Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles
Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts wit...
Saved in:
Published in | Journal of the American Chemical Society Vol. 140; no. 41; pp. 13387 - 13391 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.10.2018
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.8b08379 |
Cover
Loading…
Abstract | Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10–10 mol s–1 cm–2 and 6.0% at −0.1 V within 1 h, respectively. ENRR with 15N2 as the feed produces both 14NH3 and 15NH3, which indicates that the reaction follows a Mars–van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN0.7O0.45 as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN0.7O0.45 to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. An ammonia production rate of 1.1 × 10–10 mol s–1 cm–2 can be maintained for 116 h, with a steady-state turnover number of 431. |
---|---|
AbstractList | Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10-10 mol s-1 cm-2 and 6.0% at -0.1 V within 1 h, respectively. ENRR with 15N2 as the feed produces both 14NH3 and 15NH3, which indicates that the reaction follows a Mars-van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN0.7O0.45 as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN0.7O0.45 to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. An ammonia production rate of 1.1 × 10-10 mol s-1 cm-2 can be maintained for 116 h, with a steady-state turnover number of 431.Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10-10 mol s-1 cm-2 and 6.0% at -0.1 V within 1 h, respectively. ENRR with 15N2 as the feed produces both 14NH3 and 15NH3, which indicates that the reaction follows a Mars-van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN0.7O0.45 as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN0.7O0.45 to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. An ammonia production rate of 1.1 × 10-10 mol s-1 cm-2 can be maintained for 116 h, with a steady-state turnover number of 431. Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10–10 mol s–1 cm–2 and 6.0% at -0.1 V within 1 h, respectively. ENRR with 15N2 as the feed produces both 14NH3 and 15NH3, which indicates that the reaction follows a Mars–van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN0.7O0.45 as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN0.7O0.45 to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. Finally, an ammonia production rate of 1.1 × 10–10 mol s–1 cm–2 can be maintained for 116 h, with a steady-state turnover number of 431. Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10–10 mol s–1 cm–2 and 6.0% at −0.1 V within 1 h, respectively. ENRR with 15N2 as the feed produces both 14NH3 and 15NH3, which indicates that the reaction follows a Mars–van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN0.7O0.45 as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN0.7O0.45 to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. An ammonia production rate of 1.1 × 10–10 mol s–1 cm–2 can be maintained for 116 h, with a steady-state turnover number of 431. Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10–¹⁰ mol s–¹ cm–² and 6.0% at −0.1 V within 1 h, respectively. ENRR with ¹⁵N₂ as the feed produces both ¹⁴NH₃ and ¹⁵NH₃, which indicates that the reaction follows a Mars–van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN₀.₇O₀.₄₅ as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN₀.₇O₀.₄₅ to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. An ammonia production rate of 1.1 × 10–¹⁰ mol s–¹ cm–² can be maintained for 116 h, with a steady-state turnover number of 431. Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10 mol s cm and 6.0% at -0.1 V within 1 h, respectively. ENRR with N as the feed produces both NH and NH , which indicates that the reaction follows a Mars-van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN O as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN O to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. An ammonia production rate of 1.1 × 10 mol s cm can be maintained for 116 h, with a steady-state turnover number of 431. |
Author | Stavitski, Eli Attenkofer, Klaus Yang, Xuan Anibal, Jacob Dunwell, Marco Chen, Jingguang G Nash, Jared Kattel, Shyam Yan, Yushan Xu, Bingjun |
AuthorAffiliation | National Synchrotron Light Source II Department of Chemical Engineering Columbia University Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering Chemistry Division |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: National Synchrotron Light Source II – name: Chemistry Division – name: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering – name: Columbia University |
Author_xml | – sequence: 1 givenname: Xuan orcidid: 0000-0001-8750-0742 surname: Yang fullname: Yang, Xuan organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering – sequence: 2 givenname: Jared surname: Nash fullname: Nash, Jared organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering – sequence: 3 givenname: Jacob surname: Anibal fullname: Anibal, Jacob organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering – sequence: 4 givenname: Marco surname: Dunwell fullname: Dunwell, Marco organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering – sequence: 5 givenname: Shyam surname: Kattel fullname: Kattel, Shyam organization: Columbia University – sequence: 6 givenname: Eli surname: Stavitski fullname: Stavitski, Eli – sequence: 7 givenname: Klaus surname: Attenkofer fullname: Attenkofer, Klaus – sequence: 8 givenname: Jingguang G surname: Chen fullname: Chen, Jingguang G email: jgchen@columbia.edu organization: Columbia University – sequence: 9 givenname: Yushan orcidid: 0000-0001-6616-4575 surname: Yan fullname: Yan, Yushan email: yanys@udel.edu organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering – sequence: 10 givenname: Bingjun orcidid: 0000-0002-2303-257X surname: Xu fullname: Xu, Bingjun email: bxu@udel.edu organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30244579$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1484883$$D View this record in Osti.gov |
BookMark | eNqFkU1rGzEQhkVJaZykt5zDklMP3VTf0h5DSNtAmkIJvQpZO7ZldiVH0h7y76utnR5KSkGgmeHRjN53TtBRiAEQOif4imBKPm2ty1d6iTVT3Ru0IILiVhAqj9ACY0xbpSU7Ric5b2vKqSbv0DHDlHOhugVafwO3scHn4l1zF7Jfb0pufCixuR3AlRTdBkbv7NA8-JqtITQ_oJ9c8XGO7D6o56cNtvfT-JvzPTQPNsSdTbXxAPkMvV3ZIcP7w32KHj_fPt58be-_f7m7ub5vLae0tHqpuJBLhgnToDhWWmne9VJTJ3qrBeNU8ZWU0JO5LIExwbuOdlgIrDA7RZf7trEKMtn5UuW5GEKVYgjXXGtWoQ97aJfi0wS5mNFnB8NgA8QpG0qZqpMkUf9HCSGKS8W7il4c0Gk5Qm92yY82PZsXryvwcQ-4FHNOsPqDEGzmVZp5leawyorTv_Cqxs5ul2T98K9Hh__OxW2cUqhmv47-Aho6rXk |
CitedBy_id | crossref_primary_10_1016_j_rser_2023_113197 crossref_primary_10_1039_C9CP04647J crossref_primary_10_1002_anie_202004213 crossref_primary_10_1016_j_electacta_2023_143360 crossref_primary_10_1016_j_jpowsour_2023_233173 crossref_primary_10_1002_advs_202405210 crossref_primary_10_1021_acsami_2c03626 crossref_primary_10_1016_j_ijhydene_2023_11_028 crossref_primary_10_1016_j_cej_2023_145828 crossref_primary_10_1039_D1TA05515A crossref_primary_10_1016_j_jechem_2020_03_044 crossref_primary_10_1016_j_coelec_2021_100790 crossref_primary_10_1021_acsnano_2c11954 crossref_primary_10_1002_cssc_202300593 crossref_primary_10_1039_C9CC01703H crossref_primary_10_1002_adma_202007650 crossref_primary_10_1002_anie_201915001 crossref_primary_10_1016_j_nanoen_2019_103886 crossref_primary_10_1002_smll_201907091 crossref_primary_10_1016_j_apmt_2024_102253 crossref_primary_10_1039_D4NR00640B crossref_primary_10_1016_j_gee_2022_10_001 crossref_primary_10_1016_j_jcis_2022_12_105 crossref_primary_10_1039_D2NJ02867K crossref_primary_10_1039_D4CC04897K crossref_primary_10_1039_D2TA00661H crossref_primary_10_1002_advs_201902390 crossref_primary_10_1038_s41598_021_02928_2 crossref_primary_10_1016_j_jma_2023_11_010 crossref_primary_10_1002_aenm_202304106 crossref_primary_10_1039_D0SE00764A crossref_primary_10_2139_ssrn_4182547 crossref_primary_10_1021_acscatal_9b00366 crossref_primary_10_1002_adfm_202306358 crossref_primary_10_1002_smtd_201800337 crossref_primary_10_1002_ange_202217265 crossref_primary_10_1021_acsami_1c21789 crossref_primary_10_1039_D0EE01790F crossref_primary_10_1016_j_electacta_2021_139551 crossref_primary_10_1021_acs_nanolett_0c05080 crossref_primary_10_1016_j_apcatb_2023_122485 crossref_primary_10_1002_adma_201904369 crossref_primary_10_1016_j_jechem_2023_01_064 crossref_primary_10_1039_D2TA06354A crossref_primary_10_1039_C9TA11378A crossref_primary_10_1016_j_elecom_2021_107002 crossref_primary_10_1021_acsami_9b18263 crossref_primary_10_1016_j_jece_2022_107752 crossref_primary_10_1021_acsami_1c00850 crossref_primary_10_1002_smll_202104205 crossref_primary_10_1002_cssc_202201715 crossref_primary_10_1021_acscatal_3c00201 crossref_primary_10_1039_D0TA04580B crossref_primary_10_1002_anie_201906449 crossref_primary_10_1016_S1872_2067_23_64504_8 crossref_primary_10_1016_j_ijhydene_2022_02_026 crossref_primary_10_1039_D3QM00267E crossref_primary_10_1021_acsenergylett_0c01317 crossref_primary_10_1039_D2MA00279E crossref_primary_10_1039_C9CC07847A crossref_primary_10_1002_aenm_202003020 crossref_primary_10_1039_C8CY01845F crossref_primary_10_3389_fceng_2021_765457 crossref_primary_10_34133_2019_1401209 crossref_primary_10_1016_j_inoche_2022_109230 crossref_primary_10_1021_acssuschemeng_3c07736 crossref_primary_10_1039_C9CC00985J crossref_primary_10_2139_ssrn_4148301 crossref_primary_10_1002_cphc_202300993 crossref_primary_10_1093_nsr_nwz145 crossref_primary_10_1002_smtd_201800388 crossref_primary_10_1016_j_enchem_2020_100041 crossref_primary_10_1002_celc_202000072 crossref_primary_10_1002_ange_201915001 crossref_primary_10_1007_s41918_020_00069_0 crossref_primary_10_1039_D2CP06082E crossref_primary_10_1021_acs_jpcc_2c05646 crossref_primary_10_2139_ssrn_4125798 crossref_primary_10_1021_acsnano_3c05946 crossref_primary_10_1021_acscatal_2c03163 crossref_primary_10_1002_chem_202303148 crossref_primary_10_1039_D4CP01207K crossref_primary_10_1002_smll_202002885 crossref_primary_10_1016_j_jcis_2024_06_231 crossref_primary_10_1002_adma_202410909 crossref_primary_10_1016_j_ijoes_2023_100187 crossref_primary_10_1016_j_apsusc_2021_149283 crossref_primary_10_1021_acsnano_2c10607 crossref_primary_10_1002_celc_202001370 crossref_primary_10_1039_D0NR04981F crossref_primary_10_1002_aenm_202001289 crossref_primary_10_1002_adfm_202400773 crossref_primary_10_1039_D0CC04374E crossref_primary_10_2139_ssrn_4147430 crossref_primary_10_1002_cctc_201901519 crossref_primary_10_1021_acsanm_2c02624 crossref_primary_10_1038_s41467_019_12773_7 crossref_primary_10_1007_s40242_021_1349_2 crossref_primary_10_1039_C9MH01094G crossref_primary_10_1088_1757_899X_1053_1_012091 crossref_primary_10_1088_1757_899X_1053_1_012092 crossref_primary_10_1007_s12274_020_2733_9 crossref_primary_10_1021_acsaem_2c01346 crossref_primary_10_1039_D0TA04068A crossref_primary_10_1021_acsaem_0c00428 crossref_primary_10_26599_NRE_2022_9120022 crossref_primary_10_1016_j_jechem_2021_06_012 crossref_primary_10_1039_C9CC02409C crossref_primary_10_1063_5_0027996 crossref_primary_10_1039_D1QM01620B crossref_primary_10_1039_D3CS00557G crossref_primary_10_1149_1945_7111_ad60f8 crossref_primary_10_1149_1945_7111_ab7a8b crossref_primary_10_1016_j_apcatb_2021_120482 crossref_primary_10_1039_D4RE00104D crossref_primary_10_1016_j_jpowsour_2020_228144 crossref_primary_10_1007_s11705_023_2364_2 crossref_primary_10_1016_j_jmst_2021_05_083 crossref_primary_10_1021_acsenergylett_2c00207 crossref_primary_10_1149_1945_7111_ab7097 crossref_primary_10_26599_NRE_2022_9120010 crossref_primary_10_1016_j_jechem_2024_01_024 crossref_primary_10_1021_acscatal_9b00994 crossref_primary_10_1039_D0EE03596C crossref_primary_10_1021_acssuschemeng_9b04024 crossref_primary_10_1002_eom2_12026 crossref_primary_10_1002_elt2_40 crossref_primary_10_1021_acscatal_9b03903 crossref_primary_10_1002_ange_202011596 crossref_primary_10_1021_acs_jpcc_2c04119 crossref_primary_10_1021_acsami_1c16104 crossref_primary_10_1002_aenm_202200974 crossref_primary_10_1039_D2TA06991A crossref_primary_10_1016_j_apcatb_2019_118525 crossref_primary_10_1007_s11244_021_01485_2 crossref_primary_10_2139_ssrn_4186995 crossref_primary_10_1016_j_cej_2024_155735 crossref_primary_10_1021_jacs_9b03004 crossref_primary_10_1016_j_apcatb_2021_120265 crossref_primary_10_1002_tcr_202200139 crossref_primary_10_1039_D0CC05917J crossref_primary_10_1039_C9TA05505C crossref_primary_10_1039_C9TA13135C crossref_primary_10_1002_admi_202101842 crossref_primary_10_1002_asia_202000310 crossref_primary_10_1039_C9CC08352A crossref_primary_10_1039_D0TA00676A crossref_primary_10_1016_j_apcatb_2022_121380 crossref_primary_10_1039_D1MA00814E crossref_primary_10_1039_C9TA08806G crossref_primary_10_1021_acs_inorgchem_9b01707 crossref_primary_10_1039_D0TA01688H crossref_primary_10_1149_1945_7111_abde7f crossref_primary_10_1002_aenm_202103022 crossref_primary_10_1016_S1872_5813_21_60152_4 crossref_primary_10_1021_acs_inorgchem_9b01823 crossref_primary_10_20517_jmi_2023_35 crossref_primary_10_1016_S1872_2067_23_64464_X crossref_primary_10_1063_5_0107678 crossref_primary_10_1002_adma_202008422 crossref_primary_10_1016_j_cej_2022_136915 crossref_primary_10_1021_acsami_1c03698 crossref_primary_10_1021_acssuschemeng_3c03410 crossref_primary_10_1039_D1SE00338K crossref_primary_10_1002_ange_202401924 crossref_primary_10_1016_j_surfin_2024_104265 crossref_primary_10_1002_anie_202005579 crossref_primary_10_1002_celc_202200625 crossref_primary_10_1039_C9TA06076F crossref_primary_10_1021_acs_inorgchem_9b00622 crossref_primary_10_1039_C9TA13044F crossref_primary_10_1002_celc_201901970 crossref_primary_10_1002_cey2_160 crossref_primary_10_1002_ange_201813174 crossref_primary_10_1039_D4EY00197D crossref_primary_10_1016_j_isci_2021_103105 crossref_primary_10_1002_sus2_32 crossref_primary_10_1016_j_cej_2025_161447 crossref_primary_10_1002_ange_201912733 crossref_primary_10_1039_D1QM00546D crossref_primary_10_1002_cssc_202401487 crossref_primary_10_1016_j_checat_2021_12_004 crossref_primary_10_1016_j_xcrp_2021_100438 crossref_primary_10_1021_jacsau_4c00377 crossref_primary_10_1002_smtd_202300277 crossref_primary_10_1007_s12274_018_2268_5 crossref_primary_10_1039_D1CS00590A crossref_primary_10_1002_anie_201913122 crossref_primary_10_1016_j_joule_2019_10_006 crossref_primary_10_1016_j_chempr_2021_10_008 crossref_primary_10_1039_D0TA11727G crossref_primary_10_1016_j_ijhydene_2021_01_203 crossref_primary_10_1007_s41918_023_00186_6 crossref_primary_10_1039_D2TA06346H crossref_primary_10_1039_D0TA05282E crossref_primary_10_1016_j_cej_2023_143776 crossref_primary_10_1016_j_enchem_2019_100011 crossref_primary_10_1002_ente_202000466 crossref_primary_10_1016_j_ccr_2022_214981 crossref_primary_10_1016_j_mattod_2020_09_006 crossref_primary_10_1039_D2EE00358A crossref_primary_10_1039_C9CC06385D crossref_primary_10_1016_S1872_2067_22_64148_2 crossref_primary_10_1002_ange_201910658 crossref_primary_10_1016_j_apcatb_2022_121225 crossref_primary_10_1007_s10800_022_01712_y crossref_primary_10_1016_S1872_2067_20_63704_4 crossref_primary_10_1002_adfm_201904780 crossref_primary_10_1021_acs_jpcc_1c05893 crossref_primary_10_1126_sciadv_abj1584 crossref_primary_10_1002_sus2_226 crossref_primary_10_1186_s40580_019_0182_5 crossref_primary_10_1016_j_jechem_2020_06_011 crossref_primary_10_1021_acsaem_3c01999 crossref_primary_10_1039_D0CP04168H crossref_primary_10_1039_D1CS00120E crossref_primary_10_1039_C9CS00280D crossref_primary_10_1016_j_apmt_2020_100620 crossref_primary_10_1016_j_cjche_2023_03_028 crossref_primary_10_1016_j_jechem_2021_01_039 crossref_primary_10_1016_j_jcis_2023_02_112 crossref_primary_10_1360_TB_2022_0139 crossref_primary_10_1039_D1MA00680K crossref_primary_10_1021_acsenergylett_9b00648 crossref_primary_10_1039_D0MA00849D crossref_primary_10_1039_D1QI00328C crossref_primary_10_1088_1361_648X_acd49d crossref_primary_10_1002_cctc_201902383 crossref_primary_10_1002_advs_202104857 crossref_primary_10_1016_j_mtphys_2020_100310 crossref_primary_10_1021_acs_jpcc_1c02397 crossref_primary_10_1002_cite_201900090 crossref_primary_10_1021_acs_jpca_2c00486 crossref_primary_10_1039_C8TA11201K crossref_primary_10_1039_C9TA13812A crossref_primary_10_1016_j_jmrt_2021_10_131 crossref_primary_10_1016_j_joule_2019_03_003 crossref_primary_10_1039_D1GC04483D crossref_primary_10_1002_advs_202300951 crossref_primary_10_1002_adma_202312746 crossref_primary_10_1016_j_est_2022_105912 crossref_primary_10_1016_j_jcis_2024_05_145 crossref_primary_10_1007_s41918_022_00164_4 crossref_primary_10_1021_acscatal_9b05260 crossref_primary_10_1016_j_cclet_2023_108341 crossref_primary_10_1002_sstr_202200306 crossref_primary_10_1016_j_nanoen_2025_110693 crossref_primary_10_1021_acs_inorgchem_2c01812 crossref_primary_10_1016_j_cej_2024_153275 crossref_primary_10_1021_acsaem_9b00102 crossref_primary_10_1002_cctc_202101906 crossref_primary_10_1021_acsami_8b20692 crossref_primary_10_1002_anie_201912733 crossref_primary_10_3389_fenrg_2020_602438 crossref_primary_10_1002_smtd_202100699 crossref_primary_10_1007_s11426_022_1419_y crossref_primary_10_1016_j_ccr_2023_215410 crossref_primary_10_1021_acscatal_0c02680 crossref_primary_10_1002_cssc_202101461 crossref_primary_10_1007_s12274_022_4097_9 crossref_primary_10_1016_j_cej_2021_132649 crossref_primary_10_1016_j_est_2023_108229 crossref_primary_10_1002_cctc_202401262 crossref_primary_10_1016_j_cej_2021_129018 crossref_primary_10_1002_aenm_202002967 crossref_primary_10_1002_cssc_202300948 crossref_primary_10_1002_ange_201908415 crossref_primary_10_1016_j_cej_2021_131211 crossref_primary_10_1002_cssc_202300947 crossref_primary_10_1039_D2TA02244C crossref_primary_10_1039_D3QI00683B crossref_primary_10_1039_C9TA09439C crossref_primary_10_1002_aic_17549 crossref_primary_10_1002_asia_201901624 crossref_primary_10_1021_acs_est_3c10751 crossref_primary_10_1039_C9CC03413G crossref_primary_10_1021_jacs_2c00276 crossref_primary_10_1021_jacs_2c01245 crossref_primary_10_1016_j_jechem_2020_05_013 crossref_primary_10_1002_slct_202201359 crossref_primary_10_1016_j_apsusc_2021_150921 crossref_primary_10_1039_D3CP06302J crossref_primary_10_1002_ejic_202000554 crossref_primary_10_1021_acscentsci_0c00552 crossref_primary_10_1016_j_joule_2019_02_003 crossref_primary_10_1039_D3QI01553J crossref_primary_10_1002_ange_201908640 crossref_primary_10_1039_C9TA05155D crossref_primary_10_1039_C9TA14260F crossref_primary_10_1016_j_apcatb_2019_118477 crossref_primary_10_1021_acs_inorgchem_2c02958 crossref_primary_10_1039_D1TA07426A crossref_primary_10_1021_acsanm_0c02860 crossref_primary_10_1016_j_coelec_2022_101179 crossref_primary_10_1039_D0TA01572E crossref_primary_10_1039_D2NH00431C crossref_primary_10_1021_acs_jpcc_2c08279 crossref_primary_10_1007_s41918_019_00061_3 crossref_primary_10_1016_j_ces_2022_117735 crossref_primary_10_1039_C9GC01338E crossref_primary_10_1021_acs_jpcc_2c02816 crossref_primary_10_1021_acsenergylett_2c01197 crossref_primary_10_1021_acs_jpclett_0c00134 crossref_primary_10_1039_D0CP00319K crossref_primary_10_1016_j_apcatb_2020_119622 crossref_primary_10_1039_C9TA04382A crossref_primary_10_1039_C9CC08971C crossref_primary_10_1002_ange_201906449 crossref_primary_10_1016_j_cej_2021_132694 crossref_primary_10_1002_adma_201805173 crossref_primary_10_1016_j_cattod_2021_06_008 crossref_primary_10_1002_cssc_202101014 crossref_primary_10_1021_acs_iecr_3c02283 crossref_primary_10_1002_cctc_201901075 crossref_primary_10_1002_chem_201901668 crossref_primary_10_1002_smtd_201900474 crossref_primary_10_1021_acscatal_2c02629 crossref_primary_10_1039_D0CS00415D crossref_primary_10_1002_cssc_202202211 crossref_primary_10_1016_j_electacta_2024_145278 crossref_primary_10_1016_j_ccst_2024_100197 crossref_primary_10_1016_j_cattod_2022_10_020 crossref_primary_10_1021_acsenergylett_2c02175 crossref_primary_10_2139_ssrn_4045285 crossref_primary_10_1016_j_cej_2023_144108 crossref_primary_10_1039_D0TA02550J crossref_primary_10_1039_D0TA11209G crossref_primary_10_1016_j_apenergy_2023_121960 crossref_primary_10_1002_chem_202005182 crossref_primary_10_1002_cey2_345 crossref_primary_10_1002_asia_202300075 crossref_primary_10_1002_sstr_202300158 crossref_primary_10_1021_acssuschemeng_8b06163 crossref_primary_10_1016_j_trechm_2021_07_002 crossref_primary_10_1039_D0TA08313E crossref_primary_10_1002_adfm_202009070 crossref_primary_10_1039_D0CC05635A crossref_primary_10_1016_j_apcatb_2023_123073 crossref_primary_10_1002_anie_202217265 crossref_primary_10_1021_acsami_4c17137 crossref_primary_10_1007_s12274_020_3206_x crossref_primary_10_1016_j_isci_2020_101776 crossref_primary_10_1021_acscatal_9b02245 crossref_primary_10_1039_C9QI01133A crossref_primary_10_1002_anie_201813174 crossref_primary_10_1016_j_jcis_2021_10_062 crossref_primary_10_1002_anie_202401924 crossref_primary_10_1016_S1872_2067_21_63795_6 crossref_primary_10_1021_acssuschemeng_0c04021 crossref_primary_10_1073_pnas_2306673120 crossref_primary_10_1039_D0NJ04244G crossref_primary_10_1002_aenm_201902020 crossref_primary_10_1002_smtd_201900356 crossref_primary_10_1016_j_elecom_2019_01_028 crossref_primary_10_1021_acsnano_1c07771 crossref_primary_10_1016_j_nanoen_2019_06_019 crossref_primary_10_1039_D2CP05485J crossref_primary_10_1039_D3RA06475A crossref_primary_10_1016_j_est_2024_114349 crossref_primary_10_1039_D2CY00428C crossref_primary_10_1016_j_nanoen_2020_104469 crossref_primary_10_1021_jacs_9b09232 crossref_primary_10_1002_cctc_202400922 crossref_primary_10_1007_s12274_021_3559_9 crossref_primary_10_1039_D3EY00301A crossref_primary_10_1002_adem_202100405 crossref_primary_10_1021_jacs_9b03811 crossref_primary_10_1002_anie_201908640 crossref_primary_10_1021_acsami_0c11487 crossref_primary_10_1002_cphc_202200952 crossref_primary_10_1039_D4TA00537F crossref_primary_10_1016_j_apsusc_2024_161201 crossref_primary_10_1016_j_apcatb_2020_118693 crossref_primary_10_1002_cssc_202000670 crossref_primary_10_3390_nano13182580 crossref_primary_10_1039_D2MA00685E crossref_primary_10_1007_s12209_020_00243_x crossref_primary_10_1021_acsnano_4c05956 crossref_primary_10_1016_j_chempr_2021_01_009 crossref_primary_10_1002_advs_202308949 crossref_primary_10_1016_j_mtnano_2022_100202 crossref_primary_10_1021_acsami_2c11674 crossref_primary_10_1002_ange_202004213 crossref_primary_10_1021_acscatal_0c01081 crossref_primary_10_1039_D0TA06672A crossref_primary_10_1021_acscatal_0c03140 crossref_primary_10_1039_D4DT01252F crossref_primary_10_1039_C9TA05016G crossref_primary_10_1039_D2CP05124A crossref_primary_10_1002_adma_202005721 crossref_primary_10_1021_acs_nanolett_0c00698 crossref_primary_10_1021_acscatal_3c02410 crossref_primary_10_1021_acs_iecr_1c01052 crossref_primary_10_1016_j_coelec_2021_100808 crossref_primary_10_1002_anie_202011596 crossref_primary_10_1016_j_apsusc_2024_160245 crossref_primary_10_1002_anie_201908415 crossref_primary_10_1039_C9CS00159J crossref_primary_10_1016_j_apcatb_2020_119434 crossref_primary_10_1002_sus2_7 crossref_primary_10_1021_acsenergylett_9b02679 crossref_primary_10_1021_acscatal_9b02282 crossref_primary_10_1002_eem2_12348 crossref_primary_10_1021_acsami_3c17258 crossref_primary_10_1021_acs_inorgchem_1c01130 crossref_primary_10_1016_j_apcatb_2022_121925 crossref_primary_10_1016_j_jechem_2022_02_036 crossref_primary_10_1016_j_cej_2021_130761 crossref_primary_10_1016_j_apt_2022_103597 crossref_primary_10_1021_acs_jpclett_4c03301 crossref_primary_10_1002_EXP_20240013 crossref_primary_10_1039_C9CY00907H crossref_primary_10_1016_j_matchemphys_2021_124886 crossref_primary_10_1039_D1CY01442K crossref_primary_10_1002_smll_201905825 crossref_primary_10_1021_acscatal_9b03015 crossref_primary_10_1002_aenm_202203032 crossref_primary_10_1002_cctc_202301253 crossref_primary_10_1016_j_mattod_2019_03_002 crossref_primary_10_1002_adma_202000381 crossref_primary_10_1021_acscatal_3c01249 crossref_primary_10_1002_chem_201902156 crossref_primary_10_1007_s12045_023_1548_x crossref_primary_10_1002_anie_201910658 crossref_primary_10_1039_D2SC03975C crossref_primary_10_1039_D2EE00953F crossref_primary_10_1016_j_apsusc_2024_160588 crossref_primary_10_1016_j_isci_2023_106407 crossref_primary_10_1021_acsami_2c17280 crossref_primary_10_1021_acs_energyfuels_4c04978 crossref_primary_10_1021_acs_accounts_1c00446 crossref_primary_10_1016_j_mtener_2021_100766 crossref_primary_10_1016_j_susmat_2020_e00229 crossref_primary_10_1016_j_ijhydene_2019_10_144 crossref_primary_10_1016_S1872_2067_24_60144_0 crossref_primary_10_1039_C9CC03221E crossref_primary_10_3390_catal13030639 crossref_primary_10_1016_j_jelechem_2023_117174 crossref_primary_10_1021_acsami_2c22519 crossref_primary_10_1021_acs_jpcc_9b05436 crossref_primary_10_1016_j_pecs_2020_100860 crossref_primary_10_1002_ece2_10 crossref_primary_10_1016_j_jcis_2021_11_180 crossref_primary_10_1002_smll_202101944 crossref_primary_10_1016_j_apcatb_2019_118296 crossref_primary_10_1002_eem2_12552 crossref_primary_10_1016_j_cej_2022_138320 crossref_primary_10_1016_j_cej_2022_139410 crossref_primary_10_1039_D0NR01359E crossref_primary_10_1002_celc_201902124 crossref_primary_10_1016_j_coelec_2021_100723 crossref_primary_10_1002_cssc_202000487 crossref_primary_10_1039_D0CP04933F crossref_primary_10_1002_aenm_202204236 crossref_primary_10_1002_ange_202005579 crossref_primary_10_1002_eem2_12304 crossref_primary_10_1002_ange_201913122 crossref_primary_10_1021_acsanm_4c05946 crossref_primary_10_1002_adma_201902709 crossref_primary_10_1016_j_trechm_2021_11_007 crossref_primary_10_1039_C8CC09867K crossref_primary_10_1039_D1QI00258A |
Cites_doi | 10.1039/C7TA06139K 10.1021/acscatal.5b01918 10.1021/cm9018953 10.1038/srep01145 10.1111/sum.12285 10.1016/j.jenvman.2018.01.023 10.1016/j.susc.2006.12.010 10.1016/j.elspec.2004.03.004 10.1002/adma.201604799 10.1016/j.procs.2015.05.433 10.1063/1.481103 10.1002/cssc.201500322 10.1039/C6TA01707J 10.1039/C1CP22271F 10.1126/science.282.5386.98 10.1038/s41467-018-04213-9 10.1126/science.aar6611 10.1126/sciadv.aar3208 10.1039/C8CC00459E 10.1016/j.nanoen.2018.04.039 10.1002/zaac.200900168 10.1149/2.0071802jes 10.1021/acs.jpcc.7b00196 10.1039/b004885m 10.1007/s10008-011-1376-x 10.1063/1.351465 10.1038/ngeo325 10.1002/adma.201606550 10.1049/jiee-1.1909.0017 10.1039/C7EE01126A 10.2138/rmg.2014.78.3 10.1016/j.cattod.2016.06.009 |
ContentType | Journal Article |
CorporateAuthor | Brookhaven National Laboratory (BNL), Upton, NY (United States) |
CorporateAuthor_xml | – name: Brookhaven National Laboratory (BNL), Upton, NY (United States) |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 OIOZB OTOTI |
DOI | 10.1021/jacs.8b08379 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 13391 |
ExternalDocumentID | 1484883 30244579 10_1021_jacs_8b08379 c068406170 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH2 IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 ABFRP ABHMW AGHSJ OIOZB OTOTI TAF |
ID | FETCH-LOGICAL-a422t-8b7456b30138e740787849d682c5da8534274f66ed149d66e335499290550703 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Wed Nov 29 06:10:31 EST 2023 Fri Sep 05 14:45:23 EDT 2025 Fri Sep 05 04:58:27 EDT 2025 Mon Jul 21 06:08:09 EDT 2025 Tue Jul 01 03:21:36 EDT 2025 Thu Apr 24 23:02:06 EDT 2025 Fri Feb 05 20:53:49 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a422t-8b7456b30138e740787849d682c5da8534274f66ed149d66e335499290550703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 BNL-209653-2018-JAAM USDOE Office of Science (SC), Basic Energy Sciences (BES) SC0012704 |
ORCID | 0000-0002-2303-257X 0000-0001-6616-4575 0000-0001-8750-0742 000000022303257X 0000000166164575 0000000187500742 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1484883 |
PMID | 30244579 |
PQID | 2111746749 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_1484883 proquest_miscellaneous_2237534617 proquest_miscellaneous_2111746749 pubmed_primary_30244579 crossref_primary_10_1021_jacs_8b08379 crossref_citationtrail_10_1021_jacs_8b08379 acs_journals_10_1021_jacs_8b08379 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-17 |
PublicationDateYYYYMMDD | 2018-10-17 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2018 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 Schlögl R. (ref6/cit6) 2008 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 Vanysek P. (ref36/cit36) 2002 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 Appl M. (ref2/cit2) 2000 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – volume-title: Ullmann’s Encyclopedia of Industiral Chemistry year: 2000 ident: ref2/cit2 – ident: ref22/cit22 doi: 10.1039/C7TA06139K – ident: ref24/cit24 doi: 10.1021/acscatal.5b01918 – ident: ref28/cit28 doi: 10.1021/cm9018953 – ident: ref12/cit12 doi: 10.1038/srep01145 – ident: ref34/cit34 doi: 10.1111/sum.12285 – ident: ref35/cit35 doi: 10.1016/j.jenvman.2018.01.023 – ident: ref31/cit31 doi: 10.1016/j.susc.2006.12.010 – ident: ref30/cit30 doi: 10.1016/j.elspec.2004.03.004 – ident: ref14/cit14 doi: 10.1002/adma.201604799 – ident: ref23/cit23 doi: 10.1016/j.procs.2015.05.433 – ident: ref16/cit16 doi: 10.1063/1.481103 – ident: ref18/cit18 doi: 10.1002/cssc.201500322 – ident: ref4/cit4 – volume-title: Electrochemical Series, CRC Handbook of Chemistry and Physics year: 2002 ident: ref36/cit36 – ident: ref29/cit29 doi: 10.1039/C6TA01707J – ident: ref17/cit17 doi: 10.1039/C1CP22271F – ident: ref9/cit9 doi: 10.1126/science.282.5386.98 – ident: ref19/cit19 doi: 10.1038/s41467-018-04213-9 – ident: ref7/cit7 doi: 10.1126/science.aar6611 – ident: ref20/cit20 doi: 10.1126/sciadv.aar3208 – ident: ref33/cit33 – ident: ref27/cit27 doi: 10.1039/C8CC00459E – ident: ref21/cit21 doi: 10.1016/j.nanoen.2018.04.039 – ident: ref37/cit37 doi: 10.1002/zaac.200900168 – volume-title: Ammonia synthesis, Handbook of Heterogeneous Catalysis year: 2008 ident: ref6/cit6 – ident: ref13/cit13 doi: 10.1149/2.0071802jes – ident: ref26/cit26 doi: 10.1021/acs.jpcc.7b00196 – ident: ref5/cit5 – ident: ref11/cit11 doi: 10.1039/b004885m – ident: ref10/cit10 doi: 10.1007/s10008-011-1376-x – ident: ref32/cit32 doi: 10.1063/1.351465 – ident: ref1/cit1 doi: 10.1038/ngeo325 – ident: ref15/cit15 doi: 10.1002/adma.201606550 – ident: ref8/cit8 doi: 10.1049/jiee-1.1909.0017 – ident: ref3/cit3 doi: 10.1039/C7EE01126A – ident: ref38/cit38 doi: 10.2138/rmg.2014.78.3 – ident: ref25/cit25 doi: 10.1016/j.cattod.2016.06.009 |
SSID | ssj0004281 |
Score | 2.6831563 |
Snippet | Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however,... Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13387 |
SubjectTerms | ammonia catalysts durability electrochemistry fertilizers INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY nanoparticles nitrides nitrogen stable isotopes vanadium X-ray absorption spectroscopy X-ray photoelectron spectroscopy |
Title | Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles |
URI | http://dx.doi.org/10.1021/jacs.8b08379 https://www.ncbi.nlm.nih.gov/pubmed/30244579 https://www.proquest.com/docview/2111746749 https://www.proquest.com/docview/2237534617 https://www.osti.gov/servlets/purl/1484883 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF6V9AAXoDxKoK0WCU7IUby73scRRaS0UjiUgHKz1usFRW0dhJ0Lv56ZtU3UoEAlH-zVWNrH2Pt9mtlvCDkBH9HOiizyKucReIiNjOAs6ktrbZK7OAvhgtGVvLwRPyfJZJEguxzBZ6gP5MqezgAqKLNGPjKpFWrknw-uF-cfmY5bmKu05E2C-_LbuAG58p8NqDODD2k1uAybzHCLfG-P6tS5Jb978yrruafXyo3v9H-bbDY4k57XjvGJfPDFDlkftOXddsn9yOOh36DTTH8UJZL0kk6LakYv6tI4rtESoFdTeAJHo79Q5xVXEu7qAxEUrtuQNzb_G-ymuafwxwYq3mTc7ZHx8GI8uIyaqguRFYxVkc4UgKqMYwjTKwzzKS1MLjVzSW5hdxdAZO-k9HmMzdJzjhyTmT5Ko_X5PukUs8IfEJor472ywggknbG1vp_cJdIAI3Q-NlmXHMPcpM1HU6YhHs6Aj2BrM2NdctauVuoa1XIsnvFnhfXpi_VDrdaxwu4IFz4FlIFSuQ5zilwFNEiDt3LoV-sPKSwKRlBs4WfzMgW2HIf6LOYNG8aBAsJ4VZd8rp3ppS8cEJFIlDn8j5EfkQ0AZ0F7N1ZfSKd6nPuvAICq7Fvw_mcOy_2X |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7RcKAXHqUt4elKcEKLsrZ3vT6iCBQeyaENiNvK6zUoarupupsLv54ZrxNUpFRIOSTWJLLX4_j7NDPfAByjj2TWyCJyqhQReoiJtBQ86qXGmKS0ceHDBcNROriT1w_JQyhWp1oYnESNv1T7IP6rugDJBOFgViBiUPoDrCIO4SSVf97_8VoGybN4jnZVloqQ5_7223QP2fqfe6gzxfO0HGP6u-ZyA0aLWfoUk59ns6Y4s89vBBzfvYxNWA-ok523brIFK676BGv9ebO3bXgaOioB9qrN7KqqibLXbFI1U3bRNsqxQVmAjSb4Cd2OfSfVV9pXfNeWRzB83fssstlvbzcpHcP_byTmIf_uM4wvL8b9QRR6MERGct5EWaEQYhWCAppOUdBPZVKXacZtUhq86yXS2sc0dWVMw6kTghgn1z0SSuuJL9CpppXbAVYq7ZwyUkuioLExrpc8JqlGfmhdrIsufMNnk4cjVOc-Os6RndBoeGJdOJ1vWm6Dhjm10vi1xPpkYf2n1e5YYrdH-58j5iDhXEsZRrZBUpSh7wqc19wtctwUiqeYyk1ndY7cOfbdWvR_bLhAQojrVV342vrUYi4C8ZFMlN59x8qPYG0wHt7mt1ejmz34iLDNq_LGah86zd-ZO0Bo1BSH_kC8AO24Bgc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-xTmK87IOPresGRmJPKFUTO3H8iLpWfIwKAUO8RY7jomosRUv6sr9-d45TBFKnTcpD414jOz7Xv5_u_DuAA_SR1GiRB1YWPEAP0YESPAoGidY6LkyYu3DB-SQ5_i5Ob-PbNQjbszDYiQqfVLkgPq3qh2LqFQZIKgi_SHNEDVK9gJcUsSO5_KPh1eNRyCgNW8Qr04T7XPfnv6a9yFRP9qLOHNfUapzp9pvxG7hc9tSlmfzoL-q8b34_E3H8r6G8hdcefbKjxl3ewZotN-HVsC36tgV355aOAjv1ZnZSVkTdKzYr6zkbNQVzjFcYYJMZ3qH7sUtSf6X5xU_NMQmG143LJlv8dHazwjL8H0eC7vPwtuF6PLoeHge-FkOgRRTVQZpLhFo5p8CmlRT8k6lQRZJGJi407vkC6e00SWwRUnNiOSfmGakBCaYN-A50ynlpPwArpLJWaqEEUdFQazuIp3GikCcaG6q8C_v4bjK_lKrMRckjZCnU6t9YFw7bicuM1zKnkhr3K6y_LK0fGg2PFXY98oEMsQcJ6BrKNDI1kqMUfZhjv1rXyHBSKK6iSztfVBly6NBVbVF_sYk4EkMcr-zC-8avln3hiJNELNXHfxj5HqxffB1n304mZz3YQPTmxHlD-Qk69a-F_YwIqc533Zr4A31yCIo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+Insights+into+Electrochemical+Nitrogen+Reduction+Reaction+on+Vanadium+Nitride+Nanoparticles&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Yang%2C+Xuan&rft.au=Nash%2C+Jared&rft.au=Anibal%2C+Jacob&rft.au=Dunwell%2C+Marco&rft.date=2018-10-17&rft.issn=1520-5126&rft.volume=140&rft.issue=41+p.13387-13391&rft.spage=13387&rft.epage=13391&rft_id=info:doi/10.1021%2Fjacs.8b08379&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |