Copper-Catalyzed Carbonylative Coupling of Alkyl Halides
Conspectus Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including...
Saved in:
Published in | Accounts of chemical research Vol. 54; no. 9; pp. 2261 - 2274 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.05.2021
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C(sp2)-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C–C and C–E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance. Initially, we designed a heterobimetallic catalyst platform for carbonylative C–C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki–Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C–C or C–E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation. |
---|---|
AbstractList | ConspectusTransition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C(sp
)-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C-C and C-E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance.Initially, we designed a heterobimetallic catalyst platform for carbonylative C-C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki-Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C-C or C-E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation. Not provided. Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C(sp2)-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C-C and C-E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance.Initially, we designed a heterobimetallic catalyst platform for carbonylative C-C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki-Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C-C or C-E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation.Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C(sp2)-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C-C and C-E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance.Initially, we designed a heterobimetallic catalyst platform for carbonylative C-C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki-Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C-C or C-E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation. Conspectus Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C(sp2)-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C–C and C–E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance. Initially, we designed a heterobimetallic catalyst platform for carbonylative C–C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki–Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C–C or C–E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation. |
Author | Mankad, Neal P Cheng, Li-Jie |
AuthorAffiliation | Department of Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Li-Jie orcidid: 0000-0002-3272-3276 surname: Cheng fullname: Cheng, Li-Jie email: lchenguk@uic.edu – sequence: 2 givenname: Neal P orcidid: 0000-0001-6923-5164 surname: Mankad fullname: Mankad, Neal P email: npm@uic.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33881839$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1853709$$D View this record in Osti.gov |
BookMark | eNqFkE1PwyAYgImZcR_6D4xpPHnpBNoO6m1p1JmYeNEzoUC1k0EFalJ_vSzbPHjQE1_P84Y8UzAy1igAzhGcI4jRNRd-zoWwvQl-jgSECBVHYIIKDNOclnQEJjBexn2Ox2Dq_Toecb4gJ2CcZZQimpUTQCvbdcqlFQ9cD19KJhV3tTWD5qH9VEll-0635jWxTbLU74NOVly3UvlTcNxw7dXZfp2Bl7vb52qVPj7dP1TLx5TnGIWUSFrnVGa0oVw0hEgo6gwRUkJJsSpJg6lAkpeFakhW51hSiUW-qCHhFC1Kns3A5W6u9aFlXrRBiTdhjVEiMESLjMAyQlc7qHP2o1c-sE3rhdKaG2V7z3CBFjEDjvgMXOzRvt4oyTrXbrgb2CFJBPIdIJz13qnmB0GQbcuzWJ4dyrN9-ajd_NLiV2NDa4Ljrf5Phjt5-7q2vTMx6d_KN9nLnQ0 |
CitedBy_id | crossref_primary_10_1021_acs_orglett_3c00506 crossref_primary_10_1039_D1SC06581E crossref_primary_10_1039_D2CC06485E crossref_primary_10_1021_acs_joc_3c00948 crossref_primary_10_1002_chem_202302235 crossref_primary_10_1016_j_checat_2023_100600 crossref_primary_10_1002_anie_202412828 crossref_primary_10_1039_D1CC07027D crossref_primary_10_1039_D4SC06011C crossref_primary_10_1002_anie_202213297 crossref_primary_10_1021_acssuschemeng_4c04755 crossref_primary_10_1039_D4QO00651H crossref_primary_10_1016_j_jcat_2024_115757 crossref_primary_10_1039_D4CC01293C crossref_primary_10_1021_acscatal_3c00771 crossref_primary_10_1016_j_gresc_2024_04_008 crossref_primary_10_1016_j_jcat_2022_08_007 crossref_primary_10_1021_acs_chemrev_4c00188 crossref_primary_10_1016_j_scp_2024_101855 crossref_primary_10_1021_acs_orglett_4c00967 crossref_primary_10_1016_j_jcat_2022_08_003 crossref_primary_10_1016_j_tetlet_2023_154726 crossref_primary_10_1126_science_adl0149 crossref_primary_10_1016_S1872_2067_23_64398_0 crossref_primary_10_1021_acs_accounts_5c00039 crossref_primary_10_1021_acs_joc_2c02746 crossref_primary_10_1002_cjoc_202300733 crossref_primary_10_1186_s13065_023_01072_4 crossref_primary_10_3762_bjoc_19_102 crossref_primary_10_1002_ange_202410794 crossref_primary_10_1021_acs_joc_1c02808 crossref_primary_10_1002_anie_202211939 crossref_primary_10_1039_D2GC04427G crossref_primary_10_1002_ange_202112609 crossref_primary_10_1021_acs_orglett_1c02001 crossref_primary_10_1002_ange_202312068 crossref_primary_10_1002_ange_202412828 crossref_primary_10_1021_acs_joc_4c00420 crossref_primary_10_1016_j_chempr_2022_03_013 crossref_primary_10_1039_D3GC02063K crossref_primary_10_1002_cjoc_202300346 crossref_primary_10_1039_D1RA08388K crossref_primary_10_1055_a_2446_8286 crossref_primary_10_1039_D1QO01368H crossref_primary_10_1021_acsami_1c09942 crossref_primary_10_1039_D1QO01568K crossref_primary_10_1016_j_xcrp_2024_102346 crossref_primary_10_1002_anie_202214812 crossref_primary_10_1016_j_greenca_2024_01_002 crossref_primary_10_1002_open_202400139 crossref_primary_10_1002_ange_202213297 crossref_primary_10_1021_acsmaterialslett_2c01046 crossref_primary_10_1039_D5CY00129C crossref_primary_10_1039_D2OB00916A crossref_primary_10_1055_a_2095_5242 crossref_primary_10_1007_s12209_022_00337_8 crossref_primary_10_1002_bkcs_12896 crossref_primary_10_1021_acssuschemeng_1c05810 crossref_primary_10_1002_anie_202112609 crossref_primary_10_1007_s11426_024_1997_2 crossref_primary_10_1021_acscatal_4c02282 crossref_primary_10_1016_S1872_2067_22_64208_6 crossref_primary_10_1021_acs_joc_3c02763 crossref_primary_10_1039_D2SC04103K crossref_primary_10_1039_D3DT03406B crossref_primary_10_1021_acs_joc_3c02087 crossref_primary_10_1055_a_2042_3417 crossref_primary_10_1002_ange_202214812 crossref_primary_10_1002_ceur_202500001 crossref_primary_10_1007_s11426_024_2255_5 crossref_primary_10_1134_S1070363224090020 crossref_primary_10_1002_ange_202211939 crossref_primary_10_1021_acscatal_2c04668 crossref_primary_10_1021_acs_orglett_2c01951 crossref_primary_10_1002_tcr_202100224 crossref_primary_10_1080_10426507_2022_2112582 crossref_primary_10_1039_D4SC00156G crossref_primary_10_1021_acs_joc_3c01725 crossref_primary_10_1002_anie_202312068 crossref_primary_10_1038_s42004_022_00675_7 crossref_primary_10_1002_slct_202304891 crossref_primary_10_1021_acs_orglett_1c03071 crossref_primary_10_1038_s41598_023_30198_7 crossref_primary_10_1039_D2CC02301F crossref_primary_10_1021_acs_joc_1c02608 crossref_primary_10_1002_ejoc_202200454 crossref_primary_10_1002_adsc_202200958 crossref_primary_10_1021_acs_joc_5c00191 crossref_primary_10_1002_ange_202114513 crossref_primary_10_1002_ejoc_202200731 crossref_primary_10_1039_D1SC05474K crossref_primary_10_1002_chem_202404113 crossref_primary_10_1055_s_0042_1751542 crossref_primary_10_1021_acs_joc_2c00710 crossref_primary_10_1002_cjoc_202300384 crossref_primary_10_1039_D3QO00158J crossref_primary_10_1002_ejoc_202200064 crossref_primary_10_1002_anie_202410794 crossref_primary_10_1021_jacs_3c01224 crossref_primary_10_1039_D2QO00976E crossref_primary_10_1021_jacs_4c02023 crossref_primary_10_1021_acscatal_2c05854 crossref_primary_10_1016_j_ccr_2022_214900 crossref_primary_10_1021_acs_joc_2c01638 crossref_primary_10_1002_anie_202114513 crossref_primary_10_1021_acs_joc_4c00110 crossref_primary_10_1002_ejoc_202400013 crossref_primary_10_1039_D4OB01372G crossref_primary_10_2139_ssrn_4134249 crossref_primary_10_1039_D2QO01777F crossref_primary_10_1002_cjoc_202300277 crossref_primary_10_1021_acs_joc_2c00662 |
Cites_doi | 10.1016/0040-4039(91)80445-C 10.1021/acs.chemrev.6b00366 10.1038/ncomms12494 10.1002/anie.201209020 10.1002/anie.201905173 10.1039/C5CC02316E 10.1002/anie.202002714 10.1016/j.tet.2011.10.056 10.1021/jacs.6b08856 10.1021/ar50015a001 10.1039/C5OB02118A 10.1039/b710449a 10.1021/ja5124368 10.1021/ja102689e 10.1039/C7SC01170A 10.1016/S0040-4020(99)01098-4 10.1039/C6SC05556G 10.1021/ar500035q 10.1002/chem.201901785 10.1039/C7CC09675E 10.1021/ja00883a020 10.1021/ja00890a033 10.1039/C4OB01784F 10.1021/acs.accounts.9b00044 10.1039/c1cs15129k 10.1002/anie.201801814 10.1126/science.aab0245 10.1002/anie.201804883 10.1039/c4cy00070f 10.1002/adsc.200900587 10.1021/jacs.5b03086 10.1016/j.chempr.2018.11.006 10.1021/ja039464y 10.1002/anie.201409815 10.1016/S0040-4039(01)01404-6 10.1039/C5CY00691K 10.1055/s-0035-1561357 10.1021/jacs.7b05205 10.1021/cr0684321 10.1590/S0103-50532001000100002 10.1039/cs9901900147 10.1039/c3cs60185d 10.1021/ja054328+ 10.1002/anie.200906450 10.1021/jacs.9b12043 10.1039/D0CS00316F 10.1002/anie.201903330 10.1021/acs.orglett.9b01951 10.1016/0040-4039(96)01922-3 10.1021/cs500922x 10.1039/C6OB02425D 10.1021/om00024a069 10.1002/anie.200461432 10.1039/c1cs15109f 10.1021/cr9400626 10.1016/j.bmcl.2015.12.039 10.1021/jacs.6b13031 10.1021/acscatal.0c00933 10.1002/anie.201204579 10.1021/acscatal.9b04038 10.1016/0022-328X(94)80117-7 10.1021/jacs.6b04610 10.1021/acscatal.8b00420 10.1021/acscentsci.7b00212 10.1039/D0QO00214C 10.1021/acscatal.5b00790 10.1021/cr990272o 10.1039/C9CY00938H 10.3762/bjoc.11.248 10.1039/C7CS00529F 10.1039/C5SC04471E 10.1021/ol401363t 10.1021/acs.orglett.9b04092 10.1021/ol4015865 10.1007/978-1-4757-9576-9 10.1039/a904591k 10.1021/ja0510616 10.1002/anie.201307697 10.1021/ol4006294 10.1002/cctc.201601712 10.1002/anie.200390123 10.1021/acs.orglett.7b02117 10.1021/jacs.7b12582 10.1002/anie.201710089 10.1016/0022-328X(88)80102-5 10.1021/acs.chemrev.8b00068 10.1002/anie.200900013 10.1002/anie.201400793 10.1002/chem.201500235 10.1002/anie.202012373 10.1021/ja0443068 10.1002/anie.199610501 10.1021/ja00901a023 10.1038/nchem.1669 10.1021/ja1053913 10.1002/anie.202005050 10.1021/acs.orglett.6b02154 |
ContentType | Journal Article |
Copyright | 2021 American Chemical
Society |
Copyright_xml | – notice: 2021 American Chemical Society |
CorporateAuthor | Univ. of Illinois at Urbana-Champaign, IL (United States) |
CorporateAuthor_xml | – name: Univ. of Illinois at Urbana-Champaign, IL (United States) |
DBID | AAYXX CITATION NPM 7X8 OTOTI |
DOI | 10.1021/acs.accounts.1c00115 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 2274 |
ExternalDocumentID | 1853709 33881839 10_1021_acs_accounts_1c00115 a553126994 |
Genre | Journal Article |
GroupedDBID | - .K2 02 23M 4.4 55A 5GY 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ F5P GGK GNL IH2 IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 53G 5ZA 6J9 6P2 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV CITATION CUPRZ XSW ZCA ~02 NPM YIN 7X8 OTOTI |
ID | FETCH-LOGICAL-a421t-7d8b48d38f8acf77d0cb317790d82e97f28c1da95ef73b42d8d2c46b07a8169a3 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Fri May 19 00:47:08 EDT 2023 Fri Jul 11 03:20:11 EDT 2025 Wed Feb 19 02:27:44 EST 2025 Thu Apr 24 23:05:54 EDT 2025 Tue Jul 01 03:16:06 EDT 2025 Thu May 06 19:56:01 EDT 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a421t-7d8b48d38f8acf77d0cb317790d82e97f28c1da95ef73b42d8d2c46b07a8169a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC) SC0021055 |
ORCID | 0000-0001-6923-5164 0000-0002-3272-3276 0000000169235164 0000000232723276 |
OpenAccessLink | https://www.osti.gov/biblio/1857932 |
PMID | 33881839 |
PQID | 2516842285 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | osti_scitechconnect_1853709 proquest_miscellaneous_2516842285 pubmed_primary_33881839 crossref_primary_10_1021_acs_accounts_1c00115 crossref_citationtrail_10_1021_acs_accounts_1c00115 acs_journals_10_1021_acs_accounts_1c00115 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-04 |
PublicationDateYYYYMMDD | 2021-05-04 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2021 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref45/cit45 ref3/cit3 ref37/cit37b ref37/cit37a ref16/cit16 ref23/cit23 ref2/cit2 ref43/cit43d ref43/cit43a ref43/cit43c ref43/cit43b ref5/cit5b ref5/cit5c ref19/cit19 Beller M. (ref5/cit5d) 2013 ref13/cit13 ref42/cit42b ref42/cit42c ref38/cit38 ref5/cit5f ref5/cit5g ref5/cit5e ref42/cit42a ref6/cit6 ref29/cit29c ref29/cit29b ref29/cit29a ref8/cit8a ref10/cit10a ref10/cit10b ref8/cit8b ref10/cit10c ref21/cit21b ref21/cit21c ref32/cit32 ref39/cit39 ref21/cit21a ref18/cit18b ref18/cit18a ref28/cit28a ref28/cit28b ref30/cit30a ref20/cit20a ref22/cit22 ref30/cit30c ref40/cit40b ref30/cit30b ref40/cit40c ref20/cit20c ref20/cit20b ref33/cit33 ref20/cit20e ref20/cit20d ref20/cit20f ref27/cit27 ref12/cit12c ref12/cit12b ref12/cit12a ref31/cit31 ref47/cit47b ref34/cit34 ref47/cit47a ref17/cit17 ref26/cit26b ref26/cit26c ref11/cit11b ref46/cit46 ref26/cit26a ref11/cit11a ref35/cit35a ref45/cit45b ref36/cit36 ref15/cit15a ref35/cit35c ref35/cit35b ref9/cit9c ref15/cit15d ref9/cit9b ref15/cit15e ref9/cit9a ref15/cit15b ref25/cit25 ref15/cit15c ref14/cit14 ref9/cit9f ref9/cit9e ref9/cit9d ref40/cit40 Colquhoun H. M. (ref5/cit5a) 1991 ref44/cit44a ref24/cit24b ref24/cit24a ref41/cit41 ref4/cit4 ref1/cit1 ref44/cit44d ref44/cit44b ref7/cit7 ref44/cit44c |
References_xml | – ident: ref20/cit20a doi: 10.1016/0040-4039(91)80445-C – ident: ref21/cit21c doi: 10.1021/acs.chemrev.6b00366 – ident: ref35/cit35b doi: 10.1038/ncomms12494 – ident: ref42/cit42a doi: 10.1002/anie.201209020 – ident: ref15/cit15e doi: 10.1002/anie.201905173 – ident: ref45/cit45b doi: 10.1039/C5CC02316E – ident: ref34/cit34 doi: 10.1002/anie.202002714 – ident: ref26/cit26c doi: 10.1016/j.tet.2011.10.056 – ident: ref11/cit11b doi: 10.1021/jacs.6b08856 – ident: ref44/cit44c doi: 10.1021/ar50015a001 – ident: ref43/cit43b doi: 10.1039/C5OB02118A – ident: ref39/cit39 doi: 10.1039/b710449a – ident: ref24/cit24a doi: 10.1021/ja5124368 – ident: ref26/cit26b doi: 10.1021/ja102689e – ident: ref1/cit1 doi: 10.1039/C7SC01170A – ident: ref26/cit26a doi: 10.1016/S0040-4020(99)01098-4 – ident: ref18/cit18b doi: 10.1039/C6SC05556G – ident: ref13/cit13 doi: 10.1021/ar500035q – ident: ref42/cit42c doi: 10.1002/chem.201901785 – ident: ref18/cit18a doi: 10.1039/C7CC09675E – ident: ref44/cit44a doi: 10.1021/ja00883a020 – ident: ref44/cit44b doi: 10.1021/ja00890a033 – ident: ref37/cit37b doi: 10.1039/C4OB01784F – ident: ref14/cit14 doi: 10.1021/acs.accounts.9b00044 – ident: ref10/cit10c doi: 10.1039/c1cs15129k – ident: ref38/cit38 doi: 10.1002/anie.201801814 – ident: ref35/cit35a doi: 10.1126/science.aab0245 – ident: ref3/cit3 doi: 10.1002/anie.201804883 – volume-title: Carbonylative cross-coupling year: 2013 ident: ref5/cit5d – ident: ref21/cit21a doi: 10.1039/c4cy00070f – ident: ref7/cit7 doi: 10.1002/adsc.200900587 – ident: ref24/cit24b doi: 10.1021/jacs.5b03086 – ident: ref5/cit5g doi: 10.1016/j.chempr.2018.11.006 – ident: ref28/cit28a – ident: ref6/cit6 doi: 10.1021/ja039464y – ident: ref42/cit42b doi: 10.1002/anie.201409815 – ident: ref20/cit20c doi: 10.1016/S0040-4039(01)01404-6 – ident: ref47/cit47b doi: 10.1039/C5CY00691K – ident: ref21/cit21b doi: 10.1055/s-0035-1561357 – ident: ref2/cit2 doi: 10.1021/jacs.7b05205 – ident: ref22/cit22 doi: 10.1021/cr0684321 – ident: ref40/cit40b doi: 10.1590/S0103-50532001000100002 – ident: ref40/cit40 doi: 10.1039/cs9901900147 – ident: ref40/cit40c doi: 10.1039/c3cs60185d – ident: ref30/cit30c doi: 10.1021/ja054328+ – ident: ref29/cit29a doi: 10.1002/anie.200906450 – ident: ref41/cit41 doi: 10.1021/jacs.9b12043 – ident: ref17/cit17 doi: 10.1039/D0CS00316F – ident: ref9/cit9e doi: 10.1002/anie.201903330 – ident: ref46/cit46 doi: 10.1021/acs.orglett.9b01951 – ident: ref20/cit20b doi: 10.1016/0040-4039(96)01922-3 – ident: ref8/cit8b doi: 10.1021/cs500922x – ident: ref43/cit43c doi: 10.1039/C6OB02425D – ident: ref44/cit44d doi: 10.1021/om00024a069 – ident: ref8/cit8a doi: 10.1002/anie.200461432 – ident: ref5/cit5c doi: 10.1039/c1cs15109f – ident: ref12/cit12b doi: 10.1021/cr9400626 – ident: ref29/cit29c doi: 10.1016/j.bmcl.2015.12.039 – ident: ref32/cit32 doi: 10.1021/jacs.6b13031 – ident: ref9/cit9f doi: 10.1021/acscatal.0c00933 – ident: ref28/cit28b doi: 10.1002/anie.201204579 – ident: ref9/cit9d doi: 10.1021/acscatal.9b04038 – ident: ref15/cit15a doi: 10.1016/0022-328X(94)80117-7 – ident: ref9/cit9a doi: 10.1021/jacs.6b04610 – ident: ref9/cit9c doi: 10.1021/acscatal.8b00420 – ident: ref11/cit11a doi: 10.1021/acscentsci.7b00212 – ident: ref33/cit33 doi: 10.1039/D0QO00214C – ident: ref43/cit43a doi: 10.1021/acscatal.5b00790 – ident: ref10/cit10b doi: 10.1021/cr990272o – ident: ref12/cit12c doi: 10.1039/C9CY00938H – ident: ref25/cit25 doi: 10.3762/bjoc.11.248 – ident: ref5/cit5e doi: 10.1039/C7CS00529F – ident: ref35/cit35c doi: 10.1039/C5SC04471E – ident: ref20/cit20e doi: 10.1021/ol401363t – ident: ref36/cit36 doi: 10.1021/acs.orglett.9b04092 – ident: ref30/cit30b doi: 10.1021/ol4015865 – volume-title: Carbonylation: Direct Synthesis of Carbonyl Compounds year: 1991 ident: ref5/cit5a doi: 10.1007/978-1-4757-9576-9 – ident: ref31/cit31 doi: 10.1039/a904591k – ident: ref30/cit30a doi: 10.1021/ja0510616 – ident: ref23/cit23 doi: 10.1002/anie.201307697 – ident: ref37/cit37a doi: 10.1021/ol4006294 – ident: ref15/cit15c doi: 10.1002/cctc.201601712 – ident: ref10/cit10a doi: 10.1002/anie.200390123 – ident: ref15/cit15d doi: 10.1021/acs.orglett.7b02117 – ident: ref27/cit27 doi: 10.1021/jacs.7b12582 – ident: ref9/cit9b doi: 10.1002/anie.201710089 – ident: ref20/cit20f doi: 10.1016/0022-328X(88)80102-5 – ident: ref5/cit5f doi: 10.1021/acs.chemrev.8b00068 – ident: ref5/cit5b doi: 10.1002/anie.200900013 – ident: ref47/cit47a doi: 10.1002/anie.201400793 – ident: ref45/cit45 doi: 10.1002/chem.201500235 – ident: ref4/cit4 doi: 10.1002/anie.202012373 – ident: ref29/cit29b doi: 10.1021/ja0443068 – ident: ref12/cit12a doi: 10.1002/anie.199610501 – ident: ref16/cit16 doi: 10.1021/ja00901a023 – ident: ref19/cit19 doi: 10.1038/nchem.1669 – ident: ref20/cit20d doi: 10.1021/ja1053913 – ident: ref43/cit43d doi: 10.1002/anie.202005050 – ident: ref15/cit15b doi: 10.1021/acs.orglett.6b02154 |
SSID | ssj0002467 |
Score | 2.630915 |
Snippet | Conspectus Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic... ConspectusTransition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic... Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds,... Not provided. |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2261 |
SubjectTerms | Chemistry |
Title | Copper-Catalyzed Carbonylative Coupling of Alkyl Halides |
URI | http://dx.doi.org/10.1021/acs.accounts.1c00115 https://www.ncbi.nlm.nih.gov/pubmed/33881839 https://www.proquest.com/docview/2516842285 https://www.osti.gov/biblio/1853709 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ05T8MwFIAtKAMs3Ee5FCQWhkDiOLYzoghUIQEDILFZzrPDQNVUTTqUX49fjiJACFgj25Ht5_h7eRchp8Aj4BaYH8eGOQWFMV9zEH5mueZZANQyDBS-veODJ3bzHD9_KIpfLfg0vNBQuqHrygnoJlQzzCJZotydY0Sh9GH-5aWMNzkynYrMJKNdqNwPo-CFBOWnC6lXuIP1M2zWl871GrnvQncaX5PX82mVncPb90yOf5zPOllt-dO7bARmgyzY0SZZTruyb1tEpsV4bCd-iv91Zm_WeKmeZOi_XqcI99JiikG8L16Re5fD19nQGziUN7bcJk_XV4_pwG_LK_ia0bDyhZEZkyaSudSQC2ECyBxNiCQwktpE5FRCaHQS21xEGaNGGgrMbaDQMuSJjnZIb1SM7B7xsKUOQSdBHjBjkDpCcOAAQW5tLKBPzty0VXs8SlVbvmmo8GG3Fqpdiz6Juv1Q0OYpx3IZw196-fNe4yZPxy_tD3CrleMMTJYL6FUElUJ6EUHSJyedBCi3_GhD0SNbTEvlcBAtl1S6EXYb0Zi_z2n7EoFz_x-zPSArFL1k0IWSHZJeNZnaI4c5VXZcy_Y7Bj342g |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7aFcgPJcSiFIXDikJI4TO8dV1GqBthda1JvljJ0eutqsNtlD--uZyWMRSFXVq2U79ngcf_bMfAPwBbMEM48yTFMn6YIiZWgzVGHpM5uVEQovOVD47DybX8ofV-nVDqRjLAwNoqGems6I_5ddIP7GZbZPoMDeQh2UeQK7hEcEK_as-LX9AQuZ9VSZdFOWWooxYu6eXvhcwuafc2lS0_66H3N2Z8_Jc_i9HXXncnJztGnLI7z7j9Dx0dN6Ac8GNBrMevXZhx2_fAl7xZgE7hXool6t_Dos-JXn9s67oLDrkr3ZO8LwoKg3HNJ7HdRVMFvc3C6COQF755vXcHlyfFHMwyHZQmiliNtQOV1K7RJdaYuVUi7CkrCFyiOnhc9VJTTGzuapr1RSSuG0EyhpOZXVcZbb5A1MlvXSv4OAa9oYbR5VkXSOMUiMBCMwqrxPFU7hK03bDJulMZ0dXMSGC0dZmEEWU0jGZTE4sJZz8ozFA63CbatVz9rxQP0DXnFDqIOpc5F9jLA1jGVUlE_h86gIhsTPFhW79PWmMQQO2Y4pNPXwtteQ7ffo7q8Zfr5_xGw_wd784uzUnH4__3kATwX7z7BzpfwAk3a98YcEgNryY6fufwAjbQFK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61W6nlArS0sDzaVOLCIZA4TuwcV6GrLbSoUouEuFjO2OlhV5vVJnuAX48nj1WphFB7tWzHHo8znz3jbwCOMYkwscj9ODbcHVA493WCws9topM8QGY5PRT-fpVMrvnFTXzzR6ovN4jK9VQ1Tnza1QtTdAwD4RmV6zaJAkUMNXDmJbwizx0p9yj7uf4JM560dJnutMwlZ_2ruSd6IduE1SPbNCjdHnsadzb2Z7wFt-uRN2En09NVnZ_i_V-kjv81tW3Y7FCpN2rV6C28sPN38Cbrk8HtgMzKxcIu_Yxue-7urfEyvcwpqr0hDveyckVPe397ZeGNZtO7mTdxAN_Y6j1cj7_8yiZ-l3TB15yFtS-MzLk0kSykxkIIE2DuMIZIAyOZTUXBJIZGp7EtRJRzZqRhyN2yCi3DJNXRBxjMy7ndA49q6hB1GhQBN4awSIgOTmBQWBsLHMKJm7bqNk2lGn84CxUV9rJQnSyGEPVLo7BjL6ckGrNnWvnrVouWveOZ-ge06sqhD6LQRYo1wloRphFBOoTPvTIoJ37yrOi5LVeVciCR_JlMuh52Wy1Zfy-KpCQYuv8Ps_0Er3-cj9W3r1eXB7DBKIyGYiz5IQzq5coeORxU5x8bjX8Acf0DzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copper-Catalyzed+Carbonylative+Coupling+of+Alkyl+Halides&rft.jtitle=Accounts+of+chemical+research&rft.au=Cheng%2C+Li-Jie&rft.au=Mankad%2C+Neal+P&rft.date=2021-05-04&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=54&rft.issue=9&rft.spage=2261&rft_id=info:doi/10.1021%2Facs.accounts.1c00115&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |