossref_primary_10_1021_acsami_4c04468
crossref_primary_10_1021_acsanm_8b00983
crossref_primary_10_1002_adfm_202310195
crossref_primary_10_1021_acs_chemmater_1c02382
crossref_primary_10_1016_j_jhazmat_2022_128303
crossref_primary_10_1002_tcr_202300285
crossref_primary_10_1134_S1061933X21050094
crossref_primary_10_1002_idm2_12140
crossref_primary_10_1021_acsami_7b19835
crossref_primary_10_2139_ssrn_4163687
crossref_primary_10_1002_adma_202210952
crossref_primary_10_1021_acs_chemmater_1c04436
crossref_primary_10_1021_jacs_0c06605
crossref_primary_10_1039_D0NA00537A
crossref_primary_10_1002_ange_202005277
crossref_primary_10_1016_j_microc_2020_104912
crossref_primary_10_1039_C9TA14023A
crossref_primary_10_1002_ange_202100434
crossref_primary_10_1002_smll_201804419
crossref_primary_10_1002_anie_202303086
crossref_primary_10_1002_anie_202414943
crossref_primary_10_1002_slct_202301145
crossref_primary_10_1007_s12274_023_6027_x
crossref_primary_10_1038_s41467_022_31524_9
crossref_primary_10_1016_j_cej_2022_140319
crossref_primary_10_1016_j_colsurfa_2020_125888
crossref_primary_10_1039_C9MH00856J
crossref_primary_10_1002_aenm_201703278
crossref_primary_10_1016_j_mtchem_2022_101357
crossref_primary_10_1039_D0QM00846J
crossref_primary_10_1021_acs_chemmater_8b02882
crossref_primary_10_1016_j_apcatb_2019_01_078
crossref_primary_10_1002_ange_202103729
crossref_primary_10_1039_C9CS00911F
crossref_primary_10_1016_j_jssc_2021_122771
crossref_primary_10_1002_ange_202303086
crossref_primary_10_1038_s41467_019_14237_4
crossref_primary_10_1021_jacs_2c13655
crossref_primary_10_1021_acs_analchem_4c05606
crossref_primary_10_1002_adfm_202004680
crossref_primary_10_1016_j_giant_2021_100054
crossref_primary_10_1016_j_cej_2021_132401
crossref_primary_10_1002_adma_202312889
crossref_primary_10_1016_j_mtchem_2022_101225
crossref_primary_10_1002_anie_202316092
crossref_primary_10_1016_j_snb_2018_11_032
crossref_primary_10_1016_j_biomaterials_2019_119462
crossref_primary_10_1039_C9CS00827F
crossref_primary_10_1002_cnma_202000591
crossref_primary_10_1016_j_ccr_2021_213957
crossref_primary_10_1002_ange_202414943
crossref_primary_10_1002_smll_202307853
crossref_primary_10_1016_j_cis_2020_102108
crossref_primary_10_1002_anie_202103729
crossref_primary_10_1039_D0CS01482F
crossref_primary_10_1002_ange_202213203
crossref_primary_10_1039_C9RA03487K
crossref_primary_10_3390_nano8010015
crossref_primary_10_1021_acs_chemrev_9b00550
crossref_primary_10_1002_anie_202400985
crossref_primary_10_1021_acscatal_3c05454
crossref_primary_10_1039_C9NJ05802H
crossref_primary_10_3390_nano8110916
crossref_primary_10_1016_j_ccst_2025_100365
crossref_primary_10_1021_acscatal_3c04464
crossref_primary_10_1007_s42452_020_1979_x
crossref_primary_10_1002_anie_201710190
crossref_primary_10_1039_C9CS00299E
crossref_primary_10_1002_anie_202017153
crossref_primary_10_1016_j_chemphys_2021_111278
crossref_primary_10_1021_acs_chemmater_1c02564
crossref_primary_10_1021_acscatal_3c05441
crossref_primary_10_1063_5_0189579
crossref_primary_10_1016_j_est_2023_109518
crossref_primary_10_1016_j_mcat_2024_114127
crossref_primary_10_1002_anie_202005277
crossref_primary_10_1016_j_polymer_2022_124752
crossref_primary_10_1021_acs_inorgchem_8b02315
crossref_primary_10_1002_ange_201905591
crossref_primary_10_1016_j_ccr_2021_213875
crossref_primary_10_1016_j_dyepig_2024_112531
crossref_primary_10_1016_j_enchem_2022_100094
crossref_primary_10_1002_ange_201710190
crossref_primary_10_1002_smll_202307828
crossref_primary_10_1039_C9CC05710B
crossref_primary_10_1039_D0CS00620C
crossref_primary_10_2139_ssrn_3967902
crossref_primary_10_1016_j_cej_2022_140121
crossref_primary_10_1039_D0TA00818D
crossref_primary_10_1016_S1872_2067_18_63057_8
crossref_primary_10_1002_anie_202200820
crossref_primary_10_1039_C9SC04875H
crossref_primary_10_1016_j_cej_2023_141740
crossref_primary_10_1002_cplu_202400139
crossref_primary_10_1021_jacs_8b00571
crossref_primary_10_1002_chem_202005167
crossref_primary_10_1039_D0NJ01735C
crossref_primary_10_1002_ange_202316092
crossref_primary_10_1039_C9QO00382G
crossref_primary_10_1002_cnma_202100049
crossref_primary_10_1016_j_snb_2019_127372
crossref_primary_10_1038_s42004_018_0098_8
crossref_primary_10_1021_acscatal_2c01114
crossref_primary_10_1016_j_ccr_2024_215659
crossref_primary_10_1016_j_ijhydene_2020_03_254
crossref_primary_10_1002_asia_202401434
crossref_primary_10_1002_anie_202102051
crossref_primary_10_1016_j_ccr_2024_215894
crossref_primary_10_1039_D0CS01027H
crossref_primary_10_1039_D2TA03579K
crossref_primary_10_1039_D3CS00287J
crossref_primary_10_1039_C8CC05225E
crossref_primary_10_1021_acsanm_1c02053
crossref_primary_10_1080_25740881_2025_2472400
crossref_primary_10_1021_jacs_9b00665
crossref_primary_10_1007_s12274_023_5475_7
crossref_primary_10_1016_j_micron_2024_103595
crossref_primary_10_1021_acscatal_4c02738
crossref_primary_10_1002_smll_202409580
crossref_primary_10_1039_D0TA10024B
crossref_primary_10_1016_j_mtcomm_2021_102612
crossref_primary_10_1021_acs_chemrev_0c01184
crossref_primary_10_1016_j_ccr_2024_215680
crossref_primary_10_1021_acsami_0c21370
crossref_primary_10_1002_asia_201901527
crossref_primary_10_1002_marc_202000469
crossref_primary_10_1039_D0QM00274G
crossref_primary_10_1007_s11581_019_03277_x
crossref_primary_10_1002_chem_201904731
crossref_primary_10_1002_smll_202102957
crossref_primary_10_1021_acsami_8b19087
crossref_primary_10_1002_sstr_202000108
crossref_primary_10_1016_j_cej_2018_08_184
crossref_primary_10_1039_C9NJ00830F
crossref_primary_10_1021_jacs_9b13824
crossref_primary_10_1021_jacs_3c11182
crossref_primary_10_1039_C9DT01599J
crossref_primary_10_1021_acsami_1c00335
crossref_primary_10_1039_D0GC02670K
crossref_primary_10_1016_j_trechm_2019_03_001
crossref_primary_10_1002_smll_202102944
crossref_primary_10_1021_jacs_9b10787
crossref_primary_10_1038_s41467_018_07670_4
crossref_primary_10_1039_D0NR02994G
crossref_primary_10_1021_acsanm_0c01242
crossref_primary_10_1002_ange_202415759
crossref_primary_10_1016_j_ensm_2018_01_018
crossref_primary_10_1039_D0CS00009D
crossref_primary_10_1016_j_jcis_2021_05_087
crossref_primary_10_1039_C9SC04882K
crossref_primary_10_1016_j_comptc_2024_114503
crossref_primary_10_1039_D4RA02277G
crossref_primary_10_1002_agt2_420
crossref_primary_10_1016_j_electacta_2020_136918
crossref_primary_10_1002_smll_202100756
crossref_primary_10_1002_adma_202405079
crossref_primary_10_1021_jacs_3c13172
crossref_primary_10_1002_anie_202314763
crossref_primary_10_1039_D3TA06144B
crossref_primary_10_1088_1402_4896_acae40
crossref_primary_10_1021_acs_chemmater_1c02973
crossref_primary_10_1016_j_bios_2021_113553
crossref_primary_10_1039_C9TA13980J
crossref_primary_10_3390_polym15040887
crossref_primary_10_1002_adtp_201900059
crossref_primary_10_1002_anie_202114244
crossref_primary_10_1039_D1TA10991J
crossref_primary_10_1002_adhm_202100775
crossref_primary_10_1016_j_jhazmat_2021_127987
crossref_primary_10_1016_j_envres_2023_118018
crossref_primary_10_1039_C9SC04663A
crossref_primary_10_1002_asia_202401423
crossref_primary_10_1039_D1TA00396H
crossref_primary_10_1021_jacs_3c14230
crossref_primary_10_1021_acsami_0c01763
crossref_primary_10_1021_jacs_8b06291
crossref_primary_10_1039_C8CC05369C
crossref_primary_10_1002_adma_202302122
crossref_primary_10_1016_j_ijoes_2023_100225
crossref_primary_10_1002_anie_202422814
crossref_primary_10_1016_j_jece_2023_111553
crossref_primary_10_1021_jacs_0c10919
crossref_primary_10_1038_s41578_021_00287_y
crossref_primary_10_1002_anie_202207130
crossref_primary_10_1021_acsami_0c18062
crossref_primary_10_1021_acs_accounts_0c00357
crossref_primary_10_1016_j_aca_2022_340615
crossref_primary_10_1016_j_desal_2024_118206
crossref_primary_10_1134_S1070363223010255
Cites_doi 10.1073/pnas.1221824110
10.1111/j.1751-1097.1978.tb07704.x
10.1021/jacs.6b10629
10.1126/science.1120411
10.1039/C4DT02756F
10.1002/anie.201600087
10.1038/nchem.2352
10.1039/C4CS00001C
10.1021/jacs.6b01244
10.1039/C5SC00512D
10.1126/science.aal1585
10.1021/ja5037868
10.1021/jacs.5b09487
10.1002/adma.201505004
10.1038/nchem.695
10.1021/jacs.6b05568
10.1002/anie.201108462
10.1039/c3py01430d
10.1021/ja8096256
10.1039/b901221d
10.1021/acs.chemrev.6b00439
10.1021/jacs.6b00652
10.1002/anie.201106203
10.1021/acs.chemmater.5b02902
10.1038/ncomms9508
10.1021/jacs.5b10754
10.1021/jacs.6b10316
10.1021/ja053689m
10.1002/anie.201509014
10.1039/C3CC47652A
10.1038/nchem.1730
10.1126/science.aac8343
10.1126/science.aad4011
10.1021/jacs.6b06546
10.1021/ar800124u
10.1039/C5CS00878F
10.1002/cssc.201700120
10.1021/ja805064f
10.1021/jacs.6b07714
10.1021/ja409033p
10.1039/c3cc45217d
10.1002/anie.201606155
10.1021/jacs.5b04147
10.1039/C3CS60443H
10.1021/cm201140r
10.1246/cl.1993.949
10.1038/nchem.2444
10.1002/chem.201203753
10.1021/jacs.6b07516
10.1039/C2CS35072F
10.1002/anie.201310500
10.1016/j.cclet.2016.05.020
10.1021/ja510926w
10.1039/C3CC46767H
10.1021/acsmacrolett.6b00805
10.1002/ijch.201500026
10.1039/C6CC05748A
10.1016/j.elecom.2015.01.021
10.1021/acscentsci.6b00220
10.1021/jacs.6b09563
10.1021/ja5092936
10.1002/chem.201405330
10.1126/science.1139915
10.1038/natrevmats.2016.68
10.1002/anie.201208514
10.1039/c5sc00512d
10.1039/c3cc46767h
10.1039/c4cs00001c
10.1039/c6cc05748a
10.1038/NCHEM.695
10.1038/NCHEM.2352
10.1039/c3cs60443h
10.1039/c4dt02756f
10.1038/NCHEM.1730
10.1039/c3cc47652a
10.1038/NCHEM.2444
10.1039/c5cs00878f
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
GYRTJ
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.7b04141
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2017
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA
MEDLINE - Academic
Web of Science
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 8709
ExternalDocumentID 28595005
000404809600048
10_1021_jacs_7b04141
a477792863
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Outstanding Youth Foundation of Hubei Province
  grantid: 2015CFA045
– fundername: Beijing National Laboratory for Molecular Sciences
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 21572170; 21573165
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
17B
1KM
AAYWT
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a423t-4fa5ccd08c2f8c806c73b334a49934bd83367304fffd77c669378d866a2952a93
IEDL.DBID ACS
ISICitedReferencesCount 405
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000404809600048
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 04:36:12 EDT 2025
Mon Jul 21 09:26:08 EDT 2025
Thu Apr 03 07:01:33 EDT 2025
Wed Aug 06 04:13:57 EDT 2025
Fri Aug 29 16:03:47 EDT 2025
Thu Apr 24 23:09:50 EDT 2025
Tue Jul 01 03:21:15 EDT 2025
Thu Aug 27 13:42:53 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords PLATFORM
CATALYSIS
DESIGN
REDUCTION
DIFFERENT KINDS
CONSTRUCTION
POLYMERIZATION
GENERATION
CRYSTALLINE
STORAGE APPLICATIONS
Language English
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-a423t-4fa5ccd08c2f8c806c73b334a49934bd83367304fffd77c669378d866a2952a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0326-2674
0000-0003-3417-9283
PMID 28595005
PQID 1908437137
PQPubID 23479
PageCount 5
ParticipantIDs pubmed_primary_28595005
proquest_miscellaneous_1908437137
webofscience_primary_000404809600048
crossref_primary_10_1021_jacs_7b04141
acs_journals_10_1021_jacs_7b04141
crossref_citationtrail_10_1021_jacs_7b04141
webofscience_primary_000404809600048CitationCount
proquest_miscellaneous_2116873366
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-28
PublicationDateYYYYMMDD 2017-06-28
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-28
  day: 28
PublicationDecade 2010
PublicationPlace WASHINGTON
PublicationPlace_xml – name: WASHINGTON
– name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAbbrev J AM CHEM SOC
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2017
Publisher American Chemical Society
Amer Chemical Soc
Publisher_xml – name: American Chemical Society
– name: Amer Chemical Soc
References ref17/cit17b
ref1/cit1e
ref1/cit1d
ref17/cit17a
ref13/cit13a
ref16/cit16
ref13/cit13b
ref13/cit13c
ref13/cit13d
ref13/cit13e
ref13/cit13f
ref23/cit23
ref2/cit2
ref1/cit1a
ref1/cit1c
ref1/cit1b
ref20/cit20
ref5/cit5b
ref5/cit5c
ref5/cit5a
ref19/cit19
ref21/cit21
ref7/cit7e
ref7/cit7d
ref3/cit3b
ref3/cit3c
ref11/cit11b
ref3/cit3a
ref3/cit3d
ref11/cit11a
ref7/cit7c
ref7/cit7b
ref7/cit7a
ref18/cit18
ref15/cit15a
ref9/cit9c
ref9/cit9b
ref9/cit9a
ref15/cit15b
ref8/cit8a
ref10/cit10a
ref10/cit10b
ref8/cit8b
ref10/cit10c
ref9/cit9i
ref9/cit9h
ref14/cit14
ref9/cit9g
ref9/cit9f
ref9/cit9e
ref9/cit9d
ref6/cit6d
ref4/cit4a
ref6/cit6e
ref4/cit4b
ref4/cit4c
ref24/cit24c
ref24/cit24b
ref12/cit12
ref24/cit24a
ref4/cit4d
ref4/cit4e
ref6/cit6a
ref6/cit6b
ref6/cit6c
Ding, SY (WOS:000371945800035) 2016; 138
Liu, YZ (WOS:000368440500035) 2016; 351
OSUKA, A (WOS:A1993LH55800008) 1993
Pang, ZF (WOS:000374274100003) 2016; 138
Diercks, CS (WOS:000395181700031) 2017; 355
Che, CM (WOS:000267571100002) 2009
Cote, AP (WOS:000233437300040) 2005; 310
Jeong, HG (WOS:000371987400002) 2016; 56
Ma, WJ (WOS:000352850700015) 2015; 52
Dogru, M (WOS:000335460800001) 2014; 50
Fang, QR (WOS:000332270000006) 2014; 53
Ganesan, P (WOS:000232780900001) 2005; 127
Xu, H (WOS:000363468600012) 2015; 7
Zhou, TY (WOS:000344906100020) 2014; 136
Hunt, JR (WOS:000258950500019) 2008; 130
Zeng, YF (WOS:000348690100004) 2015; 137
Segura, JL (WOS:000385181300007) 2016; 45
Fang, QR (WOS:000357964400010) 2015; 137
Zhang, YB (WOS:000326774300024) 2013; 135
Tan, J (WOS:000387016200010) 2016; 55
Bunck, DN (WOS:000300446100025) 2012; 51
Wang, HM (WOS:000385327300033) 2016; 27
Lin, S (WOS:000360968400039) 2015; 349
Wan, S (WOS:000295058600002) 2011; 23
Huang, N (WOS:000386259300004) 2016; 1
Feng, LJ (WOS:000333122600048) 2014; 5
Rabbani, MG (WOS:000315399700012) 2013; 19
Crowe, JW (WOS:000381715700014) 2016; 138
Xu, HS (WOS:000383410700017) 2016; 138
Vazquez-Molina, DA (WOS:000381332300008) 2016; 138
Li, H (WOS:000387625300041) 2016; 138
Dogru, M (WOS:000315503800027) 2013; 52
Kang, ZX (WOS:000371852000006) 2016; 28
Du, Y (WOS:000369854000023) 2016; 55
Alahakoon, SB (WOS:000402122100002) 2017; 10
Ding, S. Y. (000404809600048.15) 2013; 42
CANNISTRARO, S (WOS:A1978FP84900018) 1978; 28
Vyas, VS (WOS:000363149200001) 2015; 6
O'Keeffe, M (WOS:000261767600022) 2008; 41
Higashino, T (WOS:000346412500002) 2015; 44
Ding, HM (WOS:000344358900012) 2014; 20
Gao, WY (WOS:000340514600019) 2014; 43
Zeng, YF (WOS:000374336700001) 2016; 28
Zhang, YW (WOS:000384202000011) 2016; 52
Bertrand, GHV (WOS:000318031900025) 2013; 110
Uribe-Romo, FJ (WOS:000264806300009) 2009; 131
Tanaka, T (WOS:000349317100008) 2015; 44
Halder, A (WOS:000383252900038) 2016; 55
Ascherl, L (WOS:000372505500008) 2016; 8
Wang, XR (WOS:000384518400008) 2016; 138
Ma, HP (WOS:000324928000020) 2013; 49
Spitler, EL (WOS:000280199500019) 2010; 2
El-Kaderi, HM (WOS:000245654500048) 2007; 316
Beaudoin, D (WOS:000324829200007) 2013; 5
Das, G (WOS:000356176200034) 2015; 6
Sun, Q (WOS:000389623800041) 2016; 138
Baldwin, LA (WOS:000388913600010) 2016; 138
Das, S (WOS:000393845700009) 2017; 117
Zhu, YL (WOS:000364355900013) 2015; 137
Lin, GQ (WOS:000372477700011) 2016; 138
Smith, BJ (WOS:000337720200044) 2014; 136
Mulzer, CR (WOS:000384750900017) 2016; 2
Feng, X (WOS:000301173800011) 2012; 51
Cai, SL (WOS:000390621100010) 2016; 5
Song, JR (WOS:000328884500006) 2014; 50
References_xml – ident: ref6/cit6c
  doi: 10.1073/pnas.1221824110
– ident: ref23/cit23
  doi: 10.1111/j.1751-1097.1978.tb07704.x
– ident: ref9/cit9d
  doi: 10.1021/jacs.6b10629
– ident: ref2/cit2
  doi: 10.1126/science.1120411
– ident: ref15/cit15a
  doi: 10.1039/C4DT02756F
– ident: ref9/cit9f
  doi: 10.1002/anie.201600087
– ident: ref4/cit4c
  doi: 10.1038/nchem.2352
– ident: ref24/cit24a
  doi: 10.1039/C4CS00001C
– ident: ref9/cit9b
  doi: 10.1021/jacs.6b01244
– ident: ref5/cit5c
  doi: 10.1039/C5SC00512D
– ident: ref1/cit1a
  doi: 10.1126/science.aal1585
– ident: ref8/cit8b
  doi: 10.1021/ja5037868
– ident: ref9/cit9h
  doi: 10.1021/jacs.5b09487
– ident: ref3/cit3a
  doi: 10.1002/adma.201505004
– ident: ref6/cit6e
  doi: 10.1038/nchem.695
– ident: ref7/cit7c
  doi: 10.1021/jacs.6b05568
– ident: ref10/cit10b
  doi: 10.1002/anie.201108462
– ident: ref24/cit24b
  doi: 10.1039/c3py01430d
– ident: ref10/cit10c
  doi: 10.1021/ja8096256
– ident: ref24/cit24c
  doi: 10.1039/b901221d
– ident: ref1/cit1b
  doi: 10.1021/acs.chemrev.6b00439
– ident: ref14/cit14
  doi: 10.1021/jacs.6b00652
– ident: ref17/cit17a
  doi: 10.1002/anie.201106203
– ident: ref3/cit3b
  doi: 10.1021/acs.chemmater.5b02902
– ident: ref4/cit4d
  doi: 10.1038/ncomms9508
– ident: ref5/cit5a
  doi: 10.1021/jacs.5b10754
– ident: ref13/cit13b
  doi: 10.1021/jacs.6b10316
– ident: ref18/cit18
  doi: 10.1021/ja053689m
– ident: ref7/cit7a
  doi: 10.1002/anie.201509014
– ident: ref3/cit3c
  doi: 10.1039/C3CC47652A
– ident: ref13/cit13e
  doi: 10.1038/nchem.1730
– ident: ref4/cit4e
  doi: 10.1126/science.aac8343
– ident: ref13/cit13c
  doi: 10.1126/science.aad4011
– ident: ref9/cit9i
  doi: 10.1021/jacs.6b06546
– ident: ref20/cit20
  doi: 10.1021/ar800124u
– ident: ref1/cit1c
  doi: 10.1039/C5CS00878F
– ident: ref7/cit7d
  doi: 10.1002/cssc.201700120
– ident: ref13/cit13f
  doi: 10.1021/ja805064f
– ident: ref4/cit4b
  doi: 10.1021/jacs.6b07714
– ident: ref10/cit10a
  doi: 10.1021/ja409033p
– ident: ref13/cit13d
  doi: 10.1039/c3cc45217d
– ident: ref9/cit9e
  doi: 10.1002/anie.201606155
– ident: ref13/cit13a
  doi: 10.1021/jacs.5b04147
– ident: ref15/cit15b
  doi: 10.1039/C3CS60443H
– ident: ref17/cit17b
  doi: 10.1021/cm201140r
– ident: ref19/cit19
  doi: 10.1246/cl.1993.949
– ident: ref8/cit8a
  doi: 10.1038/nchem.2444
– ident: ref3/cit3d
  doi: 10.1002/chem.201203753
– ident: ref4/cit4a
  doi: 10.1021/jacs.6b07516
– ident: ref1/cit1e
  doi: 10.1039/C2CS35072F
– ident: ref11/cit11b
  doi: 10.1002/anie.201310500
– ident: ref16/cit16
  doi: 10.1016/j.cclet.2016.05.020
– ident: ref9/cit9g
  doi: 10.1021/ja510926w
– ident: ref6/cit6a
  doi: 10.1039/C3CC46767H
– ident: ref9/cit9a
  doi: 10.1021/acsmacrolett.6b00805
– ident: ref21/cit21
  doi: 10.1002/ijch.201500026
– ident: ref5/cit5b
  doi: 10.1039/C6CC05748A
– ident: ref7/cit7e
  doi: 10.1016/j.elecom.2015.01.021
– ident: ref7/cit7b
  doi: 10.1021/acscentsci.6b00220
– ident: ref11/cit11a
  doi: 10.1021/jacs.6b09563
– ident: ref9/cit9c
  doi: 10.1021/ja5092936
– ident: ref6/cit6b
  doi: 10.1002/chem.201405330
– ident: ref12/cit12
  doi: 10.1126/science.1139915
– ident: ref1/cit1d
  doi: 10.1038/natrevmats.2016.68
– ident: ref6/cit6d
  doi: 10.1002/anie.201208514
– volume: 28
  start-page: 257
  year: 1978
  ident: WOS:A1978FP84900018
  article-title: EPR STUDIES ON SINGLET OXYGEN PRODUCTION BY PORPHYRINS
  publication-title: PHOTOCHEMISTRY AND PHOTOBIOLOGY
– volume: 138
  start-page: 3031
  year: 2016
  ident: WOS:000371945800035
  article-title: Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(II)
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.5b10754
– volume: 110
  start-page: 4923
  year: 2013
  ident: WOS:000318031900025
  article-title: Thiophene-based covalent organic frameworks
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  doi: 10.1073/pnas.1221824110
– volume: 2
  start-page: 667
  year: 2016
  ident: WOS:000384750900017
  article-title: Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework
  publication-title: ACS CENTRAL SCIENCE
  doi: 10.1021/acscentsci.6b00220
– volume: 138
  start-page: 4710
  year: 2016
  ident: WOS:000374274100003
  article-title: Construction of Covalent Organic Frameworks Bearing Three Different Kinds of Pores through the Heterostructural Mixed Linker Strategy
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b01244
– volume: 136
  start-page: 8783
  year: 2014
  ident: WOS:000337720200044
  article-title: Mechanistic Studies of Two-Dimensional Covalent Organic Frameworks Rapidly Polymerized from Initially Homogenous Conditions
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja5037868
– volume: 51
  start-page: 1885
  year: 2012
  ident: WOS:000300446100025
  article-title: Internal Functionalization of Three-Dimensional Covalent Organic Frameworks
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201108462
– volume: 137
  start-page: 1020
  year: 2015
  ident: WOS:000348690100004
  article-title: Covalent Organic Frameworks Formed with Two Types of Covalent Bonds Based on Orthogonal Reactions
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja510926w
– volume: 6
  start-page: 3931
  year: 2015
  ident: WOS:000356176200034
  article-title: Chemical sensing in two dimensional porous covalent organic nanosheets
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c5sc00512d
– volume: 50
  start-page: 5531
  year: 2014
  ident: WOS:000335460800001
  article-title: On the road towards electroactive covalent organic frameworks
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c3cc46767h
– volume: 43
  start-page: 5841
  year: 2014
  ident: WOS:000340514600019
  article-title: Metal-metalloporphyrin frameworks: a resurging class of functional materials
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c4cs00001c
– start-page: 949
  year: 1993
  ident: WOS:A1993LH55800008
  article-title: AN EFFICIENT ONE-POT SYNTHETIC PROCEDURE OF MULTIPLE PORPHYRIN-CYCLIZATION
  publication-title: CHEMISTRY LETTERS
– volume: 27
  start-page: 1376
  year: 2016
  ident: WOS:000385327300033
  article-title: Two-dimensional porphyrin- and phthalocyanine-based covalent organic frameworks
  publication-title: CHINESE CHEMICAL LETTERS
  doi: 10.1016/j.cclet.2016.05.020
– volume: 28
  start-page: 2855
  year: 2016
  ident: WOS:000374336700001
  article-title: Covalent Organic Frameworks for CO2 Capture
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201505004
– volume: 6
  start-page: ARTN 8508
  year: 2015
  ident: WOS:000363149200001
  article-title: A tunable azine covalent organic framework platform for visible light-induced hydrogen generation
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms9508
– volume: 138
  start-page: 10120
  year: 2016
  ident: WOS:000381715700014
  article-title: Luminescent Covalent Organic Frameworks Containing a Homogeneous and Heterogeneous Distribution of Dehydrobenzoannulene Vertex Units
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b06546
– volume: 56
  start-page: 110
  year: 2016
  ident: WOS:000371987400002
  article-title: Design and Properties of Porphyrin-based Singlet Oxygen Generator
  publication-title: ISRAEL JOURNAL OF CHEMISTRY
  doi: 10.1002/ijch.201500026
– volume: 316
  start-page: 268
  year: 2007
  ident: WOS:000245654500048
  article-title: Designed synthesis of 3D covalent organic frameworks
  publication-title: SCIENCE
  doi: 10.1126/science.1139915
– volume: 19
  start-page: 3324
  year: 2013
  ident: WOS:000315399700012
  article-title: A 2D Mesoporous Imine-Linked Covalent Organic Framework for High Pressure Gas Storage Applications
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201203753
– volume: 52
  start-page: 11088
  year: 2016
  ident: WOS:000384202000011
  article-title: Covalent organic frameworks as pH responsive signaling scaffolds
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c6cc05748a
– volume: 23
  start-page: 4094
  year: 2011
  ident: WOS:000295058600002
  article-title: Covalent Organic Frameworks with High Charge Carrier Mobility
  publication-title: CHEMISTRY OF MATERIALS
  doi: 10.1021/cm201140r
– volume: 52
  start-page: 53
  year: 2015
  ident: WOS:000352850700015
  article-title: An efficient electrocatalyst for oxygen reduction reaction derived from a Co-porphyrin-based covalent organic framework
  publication-title: ELECTROCHEMISTRY COMMUNICATIONS
  doi: 10.1016/j.elecom.2015.01.021
– volume: 138
  start-page: 9767
  year: 2016
  ident: WOS:000381332300008
  article-title: Mechanically Shaped Two-Dimensional Covalent Organic Frameworks Reveal Crystallographic Alignment and Fast Li-Ion Conductivity
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b05568
– volume: 117
  start-page: 1515
  year: 2017
  ident: WOS:000393845700009
  article-title: Porous Organic Materials: Strategic Design and Structure-Function Correlation
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.6b00439
– volume: 2
  start-page: 672
  year: 2010
  ident: WOS:000280199500019
  article-title: Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/NCHEM.695
– volume: 55
  start-page: 1737
  year: 2016
  ident: WOS:000369854000023
  article-title: Ionic Covalent Organic Frameworks with Spiroborate Linkage
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201509014
– volume: 137
  start-page: 8352
  year: 2015
  ident: WOS:000357964400010
  article-title: 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.5b04147
– volume: 52
  start-page: 2920
  year: 2013
  ident: WOS:000315503800027
  article-title: A Photoconductive Thienothiophene-Based Covalent Organic Framework Showing Charge Transfer Towards Included Fullerene
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201208514
– volume: 10
  start-page: 2116
  year: 2017
  ident: WOS:000402122100002
  article-title: Design Principles for Covalent Organic Frameworks in Energy Storage Applications
  publication-title: CHEMSUSCHEM
  doi: 10.1002/cssc.201700120
– volume: 310
  start-page: 1166
  year: 2005
  ident: WOS:000233437300040
  article-title: Porous, crystalline, covalent organic frameworks
  publication-title: SCIENCE
  doi: 10.1126/science.1120411
– volume: 137
  start-page: 13772
  year: 2015
  ident: WOS:000364355900013
  article-title: Desymmetrized Vertex Design for the Synthesis of Covalent Organic Frameworks with Periodically Heterogeneous Pore Structures
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.5b09487
– volume: 349
  start-page: 1208
  year: 2015
  ident: WOS:000360968400039
  article-title: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water
  publication-title: SCIENCE
  doi: 10.1126/science.aac8343
– start-page: 3996
  year: 2009
  ident: WOS:000267571100002
  article-title: Metalloporphyrin-based oxidation systems: from biomimetic reactions to application in organic synthesis
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/b901221d
– volume: 7
  start-page: 905
  year: 2015
  ident: WOS:000363468600012
  article-title: Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/NCHEM.2352
– volume: 44
  start-page: 943
  year: 2015
  ident: WOS:000349317100008
  article-title: Conjugated porphyrin arrays: synthesis, properties and applications for functional materials
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c3cs60443h
– volume: 51
  start-page: 2618
  year: 2012
  ident: WOS:000301173800011
  article-title: High-Rate Charge-Carrier Transport in Porphyrin Covalent Organic Frameworks: Switching from Hole to Electron to Ambipolar Conduction
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201106203
– volume: 351
  start-page: 365
  year: 2016
  ident: WOS:000368440500035
  article-title: Weaving of organic threads into a crystalline covalent organic framework
  publication-title: SCIENCE
  doi: 10.1126/science.aad4011
– volume: 5
  start-page: 1348
  year: 2016
  ident: WOS:000390621100010
  article-title: Rationally Designed 2D Covalent Organic Framework with a Brick-Wall Topology
  publication-title: ACS MACRO LETTERS
  doi: 10.1021/acsmacrolett.6b00805
– volume: 138
  start-page: 15790
  year: 2016
  ident: WOS:000389623800041
  article-title: Flexibility Matters: Cooperative Active Sites in Covalent Organic Framework and Threaded Ionic Polymer
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b10629
– volume: 135
  start-page: 16336
  year: 2013
  ident: WOS:000326774300024
  article-title: Single-Crystal Structure of a Covalent Organic Framework
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja409033p
– volume: 55
  start-page: 7806
  year: 2016
  ident: WOS:000383252900038
  article-title: Decoding the Morphological Diversity in Two Dimensional Crystalline Porous Polymers by Core Planarity Modulation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201600087
– volume: 28
  start-page: 1277
  year: 2016
  ident: WOS:000371852000006
  article-title: Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO2 Separation
  publication-title: CHEMISTRY OF MATERIALS
  doi: 10.1021/acs.chemmater.5b02902
– volume: 138
  start-page: 3302
  year: 2016
  ident: WOS:000372477700011
  article-title: A Pyrene-Based, Fluorescent Three-Dimensional Covalent Organic Framework
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b00652
– volume: 44
  start-page: 448
  year: 2015
  ident: WOS:000346412500002
  article-title: Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/c4dt02756f
– volume: 5
  start-page: 830
  year: 2013
  ident: WOS:000324829200007
  article-title: Constructing monocrystalline covalent organic networks by polymerization
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/NCHEM.1730
– volume: 138
  start-page: 11489
  year: 2016
  ident: WOS:000383410700017
  article-title: Constructing Crystalline Covalent Organic Frameworks from Chiral Building Blocks
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b07516
– volume: 50
  start-page: 788
  year: 2014
  ident: WOS:000328884500006
  article-title: Thermally/hydrolytically stable covalent organic frameworks from a rigid macrocyclic host
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c3cc47652a
– volume: 130
  start-page: 11872
  year: 2008
  ident: WOS:000258950500019
  article-title: Reticular synthesis of covalent organic borosilicate frameworks
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja805064f
– volume: 355
  start-page: ARTN eaal1585
  year: 2017
  ident: WOS:000395181700031
  article-title: The atom, the molecule, and the covalent organic framework
  publication-title: SCIENCE
  doi: 10.1126/science.aal1585
– volume: 53
  start-page: 2878
  year: 2014
  ident: WOS:000332270000006
  article-title: 3D Microporous Base-Functionalized Covalent Organic Frameworks for Size-Selective Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201310500
– volume: 131
  start-page: 4570
  year: 2009
  ident: WOS:000264806300009
  article-title: A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja8096256
– volume: 127
  start-page: 14530
  year: 2005
  ident: WOS:000232780900001
  article-title: Tetrahedral n-type materials: Efficient quenching of the excitation of p-type polymers in amorphous films
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja053689m
– volume: 8
  start-page: 310
  year: 2016
  ident: WOS:000372505500008
  article-title: Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/NCHEM.2444
– volume: 138
  start-page: 14783
  year: 2016
  ident: WOS:000387625300041
  article-title: Three-Dimensional Covalent Organic Frameworks with Dual Linkages for Bifunctional Cascade Catalysis
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b09563
– volume: 138
  start-page: 12332
  year: 2016
  ident: WOS:000384518400008
  article-title: Homochiral 2D Porous Covalent Organic Frameworks for Heterogeneous Asymmetric Catalysis
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b07714
– volume: 45
  start-page: 5635
  year: 2016
  ident: WOS:000385181300007
  article-title: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c5cs00878f
– volume: 20
  start-page: 14614
  year: 2014
  ident: WOS:000344358900012
  article-title: A Tetrathiafulvalene-Based Electroactive Covalent Organic Framework
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201405330
– volume: 138
  start-page: 15134
  year: 2016
  ident: WOS:000388913600010
  article-title: Metalation of a Mesoporous Three-Dimensional Covalent Organic Framework
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b10316
– volume: 5
  start-page: 3081
  year: 2014
  ident: WOS:000333122600048
  article-title: Adsorption performance and catalytic activity of porous conjugated polyporphyrins via carbazole-based oxidative coupling polymerization
  publication-title: POLYMER CHEMISTRY
  doi: 10.1039/c3py01430d
– volume: 42
  start-page: 548
  year: 2013
  ident: 000404809600048.15
  publication-title: Chem. Soc. Rev
– volume: 41
  start-page: 1782
  year: 2008
  ident: WOS:000261767600022
  article-title: The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar800124u
– volume: 1
  start-page: ARTN 16068
  year: 2016
  ident: WOS:000386259300004
  article-title: Covalent organic frameworks: a materials platform for structural and functional designs
  publication-title: NATURE REVIEWS MATERIALS
  doi: 10.1038/natrevmats.2016.68
– volume: 49
  start-page: 9773
  year: 2013
  ident: WOS:000324928000020
  article-title: A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C-2 hydrocarbon/CH4 selectivity
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c3cc45217d
– volume: 55
  start-page: 13979
  year: 2016
  ident: WOS:000387016200010
  article-title: Manipulation of Amorphous-to-Crystalline Transformation: Towards the Construction of Covalent Organic Framework Hybrid Microspheres with NIR Photothermal Conversion Ability
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201606155
– volume: 136
  start-page: 15885
  year: 2014
  ident: WOS:000344906100020
  article-title: One-Step Construction of Two Different Kinds of Pores in a 2D Covalent Organic Framework
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja5092936
SSID ssj0004281
Score 2.655487
Snippet The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge....
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8705
SubjectTerms catalysts
Chemistry
Chemistry, Multidisciplinary
condensation reactions
imines
photocatalysis
photosensitivity
Physical Sciences
porous media
porphyrins
Science & Technology
singlet oxygen
topology
Title 3D Porphyrin-Based Covalent Organic Frameworks
URI http://dx.doi.org/10.1021/jacs.7b04141
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000404809600048
https://www.ncbi.nlm.nih.gov/pubmed/28595005
https://www.proquest.com/docview/1908437137
https://www.proquest.com/docview/2116873366
Volume 139
WOS 000404809600048
WOSCitedRecordID wos000404809600048
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6kHvTi-xFfRNCTpCS7m93NUaO1eBBBC97CZpMFUVKx6cVf72weVVuLvZV0QjKT2Z3vYx4LcMao0CpiuPsZkXtMm9RTYcQ8nqcqD3z8ratqi3veH7C75_D5u0B2OoNP7HwgPeqK1GeB7U9fJlwKS7Iu48fv_kcigxbmCslpU-A-fbcNQHr0OwDNoMo_A1AVbHrrcNu27NQ1Jq_dcZl29efsBMd_9NiAtQZvupe1g2zCUl5swUrcHvO2DV167T4MrbU_XgrvCoNa5sZD9D-MRm7dqandXlvCNdqBQe_mKe57zSEKnkKkVHrMqFDrzJeaGKmlz7WgKaVMIdWhLM0kpRxXOTPGZEJozhGvyExyrkgUEhXRXegUwyLfBzdSyK4MUnFiCAtlpnwaaqF9mlGbDc0cOEUdk2YRjJIqv02QX9irjeYOXLTWT3QzhdwehvE2R_p8Iv1eT9-YI3fafsgEzWdzHqrIh2N8h8iX6I8BFfNlkAOjU6EduAN7tRdMnmbn-4W4Uzlw9tMtJv9b77Nt-UgE7WboQLCIWNxobucOlAcLmO0QVonFEz73iDyCTvkxzo8RDZXpSbUUvgCXB_9t
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOMClUOgjUEqQ4FRlldiO7Rxp2tXyWiEBErfIcWKpapVFJHvh1zOTTZZHWWlvUTJJPPbY84088xngSHBlTSJw9XOqDIR1eWDiRASyzE0ZhXht22yLsRzdirO7-K4rVqdaGGxEjV-q2038Z3YBognCmyoPRURl6muIQxjFWifp9XMZJNNRj3aVlrzLc3_7NvkhW7_2Q_-By3f9UOtzhpswnre2TTX5O5g2-cA-viFyXFqdLfjQoU__ZGYuH2GlrLZhPe0PfduBAf_lX02o7x_-VMFPdHGFn07QGtE3-bO6TesP-4Su-hPcDn_fpKOgO1IhMIibmkA4E1tbhNoyp60OpVU851wYDHy4yAvNucQ5L5xzhVJWSkQvutBSGpbEzCT8M6xWk6r8Cn5iMNZyGJgzx0SsCxPy2Cob8oLT3mjhwSHqmHVTos7a3W6G0Qbd7TT34Ec_CJntOMnpaIx_C6SP59L3My6OBXKH_Xhm2H20A2KqcjLFNiShRuuMuFosgxGx1EQSKT34MjOG-d-I7S_GdcuDo5fWMX9ORkhF-hgW0tLoQbSMWNppTiwEze4S3XYA66Oby4vs4nR8vgcbjJBGKAOmv8Fq8zAt9xEnNfn3dnY8AdiDB90
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcQSNtegME2yscoEnuaemqTNEkfoezExoTQNiTeqjRppGlT70R7L_vrZ_faY3ycxN6q1m3jxI5t2f4F4FhwZU0mcPfzqoqE9WVk0kxEsipNlcR4bbtqi0t5fi2-3KQ3K5AMvTA4iAa_1HRJfNLqqfM9wgBBBeEDVcYioVb1NcrYUbx1kn-_a4VkOhk8XqUl72vdH75Ntsg2923RIwfzSVvU2Z3xBnxbjLgrN_k1mrXlyP55AOb4XyxtwnrvhYYnc7F5DStVvQUv8-Hwt20Y8bPwakJrcPuzjk7R1Lkwn6BUoo0K5_2bNhwPhV3NG7gef_qRn0f90QqRQf-pjYQ3qbUu1pZ5bXUsreIl58JgAMRF6TTnEnVfeO-dUlZK9GK001IalqXMZPwtrNaTutqBMDMYc3kM0JlnItXOxDy1ysbcccqRugCOkMeiV42m6LLeDKMOuttzHsDHYSEK22OT0xEZv5dQf1hQT-eYHEvojoY1LXD6KBNi6moywzFksUYpTbhaToORsdQEFikDeDcXiMXfCPUvxf0rgON_JWTxnASRmvUxPKQtMoDkOWR5zzmhEbS7z5i2Q3hxdTYuvn6-vNiDV4wcjlhGTO_Dans7qw7QXWrL952C_AWQJApg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Porphyrin-Based+Covalent+Organic+Frameworks&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Lin%2C+Guiqing&rft.au=Ding%2C+Huimin&rft.au=Chen%2C+Rufan&rft.au=Peng%2C+Zhengkang&rft.date=2017-06-28&rft.pub=Amer+Chemical+Soc&rft.issn=0002-7863&rft.volume=139&rft.issue=25&rft.spage=8705&rft.epage=8709&rft_id=info:doi/10.1021%2Fjacs.7b04141&rft_id=info%3Apmid%2F28595005&rft.externalDBID=n%2Fa&rft.externalDocID=000404809600048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon