Insight into the Catalytic Mechanism of GH11 Xylanase: Computational Analysis of Substrate Distortion Based on a Neutron Structure
The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal struc...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 42; pp. 17966 - 17980 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.10.2020
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ∼18 kcal/mol with QM/MM-CCSD(T)/6-31(+)G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme–substrate (ES) complex, the carbohydrate structure of the xylose residue at the −1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty. |
---|---|
AbstractList | The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ∼18 kcal/mol with QM/MM-CCSD(T)/6-31(+)G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme–substrate (ES) complex, the carbohydrate structure of the xylose residue at the −1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty. The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ∼18 kcal/mol with QM/MM-CCSD(T)/6-31(+)G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme-substrate (ES) complex, the carbohydrate structure of the xylose residue at the -1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty.The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ∼18 kcal/mol with QM/MM-CCSD(T)/6-31(+)G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme-substrate (ES) complex, the carbohydrate structure of the xylose residue at the -1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty. The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ∼18 kcal/mol with QM/MM-CCSD(T)/6-31(+)G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme–substrate (ES) complex, the carbohydrate structure of the xylose residue at the −1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty. The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ∼18 kcal/mol with QM/MM-CCSD(T)/6-31(+)G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme-substrate (ES) complex, the carbohydrate structure of the xylose residue at the -1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty. The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. Here, to clarify the mechanism, we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ~18 kcal/mol with QM/MM-CCSD(T)/6-31(+)G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme–substrate (ES) complex, the carbohydrate structure of the xylose residue at the -1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty. |
Author | Smith, Jeremy C Parks, Jerry M Ishida, Toyokazu |
AuthorAffiliation | Research Center for Computational Design of Advanced Functional Materials (CD-FMat) National Institute of Advanced Industrial Science and Technology (AIST) Center for Molecular Biophysics (CMB), Biosciences Division Oak Ridge National Laboratory (ORNL) |
AuthorAffiliation_xml | – name: National Institute of Advanced Industrial Science and Technology (AIST) – name: Oak Ridge National Laboratory (ORNL) – name: Center for Molecular Biophysics (CMB), Biosciences Division – name: Research Center for Computational Design of Advanced Functional Materials (CD-FMat) |
Author_xml | – sequence: 1 givenname: Toyokazu orcidid: 0000-0002-7715-541X surname: Ishida fullname: Ishida, Toyokazu email: toyokazu.ishida@aist.go.jp organization: National Institute of Advanced Industrial Science and Technology (AIST) – sequence: 2 givenname: Jerry M orcidid: 0000-0002-3103-9333 surname: Parks fullname: Parks, Jerry M organization: Oak Ridge National Laboratory (ORNL) – sequence: 3 givenname: Jeremy C orcidid: 0000-0002-2978-3227 surname: Smith fullname: Smith, Jeremy C email: smithjc@ornl.gov organization: Oak Ridge National Laboratory (ORNL) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32959658$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1706245$$D View this record in Osti.gov |
BookMark | eNqFkbFv1DAUhy1URK-FjRlZTAyk-Dl24rCVA9pKBYaCxBY5jsP5lMSHnz3cyl-O0zsYEIjFfra-9-SfvzNyMvvZEvIU2AUwDq-22uAFM7kU6gFZgeSskMCrE7JijPGiVlV5Ss4Qt_kouIJH5LTkjWwqqVbkx82M7tsmUjdHT-PG0rWOetxHZ-gHazZ6djhRP9CrawD6dT_qWaN9Tdd-2qWoo_OzHullXvbocAHvUocx6GjpW4fRhwWhb3JTT3Oh6UebYsjVXQzJxBTsY_Jw0CPaJ8f9nHx5_-7z-rq4_XR1s768LbTgPBYVlBbU0HfKCAkSOmYrAN3YgUOnuDTKCm26QQ11LzvRNEz3Q61EX9ZlXypenpPnh7keo2vRuJjzGT_P1sQWalZxITP04gDtgv-eLMZ2cmjsmHNbn7DlkosSgN3P-w8qhFB1xSXL6LMjmrrJ9u0uuEmHffvLQwZeHgATPGKww28EWLtobhfN7VFzxvkfeE5zLyP_vBv_1XR873K59Slkafh39CcAhrhs |
CitedBy_id | crossref_primary_10_1016_j_carres_2024_109080 crossref_primary_10_1080_21655979_2022_2084496 crossref_primary_10_1016_j_fbio_2025_105867 crossref_primary_10_1007_s00894_024_06048_2 crossref_primary_10_1021_acssuschemeng_2c03766 crossref_primary_10_1021_acs_accounts_1c00021 crossref_primary_10_1021_acs_jafc_4c03245 crossref_primary_10_1016_j_indcrop_2024_120008 crossref_primary_10_1016_j_ijbiomac_2024_134446 crossref_primary_10_1016_j_ijbiomac_2024_137087 crossref_primary_10_1021_acs_jafc_3c03431 crossref_primary_10_1002_bit_28339 crossref_primary_10_1016_j_ijbiomac_2024_137205 crossref_primary_10_1016_j_biotechadv_2023_108148 crossref_primary_10_1039_D3TB00693J crossref_primary_10_1016_j_gce_2021_11_010 crossref_primary_10_1016_j_cej_2022_134819 crossref_primary_10_1016_j_procbio_2022_05_001 crossref_primary_10_3390_catal13111405 |
Cites_doi | 10.1039/B814695K 10.1021/ja100744h 10.1146/annurev.physchem.55.091602.094410 10.1016/j.jmgm.2012.04.005 10.1021/acs.iecr.5b01312 10.1038/206757a0 10.1021/ar970218z 10.1063/1.445869 10.1093/oso/9780195122589.001.0001 10.1016/j.sbi.2014.06.003 10.1021/bi400215w 10.1021/jp308747c 10.1021/bi000987h 10.1016/0022-2836(76)90311-9 10.1063/1.2977458 10.1021/ja00007a054 10.1021/ja00124a002 10.1021/ja9813055 10.1021/ja408197k 10.1021/ja410264d 10.1002/(SICI)1521-3773(19990315)38:6<750::AID-ANIE750>3.0.CO;2-6 10.1021/cr050293k 10.1021/ja021369m 10.1021/bi051515b 10.1021/bi9620215 10.1021/bi960586v 10.1073/pnas.1504986112 10.1002/anie.200802019 10.1107/S1399004713023626 10.1093/glycob/cwn041 10.1021/cs501709d 10.1039/C7CP07701G 10.1002/jcc.1156 10.1039/b810099c 10.1073/pnas.050417797 10.1063/1.438959 10.1021/cr0503106 10.1021/ja00839a011 10.1146/annurev-biochem-061809-100742 10.1002/bit.24370 10.1111/j.1469-185X.1953.tb01386.x 10.1146/annurev.physchem.59.032607.093618 10.1021/jp056361o 10.1016/S1369-5274(03)00056-0 10.1111/j.1757-1707.2009.01004.x 10.1021/bi300675x 10.1021/bi00156a015 10.1002/jcc.20731 10.1021/ar2001765 10.1016/0959-440X(94)90271-2 10.1021/ar900171c 10.1016/S0969-2126(01)00220-9 10.1063/1.464913 10.1021/cr00105a006 10.1146/annurev.biochem.71.110601.135446 10.1271/bbb.110713 10.1146/annurev.biophys.32.110601.141807 10.1016/S1074-5521(99)80066-0 10.1016/S0010-4655(02)00598-2 10.1103/PhysRevLett.94.138302 10.1039/b911644c 10.1016/S0008-6215(00)84786-2 10.1021/jp8071712 10.1016/j.copbio.2017.03.008 10.1146/annurev.physchem.53.091301.150114 10.1002/bit.22838 10.1016/j.cbpa.2008.05.010 10.1021/bi982946f 10.1021/ar970172+ 10.1021/cr500628b 10.1021/jp905872t 10.1021/jacs.5b01156 10.1093/nar/gkn663 10.1103/PhysRevB.37.785 10.1038/nsb0901-737 10.1021/ja9623020 10.1201/9780203833476 10.1073/pnas.57.3.483 10.1016/j.biotechadv.2011.10.003 10.1002/jcc.540141112 10.1146/annurev.biochem.67.1.693 10.1016/S1367-5931(02)00016-9 10.1038/35090602 10.1007/s002530100704 |
ContentType | Journal Article |
CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 OIOZB OTOTI |
DOI | 10.1021/jacs.0c02148 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 17980 |
ExternalDocumentID | 1706245 32959658 10_1021_jacs_0c02148 c622702160 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH2 IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 ABFRP OIOZB OTOTI TAF |
ID | FETCH-LOGICAL-a422t-613e18fdb8c45151b0e611a9ef21b825c8e4acbf8f7d5b4990adf784d373d3823 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu May 18 22:35:08 EDT 2023 Fri Jul 11 12:27:45 EDT 2025 Thu Jul 10 23:40:00 EDT 2025 Mon Jul 21 06:07:19 EDT 2025 Tue Jul 01 00:44:32 EDT 2025 Thu Apr 24 23:05:37 EDT 2025 Fri Oct 23 16:15:02 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a422t-613e18fdb8c45151b0e611a9ef21b825c8e4acbf8f7d5b4990adf784d373d3823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC05-00OR22725; FWPERKP752; 18K05052; 26410031 Japan Society for the Promotion of Science (JSPS) USDOE Office of Science (SC), Biological and Environmental Research (BER) |
ORCID | 0000-0002-3103-9333 0000-0002-7715-541X 0000-0002-2978-3227 000000027715541X 0000000229783227 0000000231039333 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1706245 |
PMID | 32959658 |
PQID | 2444876250 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | osti_scitechconnect_1706245 proquest_miscellaneous_2524311082 proquest_miscellaneous_2444876250 pubmed_primary_32959658 crossref_primary_10_1021_jacs_0c02148 crossref_citationtrail_10_1021_jacs_0c02148 acs_journals_10_1021_jacs_0c02148 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-21 |
PublicationDateYYYYMMDD | 2020-10-21 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref27/cit27 ref81/cit81 Davies G. (ref15/cit15) 1998; 1 ref63/cit63 ref56/cit56 Buchanan B. B. (ref3/cit3) 2015 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref60/cit60 ref74/cit74 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref11/cit11a ref13/cit13 Fersht A. (ref5/cit5) 1999 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref78/cit78 ref36/cit36 ref18/cit18 Kollman P. (ref54/cit54) 1997; 3 ref65/cit65 ref79/cit79 ref29/cit29b ref11/cit11 ref25/cit25 ref29/cit29a ref61/cit61a ref72/cit72 ref61/cit61b Garrett R. H. (ref64/cit64) 1999 ref76/cit76 ref32/cit32 ref59/cit59b ref39/cit39 ref14/cit14 ref57/cit57 ref69/cit69a ref51/cit51 ref69/cit69b ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref41/cit41b ref41/cit41a ref59/cit59a ref26/cit26 ref55/cit55 ref73/cit73 ref70/cit70b Frey P. A. (ref6/cit6) 2007 ref12/cit12 ref70/cit70a Dupuis M. (ref49/cit49) 2000 Albersheim P. (ref4/cit4) 2010 ref62/cit62 ref66/cit66 ref30/cit30a ref58/cit58 ref22/cit22 ref30/cit30b ref48/cit48a ref33/cit33 ref47/cit47 ref48/cit48d ref1/cit1 ref48/cit48c ref48/cit48b ref44/cit44 ref7/cit7 |
References_xml | – ident: ref41/cit41a doi: 10.1039/B814695K – ident: ref69/cit69a doi: 10.1021/ja100744h – volume: 1 start-page: 119 volume-title: Comprehensive Biological Catalysis year: 1998 ident: ref15/cit15 – volume-title: Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding year: 1999 ident: ref5/cit5 – ident: ref34/cit34 doi: 10.1146/annurev.physchem.55.091602.094410 – ident: ref42/cit42 doi: 10.1016/j.jmgm.2012.04.005 – ident: ref47/cit47 doi: 10.1021/acs.iecr.5b01312 – ident: ref16/cit16 doi: 10.1038/206757a0 – ident: ref32/cit32 doi: 10.1021/ar970218z – ident: ref55/cit55 – ident: ref56/cit56 doi: 10.1063/1.445869 – volume-title: Enzymatic Reaction Mechanisms year: 2007 ident: ref6/cit6 doi: 10.1093/oso/9780195122589.001.0001 – ident: ref21/cit21 doi: 10.1016/j.sbi.2014.06.003 – ident: ref39/cit39 doi: 10.1021/bi400215w – ident: ref44/cit44 doi: 10.1021/jp308747c – ident: ref74/cit74 doi: 10.1021/bi000987h – ident: ref76/cit76 doi: 10.1016/0022-2836(76)90311-9 – ident: ref11/cit11 – ident: ref48/cit48c doi: 10.1063/1.2977458 – volume-title: Quantum Chemistry Program Exchange (QCPE) year: 2000 ident: ref49/cit49 – ident: ref68/cit68 doi: 10.1021/ja00007a054 – ident: ref53/cit53 doi: 10.1021/ja00124a002 – volume-title: Biochemistry year: 1999 ident: ref64/cit64 – ident: ref10/cit10 doi: 10.1021/ja9813055 – ident: ref75/cit75 doi: 10.1021/ja408197k – ident: ref67/cit67 doi: 10.1021/ja410264d – ident: ref81/cit81 doi: 10.1002/(SICI)1521-3773(19990315)38:6<750::AID-ANIE750>3.0.CO;2-6 – ident: ref30/cit30b doi: 10.1021/cr050293k – ident: ref48/cit48a doi: 10.1021/ja021369m – ident: ref48/cit48b doi: 10.1021/bi051515b – ident: ref63/cit63 doi: 10.1021/bi9620215 – ident: ref62/cit62 doi: 10.1021/bi960586v – ident: ref27/cit27 doi: 10.1073/pnas.1504986112 – ident: ref37/cit37 doi: 10.1002/anie.200802019 – ident: ref28/cit28 doi: 10.1107/S1399004713023626 – ident: ref82/cit82 doi: 10.1093/glycob/cwn041 – ident: ref45/cit45 doi: 10.1021/cs501709d – ident: ref69/cit69b doi: 10.1039/C7CP07701G – ident: ref31/cit31 doi: 10.1002/jcc.1156 – ident: ref77/cit77 doi: 10.1039/b810099c – ident: ref73/cit73 doi: 10.1073/pnas.050417797 – ident: ref58/cit58 doi: 10.1063/1.438959 – ident: ref71/cit71 doi: 10.1021/cr0503106 – ident: ref61/cit61a doi: 10.1021/ja00839a011 – ident: ref70/cit70b doi: 10.1146/annurev-biochem-061809-100742 – ident: ref2/cit2 doi: 10.1002/bit.24370 – volume: 3 volume-title: Computer Simulation of Biomolecular Systems year: 1997 ident: ref54/cit54 – ident: ref14/cit14 doi: 10.1111/j.1469-185X.1953.tb01386.x – ident: ref36/cit36 doi: 10.1146/annurev.physchem.59.032607.093618 – ident: ref35/cit35 doi: 10.1021/jp056361o – ident: ref24/cit24 doi: 10.1016/S1369-5274(03)00056-0 – ident: ref25/cit25 doi: 10.1111/j.1757-1707.2009.01004.x – ident: ref43/cit43 doi: 10.1021/bi300675x – ident: ref78/cit78 doi: 10.1021/bi00156a015 – ident: ref51/cit51 doi: 10.1002/jcc.20731 – ident: ref65/cit65 doi: 10.1021/ar2001765 – ident: ref8/cit8 doi: 10.1016/0959-440X(94)90271-2 – ident: ref38/cit38 doi: 10.1021/ar900171c – ident: ref9/cit9 doi: 10.1016/S0969-2126(01)00220-9 – ident: ref59/cit59a doi: 10.1063/1.464913 – ident: ref7/cit7 doi: 10.1021/cr00105a006 – ident: ref72/cit72 doi: 10.1146/annurev.biochem.71.110601.135446 – ident: ref22/cit22 doi: 10.1271/bbb.110713 – ident: ref29/cit29a doi: 10.1146/annurev.biophys.32.110601.141807 – ident: ref80/cit80 doi: 10.1016/S1074-5521(99)80066-0 – ident: ref52/cit52 doi: 10.1016/S0010-4655(02)00598-2 – ident: ref60/cit60 doi: 10.1103/PhysRevLett.94.138302 – ident: ref41/cit41b doi: 10.1039/b911644c – ident: ref57/cit57 – ident: ref61/cit61b doi: 10.1016/S0008-6215(00)84786-2 – ident: ref29/cit29b doi: 10.1021/jp8071712 – ident: ref1/cit1 doi: 10.1016/j.copbio.2017.03.008 – ident: ref30/cit30a doi: 10.1146/annurev.physchem.53.091301.150114 – ident: ref13/cit13 doi: 10.1002/bit.22838 – ident: ref20/cit20 doi: 10.1016/j.cbpa.2008.05.010 – ident: ref79/cit79 doi: 10.1021/bi982946f – ident: ref12/cit12 doi: 10.1021/ar970172+ – ident: ref40/cit40 doi: 10.1021/cr500628b – volume-title: Biochemistry and Molecular Biology of Plants year: 2015 ident: ref3/cit3 – ident: ref48/cit48d doi: 10.1021/jp905872t – ident: ref46/cit46 doi: 10.1021/jacs.5b01156 – ident: ref11/cit11a doi: 10.1093/nar/gkn663 – ident: ref59/cit59b doi: 10.1103/PhysRevB.37.785 – ident: ref18/cit18 doi: 10.1038/nsb0901-737 – ident: ref66/cit66 doi: 10.1021/ja9623020 – volume-title: Plant Cell Walls: From Chemistry to Biology year: 2010 ident: ref4/cit4 doi: 10.1201/9780203833476 – ident: ref17/cit17 doi: 10.1073/pnas.57.3.483 – ident: ref26/cit26 doi: 10.1016/j.biotechadv.2011.10.003 – ident: ref50/cit50 doi: 10.1002/jcc.540141112 – ident: ref70/cit70a doi: 10.1146/annurev.biochem.67.1.693 – ident: ref33/cit33 doi: 10.1016/S1367-5931(02)00016-9 – ident: ref19/cit19 doi: 10.1038/35090602 – ident: ref23/cit23 doi: 10.1007/s002530100704 |
SSID | ssj0004281 |
Score | 2.4397364 |
Snippet | The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of... The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. Here, to clarify the mechanism, we investigated the glycosylation... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17966 |
SubjectTerms | active sites biomass cleavage (chemistry) crystal structure energy enzyme substrates geometry Gibbs free energy glycosidic linkages glycosylation hydrolysis INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY isotopes lignocellulose neutrons protonation quantum mechanics reaction mechanisms xylan xylanases xylose |
Title | Insight into the Catalytic Mechanism of GH11 Xylanase: Computational Analysis of Substrate Distortion Based on a Neutron Structure |
URI | http://dx.doi.org/10.1021/jacs.0c02148 https://www.ncbi.nlm.nih.gov/pubmed/32959658 https://www.proquest.com/docview/2444876250 https://www.proquest.com/docview/2524311082 https://www.osti.gov/servlets/purl/1706245 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbo9tBegBYKCxQZqZyqrNaOkzjclm1hQYILIO0tip2xhKBJRbIHOPLLmcljUUFLuUXRWHLsceabh79h7IeOtZU-OE-HjkI3Kva0ySLPZQIArA5NzbZ_dh5OrtTpNJg-F8i-zOBL4gey5WBoidtLf2AfZagjcrJG44vn-49Siw7mRjr02wL3l6PJANnyHwPUK_AgLQaXtZE5WmHH3VWdprbkZjCrzMA-vGZu_M_8V9lyizP5qFGML2wJ8q_s07hr77bGHk_ykhxzfp1XBUcYyMcUyblHeX4GdB_4uvzDC8ePJ0Lw6f1tmqPBO-BNG4g2hMg7ThMSpH9QzXXLf9XcIyTCD3FQxvEh5ecwo7g7v6gpa2d3sM6ujn5fjide25DBS5WUFbqZPgjtMqOtQhwkzBBCIdIYnBQGXU2rQaXWOO2iLDDoSw3TzEVaZX7kZ5Rw_MZ6eZHDJuPgB8b51mqRglJGGwQOwqFGoc6oUMZ9tofrlrQHqkzqXLlEX4XetqvZZz-7nUxsy2hOjTVuF0jvz6X_NkweC-S2SSkSRCBEo2up3shWCdEMSRXgvDpdSXDDKLuS5lDMygRxkiLTEgzfkAkkAjaBsKvPNhpFm8_Fl3FATDxb7_jybfZZkt-PNlSKHdbDfYPvCI4qs1ufjCfhWQk2 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7BcigX3pSlPIwEJ5Rq7TiJw60slC1099JW2lsUO2OpoiSIZA_lyC9nxptsRaVFvUXWOHLsceabGfsbgLcmN07F6COTeg7d6DwytsoiX0lEdCa1gW1_vkhnZ_rrMln2l9X5LgwNoqU3tSGJf8UuwDRB1DhxTPFlbsMdwiGKfa2D6cnVNUhl5IB2M5PG_Tn3673ZDrn2Hzs0amg_bceYwdYc3ofFZpThiMn3_VVn993vawSON_6MB3CvR53iYK0mD-EW1o9gZzoUe3sMf47qlt10cV53jSBQKKYc17kkeTFHvh183v4QjRdfZlKK5eVFWZP5-yDWRSH6gKIYGE5YkP9IgflWfApMJCwiPlKnStBDKRa44ii8OAkEtqtf-ATODj-fTmdRX54hKrVSHTmdMUrjK2ucJlQk7QRTKcscvZKWHE9nUJfOeuOzKrHkWU3KymdGV3EWV5x-fAqjuqnxGQiME-tj54wsUWtrLMEI6Um_SIN0qvIxvKF5K_rt1RYhc67Ic-HWfjbH8H5Y0ML1_OZcZuNii_S7jfTPNa_HFrk91o2C8AiT6jo-feS6gkmHlE5oXIPKFLRgnGspa2xWbUGoSbOhSSb_kUkUwTdJIGwMu2t924wlVnnCvDzPb_Dlr2Fndjo_Lo6PFt_24K7iiABZVyVfwIjWEF8SbOrsq7BZ_gLo9RGX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VIAEXyqs0LY9FghNylV2v7TW3NiWkQCNEqZSb5X1JFcWuaudQjv3lzGzsICoFwc2yx9Y-Zj3fzOx-A_Ba5cqI2PlIpZ5CNzKPlLZZ5C13zhmV6sC2fzxLp6fy4zyZbwDvz8JgIxr8UhOS-LSqL6zvGAaIKggfjAzRfKlbcJsyduRv7Y9Pfh-FFIr3iDdTadztdb_5Ntki0_xhiwY1rqn1ODPYm8kmfF21NGwz-b63aPWe-XmDxPG_uvIA7nfok-0v1eUhbLjqEdwd90XfHsP1UdWQu87OqrZmCA7ZmOI7VyjPjh2dEj5rfrDasw9Tztn86rys0Ay-Y8viEF1gkfVMJyRIf6bAgMsOAyMJibADfMkyvCjZzC0oGs9OApHt4tI9gdPJ-2_jadSVaYhKKUSLzmfsuPJWKyMRHXE9cinnZe684BodUKOcLI32ymc20ehhjUrrMyVtnMWW0pBbMKjqym0Dc3GifWyM4qWTUiuNcIJ71DPUJJmKfAivcNyKbpk1RcigC_Rg6G43mkN4209qYTqecyq3cb5G-s1K-mLJ77FGbpf0o0BcQuS6hnYhmbYg8iEhE2xXrzYFThjlXMrK1YumQPQkyeAko7_IJAJhHEcwNoSnS51btSUWeUL8PDv_0POXcOfL4aT4fDT7tAv3BAUG0MgK_gwGOIXuOaKnVr8I6-UXv-MUGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+Catalytic+Mechanism+of+GH11+Xylanase%3A+Computational+Analysis+of+Substrate+Distortion+Based+on+a+Neutron+Structure&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Ishida%2C+Toyokazu&rft.au=Parks%2C+Jerry+M.&rft.au=Smith%2C+Jeremy+C.&rft.date=2020-10-21&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=142&rft.issue=42&rft_id=info:doi/10.1021%2Fjacs.0c02148&rft.externalDocID=1706245 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |