Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method

Landslide identification and monitoring are two significant research aspects for landslide analysis. In addition, landslide mode deduction is key for the prevention of landslide hazards. Surface deformation results with different scales can serve for different landslide analysis. L-band synthetic ap...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 10; no. 7; p. 993
Main Authors Zhao, Chaoying, Kang, Ya, Zhang, Qin, Lu, Zhong, Li, Bin
Format Journal Article
LanguageEnglish
Published MDPI AG 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Landslide identification and monitoring are two significant research aspects for landslide analysis. In addition, landslide mode deduction is key for the prevention of landslide hazards. Surface deformation results with different scales can serve for different landslide analysis. L-band synthetic aperture radar (SAR) data calculated with Interferometric Point Target Analysis (IPTA) are first employed to detect potential landslides at the catchment-scale Wudongde reservoir area. Twenty-two active landslides are identified and mapped over more than 2500 square kilometers. Then, for one typical landslide, Jinpingzi landslide, its spatiotemporal deformation characteristics are analyzed with the small baseline subsets (SBAS) interferometric synthetic aperture radar (InSAR) technique. High-precision surface deformation results are obtained by comparing with in-situ georobot measurements. The spatial deformation pattern reveals the different stabilities among five different sections of Jinpingzi landslide. InSAR results for Section II of Jinpingzi landslide show that this active landslide is controlled by two boundaries and geological structure, and its different landslide deformation magnitudes at different sections on the surface companying with borehole deformation reveals the pull-type landslide mode. Correlation between time series landslide motion and monthly precipitation, soil moisture inverted from SAR intensity images and water level fluctuations suggests that heavy rainfall is the main trigger factor, and the maximum deformation of the landslide was highly consistent with the peak precipitation with a time lag of about 1 to 2 months, which gives us important guidelines to mitigate and prevent this kind of hazard.
AbstractList Landslide identification and monitoring are two significant research aspects for landslide analysis. In addition, landslide mode deduction is key for the prevention of landslide hazards. Surface deformation results with different scales can serve for different landslide analysis. L-band synthetic aperture radar (SAR) data calculated with Interferometric Point Target Analysis (IPTA) are first employed to detect potential landslides at the catchment-scale Wudongde reservoir area. Twenty-two active landslides are identified and mapped over more than 2500 square kilometers. Then, for one typical landslide, Jinpingzi landslide, its spatiotemporal deformation characteristics are analyzed with the small baseline subsets (SBAS) interferometric synthetic aperture radar (InSAR) technique. High-precision surface deformation results are obtained by comparing with in-situ georobot measurements. The spatial deformation pattern reveals the different stabilities among five different sections of Jinpingzi landslide. InSAR results for Section II of Jinpingzi landslide show that this active landslide is controlled by two boundaries and geological structure, and its different landslide deformation magnitudes at different sections on the surface companying with borehole deformation reveals the pull-type landslide mode. Correlation between time series landslide motion and monthly precipitation, soil moisture inverted from SAR intensity images and water level fluctuations suggests that heavy rainfall is the main trigger factor, and the maximum deformation of the landslide was highly consistent with the peak precipitation with a time lag of about 1 to 2 months, which gives us important guidelines to mitigate and prevent this kind of hazard.
Author Lu, Zhong
Kang, Ya
Zhang, Qin
Li, Bin
Zhao, Chaoying
Author_xml – sequence: 1
  givenname: Chaoying
  orcidid: 0000-0002-5730-9602
  surname: Zhao
  fullname: Zhao, Chaoying
– sequence: 2
  givenname: Ya
  surname: Kang
  fullname: Kang, Ya
– sequence: 3
  givenname: Qin
  surname: Zhang
  fullname: Zhang, Qin
– sequence: 4
  givenname: Zhong
  orcidid: 0000-0001-9181-1818
  surname: Lu
  fullname: Lu, Zhong
– sequence: 5
  givenname: Bin
  surname: Li
  fullname: Li, Bin
BookMark eNptkUtLAzEQx4Mo-Lz4CXJUaTWP7W5zLMVHpSJUxeMym8y6KWsiSSx49JsbH6iIc5gZ_vznNzCzTdadd0jIPmfHUip2EiJnrGJKyTWyJVglhoVQYv1Xv0n2YlyyHFJyxYot8joHZ2JvDdKZQZdsazUk6x3NOr3yziYfrHug0PucU4f00rrYAV3YFQY6haS7xzxID-6fTbZk0AIjhpW3gU4CwuGATjvrYEDvov1CzNzNZEGvMHXe7JKNFvqIe191h9ydnd5OL4bz6_PZdDIfQiFEGnLWKCzACFmURkssdWFaNRYjKAVroWywQCOBjYyS46rljURVAQdeKq0VoNwhs0-u8bCsn4J9hPBSe7D1h-DDQw0hWd1jrWCkUFd5RaZK2YDCkeBNxTU3gEJn1tEnSwcfY8D2m8dZ_f6L-ucX2cz-mLVNHzdOAWz_38gbr_iO7g
CitedBy_id crossref_primary_10_1007_s10346_019_01265_w
crossref_primary_10_1016_j_rse_2022_112899
crossref_primary_10_1080_19475705_2022_2134828
crossref_primary_10_3390_ijerph192114241
crossref_primary_10_3390_s24144583
crossref_primary_10_1016_j_geomorph_2021_107619
crossref_primary_10_1080_19475705_2024_2363406
crossref_primary_10_1038_s41598_021_89899_6
crossref_primary_10_1109_JSTARS_2022_3161383
crossref_primary_10_3390_s20236913
crossref_primary_10_1007_s11629_024_8871_x
crossref_primary_10_1016_j_enggeo_2025_107967
crossref_primary_10_1016_j_rse_2023_113620
crossref_primary_10_3390_rs13163213
crossref_primary_10_3390_rs13183566
crossref_primary_10_1016_j_rse_2021_112400
crossref_primary_10_1007_s11069_023_06201_9
crossref_primary_10_1080_19475705_2023_2212833
crossref_primary_10_1109_ACCESS_2020_3002990
crossref_primary_10_3897_BDJ_11_e101950
crossref_primary_10_1080_15481603_2022_2100054
crossref_primary_10_3390_s22155587
crossref_primary_10_1080_15481603_2023_2170125
crossref_primary_10_3390_rs12101541
crossref_primary_10_1080_22797254_2019_1707715
crossref_primary_10_3390_rs13081564
crossref_primary_10_3390_w15152732
crossref_primary_10_1117_1_JRS_16_034518
crossref_primary_10_3390_rs16152688
crossref_primary_10_3390_rs11080931
crossref_primary_10_3390_rs15204951
crossref_primary_10_3390_s20174751
crossref_primary_10_1007_s11629_023_8083_9
crossref_primary_10_1016_j_rse_2020_111695
crossref_primary_10_1007_s11629_021_6686_6
crossref_primary_10_3390_rs14195031
crossref_primary_10_1080_10106049_2023_2292752
crossref_primary_10_1155_2022_9572937
crossref_primary_10_3390_rs13040815
crossref_primary_10_1007_s12517_022_10036_2
crossref_primary_10_1016_j_jag_2023_103266
crossref_primary_10_3390_rs14246274
crossref_primary_10_3389_feart_2021_649543
crossref_primary_10_3390_rs10111756
crossref_primary_10_14358_PERS_24_00041R2
crossref_primary_10_3390_rs15235538
crossref_primary_10_1016_j_rse_2021_112745
crossref_primary_10_3390_land13050569
crossref_primary_10_1007_s10346_020_01407_5
crossref_primary_10_3389_feart_2022_1000736
crossref_primary_10_3390_rs16091610
crossref_primary_10_1016_j_jhydrol_2024_131800
crossref_primary_10_1007_s11629_022_7339_0
crossref_primary_10_1007_s10346_020_01475_7
crossref_primary_10_1007_s10346_022_01908_5
crossref_primary_10_3390_app14188413
crossref_primary_10_1029_2019GL086142
crossref_primary_10_3390_rs11232726
crossref_primary_10_1007_s11431_021_2008_6
crossref_primary_10_1109_JSTARS_2024_3523294
crossref_primary_10_3390_rs15010051
crossref_primary_10_3389_fenvs_2022_1097874
crossref_primary_10_1007_s10346_022_01898_4
crossref_primary_10_1007_s10346_023_02135_2
crossref_primary_10_3390_rs14236009
crossref_primary_10_3390_rs13153048
crossref_primary_10_3390_rs15030613
crossref_primary_10_3390_rs13163253
crossref_primary_10_1080_01431161_2024_2391106
crossref_primary_10_1016_j_enggeo_2021_106033
crossref_primary_10_1016_j_enggeo_2021_106275
crossref_primary_10_1016_j_jclepro_2022_133146
crossref_primary_10_3390_rs14092049
crossref_primary_10_1007_s12665_025_12135_1
crossref_primary_10_1007_s10064_025_04110_8
crossref_primary_10_3390_rs15061475
crossref_primary_10_1080_10106049_2022_2159071
crossref_primary_10_3390_rs14174245
crossref_primary_10_3390_rs11020165
crossref_primary_10_3390_rs11161846
crossref_primary_10_3390_rs15112870
crossref_primary_10_3390_rs12203385
crossref_primary_10_3390_rs12050856
crossref_primary_10_3390_rs13030452
crossref_primary_10_3390_rs14194907
crossref_primary_10_3390_rs14071759
crossref_primary_10_1016_j_jappgeo_2022_104754
crossref_primary_10_3390_rs14246328
crossref_primary_10_1016_j_enggeo_2024_107497
crossref_primary_10_3390_rs16173324
crossref_primary_10_3390_rs14071730
crossref_primary_10_3390_ijgi10040253
crossref_primary_10_3390_rs17060999
crossref_primary_10_1016_j_jhydrol_2024_130905
crossref_primary_10_1007_s10346_023_02197_2
crossref_primary_10_3390_rs11232821
crossref_primary_10_1080_10095020_2023_2266224
crossref_primary_10_1016_j_eng_2024_07_001
crossref_primary_10_3390_rs13101938
crossref_primary_10_1007_s11629_023_7903_2
crossref_primary_10_1007_s11356_022_22418_w
crossref_primary_10_3389_feart_2023_1333815
crossref_primary_10_1016_j_jag_2023_103182
crossref_primary_10_3389_fenvs_2022_963322
crossref_primary_10_1016_j_rse_2023_113686
crossref_primary_10_1029_2023JF007363
crossref_primary_10_11144_Javeriana_SC25_2_eorl
crossref_primary_10_3390_rs12081305
crossref_primary_10_3390_rs13183662
crossref_primary_10_1007_s10706_022_02176_9
crossref_primary_10_3390_rs11192273
crossref_primary_10_1080_10106049_2024_2339287
crossref_primary_10_3390_su13031017
crossref_primary_10_3389_feart_2024_1365272
crossref_primary_10_1007_s10346_023_02118_3
crossref_primary_10_3390_rs14112669
Cites_doi 10.1007/s11069-016-2611-7
10.1029/2011JB008304
10.1007/s10346-017-0915-7
10.1029/2005JE002593
10.1029/2000WR900090
10.2113/JEEG18.4.269
10.1016/j.rse.2010.05.033
10.1016/j.enggeo.2006.09.007
10.1016/j.geomorph.2004.08.012
10.1016/j.earscirev.2012.02.001
10.1007/s10346-012-0331-y
10.1016/j.jseaes.2012.06.002
10.1016/S0013-7952(02)00197-7
10.1029/2006JB004302
10.1016/j.rse.2016.10.006
10.1109/TGRS.2011.2124465
10.1029/2008GL034654
10.1016/j.enggeo.2010.01.003
10.1029/2009JF001314
10.1016/j.tecto.2013.04.028
10.1029/97RG03139
10.1016/j.jenvman.2009.05.035
10.1080/2150704X.2013.782111
10.1016/j.cageo.2011.01.007
10.3390/rs70708925
10.1016/j.enggeo.2008.03.022
10.1007/s10346-015-0583-4
10.1007/978-3-662-45931-7
10.1016/j.asr.2013.12.003
10.1029/2002JB001831
10.1130/0016-7606(1987)99<579:RGFASM>2.0.CO;2
10.5194/nhess-3-569-2003
10.1109/TGRS.2006.873207
10.1016/j.rse.2012.05.025
10.1016/j.geomorph.2014.11.031
10.1080/01431160110040035
10.1029/2004GL021737
10.1109/TGRS.2003.808902
10.1007/s10346-015-0638-6
10.1002/esp.419
10.14358/PERS.70.10.1167
10.1016/j.geomorph.2014.04.039
10.3390/rs9101046
10.1130/0091-7613(1995)023<0041:LFATFA>2.3.CO;2
10.1007/s10346-005-0003-2
10.1109/36.898661
10.5194/nhess-13-2851-2013
10.1080/19479832.2010.499219
10.1117/1.JRS.10.026030
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/rs10070993
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_9a59ec76c4be433ba9e521b71c1dae2c
10_3390_rs10070993
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
IPNFZ
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
PQGLB
PUEGO
ID FETCH-LOGICAL-a422t-10b9e4ad2346dc3e6c4df9825a620fa6be4ed3a05d9387f1b3e97a1a169cc9ae3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:22:12 EDT 2025
Tue Jul 01 04:14:32 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a422t-10b9e4ad2346dc3e6c4df9825a620fa6be4ed3a05d9387f1b3e97a1a169cc9ae3
ORCID 0000-0001-9181-1818
0000-0002-5730-9602
OpenAccessLink https://doaj.org/article/9a59ec76c4be433ba9e521b71c1dae2c
ParticipantIDs doaj_primary_oai_doaj_org_article_9a59ec76c4be433ba9e521b71c1dae2c
crossref_primary_10_3390_rs10070993
crossref_citationtrail_10_3390_rs10070993
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cheng (ref_50) 2015; 29
Cascini (ref_11) 2010; 112
ref_13
ref_57
ref_10
Lu (ref_68) 2002; 23
Wang (ref_44) 2011; 18
ref_52
ref_17
ref_16
ref_59
Xia (ref_22) 2004; 70
McConchie (ref_61) 2004; 43
Lyons (ref_53) 2003; 108
ref_60
Guzzetti (ref_5) 2012; 112
Massonnet (ref_9) 1998; 36
Berardino (ref_20) 2003; 68
ref_24
ref_67
Parise (ref_55) 2003; 3
Yan (ref_32) 2012; 5
Wang (ref_45) 2007; 1
Strozzi (ref_19) 2005; 2
Bogaard (ref_64) 2002; 27
Doubre (ref_33) 2015; 231
Fan (ref_48) 2012; 57
Liu (ref_1) 2013; 21
Farina (ref_12) 2006; 88
Motagh (ref_42) 2013; 4
Hooper (ref_23) 2007; 112
Zhao (ref_27) 2012; 124
Di (ref_70) 2017; 85
Michoud (ref_3) 2016; 13
Catani (ref_18) 2005; 66
Walter (ref_58) 2013; 18
Zhu (ref_21) 2014; 53
Gomberg (ref_54) 1995; 23
Tang (ref_49) 2015; 7
ref_36
ref_35
ref_34
ref_31
ref_30
Ray (ref_62) 2010; 114
Wang (ref_51) 2014; 45
Zhao (ref_40) 2013; 13
ref_38
Intrieri (ref_15) 2017; 15
ref_37
Hawke (ref_63) 2011; 92
Pepe (ref_46) 2006; 44
Hu (ref_14) 2016; 187
Ferretti (ref_29) 2001; 39
Guerriero (ref_56) 2014; 219
ref_47
Stamatopoulos (ref_69) 2015; 12
Leva (ref_26) 2003; 41
ref_41
Fell (ref_4) 2008; 102
Samsonov (ref_28) 2011; 37
Lu (ref_39) 2010; 1
Iverson (ref_65) 2000; 36
Crosta (ref_6) 2013; 605
ref_8
Ferretti (ref_25) 2011; 49
Iverson (ref_66) 1987; 99
Huang (ref_2) 2012; 9
Hooper (ref_43) 2008; 35
ref_7
References_xml – volume: 85
  start-page: 903
  year: 2017
  ident: ref_70
  article-title: A method predicting the earthquake-induced landslide risk by back analyses of past landslides and its application in the region of the Wenchuan 12/5/2008 earthquake
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2611-7
– ident: ref_57
  doi: 10.1029/2011JB008304
– volume: 15
  start-page: 123
  year: 2017
  ident: ref_15
  article-title: The Maoxian landslide as seen from space: Detecting precursors of failure with sentinel-1 data
  publication-title: Landslides
  doi: 10.1007/s10346-017-0915-7
– volume: 5
  start-page: 1312
  year: 2012
  ident: ref_32
  article-title: Mexico city subsidence measured by InSAR time series: Joint analysis using PS and SBAS approaches
  publication-title: IEEE. J-STARS
– volume: 112
  start-page: B07407
  year: 2007
  ident: ref_23
  article-title: Persistent scatterer InSAR for crustal deformation analysis, with application to Volca’nAlcedo, Gala’pagos
  publication-title: J. Geophys. Solid Earth.
– ident: ref_10
  doi: 10.1029/2005JE002593
– volume: 36
  start-page: 1897
  year: 2000
  ident: ref_65
  article-title: Landslide triggering by rain infiltration
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900090
– ident: ref_35
– volume: 18
  start-page: 269
  year: 2013
  ident: ref_58
  article-title: Slidequake generation versus viscous creep at soft rock-landslides: Synopsis of three different scenarios at Slumgullion landslide, Heumoes slope, and Super-Sauze mudslide
  publication-title: J. Environ. Eng. Geophys.
  doi: 10.2113/JEEG18.4.269
– volume: 114
  start-page: 2624
  year: 2010
  ident: ref_62
  article-title: Landslide susceptibility mapping using downscaled AMSR-E soil moisture: A case study from Cleveland Corral, California, US
  publication-title: Remote. Sens. Environ.
  doi: 10.1016/j.rse.2010.05.033
– volume: 1
  start-page: 10
  year: 2007
  ident: ref_45
  article-title: Remote sensing for landslide survey, monitoring and evaluation
  publication-title: Remote Sens. Land Resour.
– volume: 88
  start-page: 200
  year: 2006
  ident: ref_12
  article-title: Permanent scatterers for landslide investigations: Outcomes from the ERS-SLAM project
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2006.09.007
– ident: ref_8
– volume: 66
  start-page: 119
  year: 2005
  ident: ref_18
  article-title: On the application of SAR interferometry to geomorphological studies: Estimation of landform attributes and mass movements
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.08.012
– volume: 112
  start-page: 42
  year: 2012
  ident: ref_5
  article-title: Landslide inventory maps: New tools for an old problem
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2012.02.001
– ident: ref_52
– volume: 9
  start-page: 395
  year: 2012
  ident: ref_2
  article-title: Analysis of waves generated by Gongjiafang landslide in Wu Gorge, three Gorges reservoir, on November 23, 2008
  publication-title: Landslides
  doi: 10.1007/s10346-012-0331-y
– volume: 57
  start-page: 25
  year: 2012
  ident: ref_48
  article-title: Analysis of landslide dams induced by the 2008 Wenchuan earthquake
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2012.06.002
– volume: 68
  start-page: 31
  year: 2003
  ident: ref_20
  article-title: Use of differential SAR interferometry in monitoring and modeling large slope instability at Matera (Basilicata, Italy)
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(02)00197-7
– ident: ref_31
  doi: 10.1029/2006JB004302
– ident: ref_13
– volume: 187
  start-page: 49
  year: 2016
  ident: ref_14
  article-title: Detecting seasonal landslide movement within the cascade landslide complex (Washington) using time-series SAR imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.006
– ident: ref_38
– volume: 21
  start-page: 253
  year: 2013
  ident: ref_1
  article-title: Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 49
  start-page: 3460
  year: 2011
  ident: ref_25
  article-title: A new algorithm for processing interferometric data-stacks: SqueeSAR
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2124465
– volume: 35
  start-page: 1
  year: 2008
  ident: ref_43
  article-title: A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2008GL034654
– ident: ref_59
– volume: 112
  start-page: 29
  year: 2010
  ident: ref_11
  article-title: Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2010.01.003
– ident: ref_17
  doi: 10.1029/2009JF001314
– volume: 605
  start-page: 13
  year: 2013
  ident: ref_6
  article-title: Deep seated gravitational slope deformations in the European Alps
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2013.04.028
– volume: 29
  start-page: 395
  year: 2015
  ident: ref_50
  article-title: Formation conditions, development tendency and preventive measures of Pufu landslide in Luquan of Yunnan
  publication-title: Min. Res. Geo.
– ident: ref_7
– volume: 36
  start-page: 441
  year: 1998
  ident: ref_9
  article-title: Radar interferometry and its application to changes in the Earth’s surface
  publication-title: Rev. Geophys.
  doi: 10.1029/97RG03139
– volume: 92
  start-page: 266
  year: 2011
  ident: ref_63
  article-title: In situ measurement of soil moisture and pore-water pressures in an ‘incipient’ landslide: Lake tutira, New Zealand
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2009.05.035
– ident: ref_30
– volume: 4
  start-page: 657
  year: 2013
  ident: ref_42
  article-title: A TerraSAR-X InSAR study of landslides in southern Kyrgyzstan, central Asia
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2013.782111
– volume: 37
  start-page: 1083
  year: 2011
  ident: ref_28
  article-title: A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.01.007
– ident: ref_47
– volume: 7
  start-page: 8925
  year: 2015
  ident: ref_49
  article-title: Large-area landslides monitoring using advanced multi-temporal InSAR technique over the giant panda habitat, Sichuan, China
  publication-title: Remote Sens.
  doi: 10.3390/rs70708925
– volume: 102
  start-page: 85
  year: 2008
  ident: ref_4
  article-title: Guidelines for landslide susceptibility, hazard and risk zoning for land use planning
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2008.03.022
– volume: 13
  start-page: 451
  year: 2016
  ident: ref_3
  article-title: Large slope deformations detection and monitoring along shores of the potrerillos dam reservoir, Argentina, based on a small-baseline InSAR approach
  publication-title: Landslides
  doi: 10.1007/s10346-015-0583-4
– ident: ref_67
– ident: ref_37
– volume: 43
  start-page: 3
  year: 2004
  ident: ref_61
  article-title: The influence of earthflow morphology on moisture conditions and slope instability
  publication-title: J. Hydrol.
– ident: ref_34
  doi: 10.1007/978-3-662-45931-7
– volume: 53
  start-page: 430
  year: 2014
  ident: ref_21
  article-title: Landslide monitoring by combining of CR-InSAR and GPS techniques
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2013.12.003
– volume: 108
  start-page: 233
  year: 2003
  ident: ref_53
  article-title: Fault creep along the southern san Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2002JB001831
– volume: 45
  start-page: 54
  year: 2014
  ident: ref_51
  article-title: Geological research on Jinpingzi giant landslide of Wudongde Hydropower Station
  publication-title: Yangt. Riv.
– volume: 99
  start-page: 579
  year: 1987
  ident: ref_66
  article-title: Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, Northwestern California: Physical interpretation of empirical relations
  publication-title: Geol. Soc. Am. Bull.
  doi: 10.1130/0016-7606(1987)99<579:RGFASM>2.0.CO;2
– volume: 3
  start-page: 569
  year: 2003
  ident: ref_55
  article-title: Observation of surface features on an active landslide, and implications for understanding its history of movement
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-3-569-2003
– volume: 44
  start-page: 2374
  year: 2006
  ident: ref_46
  article-title: On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.873207
– volume: 124
  start-page: 348
  year: 2012
  ident: ref_27
  article-title: Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over northern California and southern Oregon, USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.05.025
– volume: 231
  start-page: 314
  year: 2015
  ident: ref_33
  article-title: Landslide deformation monitoring with ALOS/PALSAR imagery: A D-InSAR geomorphological interpretation method
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.11.031
– volume: 23
  start-page: 1063
  year: 2002
  ident: ref_68
  article-title: Study of high SAR backscattering caused by an increase of soil moisture over a sparsely vegetated area: Implications for characteristics of backscattering
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110040035
– ident: ref_24
  doi: 10.1029/2004GL021737
– volume: 41
  start-page: 745
  year: 2003
  ident: ref_26
  article-title: Temporal analysis of a landslide by means of a ground-based SAR interferometer
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.808902
– volume: 12
  start-page: 1207
  year: 2015
  ident: ref_69
  article-title: Analytical and approximate expressions predicting post-failure landslide displacement using the multi-block model and energy methods
  publication-title: Landslides
  doi: 10.1007/s10346-015-0638-6
– volume: 27
  start-page: 1177
  year: 2002
  ident: ref_64
  article-title: The role of the soil moisture balance in the unsaturated zone on movement and stability of the Beline landslide, France
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.419
– volume: 70
  start-page: 1167
  year: 2004
  ident: ref_22
  article-title: Landslide monitoring in the Three Gorges area using D-INSAR and corner reflectors
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.70.10.1167
– volume: 219
  start-page: 285
  year: 2014
  ident: ref_56
  article-title: Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.04.039
– volume: 18
  start-page: 310
  year: 2011
  ident: ref_44
  article-title: Remote sensing interpretation on June 28, 2010 Guanling landslide, Guizhou Province, China
  publication-title: Geosci. Front.
– ident: ref_36
– ident: ref_60
– ident: ref_16
  doi: 10.3390/rs9101046
– volume: 23
  start-page: 41
  year: 1995
  ident: ref_54
  article-title: Landslide faults and tectonic faults, analogs? The slumgullion earthflow, Colorado
  publication-title: Geology
  doi: 10.1130/0091-7613(1995)023<0041:LFATFA>2.3.CO;2
– volume: 2
  start-page: 193
  year: 2005
  ident: ref_19
  article-title: Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry
  publication-title: Landslides
  doi: 10.1007/s10346-005-0003-2
– volume: 39
  start-page: 8
  year: 2001
  ident: ref_29
  article-title: Permanent scatterers in SAR interferometry
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.898661
– volume: 13
  start-page: 2851
  year: 2013
  ident: ref_40
  article-title: Pre-, co-, and post-rockslide analysis with ALOS/PALSAR imagery: A case study of the Jiweishan rockslide, China
  publication-title: Nat. Hazard. Earth Syst. Sci.
  doi: 10.5194/nhess-13-2851-2013
– volume: 1
  start-page: 217
  year: 2010
  ident: ref_39
  article-title: Radar image and data fusion for natural hazards characterization
  publication-title: Int. J. Image Data Fusion.
  doi: 10.1080/19479832.2010.499219
– ident: ref_41
  doi: 10.1117/1.JRS.10.026030
SSID ssj0000331904
Score 2.5188847
Snippet Landslide identification and monitoring are two significant research aspects for landslide analysis. In addition, landslide mode deduction is key for the...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 993
SubjectTerms InSAR
interferometric point target analysis (IPTA)
landslide identification
landslide monitoring
landslide type inversion
Title Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method
URI https://doaj.org/article/9a59ec76c4be433ba9e521b71c1dae2c
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kHvQiPvFZFvSgYGizu3nssVZLLa0HtdhbmH2EFkoqfQge_efOJrFWELyYQw7LsBtmJ_NiZj5CLoTQMlVMe8Jo5gktIg8MT70IQEUyDgIbu0bh3kPY7ovOIBisQH25mrBiPHDBuJqEQFodhVooKzhXIC1aHBX52jdgmXbaF23eSjCV62COolUXxTxSjnF9bTpz9QDoD_EfFmhlUH9uUVrbZKt0BWmj-IQdsmazXbJRopIP3_fIR9f14Y5HxtKinzYtE2wU12nxN7q0HIXxBN_oytHOKJsNgT66agvaRDU7dNk_evmyMEiCG7lKu-nbZDTFcy1cXdMcQPua5qUD-Rb32VPjkfZyZOl90m_dPTfbXgmZ4IFgbI5KVUkrwDAuQqO5RbaZVGIUCCGrpxAiD63hUA-M5HGU-opbGYEPfii1lmD5Aalkk8weEmoMZ4AP8w0X4GAmVcw5OiyhUnhWekSuvtiY6HKeuIO1GCcYVziWJ98sPyLnS9rXYorGr1Q37jaWFG7ydb6A8pCU8pD8JQ_H_7HJCdlExyguynJPSWU-XdgzdD7mqkrWG7e97lM1l7dPtOrcMQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+Identification+and+Monitoring+along+the+Jinsha+River+Catchment+%28Wudongde+Reservoir+Area%29%2C+China%2C+Using+the+InSAR+Method&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Chaoying+Zhao&rft.au=Ya+Kang&rft.au=Qin+Zhang&rft.au=Zhong+Lu&rft.date=2018-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=10&rft.issue=7&rft.spage=993&rft_id=info:doi/10.3390%2Frs10070993&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9a59ec76c4be433ba9e521b71c1dae2c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon