A Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis
The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with...
Saved in:
Published in | Journal of the American Chemical Society Vol. 144; no. 3; pp. 1205 - 1217 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure–property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce kraken, a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the application of kraken to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis can be used to accelerate ligand selection during reaction optimization. |
---|---|
AbstractList | The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure-property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce
, a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the application of
to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis can be used to accelerate ligand selection during reaction optimization. The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure-property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce kraken, a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the application of kraken to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis can be used to accelerate ligand selection during reaction optimization.The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure-property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce kraken, a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the application of kraken to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis can be used to accelerate ligand selection during reaction optimization. The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure–property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce kraken, a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the application of kraken to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis can be used to accelerate ligand selection during reaction optimization. The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure–property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce kraken, a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the application of kraken to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis can be used to accelerate ligand selection during reaction optimization. |
Author | Peters, Ellyn Gaudin, Théophile Gensch, Tobias Jorner, Kjell Sigman, Matthew S Pollice, Robert dos Passos Gomes, Gabriel Nigam, AkshatKumar Aspuru-Guzik, Alán Lindner-D’Addario, Michael Friederich, Pascal |
AuthorAffiliation | Department of Chemistry Early Chemical Development, Pharmaceutical Sciences, R&D TU Berlin Institute of Nanotechnology Chemical Physics Theory Group, Department of Chemistry AstraZeneca Department of Computer Science Lebovic Fellow University of Toronto Vector Institute for Artificial Intelligence Canadian Institute for Advanced Research (CIFAR) IBM Research Zurich |
AuthorAffiliation_xml | – name: Department of Computer Science – name: Vector Institute for Artificial Intelligence – name: Department of Chemistry – name: TU Berlin – name: Canadian Institute for Advanced Research (CIFAR) – name: University of Toronto – name: Early Chemical Development, Pharmaceutical Sciences, R&D – name: Lebovic Fellow – name: IBM Research Zurich – name: AstraZeneca – name: Chemical Physics Theory Group, Department of Chemistry – name: Institute of Nanotechnology |
Author_xml | – sequence: 1 givenname: Tobias orcidid: 0000-0002-1937-0285 surname: Gensch fullname: Gensch, Tobias email: tobias.gensch@tu-berlin.de organization: TU Berlin – sequence: 2 givenname: Gabriel orcidid: 0000-0002-8235-5969 surname: dos Passos Gomes fullname: dos Passos Gomes, Gabriel organization: Vector Institute for Artificial Intelligence – sequence: 3 givenname: Pascal orcidid: 0000-0003-4465-1465 surname: Friederich fullname: Friederich, Pascal organization: Institute of Nanotechnology – sequence: 4 givenname: Ellyn surname: Peters fullname: Peters, Ellyn organization: Department of Chemistry – sequence: 5 givenname: Théophile surname: Gaudin fullname: Gaudin, Théophile organization: IBM Research Zurich – sequence: 6 givenname: Robert orcidid: 0000-0001-8836-6266 surname: Pollice fullname: Pollice, Robert organization: University of Toronto – sequence: 7 givenname: Kjell surname: Jorner fullname: Jorner, Kjell organization: AstraZeneca – sequence: 8 givenname: AkshatKumar orcidid: 0000-0002-5152-2082 surname: Nigam fullname: Nigam, AkshatKumar organization: University of Toronto – sequence: 9 givenname: Michael surname: Lindner-D’Addario fullname: Lindner-D’Addario, Michael organization: University of Toronto – sequence: 10 givenname: Matthew S orcidid: 0000-0002-5746-8830 surname: Sigman fullname: Sigman, Matthew S email: sigman@chem.utah.edu organization: Department of Chemistry – sequence: 11 givenname: Alán orcidid: 0000-0002-8277-4434 surname: Aspuru-Guzik fullname: Aspuru-Guzik, Alán email: alan@aspuru.com organization: Canadian Institute for Advanced Research (CIFAR) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35020383$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkbtPwzAQxi1URB-wMaOMDKT4ESfOWIWnVFQGmK1L4tBUSRzspFL_e1yaLggkBp91d787fbpvikaNbhRClwTPCabkdgOZnZMMxxERJ2hCOMU-JzQcoQnGmPqRCNkYTa3duDSggpyhMeOYYibYBL0svETXrVFr1dhyq7y70mZ6q8zOe62gK7SpPRe8lfmARrdrbd0zvfWWpSvk9ruZQAfVzpb2HJ0WUFl1Mfwz9P5w_5Y8-cvV43OyWPoQUNb5LIqBZQpwQahInfRc5BFjacYF5qkqREFwCpCnVEURK0gGSoCgOYc8CkhO2QxdH_a2Rn_2ynaydrJVVUGjdG8lDQMheIyD8B8oiXnAOWEOvRrQPq1VLltT1mB28ngtB9ADkBltrVGFzMoOulI3nYGykgTLvSVyb4kcLHFDNz-Gjnv_wAe9--JG96Zxh_wd_QK4Epsn |
CitedBy_id | crossref_primary_10_1021_acscentsci_3c01163 crossref_primary_10_1002_ange_202219070 crossref_primary_10_1021_jacs_2c09840 crossref_primary_10_1021_acscatal_3c01331 crossref_primary_10_1021_jacs_4c00374 crossref_primary_10_1021_acs_jctc_2c00331 crossref_primary_10_1021_acs_jcim_4c00104 crossref_primary_10_3390_molecules28124730 crossref_primary_10_1016_j_trechm_2023_10_005 crossref_primary_10_1002_anie_202318487 crossref_primary_10_1039_D2QO00550F crossref_primary_10_1021_acscatal_3c06230 crossref_primary_10_1039_D4SC01986E crossref_primary_10_1021_acscentsci_3c00512 crossref_primary_10_1021_acs_chemrev_2c00204 crossref_primary_10_1063_5_0137838 crossref_primary_10_1021_acscatal_4c03731 crossref_primary_10_1021_acs_jpclett_2c01416 crossref_primary_10_1038_s41929_024_01150_3 crossref_primary_10_1021_jacs_2c08513 crossref_primary_10_1021_acs_jctc_2c00468 crossref_primary_10_1038_s43588_024_00616_5 crossref_primary_10_1021_jacs_4c01352 crossref_primary_10_1039_D4FD00087K crossref_primary_10_1021_acscatal_3c01582 crossref_primary_10_1021_acs_inorgchem_3c02869 crossref_primary_10_1016_j_jcat_2023_115127 crossref_primary_10_1021_acscatal_2c00267 crossref_primary_10_1021_acs_organomet_3c00464 crossref_primary_10_1021_jacs_4c04622 crossref_primary_10_1039_D4DD00099D crossref_primary_10_1021_acs_joc_3c00314 crossref_primary_10_1002_chem_202301957 crossref_primary_10_1021_acs_organomet_2c00089 crossref_primary_10_1002_nadc_20224122539 crossref_primary_10_1002_nadc_20234135542 crossref_primary_10_1021_acscatal_4c06212 crossref_primary_10_1021_acs_jpclett_3c01214 crossref_primary_10_1039_D4SC05000B crossref_primary_10_1021_acscatal_2c01741 crossref_primary_10_1002_cplu_202300702 crossref_primary_10_1039_D2CP03970B crossref_primary_10_1021_jacs_3c13060 crossref_primary_10_1016_j_ces_2025_121245 crossref_primary_10_1021_acs_jpclett_3c02828 crossref_primary_10_1021_acs_organomet_3c00432 crossref_primary_10_1039_D3OB00398A crossref_primary_10_1039_D3CP03217E crossref_primary_10_1002_cctc_202200894 crossref_primary_10_1021_acs_inorgchem_4c03104 crossref_primary_10_1186_s13321_023_00792_y crossref_primary_10_1021_jacs_4c13999 crossref_primary_10_1039_D4QO02363C crossref_primary_10_1021_jacs_2c08615 crossref_primary_10_1002_anie_202216160 crossref_primary_10_1016_j_mcat_2024_113996 crossref_primary_10_1021_acscatal_3c03864 crossref_primary_10_1039_D3DD00213F crossref_primary_10_1021_acscatal_3c05903 crossref_primary_10_1021_acscatal_2c01970 crossref_primary_10_1021_acscatal_2c01698 crossref_primary_10_1021_acs_jcim_3c01310 crossref_primary_10_1039_D4SC02327G crossref_primary_10_1039_D3CY00083D crossref_primary_10_1039_D3DD00249G crossref_primary_10_1039_D4DT01430H crossref_primary_10_1039_D4DD00114A crossref_primary_10_1038_s41467_024_47984_0 crossref_primary_10_1039_D4SC05920D crossref_primary_10_1021_acs_jctc_2c00404 crossref_primary_10_1016_j_xcrp_2024_102348 crossref_primary_10_1039_D2SC00174H crossref_primary_10_1016_j_aichem_2023_100005 crossref_primary_10_1016_j_gee_2024_01_010 crossref_primary_10_1039_D2SC02496A crossref_primary_10_1038_s41929_024_01258_6 crossref_primary_10_1021_jacs_3c14607 crossref_primary_10_1021_acs_jpca_4c04391 crossref_primary_10_1021_acs_jpca_3c02267 crossref_primary_10_1002_cssc_202202201 crossref_primary_10_1016_j_jssc_2024_124669 crossref_primary_10_1021_acs_organomet_3c00494 crossref_primary_10_1021_acscatal_2c03984 crossref_primary_10_1039_D5QO00278H crossref_primary_10_1021_acscatal_4c07969 crossref_primary_10_1021_acsnano_4c14131 crossref_primary_10_1039_D3DD00175J crossref_primary_10_1039_D4FD00153B crossref_primary_10_1016_j_chempr_2024_05_009 crossref_primary_10_1021_acs_jctc_3c01313 crossref_primary_10_1021_acs_oprd_1c00357 crossref_primary_10_1021_acs_jcim_4c00424 crossref_primary_10_1021_jacs_4c09667 crossref_primary_10_1002_ange_202216160 crossref_primary_10_1021_jacs_4c07767 crossref_primary_10_1038_s41467_024_49803_y crossref_primary_10_1063_5_0125700 crossref_primary_10_1021_acscatal_4c06003 crossref_primary_10_1016_j_ccr_2023_215632 crossref_primary_10_1021_acscatal_3c00576 crossref_primary_10_1002_qua_70036 crossref_primary_10_1021_acscatal_3c04256 crossref_primary_10_1021_acs_jpca_4c06745 crossref_primary_10_1126_sciadv_adt3013 crossref_primary_10_1039_D2SC01714H crossref_primary_10_1002_tcr_202400148 crossref_primary_10_1021_acs_jpclett_4c01657 crossref_primary_10_1039_D2SC05089G crossref_primary_10_1016_j_jorganchem_2023_122816 crossref_primary_10_1002_adsc_202301326 crossref_primary_10_1038_s41467_023_39531_0 crossref_primary_10_1038_s41467_024_54550_1 crossref_primary_10_1016_j_trechm_2024_06_008 crossref_primary_10_1021_acscatal_4c04873 crossref_primary_10_1039_D2DD00129B crossref_primary_10_1039_D2SC04251G crossref_primary_10_1039_D4OB00573B crossref_primary_10_1021_acscatal_4c02452 crossref_primary_10_2139_ssrn_4147022 crossref_primary_10_1021_acs_joc_4c01790 crossref_primary_10_1039_D3DD00153A crossref_primary_10_1039_D5SC00541H crossref_primary_10_1021_acs_joc_4c01396 crossref_primary_10_1186_s13321_024_00802_7 crossref_primary_10_1021_jacs_4c01286 crossref_primary_10_1002_ejoc_202400428 crossref_primary_10_1016_j_aichem_2024_100055 crossref_primary_10_1002_ange_202318487 crossref_primary_10_1039_D4DD00284A crossref_primary_10_1186_s13321_024_00840_1 crossref_primary_10_1039_D4SC04064C crossref_primary_10_1021_acs_jcim_4c01728 crossref_primary_10_1002_cctc_202301475 crossref_primary_10_1021_prechem_4c00060 crossref_primary_10_1021_acscatal_3c03921 crossref_primary_10_1021_acscatal_4c00646 crossref_primary_10_1002_cplu_202400686 crossref_primary_10_1021_acs_jcim_4c01583 crossref_primary_10_1021_acscatal_4c00648 crossref_primary_10_1039_D2SC06041H crossref_primary_10_1021_jacs_3c03403 crossref_primary_10_1016_j_aichem_2024_100068 crossref_primary_10_1039_D4DD00037D crossref_primary_10_1039_D3SC03781A crossref_primary_10_1002_anie_202219070 crossref_primary_10_1038_s41563_023_01707_w crossref_primary_10_1021_acs_orglett_4c02920 crossref_primary_10_1021_acscatal_4c00650 crossref_primary_10_1021_acs_oprd_3c00025 crossref_primary_10_1021_jacs_3c06233 |
Cites_doi | 10.1002/chem.200500891 10.1021/acscatal.8b04043 10.1016/j.commatsci.2014.05.014 10.1055/s-0037-1611636 10.1021/cr60307a002 10.1039/D0SC05251E 10.1021/ja021254i 10.1039/D0SC00445F 10.1021/jacs.1c08399 10.1088/2632-2153/abda08 10.1186/s13321-020-00460-5 10.1021/acs.jctc.9b00143 10.1038/npjcompumats.2015.10 10.1016/j.joule.2017.10.006 10.1021/acs.chemrev.8b00588 10.1021/cr60259a002 10.1039/C9CP06869D 10.1021/acscatal.0c04525 10.1038/s42004-021-00550-x 10.1126/science.aat2663 10.1039/b610123b 10.1021/ic0105258 10.1021/om060912v 10.1016/j.tet.2019.05.003 10.1021/om034016k 10.33774/chemrxiv-2021-fgm7v 10.1021/ja00713a006 10.1002/anie.201909989 10.1002/anie.201909987 10.1088/2632-2153/abdaf7 10.1021/acs.jctc.8b01176 10.1039/C7SC04679K 10.1021/jz200866s 10.1021/om100648v 10.1021/acs.accounts.0c00807 10.1021/ja00713a007 10.1021/ja0683180 10.1126/science.aar5169 10.1002/adfm.201501919 10.1021/acscatal.9b04952 10.1038/s41597-019-0080-z 10.1021/cr00002a004 10.1021/om700840h 10.1126/science.aat2299 10.1126/science.aau5631 10.1063/1.1744539 10.1039/C0SC00331J 10.1038/s41467-020-16201-z 10.1021/acs.jcim.8b00256 10.1021/acscentsci.1c00535 10.1063/1.4812323 10.1021/ic0109400 10.1021/acs.jctc.7b00118 10.1021/acs.oprd.6b00015 10.1021/ic051959w 10.1038/s41467-019-09249-z 10.1021/acscatal.9b01814 10.3891/acta.chem.scand.51-0733 10.1002/hlca.202100200 10.1126/science.abj4213 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.1c09718 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 1217 |
ExternalDocumentID | 35020383 10_1021_jacs_1c09718 a763031160 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ET F5P GGK GNL IH2 IH9 JG K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XOL YZZ ZHY --- -DZ -ET -~X .DC .K2 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV CITATION CUPRZ ED~ JG~ XSW YQT ZCA ~02 NPM YIN 7X8 AAYWT 7S9 L.6 |
ID | FETCH-LOGICAL-a423t-379a3cea0f128bc09d8d733bc5805bef8f10baadb2e773f1cae8a82d5ad741d23 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Jul 10 23:01:55 EDT 2025 Tue Aug 05 11:16:45 EDT 2025 Wed Feb 19 02:27:49 EST 2025 Tue Jul 01 00:44:54 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Fri Jan 28 07:19:53 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a423t-379a3cea0f128bc09d8d733bc5805bef8f10baadb2e773f1cae8a82d5ad741d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8235-5969 0000-0002-5152-2082 0000-0001-8836-6266 0000-0002-8277-4434 0000-0003-4465-1465 0000-0002-5746-8830 0000-0002-1937-0285 |
PMID | 35020383 |
PQID | 2619545513 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2648859046 proquest_miscellaneous_2619545513 pubmed_primary_35020383 crossref_citationtrail_10_1021_jacs_1c09718 crossref_primary_10_1021_jacs_1c09718 acs_journals_10_1021_jacs_1c09718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-26 |
PublicationDateYYYYMMDD | 2022-01-26 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 Duvenaud D. (ref51/cit51) 2015; 28 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 McInnes L. (ref44/cit44) 2018 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref27/cit27 doi: 10.1002/chem.200500891 – ident: ref36/cit36 doi: 10.1021/acscatal.8b04043 – ident: ref15/cit15 doi: 10.1016/j.commatsci.2014.05.014 – ident: ref35/cit35 doi: 10.1055/s-0037-1611636 – ident: ref21/cit21 doi: 10.1021/cr60307a002 – ident: ref11/cit11 doi: 10.1039/D0SC05251E – ident: ref26/cit26 doi: 10.1021/ja021254i – ident: ref49/cit49 doi: 10.1039/D0SC00445F – ident: ref61/cit61 doi: 10.1021/jacs.1c08399 – ident: ref48/cit48 doi: 10.1088/2632-2153/abda08 – ident: ref5/cit5 doi: 10.1186/s13321-020-00460-5 – ident: ref42/cit42 doi: 10.1021/acs.jctc.9b00143 – ident: ref14/cit14 doi: 10.1038/npjcompumats.2015.10 – ident: ref50/cit50 doi: 10.1016/j.joule.2017.10.006 – ident: ref29/cit29 doi: 10.1021/acs.chemrev.8b00588 – ident: ref23/cit23 doi: 10.1021/cr60259a002 – ident: ref43/cit43 doi: 10.1039/C9CP06869D – ident: ref18/cit18 doi: 10.1021/acscatal.0c04525 – ident: ref58/cit58 doi: 10.1038/s42004-021-00550-x – ident: ref4/cit4 doi: 10.1126/science.aat2663 – ident: ref31/cit31 doi: 10.1039/b610123b – ident: ref25/cit25 doi: 10.1021/ic0105258 – ident: ref33/cit33 doi: 10.1021/om060912v – ident: ref56/cit56 doi: 10.1016/j.tet.2019.05.003 – ident: ref39/cit39 doi: 10.1021/om034016k – ident: ref60/cit60 doi: 10.33774/chemrxiv-2021-fgm7v – ident: ref19/cit19 doi: 10.1021/ja00713a006 – ident: ref3/cit3 doi: 10.1002/anie.201909989 – ident: ref2/cit2 doi: 10.1002/anie.201909987 – ident: ref6/cit6 doi: 10.1088/2632-2153/abdaf7 – ident: ref41/cit41 doi: 10.1021/acs.jctc.8b01176 – ident: ref10/cit10 doi: 10.1039/C7SC04679K – ident: ref16/cit16 doi: 10.1021/jz200866s – ident: ref28/cit28 doi: 10.1021/om100648v – ident: ref30/cit30 doi: 10.1021/acs.accounts.0c00807 – ident: ref20/cit20 doi: 10.1021/ja00713a007 – year: 2018 ident: ref44/cit44 publication-title: arXiv – ident: ref34/cit34 doi: 10.1021/ja0683180 – ident: ref7/cit7 doi: 10.1126/science.aar5169 – ident: ref12/cit12 doi: 10.1002/adfm.201501919 – ident: ref52/cit52 doi: 10.1021/acscatal.9b04952 – ident: ref17/cit17 doi: 10.1038/s41597-019-0080-z – ident: ref22/cit22 doi: 10.1021/cr00002a004 – ident: ref37/cit37 doi: 10.1021/om700840h – ident: ref53/cit53 doi: 10.1126/science.aat2299 – ident: ref8/cit8 doi: 10.1126/science.aau5631 – ident: ref47/cit47 doi: 10.1063/1.1744539 – ident: ref55/cit55 doi: 10.1039/C0SC00331J – ident: ref9/cit9 doi: 10.1038/s41467-020-16201-z – ident: ref38/cit38 doi: 10.1021/acs.jcim.8b00256 – ident: ref1/cit1 doi: 10.1021/acscentsci.1c00535 – ident: ref13/cit13 doi: 10.1063/1.4812323 – volume: 28 start-page: 399 volume-title: Advances in Neural Information Processing Systems year: 2015 ident: ref51/cit51 – ident: ref45/cit45 doi: 10.1021/ic0109400 – ident: ref40/cit40 doi: 10.1021/acs.jctc.7b00118 – ident: ref46/cit46 doi: 10.1021/acs.oprd.6b00015 – ident: ref32/cit32 doi: 10.1021/ic051959w – ident: ref54/cit54 doi: 10.1038/s41467-019-09249-z – ident: ref57/cit57 doi: 10.1021/acscatal.9b01814 – ident: ref24/cit24 doi: 10.3891/acta.chem.scand.51-0733 – ident: ref59/cit59 doi: 10.1002/hlca.202100200 – ident: ref62/cit62 doi: 10.1126/science.abj4213 |
SSID | ssj0004281 |
Score | 2.673175 |
Snippet | The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1205 |
SubjectTerms | catalysts catalytic activity humans ligands prediction |
Title | A Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis |
URI | http://dx.doi.org/10.1021/jacs.1c09718 https://www.ncbi.nlm.nih.gov/pubmed/35020383 https://www.proquest.com/docview/2619545513 https://www.proquest.com/docview/2648859046 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4RADJ74OOjF92N9BRM9GQzMMNA9btZXjBoTNfFG5oVrNLtmYQ_66215aNSseoADlADT0n5D-3UY22srGSiIpN8GI_2IeDloN8q3cSStA2U5EN_58io-u4vO7-X9Z4Hs9ww-p_5AhsqDqNcRTLJpHkNCk6xO9-aT_8ghbGBuArGoC9y_X00ByORfA9AYVFlGl5N5dtpwdKqikqfDUaEPzdvPlo1_PPgCm6sBptepLGKRTbj-EpvpNuu6LbPLjkdOYOh6Ve26d_SYGyrkfPWun1VBINbDnVeyNAcvvUGO23CUexePD8QLLk926a8PNTNZYXcnx7fdM79eVMFXiJwKdChtJYxTQYaRSePTWbCJENpICKR2GWRhoJWymrskEVloFGoMuJXKIviwXKyyqf6g79aZp1WY6VBzA2AjQM1GCY8SMDwTcYbOo8V2cQjS-qPI0zLfzXG-QUfrgWmxg0Ybqam7ktPiGM9jpPc_pF-qbhxj5HYbxaY4upQDUX03GOUpTRgRNMpQ_CaDXk22gyhusbXKKj7uJiSlbkFs_OPdNtksJ7JEEPo83mJTxXDkthHCFHqntN93x87rAA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEJ74OOjF96M-MdGTwcAuC9tjUzVV28ZETbyRfaFG05pCD_rrnaG0RpMaD3CAAYadYeZb5rEAx3UlAiUj4delEX5EdTmoN8q3cSSsk8oySfXOnW7ceoiuH8VjVaxOtTDIRI53yssg_nd3AWoTZChLiFoeyVmYRxzCaK7VaN59l0EyGY7RbiJjXuW5_76a_JDJf_qhKeCydDKXy9CdsFfmlryeDQt9Zj5_dW78N_8rsFTBTa8x0o9VmHG9NVhojld5W4dOwyOTMHDPo0x27_wlN5TW-eHdvqmCIK2HO6-s2ey_P_dz3AbD3Gu_PFGVcHmySf-AqLXJBjxcXtw3W361xIKvEEcVaF7qihunggz9lEburLQJ59oIGQjtMpmFgVbKauaShGehUSg_yaxQFqGIZXwT5nr9ntsGT6sw06FmRkobSZRzlLAokYZlPM7QlNTgCIcgrT6RPC2j3wxnH3S0GpganI6FkpqqRzktlfE2hfpkQv0-6s0xhe5oLN8UR5ciIqrn-sM8pekjQkgR8r9o0MaJehDFNdgaKcfkaVxQIFfynX-82yEstO477bR91b3ZhUVGZRRB6LN4D-aKwdDtI7gp9EGp0l93HfNh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6FIEEvlFdLaAFXghNyZe967c0xShoVSKIKqNSbtS83USMnip0D_HpmHDuokVLBwT7YY3t3Z3bmW89jAT52lQiUjITflUb4EeXloNwo38aRsE4qyyTlO48n8eV19PVG3LQgbHJhsBEFvqmonPg0q5c2qysMUKkgQ5FCVPZIPoLH5LGj9Vav_-NvKiSTYYN4ExnzOtZ992myRaa4b4v2AMzK0AwP4fu2iVV8yd35utTn5vdO9cb_6sNzeFbDTq-3kZMX0HL5S3jab3Z7ewXjnkeqYeWmm4h2bzArDIV3_vKu5qokaOvhyatyNxfL6aLAY7UuvNHslrKFq5t9-hdEJU5ew_Xw4mf_0q-3WvAV4qkS1UxXceNUkKG90tg6K23CuTZCBkK7TGZhoJWymrkk4VloFPJRMiuURUhiGT-Cdr7I3RvwtAozHWpmpLSRRH5HCYsSaVjG4wxVSgfOcAjSeqoUaeUFZ7gKoav1wHTgc8OY1NS1ymnLjPke6k9b6uWmRsceurOGxymOLnlGVO4W6yKlZSRCSRHyh2hQ14luEMUdON4IyPZrXJBDV_K3_9C3D_DkajBMR18m307ggFE2RRD6LD6Fdrlau3eIcUr9vpLqP2eP9eQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Discovery+Platform+for+Organophosphorus+Ligands+for+Catalysis&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Gensch%2C+Tobias&rft.au=dos+Passos+Gomes%2C+Gabriel&rft.au=Friederich%2C+Pascal&rft.au=Peters%2C+Ellyn&rft.date=2022-01-26&rft.issn=1520-5126&rft.volume=144&rft.issue=3+p.1205-1217&rft.spage=1205&rft.epage=1217&rft_id=info:doi/10.1021%2Fjacs.1c09718&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |