A Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis

The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 144; no. 3; pp. 1205 - 1217
Main Authors Gensch, Tobias, dos Passos Gomes, Gabriel, Friederich, Pascal, Peters, Ellyn, Gaudin, Théophile, Pollice, Robert, Jorner, Kjell, Nigam, AkshatKumar, Lindner-D’Addario, Michael, Sigman, Matthew S, Aspuru-Guzik, Alán
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure–property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce kraken, a discovery platform covering monodentate organophosphorus­(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the application of kraken to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis can be used to accelerate ligand selection during reaction optimization.
AbstractList The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure-property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce , a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the application of to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis can be used to accelerate ligand selection during reaction optimization.
The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure-property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce kraken, a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the application of kraken to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis can be used to accelerate ligand selection during reaction optimization.The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure-property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce kraken, a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the application of kraken to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis can be used to accelerate ligand selection during reaction optimization.
The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure–property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce kraken, a discovery platform covering monodentate organophosphorus­(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the application of kraken to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis can be used to accelerate ligand selection during reaction optimization.
The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure–property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce kraken, a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the application of kraken to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis can be used to accelerate ligand selection during reaction optimization.
Author Peters, Ellyn
Gaudin, Théophile
Gensch, Tobias
Jorner, Kjell
Sigman, Matthew S
Pollice, Robert
dos Passos Gomes, Gabriel
Nigam, AkshatKumar
Aspuru-Guzik, Alán
Lindner-D’Addario, Michael
Friederich, Pascal
AuthorAffiliation Department of Chemistry
Early Chemical Development, Pharmaceutical Sciences, R&D
TU Berlin
Institute of Nanotechnology
Chemical Physics Theory Group, Department of Chemistry
AstraZeneca
Department of Computer Science
Lebovic Fellow
University of Toronto
Vector Institute for Artificial Intelligence
Canadian Institute for Advanced Research (CIFAR)
IBM Research Zurich
AuthorAffiliation_xml – name: Department of Computer Science
– name: Vector Institute for Artificial Intelligence
– name: Department of Chemistry
– name: TU Berlin
– name: Canadian Institute for Advanced Research (CIFAR)
– name: University of Toronto
– name: Early Chemical Development, Pharmaceutical Sciences, R&D
– name: Lebovic Fellow
– name: IBM Research Zurich
– name: AstraZeneca
– name: Chemical Physics Theory Group, Department of Chemistry
– name: Institute of Nanotechnology
Author_xml – sequence: 1
  givenname: Tobias
  orcidid: 0000-0002-1937-0285
  surname: Gensch
  fullname: Gensch, Tobias
  email: tobias.gensch@tu-berlin.de
  organization: TU Berlin
– sequence: 2
  givenname: Gabriel
  orcidid: 0000-0002-8235-5969
  surname: dos Passos Gomes
  fullname: dos Passos Gomes, Gabriel
  organization: Vector Institute for Artificial Intelligence
– sequence: 3
  givenname: Pascal
  orcidid: 0000-0003-4465-1465
  surname: Friederich
  fullname: Friederich, Pascal
  organization: Institute of Nanotechnology
– sequence: 4
  givenname: Ellyn
  surname: Peters
  fullname: Peters, Ellyn
  organization: Department of Chemistry
– sequence: 5
  givenname: Théophile
  surname: Gaudin
  fullname: Gaudin, Théophile
  organization: IBM Research Zurich
– sequence: 6
  givenname: Robert
  orcidid: 0000-0001-8836-6266
  surname: Pollice
  fullname: Pollice, Robert
  organization: University of Toronto
– sequence: 7
  givenname: Kjell
  surname: Jorner
  fullname: Jorner, Kjell
  organization: AstraZeneca
– sequence: 8
  givenname: AkshatKumar
  orcidid: 0000-0002-5152-2082
  surname: Nigam
  fullname: Nigam, AkshatKumar
  organization: University of Toronto
– sequence: 9
  givenname: Michael
  surname: Lindner-D’Addario
  fullname: Lindner-D’Addario, Michael
  organization: University of Toronto
– sequence: 10
  givenname: Matthew S
  orcidid: 0000-0002-5746-8830
  surname: Sigman
  fullname: Sigman, Matthew S
  email: sigman@chem.utah.edu
  organization: Department of Chemistry
– sequence: 11
  givenname: Alán
  orcidid: 0000-0002-8277-4434
  surname: Aspuru-Guzik
  fullname: Aspuru-Guzik, Alán
  email: alan@aspuru.com
  organization: Canadian Institute for Advanced Research (CIFAR)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35020383$$D View this record in MEDLINE/PubMed
BookMark eNqNkbtPwzAQxi1URB-wMaOMDKT4ESfOWIWnVFQGmK1L4tBUSRzspFL_e1yaLggkBp91d787fbpvikaNbhRClwTPCabkdgOZnZMMxxERJ2hCOMU-JzQcoQnGmPqRCNkYTa3duDSggpyhMeOYYibYBL0svETXrVFr1dhyq7y70mZ6q8zOe62gK7SpPRe8lfmARrdrbd0zvfWWpSvk9ruZQAfVzpb2HJ0WUFl1Mfwz9P5w_5Y8-cvV43OyWPoQUNb5LIqBZQpwQahInfRc5BFjacYF5qkqREFwCpCnVEURK0gGSoCgOYc8CkhO2QxdH_a2Rn_2ynaydrJVVUGjdG8lDQMheIyD8B8oiXnAOWEOvRrQPq1VLltT1mB28ngtB9ADkBltrVGFzMoOulI3nYGykgTLvSVyb4kcLHFDNz-Gjnv_wAe9--JG96Zxh_wd_QK4Epsn
CitedBy_id crossref_primary_10_1021_acscentsci_3c01163
crossref_primary_10_1002_ange_202219070
crossref_primary_10_1021_jacs_2c09840
crossref_primary_10_1021_acscatal_3c01331
crossref_primary_10_1021_jacs_4c00374
crossref_primary_10_1021_acs_jctc_2c00331
crossref_primary_10_1021_acs_jcim_4c00104
crossref_primary_10_3390_molecules28124730
crossref_primary_10_1016_j_trechm_2023_10_005
crossref_primary_10_1002_anie_202318487
crossref_primary_10_1039_D2QO00550F
crossref_primary_10_1021_acscatal_3c06230
crossref_primary_10_1039_D4SC01986E
crossref_primary_10_1021_acscentsci_3c00512
crossref_primary_10_1021_acs_chemrev_2c00204
crossref_primary_10_1063_5_0137838
crossref_primary_10_1021_acscatal_4c03731
crossref_primary_10_1021_acs_jpclett_2c01416
crossref_primary_10_1038_s41929_024_01150_3
crossref_primary_10_1021_jacs_2c08513
crossref_primary_10_1021_acs_jctc_2c00468
crossref_primary_10_1038_s43588_024_00616_5
crossref_primary_10_1021_jacs_4c01352
crossref_primary_10_1039_D4FD00087K
crossref_primary_10_1021_acscatal_3c01582
crossref_primary_10_1021_acs_inorgchem_3c02869
crossref_primary_10_1016_j_jcat_2023_115127
crossref_primary_10_1021_acscatal_2c00267
crossref_primary_10_1021_acs_organomet_3c00464
crossref_primary_10_1021_jacs_4c04622
crossref_primary_10_1039_D4DD00099D
crossref_primary_10_1021_acs_joc_3c00314
crossref_primary_10_1002_chem_202301957
crossref_primary_10_1021_acs_organomet_2c00089
crossref_primary_10_1002_nadc_20224122539
crossref_primary_10_1002_nadc_20234135542
crossref_primary_10_1021_acscatal_4c06212
crossref_primary_10_1021_acs_jpclett_3c01214
crossref_primary_10_1039_D4SC05000B
crossref_primary_10_1021_acscatal_2c01741
crossref_primary_10_1002_cplu_202300702
crossref_primary_10_1039_D2CP03970B
crossref_primary_10_1021_jacs_3c13060
crossref_primary_10_1016_j_ces_2025_121245
crossref_primary_10_1021_acs_jpclett_3c02828
crossref_primary_10_1021_acs_organomet_3c00432
crossref_primary_10_1039_D3OB00398A
crossref_primary_10_1039_D3CP03217E
crossref_primary_10_1002_cctc_202200894
crossref_primary_10_1021_acs_inorgchem_4c03104
crossref_primary_10_1186_s13321_023_00792_y
crossref_primary_10_1021_jacs_4c13999
crossref_primary_10_1039_D4QO02363C
crossref_primary_10_1021_jacs_2c08615
crossref_primary_10_1002_anie_202216160
crossref_primary_10_1016_j_mcat_2024_113996
crossref_primary_10_1021_acscatal_3c03864
crossref_primary_10_1039_D3DD00213F
crossref_primary_10_1021_acscatal_3c05903
crossref_primary_10_1021_acscatal_2c01970
crossref_primary_10_1021_acscatal_2c01698
crossref_primary_10_1021_acs_jcim_3c01310
crossref_primary_10_1039_D4SC02327G
crossref_primary_10_1039_D3CY00083D
crossref_primary_10_1039_D3DD00249G
crossref_primary_10_1039_D4DT01430H
crossref_primary_10_1039_D4DD00114A
crossref_primary_10_1038_s41467_024_47984_0
crossref_primary_10_1039_D4SC05920D
crossref_primary_10_1021_acs_jctc_2c00404
crossref_primary_10_1016_j_xcrp_2024_102348
crossref_primary_10_1039_D2SC00174H
crossref_primary_10_1016_j_aichem_2023_100005
crossref_primary_10_1016_j_gee_2024_01_010
crossref_primary_10_1039_D2SC02496A
crossref_primary_10_1038_s41929_024_01258_6
crossref_primary_10_1021_jacs_3c14607
crossref_primary_10_1021_acs_jpca_4c04391
crossref_primary_10_1021_acs_jpca_3c02267
crossref_primary_10_1002_cssc_202202201
crossref_primary_10_1016_j_jssc_2024_124669
crossref_primary_10_1021_acs_organomet_3c00494
crossref_primary_10_1021_acscatal_2c03984
crossref_primary_10_1039_D5QO00278H
crossref_primary_10_1021_acscatal_4c07969
crossref_primary_10_1021_acsnano_4c14131
crossref_primary_10_1039_D3DD00175J
crossref_primary_10_1039_D4FD00153B
crossref_primary_10_1016_j_chempr_2024_05_009
crossref_primary_10_1021_acs_jctc_3c01313
crossref_primary_10_1021_acs_oprd_1c00357
crossref_primary_10_1021_acs_jcim_4c00424
crossref_primary_10_1021_jacs_4c09667
crossref_primary_10_1002_ange_202216160
crossref_primary_10_1021_jacs_4c07767
crossref_primary_10_1038_s41467_024_49803_y
crossref_primary_10_1063_5_0125700
crossref_primary_10_1021_acscatal_4c06003
crossref_primary_10_1016_j_ccr_2023_215632
crossref_primary_10_1021_acscatal_3c00576
crossref_primary_10_1002_qua_70036
crossref_primary_10_1021_acscatal_3c04256
crossref_primary_10_1021_acs_jpca_4c06745
crossref_primary_10_1126_sciadv_adt3013
crossref_primary_10_1039_D2SC01714H
crossref_primary_10_1002_tcr_202400148
crossref_primary_10_1021_acs_jpclett_4c01657
crossref_primary_10_1039_D2SC05089G
crossref_primary_10_1016_j_jorganchem_2023_122816
crossref_primary_10_1002_adsc_202301326
crossref_primary_10_1038_s41467_023_39531_0
crossref_primary_10_1038_s41467_024_54550_1
crossref_primary_10_1016_j_trechm_2024_06_008
crossref_primary_10_1021_acscatal_4c04873
crossref_primary_10_1039_D2DD00129B
crossref_primary_10_1039_D2SC04251G
crossref_primary_10_1039_D4OB00573B
crossref_primary_10_1021_acscatal_4c02452
crossref_primary_10_2139_ssrn_4147022
crossref_primary_10_1021_acs_joc_4c01790
crossref_primary_10_1039_D3DD00153A
crossref_primary_10_1039_D5SC00541H
crossref_primary_10_1021_acs_joc_4c01396
crossref_primary_10_1186_s13321_024_00802_7
crossref_primary_10_1021_jacs_4c01286
crossref_primary_10_1002_ejoc_202400428
crossref_primary_10_1016_j_aichem_2024_100055
crossref_primary_10_1002_ange_202318487
crossref_primary_10_1039_D4DD00284A
crossref_primary_10_1186_s13321_024_00840_1
crossref_primary_10_1039_D4SC04064C
crossref_primary_10_1021_acs_jcim_4c01728
crossref_primary_10_1002_cctc_202301475
crossref_primary_10_1021_prechem_4c00060
crossref_primary_10_1021_acscatal_3c03921
crossref_primary_10_1021_acscatal_4c00646
crossref_primary_10_1002_cplu_202400686
crossref_primary_10_1021_acs_jcim_4c01583
crossref_primary_10_1021_acscatal_4c00648
crossref_primary_10_1039_D2SC06041H
crossref_primary_10_1021_jacs_3c03403
crossref_primary_10_1016_j_aichem_2024_100068
crossref_primary_10_1039_D4DD00037D
crossref_primary_10_1039_D3SC03781A
crossref_primary_10_1002_anie_202219070
crossref_primary_10_1038_s41563_023_01707_w
crossref_primary_10_1021_acs_orglett_4c02920
crossref_primary_10_1021_acscatal_4c00650
crossref_primary_10_1021_acs_oprd_3c00025
crossref_primary_10_1021_jacs_3c06233
Cites_doi 10.1002/chem.200500891
10.1021/acscatal.8b04043
10.1016/j.commatsci.2014.05.014
10.1055/s-0037-1611636
10.1021/cr60307a002
10.1039/D0SC05251E
10.1021/ja021254i
10.1039/D0SC00445F
10.1021/jacs.1c08399
10.1088/2632-2153/abda08
10.1186/s13321-020-00460-5
10.1021/acs.jctc.9b00143
10.1038/npjcompumats.2015.10
10.1016/j.joule.2017.10.006
10.1021/acs.chemrev.8b00588
10.1021/cr60259a002
10.1039/C9CP06869D
10.1021/acscatal.0c04525
10.1038/s42004-021-00550-x
10.1126/science.aat2663
10.1039/b610123b
10.1021/ic0105258
10.1021/om060912v
10.1016/j.tet.2019.05.003
10.1021/om034016k
10.33774/chemrxiv-2021-fgm7v
10.1021/ja00713a006
10.1002/anie.201909989
10.1002/anie.201909987
10.1088/2632-2153/abdaf7
10.1021/acs.jctc.8b01176
10.1039/C7SC04679K
10.1021/jz200866s
10.1021/om100648v
10.1021/acs.accounts.0c00807
10.1021/ja00713a007
10.1021/ja0683180
10.1126/science.aar5169
10.1002/adfm.201501919
10.1021/acscatal.9b04952
10.1038/s41597-019-0080-z
10.1021/cr00002a004
10.1021/om700840h
10.1126/science.aat2299
10.1126/science.aau5631
10.1063/1.1744539
10.1039/C0SC00331J
10.1038/s41467-020-16201-z
10.1021/acs.jcim.8b00256
10.1021/acscentsci.1c00535
10.1063/1.4812323
10.1021/ic0109400
10.1021/acs.jctc.7b00118
10.1021/acs.oprd.6b00015
10.1021/ic051959w
10.1038/s41467-019-09249-z
10.1021/acscatal.9b01814
10.3891/acta.chem.scand.51-0733
10.1002/hlca.202100200
10.1126/science.abj4213
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.1c09718
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 1217
ExternalDocumentID 35020383
10_1021_jacs_1c09718
a763031160
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ET
F5P
GGK
GNL
IH2
IH9
JG
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XOL
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
.K2
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
CITATION
CUPRZ
ED~
JG~
XSW
YQT
ZCA
~02
NPM
YIN
7X8
AAYWT
7S9
L.6
ID FETCH-LOGICAL-a423t-379a3cea0f128bc09d8d733bc5805bef8f10baadb2e773f1cae8a82d5ad741d23
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Jul 10 23:01:55 EDT 2025
Tue Aug 05 11:16:45 EDT 2025
Wed Feb 19 02:27:49 EST 2025
Tue Jul 01 00:44:54 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Fri Jan 28 07:19:53 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a423t-379a3cea0f128bc09d8d733bc5805bef8f10baadb2e773f1cae8a82d5ad741d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8235-5969
0000-0002-5152-2082
0000-0001-8836-6266
0000-0002-8277-4434
0000-0003-4465-1465
0000-0002-5746-8830
0000-0002-1937-0285
PMID 35020383
PQID 2619545513
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2648859046
proquest_miscellaneous_2619545513
pubmed_primary_35020383
crossref_citationtrail_10_1021_jacs_1c09718
crossref_primary_10_1021_jacs_1c09718
acs_journals_10_1021_jacs_1c09718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-26
PublicationDateYYYYMMDD 2022-01-26
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
Duvenaud D. (ref51/cit51) 2015; 28
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
McInnes L. (ref44/cit44) 2018
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref7/cit7
References_xml – ident: ref27/cit27
  doi: 10.1002/chem.200500891
– ident: ref36/cit36
  doi: 10.1021/acscatal.8b04043
– ident: ref15/cit15
  doi: 10.1016/j.commatsci.2014.05.014
– ident: ref35/cit35
  doi: 10.1055/s-0037-1611636
– ident: ref21/cit21
  doi: 10.1021/cr60307a002
– ident: ref11/cit11
  doi: 10.1039/D0SC05251E
– ident: ref26/cit26
  doi: 10.1021/ja021254i
– ident: ref49/cit49
  doi: 10.1039/D0SC00445F
– ident: ref61/cit61
  doi: 10.1021/jacs.1c08399
– ident: ref48/cit48
  doi: 10.1088/2632-2153/abda08
– ident: ref5/cit5
  doi: 10.1186/s13321-020-00460-5
– ident: ref42/cit42
  doi: 10.1021/acs.jctc.9b00143
– ident: ref14/cit14
  doi: 10.1038/npjcompumats.2015.10
– ident: ref50/cit50
  doi: 10.1016/j.joule.2017.10.006
– ident: ref29/cit29
  doi: 10.1021/acs.chemrev.8b00588
– ident: ref23/cit23
  doi: 10.1021/cr60259a002
– ident: ref43/cit43
  doi: 10.1039/C9CP06869D
– ident: ref18/cit18
  doi: 10.1021/acscatal.0c04525
– ident: ref58/cit58
  doi: 10.1038/s42004-021-00550-x
– ident: ref4/cit4
  doi: 10.1126/science.aat2663
– ident: ref31/cit31
  doi: 10.1039/b610123b
– ident: ref25/cit25
  doi: 10.1021/ic0105258
– ident: ref33/cit33
  doi: 10.1021/om060912v
– ident: ref56/cit56
  doi: 10.1016/j.tet.2019.05.003
– ident: ref39/cit39
  doi: 10.1021/om034016k
– ident: ref60/cit60
  doi: 10.33774/chemrxiv-2021-fgm7v
– ident: ref19/cit19
  doi: 10.1021/ja00713a006
– ident: ref3/cit3
  doi: 10.1002/anie.201909989
– ident: ref2/cit2
  doi: 10.1002/anie.201909987
– ident: ref6/cit6
  doi: 10.1088/2632-2153/abdaf7
– ident: ref41/cit41
  doi: 10.1021/acs.jctc.8b01176
– ident: ref10/cit10
  doi: 10.1039/C7SC04679K
– ident: ref16/cit16
  doi: 10.1021/jz200866s
– ident: ref28/cit28
  doi: 10.1021/om100648v
– ident: ref30/cit30
  doi: 10.1021/acs.accounts.0c00807
– ident: ref20/cit20
  doi: 10.1021/ja00713a007
– year: 2018
  ident: ref44/cit44
  publication-title: arXiv
– ident: ref34/cit34
  doi: 10.1021/ja0683180
– ident: ref7/cit7
  doi: 10.1126/science.aar5169
– ident: ref12/cit12
  doi: 10.1002/adfm.201501919
– ident: ref52/cit52
  doi: 10.1021/acscatal.9b04952
– ident: ref17/cit17
  doi: 10.1038/s41597-019-0080-z
– ident: ref22/cit22
  doi: 10.1021/cr00002a004
– ident: ref37/cit37
  doi: 10.1021/om700840h
– ident: ref53/cit53
  doi: 10.1126/science.aat2299
– ident: ref8/cit8
  doi: 10.1126/science.aau5631
– ident: ref47/cit47
  doi: 10.1063/1.1744539
– ident: ref55/cit55
  doi: 10.1039/C0SC00331J
– ident: ref9/cit9
  doi: 10.1038/s41467-020-16201-z
– ident: ref38/cit38
  doi: 10.1021/acs.jcim.8b00256
– ident: ref1/cit1
  doi: 10.1021/acscentsci.1c00535
– ident: ref13/cit13
  doi: 10.1063/1.4812323
– volume: 28
  start-page: 399
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: ref51/cit51
– ident: ref45/cit45
  doi: 10.1021/ic0109400
– ident: ref40/cit40
  doi: 10.1021/acs.jctc.7b00118
– ident: ref46/cit46
  doi: 10.1021/acs.oprd.6b00015
– ident: ref32/cit32
  doi: 10.1021/ic051959w
– ident: ref54/cit54
  doi: 10.1038/s41467-019-09249-z
– ident: ref57/cit57
  doi: 10.1021/acscatal.9b01814
– ident: ref24/cit24
  doi: 10.3891/acta.chem.scand.51-0733
– ident: ref59/cit59
  doi: 10.1002/hlca.202100200
– ident: ref62/cit62
  doi: 10.1126/science.abj4213
SSID ssj0004281
Score 2.673175
Snippet The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1205
SubjectTerms catalysts
catalytic activity
humans
ligands
prediction
Title A Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis
URI http://dx.doi.org/10.1021/jacs.1c09718
https://www.ncbi.nlm.nih.gov/pubmed/35020383
https://www.proquest.com/docview/2619545513
https://www.proquest.com/docview/2648859046
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4RADJ74OOjF92N9BRM9GQzMMNA9btZXjBoTNfFG5oVrNLtmYQ_66215aNSseoADlADT0n5D-3UY22srGSiIpN8GI_2IeDloN8q3cSStA2U5EN_58io-u4vO7-X9Z4Hs9ww-p_5AhsqDqNcRTLJpHkNCk6xO9-aT_8ghbGBuArGoC9y_X00ByORfA9AYVFlGl5N5dtpwdKqikqfDUaEPzdvPlo1_PPgCm6sBptepLGKRTbj-EpvpNuu6LbPLjkdOYOh6Ve26d_SYGyrkfPWun1VBINbDnVeyNAcvvUGO23CUexePD8QLLk926a8PNTNZYXcnx7fdM79eVMFXiJwKdChtJYxTQYaRSePTWbCJENpICKR2GWRhoJWymrskEVloFGoMuJXKIviwXKyyqf6g79aZp1WY6VBzA2AjQM1GCY8SMDwTcYbOo8V2cQjS-qPI0zLfzXG-QUfrgWmxg0Ybqam7ktPiGM9jpPc_pF-qbhxj5HYbxaY4upQDUX03GOUpTRgRNMpQ_CaDXk22gyhusbXKKj7uJiSlbkFs_OPdNtksJ7JEEPo83mJTxXDkthHCFHqntN93x87rAA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEJ74OOjF96M-MdGTwcAuC9tjUzVV28ZETbyRfaFG05pCD_rrnaG0RpMaD3CAAYadYeZb5rEAx3UlAiUj4delEX5EdTmoN8q3cSSsk8oySfXOnW7ceoiuH8VjVaxOtTDIRI53yssg_nd3AWoTZChLiFoeyVmYRxzCaK7VaN59l0EyGY7RbiJjXuW5_76a_JDJf_qhKeCydDKXy9CdsFfmlryeDQt9Zj5_dW78N_8rsFTBTa8x0o9VmHG9NVhojld5W4dOwyOTMHDPo0x27_wlN5TW-eHdvqmCIK2HO6-s2ey_P_dz3AbD3Gu_PFGVcHmySf-AqLXJBjxcXtw3W361xIKvEEcVaF7qihunggz9lEburLQJ59oIGQjtMpmFgVbKauaShGehUSg_yaxQFqGIZXwT5nr9ntsGT6sw06FmRkobSZRzlLAokYZlPM7QlNTgCIcgrT6RPC2j3wxnH3S0GpganI6FkpqqRzktlfE2hfpkQv0-6s0xhe5oLN8UR5ciIqrn-sM8pekjQkgR8r9o0MaJehDFNdgaKcfkaVxQIFfynX-82yEstO477bR91b3ZhUVGZRRB6LN4D-aKwdDtI7gp9EGp0l93HfNh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6FIEEvlFdLaAFXghNyZe967c0xShoVSKIKqNSbtS83USMnip0D_HpmHDuokVLBwT7YY3t3Z3bmW89jAT52lQiUjITflUb4EeXloNwo38aRsE4qyyTlO48n8eV19PVG3LQgbHJhsBEFvqmonPg0q5c2qysMUKkgQ5FCVPZIPoLH5LGj9Vav_-NvKiSTYYN4ExnzOtZ992myRaa4b4v2AMzK0AwP4fu2iVV8yd35utTn5vdO9cb_6sNzeFbDTq-3kZMX0HL5S3jab3Z7ewXjnkeqYeWmm4h2bzArDIV3_vKu5qokaOvhyatyNxfL6aLAY7UuvNHslrKFq5t9-hdEJU5ew_Xw4mf_0q-3WvAV4qkS1UxXceNUkKG90tg6K23CuTZCBkK7TGZhoJWymrkk4VloFPJRMiuURUhiGT-Cdr7I3RvwtAozHWpmpLSRRH5HCYsSaVjG4wxVSgfOcAjSeqoUaeUFZ7gKoav1wHTgc8OY1NS1ymnLjPke6k9b6uWmRsceurOGxymOLnlGVO4W6yKlZSRCSRHyh2hQ14luEMUdON4IyPZrXJBDV_K3_9C3D_DkajBMR18m307ggFE2RRD6LD6Fdrlau3eIcUr9vpLqP2eP9eQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Discovery+Platform+for+Organophosphorus+Ligands+for+Catalysis&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Gensch%2C+Tobias&rft.au=dos+Passos+Gomes%2C+Gabriel&rft.au=Friederich%2C+Pascal&rft.au=Peters%2C+Ellyn&rft.date=2022-01-26&rft.issn=1520-5126&rft.volume=144&rft.issue=3+p.1205-1217&rft.spage=1205&rft.epage=1217&rft_id=info:doi/10.1021%2Fjacs.1c09718&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon