Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles

Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts wit...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 140; no. 41; pp. 13387 - 13391
Main Authors Yang, Xuan, Nash, Jared, Anibal, Jacob, Dunwell, Marco, Kattel, Shyam, Stavitski, Eli, Attenkofer, Klaus, Chen, Jingguang G, Yan, Yushan, Xu, Bingjun
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.10.2018
American Chemical Society (ACS)
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1520-5126
DOI10.1021/jacs.8b08379

Cover

Loading…
Abstract Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10–10 mol s–1 cm–2 and 6.0% at −0.1 V within 1 h, respectively. ENRR with 15N2 as the feed produces both 14NH3 and 15NH3, which indicates that the reaction follows a Mars–van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN0.7O0.45 as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN0.7O0.45 to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. An ammonia production rate of 1.1 × 10–10 mol s–1 cm–2 can be maintained for 116 h, with a steady-state turnover number of 431.
AbstractList Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10-10 mol s-1 cm-2 and 6.0% at -0.1 V within 1 h, respectively. ENRR with 15N2 as the feed produces both 14NH3 and 15NH3, which indicates that the reaction follows a Mars-van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN0.7O0.45 as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN0.7O0.45 to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. An ammonia production rate of 1.1 × 10-10 mol s-1 cm-2 can be maintained for 116 h, with a steady-state turnover number of 431.Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10-10 mol s-1 cm-2 and 6.0% at -0.1 V within 1 h, respectively. ENRR with 15N2 as the feed produces both 14NH3 and 15NH3, which indicates that the reaction follows a Mars-van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN0.7O0.45 as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN0.7O0.45 to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. An ammonia production rate of 1.1 × 10-10 mol s-1 cm-2 can be maintained for 116 h, with a steady-state turnover number of 431.
Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10–10 mol s–1 cm–2 and 6.0% at -0.1 V within 1 h, respectively. ENRR with 15N2 as the feed produces both 14NH3 and 15NH3, which indicates that the reaction follows a Mars–van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN0.7O0.45 as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN0.7O0.45 to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. Finally, an ammonia production rate of 1.1 × 10–10 mol s–1 cm–2 can be maintained for 116 h, with a steady-state turnover number of 431.
Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10–10 mol s–1 cm–2 and 6.0% at −0.1 V within 1 h, respectively. ENRR with 15N2 as the feed produces both 14NH3 and 15NH3, which indicates that the reaction follows a Mars–van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN0.7O0.45 as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN0.7O0.45 to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. An ammonia production rate of 1.1 × 10–10 mol s–1 cm–2 can be maintained for 116 h, with a steady-state turnover number of 431.
Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10–¹⁰ mol s–¹ cm–² and 6.0% at −0.1 V within 1 h, respectively. ENRR with ¹⁵N₂ as the feed produces both ¹⁴NH₃ and ¹⁵NH₃, which indicates that the reaction follows a Mars–van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN₀.₇O₀.₄₅ as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN₀.₇O₀.₄₅ to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. An ammonia production rate of 1.1 × 10–¹⁰ mol s–¹ cm–² can be maintained for 116 h, with a steady-state turnover number of 431.
Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10 mol s cm and 6.0% at -0.1 V within 1 h, respectively. ENRR with N as the feed produces both NH and NH , which indicates that the reaction follows a Mars-van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN O as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN O to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. An ammonia production rate of 1.1 × 10 mol s cm can be maintained for 116 h, with a steady-state turnover number of 431.
Author Stavitski, Eli
Attenkofer, Klaus
Yang, Xuan
Anibal, Jacob
Dunwell, Marco
Chen, Jingguang G
Nash, Jared
Kattel, Shyam
Yan, Yushan
Xu, Bingjun
AuthorAffiliation National Synchrotron Light Source II
Department of Chemical Engineering
Columbia University
Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering
Chemistry Division
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: National Synchrotron Light Source II
– name: Chemistry Division
– name: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering
– name: Columbia University
Author_xml – sequence: 1
  givenname: Xuan
  orcidid: 0000-0001-8750-0742
  surname: Yang
  fullname: Yang, Xuan
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering
– sequence: 2
  givenname: Jared
  surname: Nash
  fullname: Nash, Jared
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering
– sequence: 3
  givenname: Jacob
  surname: Anibal
  fullname: Anibal, Jacob
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering
– sequence: 4
  givenname: Marco
  surname: Dunwell
  fullname: Dunwell, Marco
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering
– sequence: 5
  givenname: Shyam
  surname: Kattel
  fullname: Kattel, Shyam
  organization: Columbia University
– sequence: 6
  givenname: Eli
  surname: Stavitski
  fullname: Stavitski, Eli
– sequence: 7
  givenname: Klaus
  surname: Attenkofer
  fullname: Attenkofer, Klaus
– sequence: 8
  givenname: Jingguang G
  surname: Chen
  fullname: Chen, Jingguang G
  email: jgchen@columbia.edu
  organization: Columbia University
– sequence: 9
  givenname: Yushan
  orcidid: 0000-0001-6616-4575
  surname: Yan
  fullname: Yan, Yushan
  email: yanys@udel.edu
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering
– sequence: 10
  givenname: Bingjun
  orcidid: 0000-0002-2303-257X
  surname: Xu
  fullname: Xu, Bingjun
  email: bxu@udel.edu
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30244579$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1484883$$D View this record in Osti.gov
BookMark eNqFkU1rGzEQhkVJaZykt5zDklMP3VTf0h5DSNtAmkIJvQpZO7ZldiVH0h7y76utnR5KSkGgmeHRjN53TtBRiAEQOif4imBKPm2ty1d6iTVT3Ru0IILiVhAqj9ACY0xbpSU7Ric5b2vKqSbv0DHDlHOhugVafwO3scHn4l1zF7Jfb0pufCixuR3AlRTdBkbv7NA8-JqtITQ_oJ9c8XGO7D6o56cNtvfT-JvzPTQPNsSdTbXxAPkMvV3ZIcP7w32KHj_fPt58be-_f7m7ub5vLae0tHqpuJBLhgnToDhWWmne9VJTJ3qrBeNU8ZWU0JO5LIExwbuOdlgIrDA7RZf7trEKMtn5UuW5GEKVYgjXXGtWoQ97aJfi0wS5mNFnB8NgA8QpG0qZqpMkUf9HCSGKS8W7il4c0Gk5Qm92yY82PZsXryvwcQ-4FHNOsPqDEGzmVZp5leawyorTv_Cqxs5ul2T98K9Hh__OxW2cUqhmv47-Aho6rXk
CitedBy_id crossref_primary_10_1016_j_rser_2023_113197
crossref_primary_10_1039_C9CP04647J
crossref_primary_10_1002_anie_202004213
crossref_primary_10_1016_j_electacta_2023_143360
crossref_primary_10_1016_j_jpowsour_2023_233173
crossref_primary_10_1002_advs_202405210
crossref_primary_10_1021_acsami_2c03626
crossref_primary_10_1016_j_ijhydene_2023_11_028
crossref_primary_10_1016_j_cej_2023_145828
crossref_primary_10_1039_D1TA05515A
crossref_primary_10_1016_j_jechem_2020_03_044
crossref_primary_10_1016_j_coelec_2021_100790
crossref_primary_10_1021_acsnano_2c11954
crossref_primary_10_1002_cssc_202300593
crossref_primary_10_1039_C9CC01703H
crossref_primary_10_1002_adma_202007650
crossref_primary_10_1002_anie_201915001
crossref_primary_10_1016_j_nanoen_2019_103886
crossref_primary_10_1002_smll_201907091
crossref_primary_10_1016_j_apmt_2024_102253
crossref_primary_10_1039_D4NR00640B
crossref_primary_10_1016_j_gee_2022_10_001
crossref_primary_10_1016_j_jcis_2022_12_105
crossref_primary_10_1039_D2NJ02867K
crossref_primary_10_1039_D4CC04897K
crossref_primary_10_1039_D2TA00661H
crossref_primary_10_1002_advs_201902390
crossref_primary_10_1038_s41598_021_02928_2
crossref_primary_10_1016_j_jma_2023_11_010
crossref_primary_10_1002_aenm_202304106
crossref_primary_10_1039_D0SE00764A
crossref_primary_10_2139_ssrn_4182547
crossref_primary_10_1021_acscatal_9b00366
crossref_primary_10_1002_adfm_202306358
crossref_primary_10_1002_smtd_201800337
crossref_primary_10_1002_ange_202217265
crossref_primary_10_1021_acsami_1c21789
crossref_primary_10_1039_D0EE01790F
crossref_primary_10_1016_j_electacta_2021_139551
crossref_primary_10_1021_acs_nanolett_0c05080
crossref_primary_10_1016_j_apcatb_2023_122485
crossref_primary_10_1002_adma_201904369
crossref_primary_10_1016_j_jechem_2023_01_064
crossref_primary_10_1039_D2TA06354A
crossref_primary_10_1039_C9TA11378A
crossref_primary_10_1016_j_elecom_2021_107002
crossref_primary_10_1021_acsami_9b18263
crossref_primary_10_1016_j_jece_2022_107752
crossref_primary_10_1021_acsami_1c00850
crossref_primary_10_1002_smll_202104205
crossref_primary_10_1002_cssc_202201715
crossref_primary_10_1021_acscatal_3c00201
crossref_primary_10_1039_D0TA04580B
crossref_primary_10_1002_anie_201906449
crossref_primary_10_1016_S1872_2067_23_64504_8
crossref_primary_10_1016_j_ijhydene_2022_02_026
crossref_primary_10_1039_D3QM00267E
crossref_primary_10_1021_acsenergylett_0c01317
crossref_primary_10_1039_D2MA00279E
crossref_primary_10_1039_C9CC07847A
crossref_primary_10_1002_aenm_202003020
crossref_primary_10_1039_C8CY01845F
crossref_primary_10_3389_fceng_2021_765457
crossref_primary_10_34133_2019_1401209
crossref_primary_10_1016_j_inoche_2022_109230
crossref_primary_10_1021_acssuschemeng_3c07736
crossref_primary_10_1039_C9CC00985J
crossref_primary_10_2139_ssrn_4148301
crossref_primary_10_1002_cphc_202300993
crossref_primary_10_1093_nsr_nwz145
crossref_primary_10_1002_smtd_201800388
crossref_primary_10_1016_j_enchem_2020_100041
crossref_primary_10_1002_celc_202000072
crossref_primary_10_1002_ange_201915001
crossref_primary_10_1007_s41918_020_00069_0
crossref_primary_10_1039_D2CP06082E
crossref_primary_10_1021_acs_jpcc_2c05646
crossref_primary_10_2139_ssrn_4125798
crossref_primary_10_1021_acsnano_3c05946
crossref_primary_10_1021_acscatal_2c03163
crossref_primary_10_1002_chem_202303148
crossref_primary_10_1039_D4CP01207K
crossref_primary_10_1002_smll_202002885
crossref_primary_10_1016_j_jcis_2024_06_231
crossref_primary_10_1002_adma_202410909
crossref_primary_10_1016_j_ijoes_2023_100187
crossref_primary_10_1016_j_apsusc_2021_149283
crossref_primary_10_1021_acsnano_2c10607
crossref_primary_10_1002_celc_202001370
crossref_primary_10_1039_D0NR04981F
crossref_primary_10_1002_aenm_202001289
crossref_primary_10_1002_adfm_202400773
crossref_primary_10_1039_D0CC04374E
crossref_primary_10_2139_ssrn_4147430
crossref_primary_10_1002_cctc_201901519
crossref_primary_10_1021_acsanm_2c02624
crossref_primary_10_1038_s41467_019_12773_7
crossref_primary_10_1007_s40242_021_1349_2
crossref_primary_10_1039_C9MH01094G
crossref_primary_10_1088_1757_899X_1053_1_012091
crossref_primary_10_1088_1757_899X_1053_1_012092
crossref_primary_10_1007_s12274_020_2733_9
crossref_primary_10_1021_acsaem_2c01346
crossref_primary_10_1039_D0TA04068A
crossref_primary_10_1021_acsaem_0c00428
crossref_primary_10_26599_NRE_2022_9120022
crossref_primary_10_1016_j_jechem_2021_06_012
crossref_primary_10_1039_C9CC02409C
crossref_primary_10_1063_5_0027996
crossref_primary_10_1039_D1QM01620B
crossref_primary_10_1039_D3CS00557G
crossref_primary_10_1149_1945_7111_ad60f8
crossref_primary_10_1149_1945_7111_ab7a8b
crossref_primary_10_1016_j_apcatb_2021_120482
crossref_primary_10_1039_D4RE00104D
crossref_primary_10_1016_j_jpowsour_2020_228144
crossref_primary_10_1007_s11705_023_2364_2
crossref_primary_10_1016_j_jmst_2021_05_083
crossref_primary_10_1021_acsenergylett_2c00207
crossref_primary_10_1149_1945_7111_ab7097
crossref_primary_10_26599_NRE_2022_9120010
crossref_primary_10_1016_j_jechem_2024_01_024
crossref_primary_10_1021_acscatal_9b00994
crossref_primary_10_1039_D0EE03596C
crossref_primary_10_1021_acssuschemeng_9b04024
crossref_primary_10_1002_eom2_12026
crossref_primary_10_1002_elt2_40
crossref_primary_10_1021_acscatal_9b03903
crossref_primary_10_1002_ange_202011596
crossref_primary_10_1021_acs_jpcc_2c04119
crossref_primary_10_1021_acsami_1c16104
crossref_primary_10_1002_aenm_202200974
crossref_primary_10_1039_D2TA06991A
crossref_primary_10_1016_j_apcatb_2019_118525
crossref_primary_10_1007_s11244_021_01485_2
crossref_primary_10_2139_ssrn_4186995
crossref_primary_10_1016_j_cej_2024_155735
crossref_primary_10_1021_jacs_9b03004
crossref_primary_10_1016_j_apcatb_2021_120265
crossref_primary_10_1002_tcr_202200139
crossref_primary_10_1039_D0CC05917J
crossref_primary_10_1039_C9TA05505C
crossref_primary_10_1039_C9TA13135C
crossref_primary_10_1002_admi_202101842
crossref_primary_10_1002_asia_202000310
crossref_primary_10_1039_C9CC08352A
crossref_primary_10_1039_D0TA00676A
crossref_primary_10_1016_j_apcatb_2022_121380
crossref_primary_10_1039_D1MA00814E
crossref_primary_10_1039_C9TA08806G
crossref_primary_10_1021_acs_inorgchem_9b01707
crossref_primary_10_1039_D0TA01688H
crossref_primary_10_1149_1945_7111_abde7f
crossref_primary_10_1002_aenm_202103022
crossref_primary_10_1016_S1872_5813_21_60152_4
crossref_primary_10_1021_acs_inorgchem_9b01823
crossref_primary_10_20517_jmi_2023_35
crossref_primary_10_1016_S1872_2067_23_64464_X
crossref_primary_10_1063_5_0107678
crossref_primary_10_1002_adma_202008422
crossref_primary_10_1016_j_cej_2022_136915
crossref_primary_10_1021_acsami_1c03698
crossref_primary_10_1021_acssuschemeng_3c03410
crossref_primary_10_1039_D1SE00338K
crossref_primary_10_1002_ange_202401924
crossref_primary_10_1016_j_surfin_2024_104265
crossref_primary_10_1002_anie_202005579
crossref_primary_10_1002_celc_202200625
crossref_primary_10_1039_C9TA06076F
crossref_primary_10_1021_acs_inorgchem_9b00622
crossref_primary_10_1039_C9TA13044F
crossref_primary_10_1002_celc_201901970
crossref_primary_10_1002_cey2_160
crossref_primary_10_1002_ange_201813174
crossref_primary_10_1039_D4EY00197D
crossref_primary_10_1016_j_isci_2021_103105
crossref_primary_10_1002_sus2_32
crossref_primary_10_1016_j_cej_2025_161447
crossref_primary_10_1002_ange_201912733
crossref_primary_10_1039_D1QM00546D
crossref_primary_10_1002_cssc_202401487
crossref_primary_10_1016_j_checat_2021_12_004
crossref_primary_10_1016_j_xcrp_2021_100438
crossref_primary_10_1021_jacsau_4c00377
crossref_primary_10_1002_smtd_202300277
crossref_primary_10_1007_s12274_018_2268_5
crossref_primary_10_1039_D1CS00590A
crossref_primary_10_1002_anie_201913122
crossref_primary_10_1016_j_joule_2019_10_006
crossref_primary_10_1016_j_chempr_2021_10_008
crossref_primary_10_1039_D0TA11727G
crossref_primary_10_1016_j_ijhydene_2021_01_203
crossref_primary_10_1007_s41918_023_00186_6
crossref_primary_10_1039_D2TA06346H
crossref_primary_10_1039_D0TA05282E
crossref_primary_10_1016_j_cej_2023_143776
crossref_primary_10_1016_j_enchem_2019_100011
crossref_primary_10_1002_ente_202000466
crossref_primary_10_1016_j_ccr_2022_214981
crossref_primary_10_1016_j_mattod_2020_09_006
crossref_primary_10_1039_D2EE00358A
crossref_primary_10_1039_C9CC06385D
crossref_primary_10_1016_S1872_2067_22_64148_2
crossref_primary_10_1002_ange_201910658
crossref_primary_10_1016_j_apcatb_2022_121225
crossref_primary_10_1007_s10800_022_01712_y
crossref_primary_10_1016_S1872_2067_20_63704_4
crossref_primary_10_1002_adfm_201904780
crossref_primary_10_1021_acs_jpcc_1c05893
crossref_primary_10_1126_sciadv_abj1584
crossref_primary_10_1002_sus2_226
crossref_primary_10_1186_s40580_019_0182_5
crossref_primary_10_1016_j_jechem_2020_06_011
crossref_primary_10_1021_acsaem_3c01999
crossref_primary_10_1039_D0CP04168H
crossref_primary_10_1039_D1CS00120E
crossref_primary_10_1039_C9CS00280D
crossref_primary_10_1016_j_apmt_2020_100620
crossref_primary_10_1016_j_cjche_2023_03_028
crossref_primary_10_1016_j_jechem_2021_01_039
crossref_primary_10_1016_j_jcis_2023_02_112
crossref_primary_10_1360_TB_2022_0139
crossref_primary_10_1039_D1MA00680K
crossref_primary_10_1021_acsenergylett_9b00648
crossref_primary_10_1039_D0MA00849D
crossref_primary_10_1039_D1QI00328C
crossref_primary_10_1088_1361_648X_acd49d
crossref_primary_10_1002_cctc_201902383
crossref_primary_10_1002_advs_202104857
crossref_primary_10_1016_j_mtphys_2020_100310
crossref_primary_10_1021_acs_jpcc_1c02397
crossref_primary_10_1002_cite_201900090
crossref_primary_10_1021_acs_jpca_2c00486
crossref_primary_10_1039_C8TA11201K
crossref_primary_10_1039_C9TA13812A
crossref_primary_10_1016_j_jmrt_2021_10_131
crossref_primary_10_1016_j_joule_2019_03_003
crossref_primary_10_1039_D1GC04483D
crossref_primary_10_1002_advs_202300951
crossref_primary_10_1002_adma_202312746
crossref_primary_10_1016_j_est_2022_105912
crossref_primary_10_1016_j_jcis_2024_05_145
crossref_primary_10_1007_s41918_022_00164_4
crossref_primary_10_1021_acscatal_9b05260
crossref_primary_10_1016_j_cclet_2023_108341
crossref_primary_10_1002_sstr_202200306
crossref_primary_10_1016_j_nanoen_2025_110693
crossref_primary_10_1021_acs_inorgchem_2c01812
crossref_primary_10_1016_j_cej_2024_153275
crossref_primary_10_1021_acsaem_9b00102
crossref_primary_10_1002_cctc_202101906
crossref_primary_10_1021_acsami_8b20692
crossref_primary_10_1002_anie_201912733
crossref_primary_10_3389_fenrg_2020_602438
crossref_primary_10_1002_smtd_202100699
crossref_primary_10_1007_s11426_022_1419_y
crossref_primary_10_1016_j_ccr_2023_215410
crossref_primary_10_1021_acscatal_0c02680
crossref_primary_10_1002_cssc_202101461
crossref_primary_10_1007_s12274_022_4097_9
crossref_primary_10_1016_j_cej_2021_132649
crossref_primary_10_1016_j_est_2023_108229
crossref_primary_10_1002_cctc_202401262
crossref_primary_10_1016_j_cej_2021_129018
crossref_primary_10_1002_aenm_202002967
crossref_primary_10_1002_cssc_202300948
crossref_primary_10_1002_ange_201908415
crossref_primary_10_1016_j_cej_2021_131211
crossref_primary_10_1002_cssc_202300947
crossref_primary_10_1039_D2TA02244C
crossref_primary_10_1039_D3QI00683B
crossref_primary_10_1039_C9TA09439C
crossref_primary_10_1002_aic_17549
crossref_primary_10_1002_asia_201901624
crossref_primary_10_1021_acs_est_3c10751
crossref_primary_10_1039_C9CC03413G
crossref_primary_10_1021_jacs_2c00276
crossref_primary_10_1021_jacs_2c01245
crossref_primary_10_1016_j_jechem_2020_05_013
crossref_primary_10_1002_slct_202201359
crossref_primary_10_1016_j_apsusc_2021_150921
crossref_primary_10_1039_D3CP06302J
crossref_primary_10_1002_ejic_202000554
crossref_primary_10_1021_acscentsci_0c00552
crossref_primary_10_1016_j_joule_2019_02_003
crossref_primary_10_1039_D3QI01553J
crossref_primary_10_1002_ange_201908640
crossref_primary_10_1039_C9TA05155D
crossref_primary_10_1039_C9TA14260F
crossref_primary_10_1016_j_apcatb_2019_118477
crossref_primary_10_1021_acs_inorgchem_2c02958
crossref_primary_10_1039_D1TA07426A
crossref_primary_10_1021_acsanm_0c02860
crossref_primary_10_1016_j_coelec_2022_101179
crossref_primary_10_1039_D0TA01572E
crossref_primary_10_1039_D2NH00431C
crossref_primary_10_1021_acs_jpcc_2c08279
crossref_primary_10_1007_s41918_019_00061_3
crossref_primary_10_1016_j_ces_2022_117735
crossref_primary_10_1039_C9GC01338E
crossref_primary_10_1021_acs_jpcc_2c02816
crossref_primary_10_1021_acsenergylett_2c01197
crossref_primary_10_1021_acs_jpclett_0c00134
crossref_primary_10_1039_D0CP00319K
crossref_primary_10_1016_j_apcatb_2020_119622
crossref_primary_10_1039_C9TA04382A
crossref_primary_10_1039_C9CC08971C
crossref_primary_10_1002_ange_201906449
crossref_primary_10_1016_j_cej_2021_132694
crossref_primary_10_1002_adma_201805173
crossref_primary_10_1016_j_cattod_2021_06_008
crossref_primary_10_1002_cssc_202101014
crossref_primary_10_1021_acs_iecr_3c02283
crossref_primary_10_1002_cctc_201901075
crossref_primary_10_1002_chem_201901668
crossref_primary_10_1002_smtd_201900474
crossref_primary_10_1021_acscatal_2c02629
crossref_primary_10_1039_D0CS00415D
crossref_primary_10_1002_cssc_202202211
crossref_primary_10_1016_j_electacta_2024_145278
crossref_primary_10_1016_j_ccst_2024_100197
crossref_primary_10_1016_j_cattod_2022_10_020
crossref_primary_10_1021_acsenergylett_2c02175
crossref_primary_10_2139_ssrn_4045285
crossref_primary_10_1016_j_cej_2023_144108
crossref_primary_10_1039_D0TA02550J
crossref_primary_10_1039_D0TA11209G
crossref_primary_10_1016_j_apenergy_2023_121960
crossref_primary_10_1002_chem_202005182
crossref_primary_10_1002_cey2_345
crossref_primary_10_1002_asia_202300075
crossref_primary_10_1002_sstr_202300158
crossref_primary_10_1021_acssuschemeng_8b06163
crossref_primary_10_1016_j_trechm_2021_07_002
crossref_primary_10_1039_D0TA08313E
crossref_primary_10_1002_adfm_202009070
crossref_primary_10_1039_D0CC05635A
crossref_primary_10_1016_j_apcatb_2023_123073
crossref_primary_10_1002_anie_202217265
crossref_primary_10_1021_acsami_4c17137
crossref_primary_10_1007_s12274_020_3206_x
crossref_primary_10_1016_j_isci_2020_101776
crossref_primary_10_1021_acscatal_9b02245
crossref_primary_10_1039_C9QI01133A
crossref_primary_10_1002_anie_201813174
crossref_primary_10_1016_j_jcis_2021_10_062
crossref_primary_10_1002_anie_202401924
crossref_primary_10_1016_S1872_2067_21_63795_6
crossref_primary_10_1021_acssuschemeng_0c04021
crossref_primary_10_1073_pnas_2306673120
crossref_primary_10_1039_D0NJ04244G
crossref_primary_10_1002_aenm_201902020
crossref_primary_10_1002_smtd_201900356
crossref_primary_10_1016_j_elecom_2019_01_028
crossref_primary_10_1021_acsnano_1c07771
crossref_primary_10_1016_j_nanoen_2019_06_019
crossref_primary_10_1039_D2CP05485J
crossref_primary_10_1039_D3RA06475A
crossref_primary_10_1016_j_est_2024_114349
crossref_primary_10_1039_D2CY00428C
crossref_primary_10_1016_j_nanoen_2020_104469
crossref_primary_10_1021_jacs_9b09232
crossref_primary_10_1002_cctc_202400922
crossref_primary_10_1007_s12274_021_3559_9
crossref_primary_10_1039_D3EY00301A
crossref_primary_10_1002_adem_202100405
crossref_primary_10_1021_jacs_9b03811
crossref_primary_10_1002_anie_201908640
crossref_primary_10_1021_acsami_0c11487
crossref_primary_10_1002_cphc_202200952
crossref_primary_10_1039_D4TA00537F
crossref_primary_10_1016_j_apsusc_2024_161201
crossref_primary_10_1016_j_apcatb_2020_118693
crossref_primary_10_1002_cssc_202000670
crossref_primary_10_3390_nano13182580
crossref_primary_10_1039_D2MA00685E
crossref_primary_10_1007_s12209_020_00243_x
crossref_primary_10_1021_acsnano_4c05956
crossref_primary_10_1016_j_chempr_2021_01_009
crossref_primary_10_1002_advs_202308949
crossref_primary_10_1016_j_mtnano_2022_100202
crossref_primary_10_1021_acsami_2c11674
crossref_primary_10_1002_ange_202004213
crossref_primary_10_1021_acscatal_0c01081
crossref_primary_10_1039_D0TA06672A
crossref_primary_10_1021_acscatal_0c03140
crossref_primary_10_1039_D4DT01252F
crossref_primary_10_1039_C9TA05016G
crossref_primary_10_1039_D2CP05124A
crossref_primary_10_1002_adma_202005721
crossref_primary_10_1021_acs_nanolett_0c00698
crossref_primary_10_1021_acscatal_3c02410
crossref_primary_10_1021_acs_iecr_1c01052
crossref_primary_10_1016_j_coelec_2021_100808
crossref_primary_10_1002_anie_202011596
crossref_primary_10_1016_j_apsusc_2024_160245
crossref_primary_10_1002_anie_201908415
crossref_primary_10_1039_C9CS00159J
crossref_primary_10_1016_j_apcatb_2020_119434
crossref_primary_10_1002_sus2_7
crossref_primary_10_1021_acsenergylett_9b02679
crossref_primary_10_1021_acscatal_9b02282
crossref_primary_10_1002_eem2_12348
crossref_primary_10_1021_acsami_3c17258
crossref_primary_10_1021_acs_inorgchem_1c01130
crossref_primary_10_1016_j_apcatb_2022_121925
crossref_primary_10_1016_j_jechem_2022_02_036
crossref_primary_10_1016_j_cej_2021_130761
crossref_primary_10_1016_j_apt_2022_103597
crossref_primary_10_1021_acs_jpclett_4c03301
crossref_primary_10_1002_EXP_20240013
crossref_primary_10_1039_C9CY00907H
crossref_primary_10_1016_j_matchemphys_2021_124886
crossref_primary_10_1039_D1CY01442K
crossref_primary_10_1002_smll_201905825
crossref_primary_10_1021_acscatal_9b03015
crossref_primary_10_1002_aenm_202203032
crossref_primary_10_1002_cctc_202301253
crossref_primary_10_1016_j_mattod_2019_03_002
crossref_primary_10_1002_adma_202000381
crossref_primary_10_1021_acscatal_3c01249
crossref_primary_10_1002_chem_201902156
crossref_primary_10_1007_s12045_023_1548_x
crossref_primary_10_1002_anie_201910658
crossref_primary_10_1039_D2SC03975C
crossref_primary_10_1039_D2EE00953F
crossref_primary_10_1016_j_apsusc_2024_160588
crossref_primary_10_1016_j_isci_2023_106407
crossref_primary_10_1021_acsami_2c17280
crossref_primary_10_1021_acs_energyfuels_4c04978
crossref_primary_10_1021_acs_accounts_1c00446
crossref_primary_10_1016_j_mtener_2021_100766
crossref_primary_10_1016_j_susmat_2020_e00229
crossref_primary_10_1016_j_ijhydene_2019_10_144
crossref_primary_10_1016_S1872_2067_24_60144_0
crossref_primary_10_1039_C9CC03221E
crossref_primary_10_3390_catal13030639
crossref_primary_10_1016_j_jelechem_2023_117174
crossref_primary_10_1021_acsami_2c22519
crossref_primary_10_1021_acs_jpcc_9b05436
crossref_primary_10_1016_j_pecs_2020_100860
crossref_primary_10_1002_ece2_10
crossref_primary_10_1016_j_jcis_2021_11_180
crossref_primary_10_1002_smll_202101944
crossref_primary_10_1016_j_apcatb_2019_118296
crossref_primary_10_1002_eem2_12552
crossref_primary_10_1016_j_cej_2022_138320
crossref_primary_10_1016_j_cej_2022_139410
crossref_primary_10_1039_D0NR01359E
crossref_primary_10_1002_celc_201902124
crossref_primary_10_1016_j_coelec_2021_100723
crossref_primary_10_1002_cssc_202000487
crossref_primary_10_1039_D0CP04933F
crossref_primary_10_1002_aenm_202204236
crossref_primary_10_1002_ange_202005579
crossref_primary_10_1002_eem2_12304
crossref_primary_10_1002_ange_201913122
crossref_primary_10_1021_acsanm_4c05946
crossref_primary_10_1002_adma_201902709
crossref_primary_10_1016_j_trechm_2021_11_007
crossref_primary_10_1039_C8CC09867K
crossref_primary_10_1039_D1QI00258A
Cites_doi 10.1039/C7TA06139K
10.1021/acscatal.5b01918
10.1021/cm9018953
10.1038/srep01145
10.1111/sum.12285
10.1016/j.jenvman.2018.01.023
10.1016/j.susc.2006.12.010
10.1016/j.elspec.2004.03.004
10.1002/adma.201604799
10.1016/j.procs.2015.05.433
10.1063/1.481103
10.1002/cssc.201500322
10.1039/C6TA01707J
10.1039/C1CP22271F
10.1126/science.282.5386.98
10.1038/s41467-018-04213-9
10.1126/science.aar6611
10.1126/sciadv.aar3208
10.1039/C8CC00459E
10.1016/j.nanoen.2018.04.039
10.1002/zaac.200900168
10.1149/2.0071802jes
10.1021/acs.jpcc.7b00196
10.1039/b004885m
10.1007/s10008-011-1376-x
10.1063/1.351465
10.1038/ngeo325
10.1002/adma.201606550
10.1049/jiee-1.1909.0017
10.1039/C7EE01126A
10.2138/rmg.2014.78.3
10.1016/j.cattod.2016.06.009
ContentType Journal Article
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
OIOZB
OTOTI
DOI 10.1021/jacs.8b08379
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 13391
ExternalDocumentID 1484883
30244579
10_1021_jacs_8b08379
c068406170
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
ABFRP
ABHMW
AGHSJ
OIOZB
OTOTI
TAF
ID FETCH-LOGICAL-a422t-8b7456b30138e740787849d682c5da8534274f66ed149d66e335499290550703
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Wed Nov 29 06:10:31 EST 2023
Fri Sep 05 14:45:23 EDT 2025
Fri Sep 05 04:58:27 EDT 2025
Mon Jul 21 06:08:09 EDT 2025
Tue Jul 01 03:21:36 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Fri Feb 05 20:53:49 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a422t-8b7456b30138e740787849d682c5da8534274f66ed149d66e335499290550703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
BNL-209653-2018-JAAM
USDOE Office of Science (SC), Basic Energy Sciences (BES)
SC0012704
ORCID 0000-0002-2303-257X
0000-0001-6616-4575
0000-0001-8750-0742
000000022303257X
0000000166164575
0000000187500742
OpenAccessLink https://www.osti.gov/servlets/purl/1484883
PMID 30244579
PQID 2111746749
PQPubID 23479
PageCount 5
ParticipantIDs osti_scitechconnect_1484883
proquest_miscellaneous_2237534617
proquest_miscellaneous_2111746749
pubmed_primary_30244579
crossref_primary_10_1021_jacs_8b08379
crossref_citationtrail_10_1021_jacs_8b08379
acs_journals_10_1021_jacs_8b08379
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-17
PublicationDateYYYYMMDD 2018-10-17
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2018
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
Schlögl R. (ref6/cit6) 2008
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
Vanysek P. (ref36/cit36) 2002
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
Appl M. (ref2/cit2) 2000
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – volume-title: Ullmann’s Encyclopedia of Industiral Chemistry
  year: 2000
  ident: ref2/cit2
– ident: ref22/cit22
  doi: 10.1039/C7TA06139K
– ident: ref24/cit24
  doi: 10.1021/acscatal.5b01918
– ident: ref28/cit28
  doi: 10.1021/cm9018953
– ident: ref12/cit12
  doi: 10.1038/srep01145
– ident: ref34/cit34
  doi: 10.1111/sum.12285
– ident: ref35/cit35
  doi: 10.1016/j.jenvman.2018.01.023
– ident: ref31/cit31
  doi: 10.1016/j.susc.2006.12.010
– ident: ref30/cit30
  doi: 10.1016/j.elspec.2004.03.004
– ident: ref14/cit14
  doi: 10.1002/adma.201604799
– ident: ref23/cit23
  doi: 10.1016/j.procs.2015.05.433
– ident: ref16/cit16
  doi: 10.1063/1.481103
– ident: ref18/cit18
  doi: 10.1002/cssc.201500322
– ident: ref4/cit4
– volume-title: Electrochemical Series, CRC Handbook of Chemistry and Physics
  year: 2002
  ident: ref36/cit36
– ident: ref29/cit29
  doi: 10.1039/C6TA01707J
– ident: ref17/cit17
  doi: 10.1039/C1CP22271F
– ident: ref9/cit9
  doi: 10.1126/science.282.5386.98
– ident: ref19/cit19
  doi: 10.1038/s41467-018-04213-9
– ident: ref7/cit7
  doi: 10.1126/science.aar6611
– ident: ref20/cit20
  doi: 10.1126/sciadv.aar3208
– ident: ref33/cit33
– ident: ref27/cit27
  doi: 10.1039/C8CC00459E
– ident: ref21/cit21
  doi: 10.1016/j.nanoen.2018.04.039
– ident: ref37/cit37
  doi: 10.1002/zaac.200900168
– volume-title: Ammonia synthesis, Handbook of Heterogeneous Catalysis
  year: 2008
  ident: ref6/cit6
– ident: ref13/cit13
  doi: 10.1149/2.0071802jes
– ident: ref26/cit26
  doi: 10.1021/acs.jpcc.7b00196
– ident: ref5/cit5
– ident: ref11/cit11
  doi: 10.1039/b004885m
– ident: ref10/cit10
  doi: 10.1007/s10008-011-1376-x
– ident: ref32/cit32
  doi: 10.1063/1.351465
– ident: ref1/cit1
  doi: 10.1038/ngeo325
– ident: ref15/cit15
  doi: 10.1002/adma.201606550
– ident: ref8/cit8
  doi: 10.1049/jiee-1.1909.0017
– ident: ref3/cit3
  doi: 10.1039/C7EE01126A
– ident: ref38/cit38
  doi: 10.2138/rmg.2014.78.3
– ident: ref25/cit25
  doi: 10.1016/j.cattod.2016.06.009
SSID ssj0004281
Score 2.6831563
Snippet Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however,...
Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13387
SubjectTerms ammonia
catalysts
durability
electrochemistry
fertilizers
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
nanoparticles
nitrides
nitrogen
stable isotopes
vanadium
X-ray absorption spectroscopy
X-ray photoelectron spectroscopy
Title Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles
URI http://dx.doi.org/10.1021/jacs.8b08379
https://www.ncbi.nlm.nih.gov/pubmed/30244579
https://www.proquest.com/docview/2111746749
https://www.proquest.com/docview/2237534617
https://www.osti.gov/servlets/purl/1484883
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF6V9AAXoDxKoK0WCU7IUby73scRRaS0UjiUgHKz1usFRW0dhJ0Lv56ZtU3UoEAlH-zVWNrH2Pt9mtlvCDkBH9HOiizyKucReIiNjOAs6ktrbZK7OAvhgtGVvLwRPyfJZJEguxzBZ6gP5MqezgAqKLNGPjKpFWrknw-uF-cfmY5bmKu05E2C-_LbuAG58p8NqDODD2k1uAybzHCLfG-P6tS5Jb978yrruafXyo3v9H-bbDY4k57XjvGJfPDFDlkftOXddsn9yOOh36DTTH8UJZL0kk6LakYv6tI4rtESoFdTeAJHo79Q5xVXEu7qAxEUrtuQNzb_G-ymuafwxwYq3mTc7ZHx8GI8uIyaqguRFYxVkc4UgKqMYwjTKwzzKS1MLjVzSW5hdxdAZO-k9HmMzdJzjhyTmT5Ko_X5PukUs8IfEJor472ywggknbG1vp_cJdIAI3Q-NlmXHMPcpM1HU6YhHs6Aj2BrM2NdctauVuoa1XIsnvFnhfXpi_VDrdaxwu4IFz4FlIFSuQ5zilwFNEiDt3LoV-sPKSwKRlBs4WfzMgW2HIf6LOYNG8aBAsJ4VZd8rp3ppS8cEJFIlDn8j5EfkQ0AZ0F7N1ZfSKd6nPuvAICq7Fvw_mcOy_2X
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7RcKAXHqUt4elKcEKLsrZ3vT6iCBQeyaENiNvK6zUoarupupsLv54ZrxNUpFRIOSTWJLLX4_j7NDPfAByjj2TWyCJyqhQReoiJtBQ86qXGmKS0ceHDBcNROriT1w_JQyhWp1oYnESNv1T7IP6rugDJBOFgViBiUPoDrCIO4SSVf97_8VoGybN4jnZVloqQ5_7223QP2fqfe6gzxfO0HGP6u-ZyA0aLWfoUk59ns6Y4s89vBBzfvYxNWA-ok523brIFK676BGv9ebO3bXgaOioB9qrN7KqqibLXbFI1U3bRNsqxQVmAjSb4Cd2OfSfVV9pXfNeWRzB83fssstlvbzcpHcP_byTmIf_uM4wvL8b9QRR6MERGct5EWaEQYhWCAppOUdBPZVKXacZtUhq86yXS2sc0dWVMw6kTghgn1z0SSuuJL9CpppXbAVYq7ZwyUkuioLExrpc8JqlGfmhdrIsufMNnk4cjVOc-Os6RndBoeGJdOJ1vWm6Dhjm10vi1xPpkYf2n1e5YYrdH-58j5iDhXEsZRrZBUpSh7wqc19wtctwUiqeYyk1ndY7cOfbdWvR_bLhAQojrVV342vrUYi4C8ZFMlN59x8qPYG0wHt7mt1ejmz34iLDNq_LGah86zd-ZO0Bo1BSH_kC8AO24Bgc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-xTmK87IOPresGRmJPKFUTO3H8iLpWfIwKAUO8RY7jomosRUv6sr9-d45TBFKnTcpD414jOz7Xv5_u_DuAA_SR1GiRB1YWPEAP0YESPAoGidY6LkyYu3DB-SQ5_i5Ob-PbNQjbszDYiQqfVLkgPq3qh2LqFQZIKgi_SHNEDVK9gJcUsSO5_KPh1eNRyCgNW8Qr04T7XPfnv6a9yFRP9qLOHNfUapzp9pvxG7hc9tSlmfzoL-q8b34_E3H8r6G8hdcefbKjxl3ewZotN-HVsC36tgV355aOAjv1ZnZSVkTdKzYr6zkbNQVzjFcYYJMZ3qH7sUtSf6X5xU_NMQmG143LJlv8dHazwjL8H0eC7vPwtuF6PLoeHge-FkOgRRTVQZpLhFo5p8CmlRT8k6lQRZJGJi407vkC6e00SWwRUnNiOSfmGakBCaYN-A50ynlpPwArpLJWaqEEUdFQazuIp3GikCcaG6q8C_v4bjK_lKrMRckjZCnU6t9YFw7bicuM1zKnkhr3K6y_LK0fGg2PFXY98oEMsQcJ6BrKNDI1kqMUfZhjv1rXyHBSKK6iSztfVBly6NBVbVF_sYk4EkMcr-zC-8avln3hiJNELNXHfxj5HqxffB1n304mZz3YQPTmxHlD-Qk69a-F_YwIqc533Zr4A31yCIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+Insights+into+Electrochemical+Nitrogen+Reduction+Reaction+on+Vanadium+Nitride+Nanoparticles&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Yang%2C+Xuan&rft.au=Nash%2C+Jared&rft.au=Anibal%2C+Jacob&rft.au=Dunwell%2C+Marco&rft.date=2018-10-17&rft.issn=1520-5126&rft.volume=140&rft.issue=41+p.13387-13391&rft.spage=13387&rft.epage=13391&rft_id=info:doi/10.1021%2Fjacs.8b08379&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon