Layer-by-Layer Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by Atomic Layer Deposition

In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore–catalyst...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 139; no. 41; pp. 14518 - 14525
Main Authors Wang, Degao, Sheridan, Matthew V, Shan, Bing, Farnum, Byron H, Marquard, Seth L, Sherman, Benjamin D, Eberhart, Michael S, Nayak, Animesh, Dares, Christopher J, Das, Atanu K, Bullock, R. Morris, Meyer, Thomas J
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.10.2017
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore–catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R1-PO2-O-M-O-PO2-R2 type surface assembly. With the ALD procedure, assemblies bridged by Al­(III), Sn­(IV), Ti­(IV), or Zr­(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni­(II) catalyst on NiO films was also used to produce H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures.
AbstractList In a Dye Sensitized Photoelectrosynthesis Cell (DSPEC) the relative orientation of catalyst and chromophore play important roles. Here we introduce a new, robust, Atomic Layer Deposition (ALD) procedure for the preparation of assemblies on wide bandgap semiconductors. In the procedure, phosphonated metal complex precursors react with metal ion bridging to an external chromophore or catalyst to give assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units as bridges. The procedure has been extended to chromophore-catalyst assemblies for water oxidation catalysis. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes water splitting with an incident photon conversion efficiency (IPCE) of 17.1% at 440 nm. Reduction of water at a Ni(II)-based catalyst on NiO films has been shown to give H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures.
In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore–catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R1-PO2-O-M-O-PO2-R2 type surface assembly. With the ALD procedure, assemblies bridged by Al­(III), Sn­(IV), Ti­(IV), or Zr­(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni­(II) catalyst on NiO films was also used to produce H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures.
In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore-catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R -PO -O-M-O-PO -R type surface assembly. With the ALD procedure, assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO bridged assembly on SnO /TiO core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni(II) catalyst on NiO films was also used to produce H . Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures.
In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore-catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R1-PO2-O-M-O-PO2-R2 type surface assembly. With the ALD procedure, assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni(II) catalyst on NiO films was also used to produce H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures.In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore-catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R1-PO2-O-M-O-PO2-R2 type surface assembly. With the ALD procedure, assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO2 bridged assembly on SnO2/TiO2 core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni(II) catalyst on NiO films was also used to produce H2. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures.
In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the device efficiency. Here we introduce a new, robust atomic layer deposition (ALD) procedure for the preparation of molecular chromophore–catalyst assemblies on wide bandgap semiconductors. In this procedure, solution deposited, phosphonate derivatized metal complexes on metal oxide surfaces are treated with reactive metal reagents in the gas phase by ALD to form an outer metal ion bridging group, which can bind a second phosphonate containing species from solution to establish a R₁-PO₂-O-M-O-PO₂-R₂ type surface assembly. With the ALD procedure, assemblies bridged by Al(III), Sn(IV), Ti(IV), or Zr(IV) metal oxide units have been prepared. To evaluate the performance of this new type of surface assembly, intra-assembly electron transfer was investigated by transient absorption spectroscopy, and light-driven water splitting experiments under steady-state illumination were conducted. A SnO₂ bridged assembly on SnO₂/TiO₂ core/shell electrodes undergoes light-driven water oxidation with an incident photon to current efficiency (IPCE) of 17.1% at 440 nm. Light-driven water reduction with a ruthenium trisbipyridine chromophore and molecular Ni(II) catalyst on NiO films was also used to produce H₂. Compared to conventional solution-based procedures, the ALD approach offers significant advantages in scope and flexibility for the preparation of stable surface structures.
Author Marquard, Seth L
Nayak, Animesh
Bullock, R. Morris
Wang, Degao
Shan, Bing
Farnum, Byron H
Eberhart, Michael S
Dares, Christopher J
Das, Atanu K
Sheridan, Matthew V
Sherman, Benjamin D
Meyer, Thomas J
AuthorAffiliation Department of Chemistry
Department of Chemistry and Biochemistry
Center for Molecular Electrocatalysis, Physical Sciences Division
Florida International University
AuthorAffiliation_xml – name: Center for Molecular Electrocatalysis, Physical Sciences Division
– name: Department of Chemistry
– name: Florida International University
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Degao
  surname: Wang
  fullname: Wang, Degao
  organization: Department of Chemistry
– sequence: 2
  givenname: Matthew V
  surname: Sheridan
  fullname: Sheridan, Matthew V
  organization: Department of Chemistry
– sequence: 3
  givenname: Bing
  surname: Shan
  fullname: Shan, Bing
  organization: Department of Chemistry
– sequence: 4
  givenname: Byron H
  surname: Farnum
  fullname: Farnum, Byron H
  organization: Department of Chemistry
– sequence: 5
  givenname: Seth L
  surname: Marquard
  fullname: Marquard, Seth L
  organization: Department of Chemistry
– sequence: 6
  givenname: Benjamin D
  orcidid: 0000-0001-9571-5065
  surname: Sherman
  fullname: Sherman, Benjamin D
  organization: Department of Chemistry
– sequence: 7
  givenname: Michael S
  orcidid: 0000-0002-6261-5727
  surname: Eberhart
  fullname: Eberhart, Michael S
  organization: Department of Chemistry
– sequence: 8
  givenname: Animesh
  surname: Nayak
  fullname: Nayak, Animesh
  organization: Department of Chemistry
– sequence: 9
  givenname: Christopher J
  surname: Dares
  fullname: Dares, Christopher J
  organization: Florida International University
– sequence: 10
  givenname: Atanu K
  surname: Das
  fullname: Das, Atanu K
  organization: Center for Molecular Electrocatalysis, Physical Sciences Division
– sequence: 11
  givenname: R. Morris
  orcidid: 0000-0001-6306-4851
  surname: Bullock
  fullname: Bullock, R. Morris
  organization: Center for Molecular Electrocatalysis, Physical Sciences Division
– sequence: 12
  givenname: Thomas J
  orcidid: 0000-0002-7006-2608
  surname: Meyer
  fullname: Meyer, Thomas J
  email: tjmeyer@unc.edu
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28810743$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1406772$$D View this record in Osti.gov
BookMark eNqF0c9v0zAUB3ALbWLd4MYZWZw4LJvtJI59rDoGSEWbBJwt23lRXSVxsR2k8Nfj0MIBMXHyD3385Pd9l-hs9CMg9IqSG0oYvd1rG28aQxpG-TO0ojUjRU0ZP0MrQggrGsHLC3QZ4z4fKyboc3TBhKCkqcoV-r7VM4TCzMWvDf7ke7BTrwNexwiD6R1E3PmA72YoPsMYXXI_oMWPO588ZJuCj_OYdhBdxBvo-4gfAxx0yMjMeJ384Cw-Fr-Dg18K-PEFOu90H-Hlab1CX-_ffdl8KLYP7z9u1ttCV4ymgkttBRFCtpUGro2wkomGGMskMZVltRE10Faykhsoa0t4Z3O_VIu6ZV3ZlFfozbGuj8mpaF0Cu7N-HPPHFa0IbxqW0dsjOgT_bYKY1OCiza3oEfwUFaOUS0KrivyXUsmkkFLQKtPXJzqZAVp1CG7QYVa_s8_g-ghsjjAG6P4QStQyWrWMVp1Gmzn7i-du9BJmCtr1Tz06_Xe53PspjDntf9OfqYe0xQ
CitedBy_id crossref_primary_10_1039_C8CS00897C
crossref_primary_10_3390_su15097092
crossref_primary_10_1063_5_0007383
crossref_primary_10_1063_1_5048780
crossref_primary_10_1021_jacs_7b10809
crossref_primary_10_1038_s41467_020_18417_5
crossref_primary_10_1021_acs_energyfuels_2c00859
crossref_primary_10_1186_s40580_021_00257_8
crossref_primary_10_1039_C8SC03316A
crossref_primary_10_1021_jacs_2c12504
crossref_primary_10_1039_D1SC03896F
crossref_primary_10_1021_acs_chemrev_1c01001
crossref_primary_10_1021_acsami_1c12138
crossref_primary_10_1016_j_ccr_2024_216143
crossref_primary_10_1039_C8CS00660A
crossref_primary_10_1021_acs_langmuir_8b00263
crossref_primary_10_1021_acsenergylett_8b02512
crossref_primary_10_1016_j_solener_2021_06_067
crossref_primary_10_1073_pnas_2001753117
crossref_primary_10_1002_smll_202302999
crossref_primary_10_1039_D2TA09613G
crossref_primary_10_3390_ma12081206
crossref_primary_10_1016_j_trechm_2020_11_002
crossref_primary_10_1021_acs_jpcc_1c02428
crossref_primary_10_1021_jacs_9b02521
crossref_primary_10_1039_D0CP06546C
crossref_primary_10_1021_acsanm_4c02976
crossref_primary_10_1021_acsaem_9b00652
crossref_primary_10_1021_acs_jpcc_9b07125
crossref_primary_10_1021_jacs_9b02548
crossref_primary_10_3390_molecules28124835
crossref_primary_10_1016_j_coelec_2019_04_027
crossref_primary_10_1073_pnas_1821687116
crossref_primary_10_1063_1_5054604
crossref_primary_10_1039_D2TA00573E
crossref_primary_10_1021_acs_jpcc_4c05104
crossref_primary_10_1021_jacs_8b12862
crossref_primary_10_1021_acs_inorgchem_0c01670
crossref_primary_10_1039_C8CS00443A
crossref_primary_10_1016_j_ceramint_2022_11_228
crossref_primary_10_1021_acsami_9b08051
crossref_primary_10_1039_D4YA00273C
crossref_primary_10_1002_asia_202100403
crossref_primary_10_1016_j_enchem_2019_100015
crossref_primary_10_1016_j_ccr_2022_214624
crossref_primary_10_1039_C7SC04476C
crossref_primary_10_1039_C9DT02846C
crossref_primary_10_1016_j_jelechem_2018_03_058
crossref_primary_10_1073_pnas_1802903115
crossref_primary_10_1039_D0CS01336F
crossref_primary_10_1021_acsaem_1c03651
crossref_primary_10_1021_acs_jpcc_9b00710
crossref_primary_10_1021_acs_jpcc_9b04715
crossref_primary_10_1039_C8SC00899J
crossref_primary_10_1016_j_biomaterials_2018_12_017
crossref_primary_10_1039_D3SC03780K
crossref_primary_10_1021_acscatal_0c05033
Cites_doi 10.1021/acsami.5b01000
10.1038/nchem.2536
10.1021/jacs.6b06466
10.1038/nchem.1301
10.1021/acs.jpclett.5b01370
10.1021/jp512624u
10.1039/c4sc00875h
10.1021/acsami.7b00225
10.1039/C5TA06678F
10.1073/pnas.1506111112
10.1021/ja809108y
10.1021/acs.nanolett.7b00105
10.1039/C5SC01752A
10.1021/j100387a017
10.1073/pnas.1500245112
10.1021/ar900138m
10.1021/acsenergylett.6b00142
10.1021/la203534s
10.1002/adma.200903151
10.1039/C6DT00408C
10.1039/c1ee01037a
10.1002/anie.201206882
10.1021/ja4106418
10.1021/ja508862h
10.1021/ja400402d
10.1021/ic100719r
10.1021/acs.accounts.5b00149
10.1021/ic960419j
10.1016/j.nantod.2017.04.009
10.1021/ja404525e
10.1039/C4CC05069J
10.1039/C6SC00715E
10.1021/ja109755f
10.1021/acsenergylett.6b00171
10.1021/ic4014976
10.1021/acs.chemrev.5b00229
10.1039/C4CC07968J
10.1021/jacs.5b04856
10.1021/acsami.6b01090
10.1021/cm020357x
10.1039/B804321N
10.1021/ja502464s
10.1021/jacs.5b06541
10.1039/c1ee01276b
10.1021/jacs.6b10699
10.1021/acs.analchem.6b00738
10.1021/acs.jpcc.5b08326
10.1021/ja3084362
10.1039/C6EE02903E
10.1021/cs500518k
10.1038/nchem.1161
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC)
Energy Frontier Research Centers (EFRC) (United States). Center for Molecular Electrocatalysis (CME)
CorporateAuthor_xml – name: Energy Frontier Research Centers (EFRC) (United States). Center for Solar Fuels (UNC EFRC)
– name: Energy Frontier Research Centers (EFRC) (United States). Center for Molecular Electrocatalysis (CME)
– name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
OTOTI
DOI 10.1021/jacs.7b07216
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 14525
ExternalDocumentID 1406772
28810743
10_1021_jacs_7b07216
c24765846
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
7X8
AAYWT
7S9
L.6
ABFRP
OTOTI
TAF
ID FETCH-LOGICAL-a421t-69ac80889d4ae6ab8c92870bc290b4c25b85e1d9236be35c06fc7861a85d2f373
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu May 18 22:38:04 EDT 2023
Fri Jul 11 07:18:23 EDT 2025
Thu Jul 24 07:32:30 EDT 2025
Thu Apr 03 07:01:34 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Tue Jul 01 03:21:19 EDT 2025
Thu Aug 27 13:42:08 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a421t-69ac80889d4ae6ab8c92870bc290b4c25b85e1d9236be35c06fc7861a85d2f373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
AC05-76RL01830
PNNL-SA-125900
ORCID 0000-0001-6306-4851
0000-0002-7006-2608
0000-0002-6261-5727
0000-0001-9571-5065
0000000163064851
0000000270062608
0000000262615727
0000000195715065
PMID 28810743
PQID 1929899814
PQPubID 23479
PageCount 8
ParticipantIDs osti_scitechconnect_1406772
proquest_miscellaneous_2116901440
proquest_miscellaneous_1929899814
pubmed_primary_28810743
crossref_primary_10_1021_jacs_7b07216
crossref_citationtrail_10_1021_jacs_7b07216
acs_journals_10_1021_jacs_7b07216
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-18
PublicationDateYYYYMMDD 2017-10-18
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2017
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref49/cit49
  doi: 10.1021/acsami.5b01000
– ident: ref10/cit10
  doi: 10.1038/nchem.2536
– ident: ref2/cit2
  doi: 10.1021/jacs.6b06466
– ident: ref19/cit19
  doi: 10.1038/nchem.1301
– ident: ref29/cit29
  doi: 10.1038/nchem.2536
– ident: ref9/cit9
  doi: 10.1021/acs.jpclett.5b01370
– ident: ref44/cit44
  doi: 10.1021/jp512624u
– ident: ref30/cit30
  doi: 10.1039/c4sc00875h
– ident: ref27/cit27
  doi: 10.1021/acsami.7b00225
– ident: ref21/cit21
  doi: 10.1039/C5TA06678F
– ident: ref22/cit22
  doi: 10.1073/pnas.1506111112
– ident: ref7/cit7
  doi: 10.1021/ja809108y
– ident: ref15/cit15
  doi: 10.1021/acs.nanolett.7b00105
– ident: ref39/cit39
  doi: 10.1039/C5SC01752A
– ident: ref35/cit35
  doi: 10.1021/j100387a017
– ident: ref46/cit46
  doi: 10.1073/pnas.1500245112
– ident: ref18/cit18
  doi: 10.1021/ar900138m
– ident: ref34/cit34
  doi: 10.1021/acsenergylett.6b00142
– ident: ref50/cit50
  doi: 10.1021/la203534s
– ident: ref51/cit51
  doi: 10.1002/adma.200903151
– ident: ref20/cit20
  doi: 10.1039/C6DT00408C
– ident: ref28/cit28
  doi: 10.1039/c1ee01037a
– ident: ref4/cit4
  doi: 10.1002/anie.201206882
– ident: ref41/cit41
  doi: 10.1021/ja4106418
– ident: ref42/cit42
  doi: 10.1021/ja508862h
– ident: ref26/cit26
  doi: 10.1021/ja400402d
– ident: ref37/cit37
  doi: 10.1021/ic100719r
– ident: ref6/cit6
  doi: 10.1021/acs.accounts.5b00149
– ident: ref36/cit36
  doi: 10.1021/ic960419j
– ident: ref8/cit8
  doi: 10.1016/j.nantod.2017.04.009
– ident: ref52/cit52
  doi: 10.1021/ja404525e
– ident: ref13/cit13
  doi: 10.1039/C4CC05069J
– ident: ref31/cit31
  doi: 10.1039/C6SC00715E
– ident: ref32/cit32
  doi: 10.1021/ja109755f
– ident: ref48/cit48
  doi: 10.1021/acsenergylett.6b00171
– ident: ref33/cit33
  doi: 10.1021/ic4014976
– ident: ref3/cit3
  doi: 10.1021/acs.chemrev.5b00229
– ident: ref11/cit11
  doi: 10.1039/C4CC07968J
– ident: ref17/cit17
  doi: 10.1021/jacs.5b04856
– ident: ref38/cit38
  doi: 10.1021/acsami.6b01090
– ident: ref40/cit40
  doi: 10.1021/cm020357x
– ident: ref45/cit45
  doi: 10.1039/B804321N
– ident: ref23/cit23
  doi: 10.1021/ja502464s
– ident: ref12/cit12
  doi: 10.1021/jacs.5b06541
– ident: ref25/cit25
  doi: 10.1039/c1ee01276b
– ident: ref16/cit16
  doi: 10.1021/jacs.6b10699
– ident: ref47/cit47
  doi: 10.1021/acs.analchem.6b00738
– ident: ref14/cit14
  doi: 10.1021/acs.jpcc.5b08326
– ident: ref24/cit24
  doi: 10.1021/ja3084362
– ident: ref43/cit43
  doi: 10.1039/C6EE02903E
– ident: ref5/cit5
  doi: 10.1021/cs500518k
– ident: ref1/cit1
  doi: 10.1038/nchem.1161
SSID ssj0004281
Score 2.4713376
Snippet In a dye sensitized photoelectrosynthesis cell (DSPEC), the relative orientation of the catalyst and chromophore plays an important role in determining the...
In a Dye Sensitized Photoelectrosynthesis Cell (DSPEC) the relative orientation of catalyst and chromophore play important roles. Here we introduce a new,...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14518
SubjectTerms aluminum
Atomic Layer Deposition
catalysts
core/shell
DSPEC
electrodes
electron transfer
gases
hydrogen
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
lighting
nickel
nickel oxide
oxidation
phosphonates
photons
ruthenium
self-assemble
semiconductors
spectroscopy
tin
tin dioxide
titanium
water splitting
zirconium
Title Layer-by-Layer Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by Atomic Layer Deposition
URI http://dx.doi.org/10.1021/jacs.7b07216
https://www.ncbi.nlm.nih.gov/pubmed/28810743
https://www.proquest.com/docview/1929899814
https://www.proquest.com/docview/2116901440
https://www.osti.gov/biblio/1406772
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBbp5tBe0qavbNMGFdpT0WI9LMnHZZM0hKQE0kBuRhprSejWLrG3sPn11fiR0ISlvRkjm7E0Qt94vvmGkE9WcdDec6ZFAKYc1ywrZMKwGRxwKMAD_tA__aaPLtTxZXp5T5B9mMEXqA8E9cR41PHST8im0NZgkDWdnd_XPwrLB5hrrJY9wf3h03gAQf3XATSq4kZaDy7bQ-bwOfk6lOp03JIfk2XjJ3D7WLnxH_a_IFs9zqTTzjG2yUYoX5Kns6G92yvy-8RFtM38irUX9HTok0sxD_zTR2xa04ho6f4qsHOkuTfXt6GgZ1dVU_XNc-pVGfFjfV3TWVgsanp2E1pCO_UrOm2w3pl2L98PAznsNbk4PPg-O2J9EwbmlOAN05kDi1yoQrmgnbeQYW40LmGWeAUi9TYNvIg4UfsgU0iweMhq7mxaiLk08g0ZlVUZdgiFZA6pkjqRSqp5Jpwyxsh5RClFmhrjxuRjnKu830R13ubHRYxP8G4_g2PyZVi9HHoVc2ymsVgz-vPd6F-deseacbvoCHlEHSidC8gxgiaGRaivJ6Jdg3_kcZEwo-LKUC2jhRkK2GeWq_VjYoSNTb-USsbkbedcd7YIa5EQK9_9x5fvkmcCIQWyaex7MmpuluFDBESN32t3wx-WRgRS
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Na9wwEBXp9pBe-t10m36o0JyKgyXLsnzoYdlt2DS7IZAEcnMlWUtDN3aIvC3Of-lf6W_rjNfe0MBCL4HejJHFWBpZbzxPbwj5oASz0hgWSO5sIDSTQZpHYYDF4CyzuTUWf-hPD-X4VHw5i882yK_uLAwY4aEn3yTxb9QFUCYIbiYG5bxky6E8cPVPiND8p_0RTOcO53ufT4bjoC0iEGjBWRXIVFuFXJ5caCe1UTbF3B6YkIZGWB4bFTuWA86RxkWxDfHwi5JMqzjnsyiJoN975D7gHo6x3WB4fHPskivWoWt4JGp59betxX3P-r_2vV4J63c9pm32tr1H5PdqVBpKy_fdRWV27fUtwcj_dtgek4ctqqaD5TJ4QjZc8ZRsDrtids_Ij4mG2CIwddBc0GlXFZhi1vvCABL3FPA7HdUuOEZSf3V-7XJ69K2syrZUkK8LQMv-3NOhm889PbpyDX2fmpoOKjzdTZedj1xHhXtOTu_ktV-QXlEW7iWhNpzZWEQyjEQkZinXIkmSaAaYLI_jJNF98h7mJms_GT5r2AAcojG8285Yn3zsnCazrWY7lg6Zr2m9s2p9udQqWdNuG_0vA4yFQsEWGVW2giAQ1QQ52NW5ZQaThPkjXbhyARamKNefKibWt-EM867IGOiTraVPr2zhSiH9N3r1D2_-jmyOT6aTbLJ_eLBNHnAEU8gjUq9Jr7pauDcABSvztlmQlHy9a1f-AwnwZig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9wwEBbpFtpc-n5s04cKzakoWA_b8qGHZbdL0jxYSAO5uZIs09CNHWJvi_Nv-lf6yzrjtbc0sNBLoDdjy2JsjaxvPJ--IeSdVtxF1nIWCe-YMjxiSSYDhsXgHHeZsw5_6B8eRbsn6tNpeLpBfvZ7YcCICnqq2iQ-zuqLLO8UBlAqCC7EFiW9oo5Hue-bHxClVR_2JjCk20JMP34e77KukAAzSvCaRYlxGvk8mTI-Mla7BPN7YEYSWOVEaHXoeQZYJ7Jehi7ADTA64kaHmchlLKHfW-Q2ZggxvhuNj_9svRSa9wgbbpEdt_66tbj2ueqvtW9Qwhxej2vb9W16n_xavZmW1vJtZ1HbHXd1TTTyv351D8i9Dl3T0XI6PCQbvnhE7o77onaPyfcDAzEGsw1rD-hhXx2YYvb73AIiryjgeDppPDtGcn99duUzOvta1mVXMqhqCkDN1VlFx34-r-js0rc0fmobOqpxlzdddj7xPSXuCTm5kcd-SgZFWfjnhLogd6GSUSCVVHkijIrjWOaAzbIQ_MkMyVsYm7T7dFRpywoQEJXh2W7EhuR97zip67TbsYTIfE3r7VXri6VmyZp2W-iDKWAtFAx2yKxyNQSDqCoowK7eNVMYJMwjmcKXC7AwQdn-RHO1vo3gmH9F5sCQPFv69coWoTXSgOWLf3jyN-TObDJND_aO9rfIpkBMhXQi_ZIM6suFfwWIsLav2zlJyZeb9uTf3tNoqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer-by-Layer+Molecular+Assemblies+for+Dye-Sensitized+Photoelectrosynthesis+Cells+Prepared+by+Atomic+Layer+Deposition&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Wang%2C+Degao&rft.au=Sheridan%2C+Matthew+V&rft.au=Shan%2C+Bing&rft.au=Farnum%2C+Byron+H&rft.date=2017-10-18&rft.issn=1520-5126&rft.volume=139&rft.issue=41+p.14518-14525&rft.spage=14518&rft.epage=14525&rft_id=info:doi/10.1021%2Fjacs.7b07216&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon