Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method
Landslide identification and monitoring are two significant research aspects for landslide analysis. In addition, landslide mode deduction is key for the prevention of landslide hazards. Surface deformation results with different scales can serve for different landslide analysis. L-band synthetic ap...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 10; no. 7; p. 993 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Landslide identification and monitoring are two significant research aspects for landslide analysis. In addition, landslide mode deduction is key for the prevention of landslide hazards. Surface deformation results with different scales can serve for different landslide analysis. L-band synthetic aperture radar (SAR) data calculated with Interferometric Point Target Analysis (IPTA) are first employed to detect potential landslides at the catchment-scale Wudongde reservoir area. Twenty-two active landslides are identified and mapped over more than 2500 square kilometers. Then, for one typical landslide, Jinpingzi landslide, its spatiotemporal deformation characteristics are analyzed with the small baseline subsets (SBAS) interferometric synthetic aperture radar (InSAR) technique. High-precision surface deformation results are obtained by comparing with in-situ georobot measurements. The spatial deformation pattern reveals the different stabilities among five different sections of Jinpingzi landslide. InSAR results for Section II of Jinpingzi landslide show that this active landslide is controlled by two boundaries and geological structure, and its different landslide deformation magnitudes at different sections on the surface companying with borehole deformation reveals the pull-type landslide mode. Correlation between time series landslide motion and monthly precipitation, soil moisture inverted from SAR intensity images and water level fluctuations suggests that heavy rainfall is the main trigger factor, and the maximum deformation of the landslide was highly consistent with the peak precipitation with a time lag of about 1 to 2 months, which gives us important guidelines to mitigate and prevent this kind of hazard. |
---|---|
AbstractList | Landslide identification and monitoring are two significant research aspects for landslide analysis. In addition, landslide mode deduction is key for the prevention of landslide hazards. Surface deformation results with different scales can serve for different landslide analysis. L-band synthetic aperture radar (SAR) data calculated with Interferometric Point Target Analysis (IPTA) are first employed to detect potential landslides at the catchment-scale Wudongde reservoir area. Twenty-two active landslides are identified and mapped over more than 2500 square kilometers. Then, for one typical landslide, Jinpingzi landslide, its spatiotemporal deformation characteristics are analyzed with the small baseline subsets (SBAS) interferometric synthetic aperture radar (InSAR) technique. High-precision surface deformation results are obtained by comparing with in-situ georobot measurements. The spatial deformation pattern reveals the different stabilities among five different sections of Jinpingzi landslide. InSAR results for Section II of Jinpingzi landslide show that this active landslide is controlled by two boundaries and geological structure, and its different landslide deformation magnitudes at different sections on the surface companying with borehole deformation reveals the pull-type landslide mode. Correlation between time series landslide motion and monthly precipitation, soil moisture inverted from SAR intensity images and water level fluctuations suggests that heavy rainfall is the main trigger factor, and the maximum deformation of the landslide was highly consistent with the peak precipitation with a time lag of about 1 to 2 months, which gives us important guidelines to mitigate and prevent this kind of hazard. |
Author | Lu, Zhong Kang, Ya Zhang, Qin Li, Bin Zhao, Chaoying |
Author_xml | – sequence: 1 givenname: Chaoying orcidid: 0000-0002-5730-9602 surname: Zhao fullname: Zhao, Chaoying – sequence: 2 givenname: Ya surname: Kang fullname: Kang, Ya – sequence: 3 givenname: Qin surname: Zhang fullname: Zhang, Qin – sequence: 4 givenname: Zhong orcidid: 0000-0001-9181-1818 surname: Lu fullname: Lu, Zhong – sequence: 5 givenname: Bin surname: Li fullname: Li, Bin |
BookMark | eNptkUtLAzEQx4Mo-Lz4CXJUaTWP7W5zLMVHpSJUxeMym8y6KWsiSSx49JsbH6iIc5gZ_vznNzCzTdadd0jIPmfHUip2EiJnrGJKyTWyJVglhoVQYv1Xv0n2YlyyHFJyxYot8joHZ2JvDdKZQZdsazUk6x3NOr3yziYfrHug0PucU4f00rrYAV3YFQY6haS7xzxID-6fTbZk0AIjhpW3gU4CwuGATjvrYEDvov1CzNzNZEGvMHXe7JKNFvqIe191h9ydnd5OL4bz6_PZdDIfQiFEGnLWKCzACFmURkssdWFaNRYjKAVroWywQCOBjYyS46rljURVAQdeKq0VoNwhs0-u8bCsn4J9hPBSe7D1h-DDQw0hWd1jrWCkUFd5RaZK2YDCkeBNxTU3gEJn1tEnSwcfY8D2m8dZ_f6L-ucX2cz-mLVNHzdOAWz_38gbr_iO7g |
CitedBy_id | crossref_primary_10_1007_s10346_019_01265_w crossref_primary_10_1016_j_rse_2022_112899 crossref_primary_10_1080_19475705_2022_2134828 crossref_primary_10_3390_ijerph192114241 crossref_primary_10_3390_s24144583 crossref_primary_10_1016_j_geomorph_2021_107619 crossref_primary_10_1080_19475705_2024_2363406 crossref_primary_10_1038_s41598_021_89899_6 crossref_primary_10_1109_JSTARS_2022_3161383 crossref_primary_10_3390_s20236913 crossref_primary_10_1007_s11629_024_8871_x crossref_primary_10_1016_j_enggeo_2025_107967 crossref_primary_10_1016_j_rse_2023_113620 crossref_primary_10_3390_rs13163213 crossref_primary_10_3390_rs13183566 crossref_primary_10_1016_j_rse_2021_112400 crossref_primary_10_1007_s11069_023_06201_9 crossref_primary_10_1080_19475705_2023_2212833 crossref_primary_10_1109_ACCESS_2020_3002990 crossref_primary_10_3897_BDJ_11_e101950 crossref_primary_10_1080_15481603_2022_2100054 crossref_primary_10_3390_s22155587 crossref_primary_10_1080_15481603_2023_2170125 crossref_primary_10_3390_rs12101541 crossref_primary_10_1080_22797254_2019_1707715 crossref_primary_10_3390_rs13081564 crossref_primary_10_3390_w15152732 crossref_primary_10_1117_1_JRS_16_034518 crossref_primary_10_3390_rs16152688 crossref_primary_10_3390_rs11080931 crossref_primary_10_3390_rs15204951 crossref_primary_10_3390_s20174751 crossref_primary_10_1007_s11629_023_8083_9 crossref_primary_10_1016_j_rse_2020_111695 crossref_primary_10_1007_s11629_021_6686_6 crossref_primary_10_3390_rs14195031 crossref_primary_10_1080_10106049_2023_2292752 crossref_primary_10_1155_2022_9572937 crossref_primary_10_3390_rs13040815 crossref_primary_10_1007_s12517_022_10036_2 crossref_primary_10_1016_j_jag_2023_103266 crossref_primary_10_3390_rs14246274 crossref_primary_10_3389_feart_2021_649543 crossref_primary_10_3390_rs10111756 crossref_primary_10_14358_PERS_24_00041R2 crossref_primary_10_3390_rs15235538 crossref_primary_10_1016_j_rse_2021_112745 crossref_primary_10_3390_land13050569 crossref_primary_10_1007_s10346_020_01407_5 crossref_primary_10_3389_feart_2022_1000736 crossref_primary_10_3390_rs16091610 crossref_primary_10_1016_j_jhydrol_2024_131800 crossref_primary_10_1007_s11629_022_7339_0 crossref_primary_10_1007_s10346_020_01475_7 crossref_primary_10_1007_s10346_022_01908_5 crossref_primary_10_3390_app14188413 crossref_primary_10_1029_2019GL086142 crossref_primary_10_3390_rs11232726 crossref_primary_10_1007_s11431_021_2008_6 crossref_primary_10_1109_JSTARS_2024_3523294 crossref_primary_10_3390_rs15010051 crossref_primary_10_3389_fenvs_2022_1097874 crossref_primary_10_1007_s10346_022_01898_4 crossref_primary_10_1007_s10346_023_02135_2 crossref_primary_10_3390_rs14236009 crossref_primary_10_3390_rs13153048 crossref_primary_10_3390_rs15030613 crossref_primary_10_3390_rs13163253 crossref_primary_10_1080_01431161_2024_2391106 crossref_primary_10_1016_j_enggeo_2021_106033 crossref_primary_10_1016_j_enggeo_2021_106275 crossref_primary_10_1016_j_jclepro_2022_133146 crossref_primary_10_3390_rs14092049 crossref_primary_10_1007_s12665_025_12135_1 crossref_primary_10_1007_s10064_025_04110_8 crossref_primary_10_3390_rs15061475 crossref_primary_10_1080_10106049_2022_2159071 crossref_primary_10_3390_rs14174245 crossref_primary_10_3390_rs11020165 crossref_primary_10_3390_rs11161846 crossref_primary_10_3390_rs15112870 crossref_primary_10_3390_rs12203385 crossref_primary_10_3390_rs12050856 crossref_primary_10_3390_rs13030452 crossref_primary_10_3390_rs14194907 crossref_primary_10_3390_rs14071759 crossref_primary_10_1016_j_jappgeo_2022_104754 crossref_primary_10_3390_rs14246328 crossref_primary_10_1016_j_enggeo_2024_107497 crossref_primary_10_3390_rs16173324 crossref_primary_10_3390_rs14071730 crossref_primary_10_3390_ijgi10040253 crossref_primary_10_3390_rs17060999 crossref_primary_10_1016_j_jhydrol_2024_130905 crossref_primary_10_1007_s10346_023_02197_2 crossref_primary_10_3390_rs11232821 crossref_primary_10_1080_10095020_2023_2266224 crossref_primary_10_1016_j_eng_2024_07_001 crossref_primary_10_3390_rs13101938 crossref_primary_10_1007_s11629_023_7903_2 crossref_primary_10_1007_s11356_022_22418_w crossref_primary_10_3389_feart_2023_1333815 crossref_primary_10_1016_j_jag_2023_103182 crossref_primary_10_3389_fenvs_2022_963322 crossref_primary_10_1016_j_rse_2023_113686 crossref_primary_10_1029_2023JF007363 crossref_primary_10_11144_Javeriana_SC25_2_eorl crossref_primary_10_3390_rs12081305 crossref_primary_10_3390_rs13183662 crossref_primary_10_1007_s10706_022_02176_9 crossref_primary_10_3390_rs11192273 crossref_primary_10_1080_10106049_2024_2339287 crossref_primary_10_3390_su13031017 crossref_primary_10_3389_feart_2024_1365272 crossref_primary_10_1007_s10346_023_02118_3 crossref_primary_10_3390_rs14112669 |
Cites_doi | 10.1007/s11069-016-2611-7 10.1029/2011JB008304 10.1007/s10346-017-0915-7 10.1029/2005JE002593 10.1029/2000WR900090 10.2113/JEEG18.4.269 10.1016/j.rse.2010.05.033 10.1016/j.enggeo.2006.09.007 10.1016/j.geomorph.2004.08.012 10.1016/j.earscirev.2012.02.001 10.1007/s10346-012-0331-y 10.1016/j.jseaes.2012.06.002 10.1016/S0013-7952(02)00197-7 10.1029/2006JB004302 10.1016/j.rse.2016.10.006 10.1109/TGRS.2011.2124465 10.1029/2008GL034654 10.1016/j.enggeo.2010.01.003 10.1029/2009JF001314 10.1016/j.tecto.2013.04.028 10.1029/97RG03139 10.1016/j.jenvman.2009.05.035 10.1080/2150704X.2013.782111 10.1016/j.cageo.2011.01.007 10.3390/rs70708925 10.1016/j.enggeo.2008.03.022 10.1007/s10346-015-0583-4 10.1007/978-3-662-45931-7 10.1016/j.asr.2013.12.003 10.1029/2002JB001831 10.1130/0016-7606(1987)99<579:RGFASM>2.0.CO;2 10.5194/nhess-3-569-2003 10.1109/TGRS.2006.873207 10.1016/j.rse.2012.05.025 10.1016/j.geomorph.2014.11.031 10.1080/01431160110040035 10.1029/2004GL021737 10.1109/TGRS.2003.808902 10.1007/s10346-015-0638-6 10.1002/esp.419 10.14358/PERS.70.10.1167 10.1016/j.geomorph.2014.04.039 10.3390/rs9101046 10.1130/0091-7613(1995)023<0041:LFATFA>2.3.CO;2 10.1007/s10346-005-0003-2 10.1109/36.898661 10.5194/nhess-13-2851-2013 10.1080/19479832.2010.499219 10.1117/1.JRS.10.026030 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/rs10070993 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_9a59ec76c4be433ba9e521b71c1dae2c 10_3390_rs10070993 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO IPNFZ ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS RIG TR2 TUS PQGLB PUEGO |
ID | FETCH-LOGICAL-a422t-10b9e4ad2346dc3e6c4df9825a620fa6be4ed3a05d9387f1b3e97a1a169cc9ae3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:22:12 EDT 2025 Tue Jul 01 04:14:32 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a422t-10b9e4ad2346dc3e6c4df9825a620fa6be4ed3a05d9387f1b3e97a1a169cc9ae3 |
ORCID | 0000-0001-9181-1818 0000-0002-5730-9602 |
OpenAccessLink | https://doaj.org/article/9a59ec76c4be433ba9e521b71c1dae2c |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9a59ec76c4be433ba9e521b71c1dae2c crossref_primary_10_3390_rs10070993 crossref_citationtrail_10_3390_rs10070993 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2018 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Cheng (ref_50) 2015; 29 Cascini (ref_11) 2010; 112 ref_13 ref_57 ref_10 Lu (ref_68) 2002; 23 Wang (ref_44) 2011; 18 ref_52 ref_17 ref_16 ref_59 Xia (ref_22) 2004; 70 McConchie (ref_61) 2004; 43 Lyons (ref_53) 2003; 108 ref_60 Guzzetti (ref_5) 2012; 112 Massonnet (ref_9) 1998; 36 Berardino (ref_20) 2003; 68 ref_24 ref_67 Parise (ref_55) 2003; 3 Yan (ref_32) 2012; 5 Wang (ref_45) 2007; 1 Strozzi (ref_19) 2005; 2 Bogaard (ref_64) 2002; 27 Doubre (ref_33) 2015; 231 Fan (ref_48) 2012; 57 Liu (ref_1) 2013; 21 Farina (ref_12) 2006; 88 Motagh (ref_42) 2013; 4 Hooper (ref_23) 2007; 112 Zhao (ref_27) 2012; 124 Di (ref_70) 2017; 85 Michoud (ref_3) 2016; 13 Catani (ref_18) 2005; 66 Walter (ref_58) 2013; 18 Zhu (ref_21) 2014; 53 Gomberg (ref_54) 1995; 23 Tang (ref_49) 2015; 7 ref_36 ref_35 ref_34 ref_31 ref_30 Ray (ref_62) 2010; 114 Wang (ref_51) 2014; 45 Zhao (ref_40) 2013; 13 ref_38 Intrieri (ref_15) 2017; 15 ref_37 Hawke (ref_63) 2011; 92 Pepe (ref_46) 2006; 44 Hu (ref_14) 2016; 187 Ferretti (ref_29) 2001; 39 Guerriero (ref_56) 2014; 219 ref_47 Stamatopoulos (ref_69) 2015; 12 Leva (ref_26) 2003; 41 ref_41 Fell (ref_4) 2008; 102 Samsonov (ref_28) 2011; 37 Lu (ref_39) 2010; 1 Iverson (ref_65) 2000; 36 Crosta (ref_6) 2013; 605 ref_8 Ferretti (ref_25) 2011; 49 Iverson (ref_66) 1987; 99 Huang (ref_2) 2012; 9 Hooper (ref_43) 2008; 35 ref_7 |
References_xml | – volume: 85 start-page: 903 year: 2017 ident: ref_70 article-title: A method predicting the earthquake-induced landslide risk by back analyses of past landslides and its application in the region of the Wenchuan 12/5/2008 earthquake publication-title: Nat. Hazards doi: 10.1007/s11069-016-2611-7 – ident: ref_57 doi: 10.1029/2011JB008304 – volume: 15 start-page: 123 year: 2017 ident: ref_15 article-title: The Maoxian landslide as seen from space: Detecting precursors of failure with sentinel-1 data publication-title: Landslides doi: 10.1007/s10346-017-0915-7 – volume: 5 start-page: 1312 year: 2012 ident: ref_32 article-title: Mexico city subsidence measured by InSAR time series: Joint analysis using PS and SBAS approaches publication-title: IEEE. J-STARS – volume: 112 start-page: B07407 year: 2007 ident: ref_23 article-title: Persistent scatterer InSAR for crustal deformation analysis, with application to Volca’nAlcedo, Gala’pagos publication-title: J. Geophys. Solid Earth. – ident: ref_10 doi: 10.1029/2005JE002593 – volume: 36 start-page: 1897 year: 2000 ident: ref_65 article-title: Landslide triggering by rain infiltration publication-title: Water Resour. Res. doi: 10.1029/2000WR900090 – ident: ref_35 – volume: 18 start-page: 269 year: 2013 ident: ref_58 article-title: Slidequake generation versus viscous creep at soft rock-landslides: Synopsis of three different scenarios at Slumgullion landslide, Heumoes slope, and Super-Sauze mudslide publication-title: J. Environ. Eng. Geophys. doi: 10.2113/JEEG18.4.269 – volume: 114 start-page: 2624 year: 2010 ident: ref_62 article-title: Landslide susceptibility mapping using downscaled AMSR-E soil moisture: A case study from Cleveland Corral, California, US publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2010.05.033 – volume: 1 start-page: 10 year: 2007 ident: ref_45 article-title: Remote sensing for landslide survey, monitoring and evaluation publication-title: Remote Sens. Land Resour. – volume: 88 start-page: 200 year: 2006 ident: ref_12 article-title: Permanent scatterers for landslide investigations: Outcomes from the ERS-SLAM project publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2006.09.007 – ident: ref_8 – volume: 66 start-page: 119 year: 2005 ident: ref_18 article-title: On the application of SAR interferometry to geomorphological studies: Estimation of landform attributes and mass movements publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.08.012 – volume: 112 start-page: 42 year: 2012 ident: ref_5 article-title: Landslide inventory maps: New tools for an old problem publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2012.02.001 – ident: ref_52 – volume: 9 start-page: 395 year: 2012 ident: ref_2 article-title: Analysis of waves generated by Gongjiafang landslide in Wu Gorge, three Gorges reservoir, on November 23, 2008 publication-title: Landslides doi: 10.1007/s10346-012-0331-y – volume: 57 start-page: 25 year: 2012 ident: ref_48 article-title: Analysis of landslide dams induced by the 2008 Wenchuan earthquake publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2012.06.002 – volume: 68 start-page: 31 year: 2003 ident: ref_20 article-title: Use of differential SAR interferometry in monitoring and modeling large slope instability at Matera (Basilicata, Italy) publication-title: Eng. Geol. doi: 10.1016/S0013-7952(02)00197-7 – ident: ref_31 doi: 10.1029/2006JB004302 – ident: ref_13 – volume: 187 start-page: 49 year: 2016 ident: ref_14 article-title: Detecting seasonal landslide movement within the cascade landslide complex (Washington) using time-series SAR imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.006 – ident: ref_38 – volume: 21 start-page: 253 year: 2013 ident: ref_1 article-title: Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 49 start-page: 3460 year: 2011 ident: ref_25 article-title: A new algorithm for processing interferometric data-stacks: SqueeSAR publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2124465 – volume: 35 start-page: 1 year: 2008 ident: ref_43 article-title: A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL034654 – ident: ref_59 – volume: 112 start-page: 29 year: 2010 ident: ref_11 article-title: Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2010.01.003 – ident: ref_17 doi: 10.1029/2009JF001314 – volume: 605 start-page: 13 year: 2013 ident: ref_6 article-title: Deep seated gravitational slope deformations in the European Alps publication-title: Tectonophysics doi: 10.1016/j.tecto.2013.04.028 – volume: 29 start-page: 395 year: 2015 ident: ref_50 article-title: Formation conditions, development tendency and preventive measures of Pufu landslide in Luquan of Yunnan publication-title: Min. Res. Geo. – ident: ref_7 – volume: 36 start-page: 441 year: 1998 ident: ref_9 article-title: Radar interferometry and its application to changes in the Earth’s surface publication-title: Rev. Geophys. doi: 10.1029/97RG03139 – volume: 92 start-page: 266 year: 2011 ident: ref_63 article-title: In situ measurement of soil moisture and pore-water pressures in an ‘incipient’ landslide: Lake tutira, New Zealand publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2009.05.035 – ident: ref_30 – volume: 4 start-page: 657 year: 2013 ident: ref_42 article-title: A TerraSAR-X InSAR study of landslides in southern Kyrgyzstan, central Asia publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2013.782111 – volume: 37 start-page: 1083 year: 2011 ident: ref_28 article-title: A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.01.007 – ident: ref_47 – volume: 7 start-page: 8925 year: 2015 ident: ref_49 article-title: Large-area landslides monitoring using advanced multi-temporal InSAR technique over the giant panda habitat, Sichuan, China publication-title: Remote Sens. doi: 10.3390/rs70708925 – volume: 102 start-page: 85 year: 2008 ident: ref_4 article-title: Guidelines for landslide susceptibility, hazard and risk zoning for land use planning publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2008.03.022 – volume: 13 start-page: 451 year: 2016 ident: ref_3 article-title: Large slope deformations detection and monitoring along shores of the potrerillos dam reservoir, Argentina, based on a small-baseline InSAR approach publication-title: Landslides doi: 10.1007/s10346-015-0583-4 – ident: ref_67 – ident: ref_37 – volume: 43 start-page: 3 year: 2004 ident: ref_61 article-title: The influence of earthflow morphology on moisture conditions and slope instability publication-title: J. Hydrol. – ident: ref_34 doi: 10.1007/978-3-662-45931-7 – volume: 53 start-page: 430 year: 2014 ident: ref_21 article-title: Landslide monitoring by combining of CR-InSAR and GPS techniques publication-title: Adv. Space Res. doi: 10.1016/j.asr.2013.12.003 – volume: 108 start-page: 233 year: 2003 ident: ref_53 article-title: Fault creep along the southern san Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2002JB001831 – volume: 45 start-page: 54 year: 2014 ident: ref_51 article-title: Geological research on Jinpingzi giant landslide of Wudongde Hydropower Station publication-title: Yangt. Riv. – volume: 99 start-page: 579 year: 1987 ident: ref_66 article-title: Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, Northwestern California: Physical interpretation of empirical relations publication-title: Geol. Soc. Am. Bull. doi: 10.1130/0016-7606(1987)99<579:RGFASM>2.0.CO;2 – volume: 3 start-page: 569 year: 2003 ident: ref_55 article-title: Observation of surface features on an active landslide, and implications for understanding its history of movement publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-3-569-2003 – volume: 44 start-page: 2374 year: 2006 ident: ref_46 article-title: On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.873207 – volume: 124 start-page: 348 year: 2012 ident: ref_27 article-title: Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over northern California and southern Oregon, USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.05.025 – volume: 231 start-page: 314 year: 2015 ident: ref_33 article-title: Landslide deformation monitoring with ALOS/PALSAR imagery: A D-InSAR geomorphological interpretation method publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.11.031 – volume: 23 start-page: 1063 year: 2002 ident: ref_68 article-title: Study of high SAR backscattering caused by an increase of soil moisture over a sparsely vegetated area: Implications for characteristics of backscattering publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110040035 – ident: ref_24 doi: 10.1029/2004GL021737 – volume: 41 start-page: 745 year: 2003 ident: ref_26 article-title: Temporal analysis of a landslide by means of a ground-based SAR interferometer publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.808902 – volume: 12 start-page: 1207 year: 2015 ident: ref_69 article-title: Analytical and approximate expressions predicting post-failure landslide displacement using the multi-block model and energy methods publication-title: Landslides doi: 10.1007/s10346-015-0638-6 – volume: 27 start-page: 1177 year: 2002 ident: ref_64 article-title: The role of the soil moisture balance in the unsaturated zone on movement and stability of the Beline landslide, France publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.419 – volume: 70 start-page: 1167 year: 2004 ident: ref_22 article-title: Landslide monitoring in the Three Gorges area using D-INSAR and corner reflectors publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.70.10.1167 – volume: 219 start-page: 285 year: 2014 ident: ref_56 article-title: Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.04.039 – volume: 18 start-page: 310 year: 2011 ident: ref_44 article-title: Remote sensing interpretation on June 28, 2010 Guanling landslide, Guizhou Province, China publication-title: Geosci. Front. – ident: ref_36 – ident: ref_60 – ident: ref_16 doi: 10.3390/rs9101046 – volume: 23 start-page: 41 year: 1995 ident: ref_54 article-title: Landslide faults and tectonic faults, analogs? The slumgullion earthflow, Colorado publication-title: Geology doi: 10.1130/0091-7613(1995)023<0041:LFATFA>2.3.CO;2 – volume: 2 start-page: 193 year: 2005 ident: ref_19 article-title: Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry publication-title: Landslides doi: 10.1007/s10346-005-0003-2 – volume: 39 start-page: 8 year: 2001 ident: ref_29 article-title: Permanent scatterers in SAR interferometry publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.898661 – volume: 13 start-page: 2851 year: 2013 ident: ref_40 article-title: Pre-, co-, and post-rockslide analysis with ALOS/PALSAR imagery: A case study of the Jiweishan rockslide, China publication-title: Nat. Hazard. Earth Syst. Sci. doi: 10.5194/nhess-13-2851-2013 – volume: 1 start-page: 217 year: 2010 ident: ref_39 article-title: Radar image and data fusion for natural hazards characterization publication-title: Int. J. Image Data Fusion. doi: 10.1080/19479832.2010.499219 – ident: ref_41 doi: 10.1117/1.JRS.10.026030 |
SSID | ssj0000331904 |
Score | 2.5188847 |
Snippet | Landslide identification and monitoring are two significant research aspects for landslide analysis. In addition, landslide mode deduction is key for the... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 993 |
SubjectTerms | InSAR interferometric point target analysis (IPTA) landslide identification landslide monitoring landslide type inversion |
Title | Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method |
URI | https://doaj.org/article/9a59ec76c4be433ba9e521b71c1dae2c |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kHvQiPvFZFvSgYGizu3nssVZLLa0HtdhbmH2EFkoqfQge_efOJrFWELyYQw7LsBtmJ_NiZj5CLoTQMlVMe8Jo5gktIg8MT70IQEUyDgIbu0bh3kPY7ovOIBisQH25mrBiPHDBuJqEQFodhVooKzhXIC1aHBX52jdgmXbaF23eSjCV62COolUXxTxSjnF9bTpz9QDoD_EfFmhlUH9uUVrbZKt0BWmj-IQdsmazXbJRopIP3_fIR9f14Y5HxtKinzYtE2wU12nxN7q0HIXxBN_oytHOKJsNgT66agvaRDU7dNk_evmyMEiCG7lKu-nbZDTFcy1cXdMcQPua5qUD-Rb32VPjkfZyZOl90m_dPTfbXgmZ4IFgbI5KVUkrwDAuQqO5RbaZVGIUCCGrpxAiD63hUA-M5HGU-opbGYEPfii1lmD5Aalkk8weEmoMZ4AP8w0X4GAmVcw5OiyhUnhWekSuvtiY6HKeuIO1GCcYVziWJ98sPyLnS9rXYorGr1Q37jaWFG7ydb6A8pCU8pD8JQ_H_7HJCdlExyguynJPSWU-XdgzdD7mqkrWG7e97lM1l7dPtOrcMQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+Identification+and+Monitoring+along+the+Jinsha+River+Catchment+%28Wudongde+Reservoir+Area%29%2C+China%2C+Using+the+InSAR+Method&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Chaoying+Zhao&rft.au=Ya+Kang&rft.au=Qin+Zhang&rft.au=Zhong+Lu&rft.date=2018-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=10&rft.issue=7&rft.spage=993&rft_id=info:doi/10.3390%2Frs10070993&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9a59ec76c4be433ba9e521b71c1dae2c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |