Insight into the Catalytic Mechanism of GH11 Xylanase: Computational Analysis of Substrate Distortion Based on a Neutron Structure

The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal struc...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 42; pp. 17966 - 17980
Main Authors Ishida, Toyokazu, Parks, Jerry M, Smith, Jeremy C
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.10.2020
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ∼18 kcal/mol with QM/MM-CCSD­(T)/6-31­(+)­G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme–substrate (ES) complex, the carbohydrate structure of the xylose residue at the −1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty.
AbstractList The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ∼18 kcal/mol with QM/MM-CCSD(T)/6-31(+)G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme–substrate (ES) complex, the carbohydrate structure of the xylose residue at the −1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty.
The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ∼18 kcal/mol with QM/MM-CCSD(T)/6-31(+)G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme-substrate (ES) complex, the carbohydrate structure of the xylose residue at the -1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty.The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ∼18 kcal/mol with QM/MM-CCSD(T)/6-31(+)G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme-substrate (ES) complex, the carbohydrate structure of the xylose residue at the -1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty.
The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ∼18 kcal/mol with QM/MM-CCSD­(T)/6-31­(+)­G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme–substrate (ES) complex, the carbohydrate structure of the xylose residue at the −1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty.
The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ∼18 kcal/mol with QM/MM-CCSD(T)/6-31(+)G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme-substrate (ES) complex, the carbohydrate structure of the xylose residue at the -1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty.
The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. Here, to clarify the mechanism, we investigated the glycosylation step of GH11 xylanase, an enzyme that catalyzes the hydrolysis of lignocellulosic hemicellulose (xylan). Making use of a recent neutron crystal structure, which revealed the protonation states of relevant residues, we used ab initio quantum mechanics/molecular mechanics (QM/MM) calculations to determine the detailed reaction mechanism of the glycosylation step. In particular, our focus is on the controversial question of whether or not an oxocarbenium ion intermediate is formed on the reaction pathway. The calculations support the validity of a basic retaining mechanism within a double-displacement scheme. The estimated free energy barrier of this reaction is ~18 kcal/mol with QM/MM-CCSD(T)/6-31(+)G**//MP2/6-31+G**/AMBER calculations, and the rate-determining step of the glycosylation is scission of the glycosidic bond after proton transfer from the acidic Glu177. The estimated lifetime of the oxocarbenium ion intermediate (on the order of tens of ps) and the secondary kinetic isotope effect suggest that there is no accumulation of this intermediate on the reaction path, although the intermediate can be transiently formed. In the enzyme–substrate (ES) complex, the carbohydrate structure of the xylose residue at the -1 subsite has a rather distorted (skewed) geometry, and this xylose unit at the active site has an apparent half-chair conformation when the oxocarbenium ion intermediate is formed. The major catalytic role of the protein environment is to orient residues that take part in the initial proton transfer. Because of a fine alignment of catalytic residues, the enzyme can accelerate the glycosylation reaction without paying a reorganization energy penalty.
Author Smith, Jeremy C
Parks, Jerry M
Ishida, Toyokazu
AuthorAffiliation Research Center for Computational Design of Advanced Functional Materials (CD-FMat)
National Institute of Advanced Industrial Science and Technology (AIST)
Center for Molecular Biophysics (CMB), Biosciences Division
Oak Ridge National Laboratory (ORNL)
AuthorAffiliation_xml – name: National Institute of Advanced Industrial Science and Technology (AIST)
– name: Oak Ridge National Laboratory (ORNL)
– name: Center for Molecular Biophysics (CMB), Biosciences Division
– name: Research Center for Computational Design of Advanced Functional Materials (CD-FMat)
Author_xml – sequence: 1
  givenname: Toyokazu
  orcidid: 0000-0002-7715-541X
  surname: Ishida
  fullname: Ishida, Toyokazu
  email: toyokazu.ishida@aist.go.jp
  organization: National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 2
  givenname: Jerry M
  orcidid: 0000-0002-3103-9333
  surname: Parks
  fullname: Parks, Jerry M
  organization: Oak Ridge National Laboratory (ORNL)
– sequence: 3
  givenname: Jeremy C
  orcidid: 0000-0002-2978-3227
  surname: Smith
  fullname: Smith, Jeremy C
  email: smithjc@ornl.gov
  organization: Oak Ridge National Laboratory (ORNL)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32959658$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1706245$$D View this record in Osti.gov
BookMark eNqFkbFv1DAUhy1URK-FjRlZTAyk-Dl24rCVA9pKBYaCxBY5jsP5lMSHnz3cyl-O0zsYEIjFfra-9-SfvzNyMvvZEvIU2AUwDq-22uAFM7kU6gFZgeSskMCrE7JijPGiVlV5Ss4Qt_kouIJH5LTkjWwqqVbkx82M7tsmUjdHT-PG0rWOetxHZ-gHazZ6djhRP9CrawD6dT_qWaN9Tdd-2qWoo_OzHullXvbocAHvUocx6GjpW4fRhwWhb3JTT3Oh6UebYsjVXQzJxBTsY_Jw0CPaJ8f9nHx5_-7z-rq4_XR1s768LbTgPBYVlBbU0HfKCAkSOmYrAN3YgUOnuDTKCm26QQ11LzvRNEz3Q61EX9ZlXypenpPnh7keo2vRuJjzGT_P1sQWalZxITP04gDtgv-eLMZ2cmjsmHNbn7DlkosSgN3P-w8qhFB1xSXL6LMjmrrJ9u0uuEmHffvLQwZeHgATPGKww28EWLtobhfN7VFzxvkfeE5zLyP_vBv_1XR873K59Slkafh39CcAhrhs
CitedBy_id crossref_primary_10_1016_j_carres_2024_109080
crossref_primary_10_1080_21655979_2022_2084496
crossref_primary_10_1016_j_fbio_2025_105867
crossref_primary_10_1007_s00894_024_06048_2
crossref_primary_10_1021_acssuschemeng_2c03766
crossref_primary_10_1021_acs_accounts_1c00021
crossref_primary_10_1021_acs_jafc_4c03245
crossref_primary_10_1016_j_indcrop_2024_120008
crossref_primary_10_1016_j_ijbiomac_2024_134446
crossref_primary_10_1016_j_ijbiomac_2024_137087
crossref_primary_10_1021_acs_jafc_3c03431
crossref_primary_10_1002_bit_28339
crossref_primary_10_1016_j_ijbiomac_2024_137205
crossref_primary_10_1016_j_biotechadv_2023_108148
crossref_primary_10_1039_D3TB00693J
crossref_primary_10_1016_j_gce_2021_11_010
crossref_primary_10_1016_j_cej_2022_134819
crossref_primary_10_1016_j_procbio_2022_05_001
crossref_primary_10_3390_catal13111405
Cites_doi 10.1039/B814695K
10.1021/ja100744h
10.1146/annurev.physchem.55.091602.094410
10.1016/j.jmgm.2012.04.005
10.1021/acs.iecr.5b01312
10.1038/206757a0
10.1021/ar970218z
10.1063/1.445869
10.1093/oso/9780195122589.001.0001
10.1016/j.sbi.2014.06.003
10.1021/bi400215w
10.1021/jp308747c
10.1021/bi000987h
10.1016/0022-2836(76)90311-9
10.1063/1.2977458
10.1021/ja00007a054
10.1021/ja00124a002
10.1021/ja9813055
10.1021/ja408197k
10.1021/ja410264d
10.1002/(SICI)1521-3773(19990315)38:6<750::AID-ANIE750>3.0.CO;2-6
10.1021/cr050293k
10.1021/ja021369m
10.1021/bi051515b
10.1021/bi9620215
10.1021/bi960586v
10.1073/pnas.1504986112
10.1002/anie.200802019
10.1107/S1399004713023626
10.1093/glycob/cwn041
10.1021/cs501709d
10.1039/C7CP07701G
10.1002/jcc.1156
10.1039/b810099c
10.1073/pnas.050417797
10.1063/1.438959
10.1021/cr0503106
10.1021/ja00839a011
10.1146/annurev-biochem-061809-100742
10.1002/bit.24370
10.1111/j.1469-185X.1953.tb01386.x
10.1146/annurev.physchem.59.032607.093618
10.1021/jp056361o
10.1016/S1369-5274(03)00056-0
10.1111/j.1757-1707.2009.01004.x
10.1021/bi300675x
10.1021/bi00156a015
10.1002/jcc.20731
10.1021/ar2001765
10.1016/0959-440X(94)90271-2
10.1021/ar900171c
10.1016/S0969-2126(01)00220-9
10.1063/1.464913
10.1021/cr00105a006
10.1146/annurev.biochem.71.110601.135446
10.1271/bbb.110713
10.1146/annurev.biophys.32.110601.141807
10.1016/S1074-5521(99)80066-0
10.1016/S0010-4655(02)00598-2
10.1103/PhysRevLett.94.138302
10.1039/b911644c
10.1016/S0008-6215(00)84786-2
10.1021/jp8071712
10.1016/j.copbio.2017.03.008
10.1146/annurev.physchem.53.091301.150114
10.1002/bit.22838
10.1016/j.cbpa.2008.05.010
10.1021/bi982946f
10.1021/ar970172+
10.1021/cr500628b
10.1021/jp905872t
10.1021/jacs.5b01156
10.1093/nar/gkn663
10.1103/PhysRevB.37.785
10.1038/nsb0901-737
10.1021/ja9623020
10.1201/9780203833476
10.1073/pnas.57.3.483
10.1016/j.biotechadv.2011.10.003
10.1002/jcc.540141112
10.1146/annurev.biochem.67.1.693
10.1016/S1367-5931(02)00016-9
10.1038/35090602
10.1007/s002530100704
ContentType Journal Article
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
OIOZB
OTOTI
DOI 10.1021/jacs.0c02148
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 17980
ExternalDocumentID 1706245
32959658
10_1021_jacs_0c02148
c622702160
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
ABFRP
OIOZB
OTOTI
TAF
ID FETCH-LOGICAL-a422t-613e18fdb8c45151b0e611a9ef21b825c8e4acbf8f7d5b4990adf784d373d3823
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu May 18 22:35:08 EDT 2023
Fri Jul 11 12:27:45 EDT 2025
Thu Jul 10 23:40:00 EDT 2025
Mon Jul 21 06:07:19 EDT 2025
Tue Jul 01 00:44:32 EDT 2025
Thu Apr 24 23:05:37 EDT 2025
Fri Oct 23 16:15:02 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a422t-613e18fdb8c45151b0e611a9ef21b825c8e4acbf8f7d5b4990adf784d373d3823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC05-00OR22725; FWPERKP752; 18K05052; 26410031
Japan Society for the Promotion of Science (JSPS)
USDOE Office of Science (SC), Biological and Environmental Research (BER)
ORCID 0000-0002-3103-9333
0000-0002-7715-541X
0000-0002-2978-3227
000000027715541X
0000000229783227
0000000231039333
OpenAccessLink https://www.osti.gov/servlets/purl/1706245
PMID 32959658
PQID 2444876250
PQPubID 23479
PageCount 15
ParticipantIDs osti_scitechconnect_1706245
proquest_miscellaneous_2524311082
proquest_miscellaneous_2444876250
pubmed_primary_32959658
crossref_primary_10_1021_jacs_0c02148
crossref_citationtrail_10_1021_jacs_0c02148
acs_journals_10_1021_jacs_0c02148
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-21
PublicationDateYYYYMMDD 2020-10-21
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2020
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref27/cit27
ref81/cit81
Davies G. (ref15/cit15) 1998; 1
ref63/cit63
ref56/cit56
Buchanan B. B. (ref3/cit3) 2015
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref11/cit11a
ref13/cit13
Fersht A. (ref5/cit5) 1999
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref78/cit78
ref36/cit36
ref18/cit18
Kollman P. (ref54/cit54) 1997; 3
ref65/cit65
ref79/cit79
ref29/cit29b
ref11/cit11
ref25/cit25
ref29/cit29a
ref61/cit61a
ref72/cit72
ref61/cit61b
Garrett R. H. (ref64/cit64) 1999
ref76/cit76
ref32/cit32
ref59/cit59b
ref39/cit39
ref14/cit14
ref57/cit57
ref69/cit69a
ref51/cit51
ref69/cit69b
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref41/cit41b
ref41/cit41a
ref59/cit59a
ref26/cit26
ref55/cit55
ref73/cit73
ref70/cit70b
Frey P. A. (ref6/cit6) 2007
ref12/cit12
ref70/cit70a
Dupuis M. (ref49/cit49) 2000
Albersheim P. (ref4/cit4) 2010
ref62/cit62
ref66/cit66
ref30/cit30a
ref58/cit58
ref22/cit22
ref30/cit30b
ref48/cit48a
ref33/cit33
ref47/cit47
ref48/cit48d
ref1/cit1
ref48/cit48c
ref48/cit48b
ref44/cit44
ref7/cit7
References_xml – ident: ref41/cit41a
  doi: 10.1039/B814695K
– ident: ref69/cit69a
  doi: 10.1021/ja100744h
– volume: 1
  start-page: 119
  volume-title: Comprehensive Biological Catalysis
  year: 1998
  ident: ref15/cit15
– volume-title: Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding
  year: 1999
  ident: ref5/cit5
– ident: ref34/cit34
  doi: 10.1146/annurev.physchem.55.091602.094410
– ident: ref42/cit42
  doi: 10.1016/j.jmgm.2012.04.005
– ident: ref47/cit47
  doi: 10.1021/acs.iecr.5b01312
– ident: ref16/cit16
  doi: 10.1038/206757a0
– ident: ref32/cit32
  doi: 10.1021/ar970218z
– ident: ref55/cit55
– ident: ref56/cit56
  doi: 10.1063/1.445869
– volume-title: Enzymatic Reaction Mechanisms
  year: 2007
  ident: ref6/cit6
  doi: 10.1093/oso/9780195122589.001.0001
– ident: ref21/cit21
  doi: 10.1016/j.sbi.2014.06.003
– ident: ref39/cit39
  doi: 10.1021/bi400215w
– ident: ref44/cit44
  doi: 10.1021/jp308747c
– ident: ref74/cit74
  doi: 10.1021/bi000987h
– ident: ref76/cit76
  doi: 10.1016/0022-2836(76)90311-9
– ident: ref11/cit11
– ident: ref48/cit48c
  doi: 10.1063/1.2977458
– volume-title: Quantum Chemistry Program Exchange (QCPE)
  year: 2000
  ident: ref49/cit49
– ident: ref68/cit68
  doi: 10.1021/ja00007a054
– ident: ref53/cit53
  doi: 10.1021/ja00124a002
– volume-title: Biochemistry
  year: 1999
  ident: ref64/cit64
– ident: ref10/cit10
  doi: 10.1021/ja9813055
– ident: ref75/cit75
  doi: 10.1021/ja408197k
– ident: ref67/cit67
  doi: 10.1021/ja410264d
– ident: ref81/cit81
  doi: 10.1002/(SICI)1521-3773(19990315)38:6<750::AID-ANIE750>3.0.CO;2-6
– ident: ref30/cit30b
  doi: 10.1021/cr050293k
– ident: ref48/cit48a
  doi: 10.1021/ja021369m
– ident: ref48/cit48b
  doi: 10.1021/bi051515b
– ident: ref63/cit63
  doi: 10.1021/bi9620215
– ident: ref62/cit62
  doi: 10.1021/bi960586v
– ident: ref27/cit27
  doi: 10.1073/pnas.1504986112
– ident: ref37/cit37
  doi: 10.1002/anie.200802019
– ident: ref28/cit28
  doi: 10.1107/S1399004713023626
– ident: ref82/cit82
  doi: 10.1093/glycob/cwn041
– ident: ref45/cit45
  doi: 10.1021/cs501709d
– ident: ref69/cit69b
  doi: 10.1039/C7CP07701G
– ident: ref31/cit31
  doi: 10.1002/jcc.1156
– ident: ref77/cit77
  doi: 10.1039/b810099c
– ident: ref73/cit73
  doi: 10.1073/pnas.050417797
– ident: ref58/cit58
  doi: 10.1063/1.438959
– ident: ref71/cit71
  doi: 10.1021/cr0503106
– ident: ref61/cit61a
  doi: 10.1021/ja00839a011
– ident: ref70/cit70b
  doi: 10.1146/annurev-biochem-061809-100742
– ident: ref2/cit2
  doi: 10.1002/bit.24370
– volume: 3
  volume-title: Computer Simulation of Biomolecular Systems
  year: 1997
  ident: ref54/cit54
– ident: ref14/cit14
  doi: 10.1111/j.1469-185X.1953.tb01386.x
– ident: ref36/cit36
  doi: 10.1146/annurev.physchem.59.032607.093618
– ident: ref35/cit35
  doi: 10.1021/jp056361o
– ident: ref24/cit24
  doi: 10.1016/S1369-5274(03)00056-0
– ident: ref25/cit25
  doi: 10.1111/j.1757-1707.2009.01004.x
– ident: ref43/cit43
  doi: 10.1021/bi300675x
– ident: ref78/cit78
  doi: 10.1021/bi00156a015
– ident: ref51/cit51
  doi: 10.1002/jcc.20731
– ident: ref65/cit65
  doi: 10.1021/ar2001765
– ident: ref8/cit8
  doi: 10.1016/0959-440X(94)90271-2
– ident: ref38/cit38
  doi: 10.1021/ar900171c
– ident: ref9/cit9
  doi: 10.1016/S0969-2126(01)00220-9
– ident: ref59/cit59a
  doi: 10.1063/1.464913
– ident: ref7/cit7
  doi: 10.1021/cr00105a006
– ident: ref72/cit72
  doi: 10.1146/annurev.biochem.71.110601.135446
– ident: ref22/cit22
  doi: 10.1271/bbb.110713
– ident: ref29/cit29a
  doi: 10.1146/annurev.biophys.32.110601.141807
– ident: ref80/cit80
  doi: 10.1016/S1074-5521(99)80066-0
– ident: ref52/cit52
  doi: 10.1016/S0010-4655(02)00598-2
– ident: ref60/cit60
  doi: 10.1103/PhysRevLett.94.138302
– ident: ref41/cit41b
  doi: 10.1039/b911644c
– ident: ref57/cit57
– ident: ref61/cit61b
  doi: 10.1016/S0008-6215(00)84786-2
– ident: ref29/cit29b
  doi: 10.1021/jp8071712
– ident: ref1/cit1
  doi: 10.1016/j.copbio.2017.03.008
– ident: ref30/cit30a
  doi: 10.1146/annurev.physchem.53.091301.150114
– ident: ref13/cit13
  doi: 10.1002/bit.22838
– ident: ref20/cit20
  doi: 10.1016/j.cbpa.2008.05.010
– ident: ref79/cit79
  doi: 10.1021/bi982946f
– ident: ref12/cit12
  doi: 10.1021/ar970172+
– ident: ref40/cit40
  doi: 10.1021/cr500628b
– volume-title: Biochemistry and Molecular Biology of Plants
  year: 2015
  ident: ref3/cit3
– ident: ref48/cit48d
  doi: 10.1021/jp905872t
– ident: ref46/cit46
  doi: 10.1021/jacs.5b01156
– ident: ref11/cit11a
  doi: 10.1093/nar/gkn663
– ident: ref59/cit59b
  doi: 10.1103/PhysRevB.37.785
– ident: ref18/cit18
  doi: 10.1038/nsb0901-737
– ident: ref66/cit66
  doi: 10.1021/ja9623020
– volume-title: Plant Cell Walls: From Chemistry to Biology
  year: 2010
  ident: ref4/cit4
  doi: 10.1201/9780203833476
– ident: ref17/cit17
  doi: 10.1073/pnas.57.3.483
– ident: ref26/cit26
  doi: 10.1016/j.biotechadv.2011.10.003
– ident: ref50/cit50
  doi: 10.1002/jcc.540141112
– ident: ref70/cit70a
  doi: 10.1146/annurev.biochem.67.1.693
– ident: ref33/cit33
  doi: 10.1016/S1367-5931(02)00016-9
– ident: ref19/cit19
  doi: 10.1038/35090602
– ident: ref23/cit23
  doi: 10.1007/s002530100704
SSID ssj0004281
Score 2.4397364
Snippet The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. To clarify the mechanism we investigated the glycosylation step of...
The reaction mechanism of biomass decomposition by xylanases remains the subject of debate. Here, to clarify the mechanism, we investigated the glycosylation...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17966
SubjectTerms active sites
biomass
cleavage (chemistry)
crystal structure
energy
enzyme substrates
geometry
Gibbs free energy
glycosidic linkages
glycosylation
hydrolysis
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
isotopes
lignocellulose
neutrons
protonation
quantum mechanics
reaction mechanisms
xylan
xylanases
xylose
Title Insight into the Catalytic Mechanism of GH11 Xylanase: Computational Analysis of Substrate Distortion Based on a Neutron Structure
URI http://dx.doi.org/10.1021/jacs.0c02148
https://www.ncbi.nlm.nih.gov/pubmed/32959658
https://www.proquest.com/docview/2444876250
https://www.proquest.com/docview/2524311082
https://www.osti.gov/servlets/purl/1706245
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELbo9tBegBYKCxQZqZyqrNaOkzjclm1hQYILIO0tip2xhKBJRbIHOPLLmcljUUFLuUXRWHLsceabh79h7IeOtZU-OE-HjkI3Kva0ySLPZQIArA5NzbZ_dh5OrtTpNJg-F8i-zOBL4gey5WBoidtLf2AfZagjcrJG44vn-49Siw7mRjr02wL3l6PJANnyHwPUK_AgLQaXtZE5WmHH3VWdprbkZjCrzMA-vGZu_M_8V9lyizP5qFGML2wJ8q_s07hr77bGHk_ykhxzfp1XBUcYyMcUyblHeX4GdB_4uvzDC8ePJ0Lw6f1tmqPBO-BNG4g2hMg7ThMSpH9QzXXLf9XcIyTCD3FQxvEh5ecwo7g7v6gpa2d3sM6ujn5fjide25DBS5WUFbqZPgjtMqOtQhwkzBBCIdIYnBQGXU2rQaXWOO2iLDDoSw3TzEVaZX7kZ5Rw_MZ6eZHDJuPgB8b51mqRglJGGwQOwqFGoc6oUMZ9tofrlrQHqkzqXLlEX4XetqvZZz-7nUxsy2hOjTVuF0jvz6X_NkweC-S2SSkSRCBEo2up3shWCdEMSRXgvDpdSXDDKLuS5lDMygRxkiLTEgzfkAkkAjaBsKvPNhpFm8_Fl3FATDxb7_jybfZZkt-PNlSKHdbDfYPvCI4qs1ufjCfhWQk2
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7BcigX3pSlPIwEJ5Rq7TiJw60slC1099JW2lsUO2OpoiSIZA_lyC9nxptsRaVFvUXWOHLsceabGfsbgLcmN07F6COTeg7d6DwytsoiX0lEdCa1gW1_vkhnZ_rrMln2l9X5LgwNoqU3tSGJf8UuwDRB1DhxTPFlbsMdwiGKfa2D6cnVNUhl5IB2M5PG_Tn3673ZDrn2Hzs0amg_bceYwdYc3ofFZpThiMn3_VVn993vawSON_6MB3CvR53iYK0mD-EW1o9gZzoUe3sMf47qlt10cV53jSBQKKYc17kkeTFHvh183v4QjRdfZlKK5eVFWZP5-yDWRSH6gKIYGE5YkP9IgflWfApMJCwiPlKnStBDKRa44ii8OAkEtqtf-ATODj-fTmdRX54hKrVSHTmdMUrjK2ucJlQk7QRTKcscvZKWHE9nUJfOeuOzKrHkWU3KymdGV3EWV5x-fAqjuqnxGQiME-tj54wsUWtrLMEI6Um_SIN0qvIxvKF5K_rt1RYhc67Ic-HWfjbH8H5Y0ML1_OZcZuNii_S7jfTPNa_HFrk91o2C8AiT6jo-feS6gkmHlE5oXIPKFLRgnGspa2xWbUGoSbOhSSb_kUkUwTdJIGwMu2t924wlVnnCvDzPb_Dlr2Fndjo_Lo6PFt_24K7iiABZVyVfwIjWEF8SbOrsq7BZ_gLo9RGX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VIAEXyqs0LY9FghNylV2v7TW3NiWkQCNEqZSb5X1JFcWuaudQjv3lzGzsICoFwc2yx9Y-Zj3fzOx-A_Ba5cqI2PlIpZ5CNzKPlLZZ5C13zhmV6sC2fzxLp6fy4zyZbwDvz8JgIxr8UhOS-LSqL6zvGAaIKggfjAzRfKlbcJsyduRv7Y9Pfh-FFIr3iDdTadztdb_5Ntki0_xhiwY1rqn1ODPYm8kmfF21NGwz-b63aPWe-XmDxPG_uvIA7nfok-0v1eUhbLjqEdwd90XfHsP1UdWQu87OqrZmCA7ZmOI7VyjPjh2dEj5rfrDasw9Tztn86rys0Ay-Y8viEF1gkfVMJyRIf6bAgMsOAyMJibADfMkyvCjZzC0oGs9OApHt4tI9gdPJ-2_jadSVaYhKKUSLzmfsuPJWKyMRHXE9cinnZe684BodUKOcLI32ymc20ehhjUrrMyVtnMWW0pBbMKjqym0Dc3GifWyM4qWTUiuNcIJ71DPUJJmKfAivcNyKbpk1RcigC_Rg6G43mkN4209qYTqecyq3cb5G-s1K-mLJ77FGbpf0o0BcQuS6hnYhmbYg8iEhE2xXrzYFThjlXMrK1YumQPQkyeAko7_IJAJhHEcwNoSnS51btSUWeUL8PDv_0POXcOfL4aT4fDT7tAv3BAUG0MgK_gwGOIXuOaKnVr8I6-UXv-MUGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+Catalytic+Mechanism+of+GH11+Xylanase%3A+Computational+Analysis+of+Substrate+Distortion+Based+on+a+Neutron+Structure&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Ishida%2C+Toyokazu&rft.au=Parks%2C+Jerry+M.&rft.au=Smith%2C+Jeremy+C.&rft.date=2020-10-21&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=142&rft.issue=42&rft_id=info:doi/10.1021%2Fjacs.0c02148&rft.externalDocID=1706245
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon