Layer-by-Layer Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by Atomic Layer Deposition
In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore–catalyst...
Saved in:
Published in | Journal of the American Chemical Society Vol. 139; no. 41; pp. 14518 - 14525 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.10.2017
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore–catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R1-PO2-O-M-O-PO2-R2 type surface assembly. With the ALD procedure, assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni(II) catalyst on NiO films was also used to produce H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures. |
---|---|
AbstractList | In a Dye Sensitized Photoelectrosynthesis Cell (DSPEC) the relative orientation of catalyst and chromophore play important roles. Here we introduce a new, robust, Atomic Layer Deposition (ALD) procedure for the preparation of assemblies on wide bandgap semiconductors. In the procedure, phosphonated metal complex precursors react with metal ion bridging to an external chromophore or catalyst to give assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units as bridges. The procedure has been extended to chromophore-catalyst assemblies for water oxidation catalysis. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes water splitting with an incident photon conversion efficiency (IPCE) of 17.1% at 440 nm. Reduction of water at a Ni(II)-based catalyst on NiO films has been shown to give H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures. In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore–catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R1-PO2-O-M-O-PO2-R2 type surface assembly. With the ALD procedure, assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni(II) catalyst on NiO films was also used to produce H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures. In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore-catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R -PO -O-M-O-PO -R type surface assembly. With the ALD procedure, assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO bridged assembly on SnO /TiO core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni(II) catalyst on NiO films was also used to produce H . Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures. In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore-catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R1-PO2-O-M-O-PO2-R2 type surface assembly. With the ALD procedure, assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni(II) catalyst on NiO films was also used to produce H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures.In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore-catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R1-PO2-O-M-O-PO2-R2 type surface assembly. With the ALD procedure, assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni(II) catalyst on NiO films was also used to produce H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures. In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore–catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R₁-PO₂-O-M-O-PO₂-R₂ type surface assembly. With the ALD procedure, assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO₂ bridged assembly on SnO₂/TiO₂ core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni(II) catalyst on NiO films was also used to produce H₂. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures. |
Author | Marquard, Seth L Nayak, Animesh Bullock, R. Morris Wang, Degao Shan, Bing Farnum, Byron H Eberhart, Michael S Dares, Christopher J Das, Atanu K Sheridan, Matthew V Sherman, Benjamin D Meyer, Thomas J |
AuthorAffiliation | Department of Chemistry Department of Chemistry and Biochemistry Center for Molecular Electrocatalysis, Physical Sciences Division Florida International University |
AuthorAffiliation_xml | – name: Center for Molecular Electrocatalysis, Physical Sciences Division – name: Department of Chemistry – name: Florida International University – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Degao surname: Wang fullname: Wang, Degao organization: Department of Chemistry – sequence: 2 givenname: Matthew V surname: Sheridan fullname: Sheridan, Matthew V organization: Department of Chemistry – sequence: 3 givenname: Bing surname: Shan fullname: Shan, Bing organization: Department of Chemistry – sequence: 4 givenname: Byron H surname: Farnum fullname: Farnum, Byron H organization: Department of Chemistry – sequence: 5 givenname: Seth L surname: Marquard fullname: Marquard, Seth L organization: Department of Chemistry – sequence: 6 givenname: Benjamin D orcidid: 0000-0001-9571-5065 surname: Sherman fullname: Sherman, Benjamin D organization: Department of Chemistry – sequence: 7 givenname: Michael S orcidid: 0000-0002-6261-5727 surname: Eberhart fullname: Eberhart, Michael S organization: Department of Chemistry – sequence: 8 givenname: Animesh surname: Nayak fullname: Nayak, Animesh organization: Department of Chemistry – sequence: 9 givenname: Christopher J surname: Dares fullname: Dares, Christopher J organization: Florida International University – sequence: 10 givenname: Atanu K surname: Das fullname: Das, Atanu K organization: Center for Molecular Electrocatalysis, Physical Sciences Division – sequence: 11 givenname: R. Morris orcidid: 0000-0001-6306-4851 surname: Bullock fullname: Bullock, R. Morris organization: Center for Molecular Electrocatalysis, Physical Sciences Division – sequence: 12 givenname: Thomas J orcidid: 0000-0002-7006-2608 surname: Meyer fullname: Meyer, Thomas J email: tjmeyer@unc.edu organization: Department of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28810743$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1406772$$D View this record in Osti.gov |
BookMark | eNqF0c9v0zAUB3ALbWLd4MYZWZw4LJvtJI59rDoGSEWbBJwt23lRXSVxsR2k8Nfj0MIBMXHyD3385Pd9l-hs9CMg9IqSG0oYvd1rG28aQxpG-TO0ojUjRU0ZP0MrQggrGsHLC3QZ4z4fKyboc3TBhKCkqcoV-r7VM4TCzMWvDf7ke7BTrwNexwiD6R1E3PmA72YoPsMYXXI_oMWPO588ZJuCj_OYdhBdxBvo-4gfAxx0yMjMeJ384Cw-Fr-Dg18K-PEFOu90H-Hlab1CX-_ffdl8KLYP7z9u1ttCV4ymgkttBRFCtpUGro2wkomGGMskMZVltRE10Faykhsoa0t4Z3O_VIu6ZV3ZlFfozbGuj8mpaF0Cu7N-HPPHFa0IbxqW0dsjOgT_bYKY1OCiza3oEfwUFaOUS0KrivyXUsmkkFLQKtPXJzqZAVp1CG7QYVa_s8_g-ghsjjAG6P4QStQyWrWMVp1Gmzn7i-du9BJmCtr1Tz06_Xe53PspjDntf9OfqYe0xQ |
CitedBy_id | crossref_primary_10_1039_C8CS00897C crossref_primary_10_3390_su15097092 crossref_primary_10_1063_5_0007383 crossref_primary_10_1063_1_5048780 crossref_primary_10_1021_jacs_7b10809 crossref_primary_10_1038_s41467_020_18417_5 crossref_primary_10_1021_acs_energyfuels_2c00859 crossref_primary_10_1186_s40580_021_00257_8 crossref_primary_10_1039_C8SC03316A crossref_primary_10_1021_jacs_2c12504 crossref_primary_10_1039_D1SC03896F crossref_primary_10_1021_acs_chemrev_1c01001 crossref_primary_10_1021_acsami_1c12138 crossref_primary_10_1016_j_ccr_2024_216143 crossref_primary_10_1039_C8CS00660A crossref_primary_10_1021_acs_langmuir_8b00263 crossref_primary_10_1021_acsenergylett_8b02512 crossref_primary_10_1016_j_solener_2021_06_067 crossref_primary_10_1073_pnas_2001753117 crossref_primary_10_1002_smll_202302999 crossref_primary_10_1039_D2TA09613G crossref_primary_10_3390_ma12081206 crossref_primary_10_1016_j_trechm_2020_11_002 crossref_primary_10_1021_acs_jpcc_1c02428 crossref_primary_10_1021_jacs_9b02521 crossref_primary_10_1039_D0CP06546C crossref_primary_10_1021_acsanm_4c02976 crossref_primary_10_1021_acsaem_9b00652 crossref_primary_10_1021_acs_jpcc_9b07125 crossref_primary_10_1021_jacs_9b02548 crossref_primary_10_3390_molecules28124835 crossref_primary_10_1016_j_coelec_2019_04_027 crossref_primary_10_1073_pnas_1821687116 crossref_primary_10_1063_1_5054604 crossref_primary_10_1039_D2TA00573E crossref_primary_10_1021_acs_jpcc_4c05104 crossref_primary_10_1021_jacs_8b12862 crossref_primary_10_1021_acs_inorgchem_0c01670 crossref_primary_10_1039_C8CS00443A crossref_primary_10_1016_j_ceramint_2022_11_228 crossref_primary_10_1021_acsami_9b08051 crossref_primary_10_1039_D4YA00273C crossref_primary_10_1002_asia_202100403 crossref_primary_10_1016_j_enchem_2019_100015 crossref_primary_10_1016_j_ccr_2022_214624 crossref_primary_10_1039_C7SC04476C crossref_primary_10_1039_C9DT02846C crossref_primary_10_1016_j_jelechem_2018_03_058 crossref_primary_10_1073_pnas_1802903115 crossref_primary_10_1039_D0CS01336F crossref_primary_10_1021_acsaem_1c03651 crossref_primary_10_1021_acs_jpcc_9b00710 crossref_primary_10_1021_acs_jpcc_9b04715 crossref_primary_10_1039_C8SC00899J crossref_primary_10_1016_j_biomaterials_2018_12_017 crossref_primary_10_1039_D3SC03780K crossref_primary_10_1021_acscatal_0c05033 |
Cites_doi | 10.1021/acsami.5b01000 10.1038/nchem.2536 10.1021/jacs.6b06466 10.1038/nchem.1301 10.1021/acs.jpclett.5b01370 10.1021/jp512624u 10.1039/c4sc00875h 10.1021/acsami.7b00225 10.1039/C5TA06678F 10.1073/pnas.1506111112 10.1021/ja809108y 10.1021/acs.nanolett.7b00105 10.1039/C5SC01752A 10.1021/j100387a017 10.1073/pnas.1500245112 10.1021/ar900138m 10.1021/acsenergylett.6b00142 10.1021/la203534s 10.1002/adma.200903151 10.1039/C6DT00408C 10.1039/c1ee01037a 10.1002/anie.201206882 10.1021/ja4106418 10.1021/ja508862h 10.1021/ja400402d 10.1021/ic100719r 10.1021/acs.accounts.5b00149 10.1021/ic960419j 10.1016/j.nantod.2017.04.009 10.1021/ja404525e 10.1039/C4CC05069J 10.1039/C6SC00715E 10.1021/ja109755f 10.1021/acsenergylett.6b00171 10.1021/ic4014976 10.1021/acs.chemrev.5b00229 10.1039/C4CC07968J 10.1021/jacs.5b04856 10.1021/acsami.6b01090 10.1021/cm020357x 10.1039/B804321N 10.1021/ja502464s 10.1021/jacs.5b06541 10.1039/c1ee01276b 10.1021/jacs.6b10699 10.1021/acs.analchem.6b00738 10.1021/acs.jpcc.5b08326 10.1021/ja3084362 10.1039/C6EE02903E 10.1021/cs500518k 10.1038/nchem.1161 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
CorporateAuthor | Pacific Northwest National Lab. (PNNL), Richland, WA (United States) Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC) Energy Frontier Research Centers (EFRC) (United States). Center for Molecular Electrocatalysis (CME) |
CorporateAuthor_xml | – name: Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC) – name: Energy Frontier Research Centers (EFRC) (United States). Center for Molecular Electrocatalysis (CME) – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 OTOTI |
DOI | 10.1021/jacs.7b07216 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 14525 |
ExternalDocumentID | 1406772 28810743 10_1021_jacs_7b07216 c24765846 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM 7X8 AAYWT 7S9 L.6 ABFRP OTOTI TAF |
ID | FETCH-LOGICAL-a421t-69ac80889d4ae6ab8c92870bc290b4c25b85e1d9236be35c06fc7861a85d2f373 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu May 18 22:38:04 EDT 2023 Fri Jul 11 07:18:23 EDT 2025 Thu Jul 24 07:32:30 EDT 2025 Thu Apr 03 07:01:34 EDT 2025 Thu Apr 24 22:57:16 EDT 2025 Tue Jul 01 03:21:19 EDT 2025 Thu Aug 27 13:42:08 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a421t-69ac80889d4ae6ab8c92870bc290b4c25b85e1d9236be35c06fc7861a85d2f373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) AC05-76RL01830 PNNL-SA-125900 |
ORCID | 0000-0001-6306-4851 0000-0002-7006-2608 0000-0002-6261-5727 0000-0001-9571-5065 0000000163064851 0000000270062608 0000000262615727 0000000195715065 |
PMID | 28810743 |
PQID | 1929899814 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1406772 proquest_miscellaneous_2116901440 proquest_miscellaneous_1929899814 pubmed_primary_28810743 crossref_primary_10_1021_jacs_7b07216 crossref_citationtrail_10_1021_jacs_7b07216 acs_journals_10_1021_jacs_7b07216 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-18 |
PublicationDateYYYYMMDD | 2017-10-18 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2017 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref49/cit49 doi: 10.1021/acsami.5b01000 – ident: ref10/cit10 doi: 10.1038/nchem.2536 – ident: ref2/cit2 doi: 10.1021/jacs.6b06466 – ident: ref19/cit19 doi: 10.1038/nchem.1301 – ident: ref29/cit29 doi: 10.1038/nchem.2536 – ident: ref9/cit9 doi: 10.1021/acs.jpclett.5b01370 – ident: ref44/cit44 doi: 10.1021/jp512624u – ident: ref30/cit30 doi: 10.1039/c4sc00875h – ident: ref27/cit27 doi: 10.1021/acsami.7b00225 – ident: ref21/cit21 doi: 10.1039/C5TA06678F – ident: ref22/cit22 doi: 10.1073/pnas.1506111112 – ident: ref7/cit7 doi: 10.1021/ja809108y – ident: ref15/cit15 doi: 10.1021/acs.nanolett.7b00105 – ident: ref39/cit39 doi: 10.1039/C5SC01752A – ident: ref35/cit35 doi: 10.1021/j100387a017 – ident: ref46/cit46 doi: 10.1073/pnas.1500245112 – ident: ref18/cit18 doi: 10.1021/ar900138m – ident: ref34/cit34 doi: 10.1021/acsenergylett.6b00142 – ident: ref50/cit50 doi: 10.1021/la203534s – ident: ref51/cit51 doi: 10.1002/adma.200903151 – ident: ref20/cit20 doi: 10.1039/C6DT00408C – ident: ref28/cit28 doi: 10.1039/c1ee01037a – ident: ref4/cit4 doi: 10.1002/anie.201206882 – ident: ref41/cit41 doi: 10.1021/ja4106418 – ident: ref42/cit42 doi: 10.1021/ja508862h – ident: ref26/cit26 doi: 10.1021/ja400402d – ident: ref37/cit37 doi: 10.1021/ic100719r – ident: ref6/cit6 doi: 10.1021/acs.accounts.5b00149 – ident: ref36/cit36 doi: 10.1021/ic960419j – ident: ref8/cit8 doi: 10.1016/j.nantod.2017.04.009 – ident: ref52/cit52 doi: 10.1021/ja404525e – ident: ref13/cit13 doi: 10.1039/C4CC05069J – ident: ref31/cit31 doi: 10.1039/C6SC00715E – ident: ref32/cit32 doi: 10.1021/ja109755f – ident: ref48/cit48 doi: 10.1021/acsenergylett.6b00171 – ident: ref33/cit33 doi: 10.1021/ic4014976 – ident: ref3/cit3 doi: 10.1021/acs.chemrev.5b00229 – ident: ref11/cit11 doi: 10.1039/C4CC07968J – ident: ref17/cit17 doi: 10.1021/jacs.5b04856 – ident: ref38/cit38 doi: 10.1021/acsami.6b01090 – ident: ref40/cit40 doi: 10.1021/cm020357x – ident: ref45/cit45 doi: 10.1039/B804321N – ident: ref23/cit23 doi: 10.1021/ja502464s – ident: ref12/cit12 doi: 10.1021/jacs.5b06541 – ident: ref25/cit25 doi: 10.1039/c1ee01276b – ident: ref16/cit16 doi: 10.1021/jacs.6b10699 – ident: ref47/cit47 doi: 10.1021/acs.analchem.6b00738 – ident: ref14/cit14 doi: 10.1021/acs.jpcc.5b08326 – ident: ref24/cit24 doi: 10.1021/ja3084362 – ident: ref43/cit43 doi: 10.1039/C6EE02903E – ident: ref5/cit5 doi: 10.1021/cs500518k – ident: ref1/cit1 doi: 10.1038/nchem.1161 |
SSID | ssj0004281 |
Score | 2.4713376 |
Snippet | In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the... In a Dye Sensitized Photoelectrosynthesis Cell (DSPEC) the relative orientation of catalyst and chromophore play important roles. Here we introduce a new,... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14518 |
SubjectTerms | aluminum Atomic Layer Deposition catalysts core/shell DSPEC electrodes electron transfer gases hydrogen INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY lighting nickel nickel oxide oxidation phosphonates photons ruthenium self-assemble semiconductors spectroscopy tin tin dioxide titanium water splitting zirconium |
Title | Layer-by-Layer Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by Atomic Layer Deposition |
URI | http://dx.doi.org/10.1021/jacs.7b07216 https://www.ncbi.nlm.nih.gov/pubmed/28810743 https://www.proquest.com/docview/1929899814 https://www.proquest.com/docview/2116901440 https://www.osti.gov/biblio/1406772 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBbp5tBe0qavbNMGFdpT0WI9LMnHZZM0hKQE0kBuRhprSejWLrG3sPn11fiR0ISlvRkjm7E0Qt94vvmGkE9WcdDec6ZFAKYc1ywrZMKwGRxwKMAD_tA__aaPLtTxZXp5T5B9mMEXqA8E9cR41PHST8im0NZgkDWdnd_XPwrLB5hrrJY9wf3h03gAQf3XATSq4kZaDy7bQ-bwOfk6lOp03JIfk2XjJ3D7WLnxH_a_IFs9zqTTzjG2yUYoX5Kns6G92yvy-8RFtM38irUX9HTok0sxD_zTR2xa04ho6f4qsHOkuTfXt6GgZ1dVU_XNc-pVGfFjfV3TWVgsanp2E1pCO_UrOm2w3pl2L98PAznsNbk4PPg-O2J9EwbmlOAN05kDi1yoQrmgnbeQYW40LmGWeAUi9TYNvIg4UfsgU0iweMhq7mxaiLk08g0ZlVUZdgiFZA6pkjqRSqp5Jpwyxsh5RClFmhrjxuRjnKu830R13ubHRYxP8G4_g2PyZVi9HHoVc2ymsVgz-vPd6F-deseacbvoCHlEHSidC8gxgiaGRaivJ6Jdg3_kcZEwo-LKUC2jhRkK2GeWq_VjYoSNTb-USsbkbedcd7YIa5EQK9_9x5fvkmcCIQWyaex7MmpuluFDBESN32t3wx-WRgRS |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Na9wwEBXp9pBe-t10m36o0JyKgyXLsnzoYdlt2DS7IZAEcnMlWUtDN3aIvC3Of-lf6W_rjNfe0MBCL4HejJHFWBpZbzxPbwj5oASz0hgWSO5sIDSTQZpHYYDF4CyzuTUWf-hPD-X4VHw5i882yK_uLAwY4aEn3yTxb9QFUCYIbiYG5bxky6E8cPVPiND8p_0RTOcO53ufT4bjoC0iEGjBWRXIVFuFXJ5caCe1UTbF3B6YkIZGWB4bFTuWA86RxkWxDfHwi5JMqzjnsyiJoN975D7gHo6x3WB4fHPskivWoWt4JGp59betxX3P-r_2vV4J63c9pm32tr1H5PdqVBpKy_fdRWV27fUtwcj_dtgek4ctqqaD5TJ4QjZc8ZRsDrtids_Ij4mG2CIwddBc0GlXFZhi1vvCABL3FPA7HdUuOEZSf3V-7XJ69K2syrZUkK8LQMv-3NOhm889PbpyDX2fmpoOKjzdTZedj1xHhXtOTu_ktV-QXlEW7iWhNpzZWEQyjEQkZinXIkmSaAaYLI_jJNF98h7mJms_GT5r2AAcojG8285Yn3zsnCazrWY7lg6Zr2m9s2p9udQqWdNuG_0vA4yFQsEWGVW2giAQ1QQ52NW5ZQaThPkjXbhyARamKNefKibWt-EM867IGOiTraVPr2zhSiH9N3r1D2_-jmyOT6aTbLJ_eLBNHnAEU8gjUq9Jr7pauDcABSvztlmQlHy9a1f-AwnwZig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9wwEBbpFtpc-n5s04cKzakoWA_b8qGHZbdL0jxYSAO5uZIs09CNHWJvi_Nv-lf6yzrjtbc0sNBLoDdjy2JsjaxvPJ--IeSdVtxF1nIWCe-YMjxiSSYDhsXgHHeZsw5_6B8eRbsn6tNpeLpBfvZ7YcCICnqq2iQ-zuqLLO8UBlAqCC7EFiW9oo5Hue-bHxClVR_2JjCk20JMP34e77KukAAzSvCaRYlxGvk8mTI-Mla7BPN7YEYSWOVEaHXoeQZYJ7Jehi7ADTA64kaHmchlLKHfW-Q2ZggxvhuNj_9svRSa9wgbbpEdt_66tbj2ueqvtW9Qwhxej2vb9W16n_xavZmW1vJtZ1HbHXd1TTTyv351D8i9Dl3T0XI6PCQbvnhE7o77onaPyfcDAzEGsw1rD-hhXx2YYvb73AIiryjgeDppPDtGcn99duUzOvta1mVXMqhqCkDN1VlFx34-r-js0rc0fmobOqpxlzdddj7xPSXuCTm5kcd-SgZFWfjnhLogd6GSUSCVVHkijIrjWOaAzbIQ_MkMyVsYm7T7dFRpywoQEJXh2W7EhuR97zip67TbsYTIfE3r7VXri6VmyZp2W-iDKWAtFAx2yKxyNQSDqCoowK7eNVMYJMwjmcKXC7AwQdn-RHO1vo3gmH9F5sCQPFv69coWoTXSgOWLf3jyN-TObDJND_aO9rfIpkBMhXQi_ZIM6suFfwWIsLav2zlJyZeb9uTf3tNoqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer-by-Layer+Molecular+Assemblies+for+Dye-Sensitized+Photoelectrosynthesis+Cells+Prepared+by+Atomic+Layer+Deposition&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Wang%2C+Degao&rft.au=Sheridan%2C+Matthew+V&rft.au=Shan%2C+Bing&rft.au=Farnum%2C+Byron+H&rft.date=2017-10-18&rft.issn=1520-5126&rft.volume=139&rft.issue=41+p.14518-14525&rft.spage=14518&rft.epage=14525&rft_id=info:doi/10.1021%2Fjacs.7b07216&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |