Copper-Catalyzed Carbonylative Coupling of Alkyl Halides

Conspectus Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 54; no. 9; pp. 2261 - 2274
Main Authors Cheng, Li-Jie, Mankad, Neal P
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.05.2021
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conspectus Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C­(sp2)-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C–C and C–E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance. Initially, we designed a heterobimetallic catalyst platform for carbonylative C–C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki–Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C–C or C–E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation.
AbstractList ConspectusTransition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C(sp )-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C-C and C-E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance.Initially, we designed a heterobimetallic catalyst platform for carbonylative C-C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki-Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C-C or C-E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation.
Not provided.
Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C(sp2)-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C-C and C-E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance.Initially, we designed a heterobimetallic catalyst platform for carbonylative C-C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki-Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C-C or C-E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation.Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C(sp2)-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C-C and C-E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance.Initially, we designed a heterobimetallic catalyst platform for carbonylative C-C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki-Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C-C or C-E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation.
Conspectus Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C­(sp2)-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C–C and C–E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance. Initially, we designed a heterobimetallic catalyst platform for carbonylative C–C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki–Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C–C or C–E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation.
Author Mankad, Neal P
Cheng, Li-Jie
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Li-Jie
  orcidid: 0000-0002-3272-3276
  surname: Cheng
  fullname: Cheng, Li-Jie
  email: lchenguk@uic.edu
– sequence: 2
  givenname: Neal P
  orcidid: 0000-0001-6923-5164
  surname: Mankad
  fullname: Mankad, Neal P
  email: npm@uic.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33881839$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1853709$$D View this record in Osti.gov
BookMark eNqFkE1PwyAYgImZcR_6D4xpPHnpBNoO6m1p1JmYeNEzoUC1k0EFalJ_vSzbPHjQE1_P84Y8UzAy1igAzhGcI4jRNRd-zoWwvQl-jgSECBVHYIIKDNOclnQEJjBexn2Ox2Dq_Toecb4gJ2CcZZQimpUTQCvbdcqlFQ9cD19KJhV3tTWD5qH9VEll-0635jWxTbLU74NOVly3UvlTcNxw7dXZfp2Bl7vb52qVPj7dP1TLx5TnGIWUSFrnVGa0oVw0hEgo6gwRUkJJsSpJg6lAkpeFakhW51hSiUW-qCHhFC1Kns3A5W6u9aFlXrRBiTdhjVEiMESLjMAyQlc7qHP2o1c-sE3rhdKaG2V7z3CBFjEDjvgMXOzRvt4oyTrXbrgb2CFJBPIdIJz13qnmB0GQbcuzWJ4dyrN9-ajd_NLiV2NDa4Ljrf5Phjt5-7q2vTMx6d_KN9nLnQ0
CitedBy_id crossref_primary_10_1021_acs_orglett_3c00506
crossref_primary_10_1039_D1SC06581E
crossref_primary_10_1039_D2CC06485E
crossref_primary_10_1021_acs_joc_3c00948
crossref_primary_10_1002_chem_202302235
crossref_primary_10_1016_j_checat_2023_100600
crossref_primary_10_1002_anie_202412828
crossref_primary_10_1039_D1CC07027D
crossref_primary_10_1039_D4SC06011C
crossref_primary_10_1002_anie_202213297
crossref_primary_10_1021_acssuschemeng_4c04755
crossref_primary_10_1039_D4QO00651H
crossref_primary_10_1016_j_jcat_2024_115757
crossref_primary_10_1039_D4CC01293C
crossref_primary_10_1021_acscatal_3c00771
crossref_primary_10_1016_j_gresc_2024_04_008
crossref_primary_10_1016_j_jcat_2022_08_007
crossref_primary_10_1021_acs_chemrev_4c00188
crossref_primary_10_1016_j_scp_2024_101855
crossref_primary_10_1021_acs_orglett_4c00967
crossref_primary_10_1016_j_jcat_2022_08_003
crossref_primary_10_1016_j_tetlet_2023_154726
crossref_primary_10_1126_science_adl0149
crossref_primary_10_1016_S1872_2067_23_64398_0
crossref_primary_10_1021_acs_accounts_5c00039
crossref_primary_10_1021_acs_joc_2c02746
crossref_primary_10_1002_cjoc_202300733
crossref_primary_10_1186_s13065_023_01072_4
crossref_primary_10_3762_bjoc_19_102
crossref_primary_10_1002_ange_202410794
crossref_primary_10_1021_acs_joc_1c02808
crossref_primary_10_1002_anie_202211939
crossref_primary_10_1039_D2GC04427G
crossref_primary_10_1002_ange_202112609
crossref_primary_10_1021_acs_orglett_1c02001
crossref_primary_10_1002_ange_202312068
crossref_primary_10_1002_ange_202412828
crossref_primary_10_1021_acs_joc_4c00420
crossref_primary_10_1016_j_chempr_2022_03_013
crossref_primary_10_1039_D3GC02063K
crossref_primary_10_1002_cjoc_202300346
crossref_primary_10_1039_D1RA08388K
crossref_primary_10_1055_a_2446_8286
crossref_primary_10_1039_D1QO01368H
crossref_primary_10_1021_acsami_1c09942
crossref_primary_10_1039_D1QO01568K
crossref_primary_10_1016_j_xcrp_2024_102346
crossref_primary_10_1002_anie_202214812
crossref_primary_10_1016_j_greenca_2024_01_002
crossref_primary_10_1002_open_202400139
crossref_primary_10_1002_ange_202213297
crossref_primary_10_1021_acsmaterialslett_2c01046
crossref_primary_10_1039_D5CY00129C
crossref_primary_10_1039_D2OB00916A
crossref_primary_10_1055_a_2095_5242
crossref_primary_10_1007_s12209_022_00337_8
crossref_primary_10_1002_bkcs_12896
crossref_primary_10_1021_acssuschemeng_1c05810
crossref_primary_10_1002_anie_202112609
crossref_primary_10_1007_s11426_024_1997_2
crossref_primary_10_1021_acscatal_4c02282
crossref_primary_10_1016_S1872_2067_22_64208_6
crossref_primary_10_1021_acs_joc_3c02763
crossref_primary_10_1039_D2SC04103K
crossref_primary_10_1039_D3DT03406B
crossref_primary_10_1021_acs_joc_3c02087
crossref_primary_10_1055_a_2042_3417
crossref_primary_10_1002_ange_202214812
crossref_primary_10_1002_ceur_202500001
crossref_primary_10_1007_s11426_024_2255_5
crossref_primary_10_1134_S1070363224090020
crossref_primary_10_1002_ange_202211939
crossref_primary_10_1021_acscatal_2c04668
crossref_primary_10_1021_acs_orglett_2c01951
crossref_primary_10_1002_tcr_202100224
crossref_primary_10_1080_10426507_2022_2112582
crossref_primary_10_1039_D4SC00156G
crossref_primary_10_1021_acs_joc_3c01725
crossref_primary_10_1002_anie_202312068
crossref_primary_10_1038_s42004_022_00675_7
crossref_primary_10_1002_slct_202304891
crossref_primary_10_1021_acs_orglett_1c03071
crossref_primary_10_1038_s41598_023_30198_7
crossref_primary_10_1039_D2CC02301F
crossref_primary_10_1021_acs_joc_1c02608
crossref_primary_10_1002_ejoc_202200454
crossref_primary_10_1002_adsc_202200958
crossref_primary_10_1021_acs_joc_5c00191
crossref_primary_10_1002_ange_202114513
crossref_primary_10_1002_ejoc_202200731
crossref_primary_10_1039_D1SC05474K
crossref_primary_10_1002_chem_202404113
crossref_primary_10_1055_s_0042_1751542
crossref_primary_10_1021_acs_joc_2c00710
crossref_primary_10_1002_cjoc_202300384
crossref_primary_10_1039_D3QO00158J
crossref_primary_10_1002_ejoc_202200064
crossref_primary_10_1002_anie_202410794
crossref_primary_10_1021_jacs_3c01224
crossref_primary_10_1039_D2QO00976E
crossref_primary_10_1021_jacs_4c02023
crossref_primary_10_1021_acscatal_2c05854
crossref_primary_10_1016_j_ccr_2022_214900
crossref_primary_10_1021_acs_joc_2c01638
crossref_primary_10_1002_anie_202114513
crossref_primary_10_1021_acs_joc_4c00110
crossref_primary_10_1002_ejoc_202400013
crossref_primary_10_1039_D4OB01372G
crossref_primary_10_2139_ssrn_4134249
crossref_primary_10_1039_D2QO01777F
crossref_primary_10_1002_cjoc_202300277
crossref_primary_10_1021_acs_joc_2c00662
Cites_doi 10.1016/0040-4039(91)80445-C
10.1021/acs.chemrev.6b00366
10.1038/ncomms12494
10.1002/anie.201209020
10.1002/anie.201905173
10.1039/C5CC02316E
10.1002/anie.202002714
10.1016/j.tet.2011.10.056
10.1021/jacs.6b08856
10.1021/ar50015a001
10.1039/C5OB02118A
10.1039/b710449a
10.1021/ja5124368
10.1021/ja102689e
10.1039/C7SC01170A
10.1016/S0040-4020(99)01098-4
10.1039/C6SC05556G
10.1021/ar500035q
10.1002/chem.201901785
10.1039/C7CC09675E
10.1021/ja00883a020
10.1021/ja00890a033
10.1039/C4OB01784F
10.1021/acs.accounts.9b00044
10.1039/c1cs15129k
10.1002/anie.201801814
10.1126/science.aab0245
10.1002/anie.201804883
10.1039/c4cy00070f
10.1002/adsc.200900587
10.1021/jacs.5b03086
10.1016/j.chempr.2018.11.006
10.1021/ja039464y
10.1002/anie.201409815
10.1016/S0040-4039(01)01404-6
10.1039/C5CY00691K
10.1055/s-0035-1561357
10.1021/jacs.7b05205
10.1021/cr0684321
10.1590/S0103-50532001000100002
10.1039/cs9901900147
10.1039/c3cs60185d
10.1021/ja054328+
10.1002/anie.200906450
10.1021/jacs.9b12043
10.1039/D0CS00316F
10.1002/anie.201903330
10.1021/acs.orglett.9b01951
10.1016/0040-4039(96)01922-3
10.1021/cs500922x
10.1039/C6OB02425D
10.1021/om00024a069
10.1002/anie.200461432
10.1039/c1cs15109f
10.1021/cr9400626
10.1016/j.bmcl.2015.12.039
10.1021/jacs.6b13031
10.1021/acscatal.0c00933
10.1002/anie.201204579
10.1021/acscatal.9b04038
10.1016/0022-328X(94)80117-7
10.1021/jacs.6b04610
10.1021/acscatal.8b00420
10.1021/acscentsci.7b00212
10.1039/D0QO00214C
10.1021/acscatal.5b00790
10.1021/cr990272o
10.1039/C9CY00938H
10.3762/bjoc.11.248
10.1039/C7CS00529F
10.1039/C5SC04471E
10.1021/ol401363t
10.1021/acs.orglett.9b04092
10.1021/ol4015865
10.1007/978-1-4757-9576-9
10.1039/a904591k
10.1021/ja0510616
10.1002/anie.201307697
10.1021/ol4006294
10.1002/cctc.201601712
10.1002/anie.200390123
10.1021/acs.orglett.7b02117
10.1021/jacs.7b12582
10.1002/anie.201710089
10.1016/0022-328X(88)80102-5
10.1021/acs.chemrev.8b00068
10.1002/anie.200900013
10.1002/anie.201400793
10.1002/chem.201500235
10.1002/anie.202012373
10.1021/ja0443068
10.1002/anie.199610501
10.1021/ja00901a023
10.1038/nchem.1669
10.1021/ja1053913
10.1002/anie.202005050
10.1021/acs.orglett.6b02154
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
CorporateAuthor Univ. of Illinois at Urbana-Champaign, IL (United States)
CorporateAuthor_xml – name: Univ. of Illinois at Urbana-Champaign, IL (United States)
DBID AAYXX
CITATION
NPM
7X8
OTOTI
DOI 10.1021/acs.accounts.1c00115
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 2274
ExternalDocumentID 1853709
33881839
10_1021_acs_accounts_1c00115
a553126994
Genre Journal Article
GroupedDBID -
.K2
02
23M
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
F5P
GGK
GNL
IH2
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
53G
5ZA
6J9
6P2
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
CITATION
CUPRZ
XSW
ZCA
~02
NPM
YIN
7X8
OTOTI
ID FETCH-LOGICAL-a421t-7d8b48d38f8acf77d0cb317790d82e97f28c1da95ef73b42d8d2c46b07a8169a3
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Fri May 19 00:47:08 EDT 2023
Fri Jul 11 03:20:11 EDT 2025
Wed Feb 19 02:27:44 EST 2025
Thu Apr 24 23:05:54 EDT 2025
Tue Jul 01 03:16:06 EDT 2025
Thu May 06 19:56:01 EDT 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a421t-7d8b48d38f8acf77d0cb317790d82e97f28c1da95ef73b42d8d2c46b07a8169a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC)
SC0021055
ORCID 0000-0001-6923-5164
0000-0002-3272-3276
0000000169235164
0000000232723276
OpenAccessLink https://www.osti.gov/biblio/1857932
PMID 33881839
PQID 2516842285
PQPubID 23479
PageCount 14
ParticipantIDs osti_scitechconnect_1853709
proquest_miscellaneous_2516842285
pubmed_primary_33881839
crossref_primary_10_1021_acs_accounts_1c00115
crossref_citationtrail_10_1021_acs_accounts_1c00115
acs_journals_10_1021_acs_accounts_1c00115
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-04
PublicationDateYYYYMMDD 2021-05-04
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2021
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref45/cit45
ref3/cit3
ref37/cit37b
ref37/cit37a
ref16/cit16
ref23/cit23
ref2/cit2
ref43/cit43d
ref43/cit43a
ref43/cit43c
ref43/cit43b
ref5/cit5b
ref5/cit5c
ref19/cit19
Beller M. (ref5/cit5d) 2013
ref13/cit13
ref42/cit42b
ref42/cit42c
ref38/cit38
ref5/cit5f
ref5/cit5g
ref5/cit5e
ref42/cit42a
ref6/cit6
ref29/cit29c
ref29/cit29b
ref29/cit29a
ref8/cit8a
ref10/cit10a
ref10/cit10b
ref8/cit8b
ref10/cit10c
ref21/cit21b
ref21/cit21c
ref32/cit32
ref39/cit39
ref21/cit21a
ref18/cit18b
ref18/cit18a
ref28/cit28a
ref28/cit28b
ref30/cit30a
ref20/cit20a
ref22/cit22
ref30/cit30c
ref40/cit40b
ref30/cit30b
ref40/cit40c
ref20/cit20c
ref20/cit20b
ref33/cit33
ref20/cit20e
ref20/cit20d
ref20/cit20f
ref27/cit27
ref12/cit12c
ref12/cit12b
ref12/cit12a
ref31/cit31
ref47/cit47b
ref34/cit34
ref47/cit47a
ref17/cit17
ref26/cit26b
ref26/cit26c
ref11/cit11b
ref46/cit46
ref26/cit26a
ref11/cit11a
ref35/cit35a
ref45/cit45b
ref36/cit36
ref15/cit15a
ref35/cit35c
ref35/cit35b
ref9/cit9c
ref15/cit15d
ref9/cit9b
ref15/cit15e
ref9/cit9a
ref15/cit15b
ref25/cit25
ref15/cit15c
ref14/cit14
ref9/cit9f
ref9/cit9e
ref9/cit9d
ref40/cit40
Colquhoun H. M. (ref5/cit5a) 1991
ref44/cit44a
ref24/cit24b
ref24/cit24a
ref41/cit41
ref4/cit4
ref1/cit1
ref44/cit44d
ref44/cit44b
ref7/cit7
ref44/cit44c
References_xml – ident: ref20/cit20a
  doi: 10.1016/0040-4039(91)80445-C
– ident: ref21/cit21c
  doi: 10.1021/acs.chemrev.6b00366
– ident: ref35/cit35b
  doi: 10.1038/ncomms12494
– ident: ref42/cit42a
  doi: 10.1002/anie.201209020
– ident: ref15/cit15e
  doi: 10.1002/anie.201905173
– ident: ref45/cit45b
  doi: 10.1039/C5CC02316E
– ident: ref34/cit34
  doi: 10.1002/anie.202002714
– ident: ref26/cit26c
  doi: 10.1016/j.tet.2011.10.056
– ident: ref11/cit11b
  doi: 10.1021/jacs.6b08856
– ident: ref44/cit44c
  doi: 10.1021/ar50015a001
– ident: ref43/cit43b
  doi: 10.1039/C5OB02118A
– ident: ref39/cit39
  doi: 10.1039/b710449a
– ident: ref24/cit24a
  doi: 10.1021/ja5124368
– ident: ref26/cit26b
  doi: 10.1021/ja102689e
– ident: ref1/cit1
  doi: 10.1039/C7SC01170A
– ident: ref26/cit26a
  doi: 10.1016/S0040-4020(99)01098-4
– ident: ref18/cit18b
  doi: 10.1039/C6SC05556G
– ident: ref13/cit13
  doi: 10.1021/ar500035q
– ident: ref42/cit42c
  doi: 10.1002/chem.201901785
– ident: ref18/cit18a
  doi: 10.1039/C7CC09675E
– ident: ref44/cit44a
  doi: 10.1021/ja00883a020
– ident: ref44/cit44b
  doi: 10.1021/ja00890a033
– ident: ref37/cit37b
  doi: 10.1039/C4OB01784F
– ident: ref14/cit14
  doi: 10.1021/acs.accounts.9b00044
– ident: ref10/cit10c
  doi: 10.1039/c1cs15129k
– ident: ref38/cit38
  doi: 10.1002/anie.201801814
– ident: ref35/cit35a
  doi: 10.1126/science.aab0245
– ident: ref3/cit3
  doi: 10.1002/anie.201804883
– volume-title: Carbonylative cross-coupling
  year: 2013
  ident: ref5/cit5d
– ident: ref21/cit21a
  doi: 10.1039/c4cy00070f
– ident: ref7/cit7
  doi: 10.1002/adsc.200900587
– ident: ref24/cit24b
  doi: 10.1021/jacs.5b03086
– ident: ref5/cit5g
  doi: 10.1016/j.chempr.2018.11.006
– ident: ref28/cit28a
– ident: ref6/cit6
  doi: 10.1021/ja039464y
– ident: ref42/cit42b
  doi: 10.1002/anie.201409815
– ident: ref20/cit20c
  doi: 10.1016/S0040-4039(01)01404-6
– ident: ref47/cit47b
  doi: 10.1039/C5CY00691K
– ident: ref21/cit21b
  doi: 10.1055/s-0035-1561357
– ident: ref2/cit2
  doi: 10.1021/jacs.7b05205
– ident: ref22/cit22
  doi: 10.1021/cr0684321
– ident: ref40/cit40b
  doi: 10.1590/S0103-50532001000100002
– ident: ref40/cit40
  doi: 10.1039/cs9901900147
– ident: ref40/cit40c
  doi: 10.1039/c3cs60185d
– ident: ref30/cit30c
  doi: 10.1021/ja054328+
– ident: ref29/cit29a
  doi: 10.1002/anie.200906450
– ident: ref41/cit41
  doi: 10.1021/jacs.9b12043
– ident: ref17/cit17
  doi: 10.1039/D0CS00316F
– ident: ref9/cit9e
  doi: 10.1002/anie.201903330
– ident: ref46/cit46
  doi: 10.1021/acs.orglett.9b01951
– ident: ref20/cit20b
  doi: 10.1016/0040-4039(96)01922-3
– ident: ref8/cit8b
  doi: 10.1021/cs500922x
– ident: ref43/cit43c
  doi: 10.1039/C6OB02425D
– ident: ref44/cit44d
  doi: 10.1021/om00024a069
– ident: ref8/cit8a
  doi: 10.1002/anie.200461432
– ident: ref5/cit5c
  doi: 10.1039/c1cs15109f
– ident: ref12/cit12b
  doi: 10.1021/cr9400626
– ident: ref29/cit29c
  doi: 10.1016/j.bmcl.2015.12.039
– ident: ref32/cit32
  doi: 10.1021/jacs.6b13031
– ident: ref9/cit9f
  doi: 10.1021/acscatal.0c00933
– ident: ref28/cit28b
  doi: 10.1002/anie.201204579
– ident: ref9/cit9d
  doi: 10.1021/acscatal.9b04038
– ident: ref15/cit15a
  doi: 10.1016/0022-328X(94)80117-7
– ident: ref9/cit9a
  doi: 10.1021/jacs.6b04610
– ident: ref9/cit9c
  doi: 10.1021/acscatal.8b00420
– ident: ref11/cit11a
  doi: 10.1021/acscentsci.7b00212
– ident: ref33/cit33
  doi: 10.1039/D0QO00214C
– ident: ref43/cit43a
  doi: 10.1021/acscatal.5b00790
– ident: ref10/cit10b
  doi: 10.1021/cr990272o
– ident: ref12/cit12c
  doi: 10.1039/C9CY00938H
– ident: ref25/cit25
  doi: 10.3762/bjoc.11.248
– ident: ref5/cit5e
  doi: 10.1039/C7CS00529F
– ident: ref35/cit35c
  doi: 10.1039/C5SC04471E
– ident: ref20/cit20e
  doi: 10.1021/ol401363t
– ident: ref36/cit36
  doi: 10.1021/acs.orglett.9b04092
– ident: ref30/cit30b
  doi: 10.1021/ol4015865
– volume-title: Carbonylation: Direct Synthesis of Carbonyl Compounds
  year: 1991
  ident: ref5/cit5a
  doi: 10.1007/978-1-4757-9576-9
– ident: ref31/cit31
  doi: 10.1039/a904591k
– ident: ref30/cit30a
  doi: 10.1021/ja0510616
– ident: ref23/cit23
  doi: 10.1002/anie.201307697
– ident: ref37/cit37a
  doi: 10.1021/ol4006294
– ident: ref15/cit15c
  doi: 10.1002/cctc.201601712
– ident: ref10/cit10a
  doi: 10.1002/anie.200390123
– ident: ref15/cit15d
  doi: 10.1021/acs.orglett.7b02117
– ident: ref27/cit27
  doi: 10.1021/jacs.7b12582
– ident: ref9/cit9b
  doi: 10.1002/anie.201710089
– ident: ref20/cit20f
  doi: 10.1016/0022-328X(88)80102-5
– ident: ref5/cit5f
  doi: 10.1021/acs.chemrev.8b00068
– ident: ref5/cit5b
  doi: 10.1002/anie.200900013
– ident: ref47/cit47a
  doi: 10.1002/anie.201400793
– ident: ref45/cit45
  doi: 10.1002/chem.201500235
– ident: ref4/cit4
  doi: 10.1002/anie.202012373
– ident: ref29/cit29b
  doi: 10.1021/ja0443068
– ident: ref12/cit12a
  doi: 10.1002/anie.199610501
– ident: ref16/cit16
  doi: 10.1021/ja00901a023
– ident: ref19/cit19
  doi: 10.1038/nchem.1669
– ident: ref20/cit20d
  doi: 10.1021/ja1053913
– ident: ref43/cit43d
  doi: 10.1002/anie.202005050
– ident: ref15/cit15b
  doi: 10.1021/acs.orglett.6b02154
SSID ssj0002467
Score 2.630915
Snippet Conspectus Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic...
ConspectusTransition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic...
Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds,...
Not provided.
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2261
SubjectTerms Chemistry
Title Copper-Catalyzed Carbonylative Coupling of Alkyl Halides
URI http://dx.doi.org/10.1021/acs.accounts.1c00115
https://www.ncbi.nlm.nih.gov/pubmed/33881839
https://www.proquest.com/docview/2516842285
https://www.osti.gov/biblio/1853709
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ05T8MwFIAtKAMs3Ee5FCQWhkDiOLYzoghUIQEDILFZzrPDQNVUTTqUX49fjiJACFgj25Ht5_h7eRchp8Aj4BaYH8eGOQWFMV9zEH5mueZZANQyDBS-veODJ3bzHD9_KIpfLfg0vNBQuqHrygnoJlQzzCJZotydY0Sh9GH-5aWMNzkynYrMJKNdqNwPo-CFBOWnC6lXuIP1M2zWl871GrnvQncaX5PX82mVncPb90yOf5zPOllt-dO7bARmgyzY0SZZTruyb1tEpsV4bCd-iv91Zm_WeKmeZOi_XqcI99JiikG8L16Re5fD19nQGziUN7bcJk_XV4_pwG_LK_ia0bDyhZEZkyaSudSQC2ECyBxNiCQwktpE5FRCaHQS21xEGaNGGgrMbaDQMuSJjnZIb1SM7B7xsKUOQSdBHjBjkDpCcOAAQW5tLKBPzty0VXs8SlVbvmmo8GG3Fqpdiz6Juv1Q0OYpx3IZw196-fNe4yZPxy_tD3CrleMMTJYL6FUElUJ6EUHSJyedBCi3_GhD0SNbTEvlcBAtl1S6EXYb0Zi_z2n7EoFz_x-zPSArFL1k0IWSHZJeNZnaI4c5VXZcy_Y7Bj342g
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7aFcgPJcSiFIXDikJI4TO8dV1GqBthda1JvljJ0eutqsNtlD--uZyWMRSFXVq2U79ngcf_bMfAPwBbMEM48yTFMn6YIiZWgzVGHpM5uVEQovOVD47DybX8ofV-nVDqRjLAwNoqGems6I_5ddIP7GZbZPoMDeQh2UeQK7hEcEK_as-LX9AQuZ9VSZdFOWWooxYu6eXvhcwuafc2lS0_66H3N2Z8_Jc_i9HXXncnJztGnLI7z7j9Dx0dN6Ac8GNBrMevXZhx2_fAl7xZgE7hXool6t_Dos-JXn9s67oLDrkr3ZO8LwoKg3HNJ7HdRVMFvc3C6COQF755vXcHlyfFHMwyHZQmiliNtQOV1K7RJdaYuVUi7CkrCFyiOnhc9VJTTGzuapr1RSSuG0EyhpOZXVcZbb5A1MlvXSv4OAa9oYbR5VkXSOMUiMBCMwqrxPFU7hK03bDJulMZ0dXMSGC0dZmEEWU0jGZTE4sJZz8ozFA63CbatVz9rxQP0DXnFDqIOpc5F9jLA1jGVUlE_h86gIhsTPFhW79PWmMQQO2Y4pNPXwtteQ7ffo7q8Zfr5_xGw_wd784uzUnH4__3kATwX7z7BzpfwAk3a98YcEgNryY6fufwAjbQFK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61W6nlArS0sDzaVOLCIZA4TuwcV6GrLbSoUouEuFjO2OlhV5vVJnuAX48nj1WphFB7tWzHHo8znz3jbwCOMYkwscj9ODbcHVA493WCws9topM8QGY5PRT-fpVMrvnFTXzzR6ovN4jK9VQ1Tnza1QtTdAwD4RmV6zaJAkUMNXDmJbwizx0p9yj7uf4JM560dJnutMwlZ_2ruSd6IduE1SPbNCjdHnsadzb2Z7wFt-uRN2En09NVnZ_i_V-kjv81tW3Y7FCpN2rV6C28sPN38Cbrk8HtgMzKxcIu_Yxue-7urfEyvcwpqr0hDveyckVPe397ZeGNZtO7mTdxAN_Y6j1cj7_8yiZ-l3TB15yFtS-MzLk0kSykxkIIE2DuMIZIAyOZTUXBJIZGp7EtRJRzZqRhyN2yCi3DJNXRBxjMy7ndA49q6hB1GhQBN4awSIgOTmBQWBsLHMKJm7bqNk2lGn84CxUV9rJQnSyGEPVLo7BjL6ckGrNnWvnrVouWveOZ-ge06sqhD6LQRYo1wloRphFBOoTPvTIoJ37yrOi5LVeVciCR_JlMuh52Wy1Zfy-KpCQYuv8Ps_0Er3-cj9W3r1eXB7DBKIyGYiz5IQzq5coeORxU5x8bjX8Acf0DzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copper-Catalyzed+Carbonylative+Coupling+of+Alkyl+Halides&rft.jtitle=Accounts+of+chemical+research&rft.au=Cheng%2C+Li-Jie&rft.au=Mankad%2C+Neal+P&rft.date=2021-05-04&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=54&rft.issue=9&rft.spage=2261&rft_id=info:doi/10.1021%2Facs.accounts.1c00115&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon