Nonlinearity and unsteadiness in river meandering: a review of progress in theory and modelling

River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are nonlinearity and unsteadiness. Linear steady models have played an important role in the development of the subject but suffer from a number of limits. Moreover, rivers a...

Full description

Saved in:
Bibliographic Details
Published inEarth surface processes and landforms Vol. 36; no. 1; pp. 20 - 38
Main Authors Pittaluga, Michele Bolla, Seminara, Giovanni
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.01.2011
Wiley
Subjects
Online AccessGet full text
ISSN0197-9337
1096-9837
1096-9837
DOI10.1002/esp.2089

Cover

Loading…
Abstract River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are nonlinearity and unsteadiness. Linear steady models have played an important role in the development of the subject but suffer from a number of limits. Moreover, rivers are not steady systems; rather their states respond to hydrologic forcing subject to seasonal oscillations, punctuated by the occurrence of flood events. We first derive a classification of river bends based on a systematic assessment of the various physical mechanisms affecting their morphodynamic equilibrium and their evolution in response to variations of hydrodynamic forcing. Using the database by Lagasse et al. (2004) we also show that natural meanders are typically mildly curved and long, i.e. such that both the centrifugal and the topographic secondary flows are weak, but they are almost invariably nonlinear. We then review some recent developments which allow us to treat analytically the flow and bed topography of mildly curved and long nonlinear bends subject to steady forcing, taking advantage of the fact that flow and bed topography in mildly curved long bends are slowly varying. Results show that nonlinearity has a number of consequences: most notably damping of the morphodynamic response and upstream shifting of the location of the nonlinear peak of the flow speed. Next we extend the latter model to the case of unsteady forcing. Results are found to depend crucially on the ratio between the flood duration and a morphodynamic timescale. It turns out that, in a channel subject to a repeated sequence of floods, the system reaches a dynamic equilibrium. We conclude the paper discussing how the present assessment relates to the debate on meander modelling of the late 1980s and suggesting what we see as promising lines of future developments.
AbstractList River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are nonlinearity and unsteadiness . Linear steady models have played an important role in the development of the subject but suffer from a number of limits. Moreover, rivers are not steady systems; rather their states respond to hydrologic forcing subject to seasonal oscillations, punctuated by the occurrence of flood events. We first derive a classification of river bends based on a systematic assessment of the various physical mechanisms affecting their morphodynamic equilibrium and their evolution in response to variations of hydrodynamic forcing. Using the database by Lagasse et al . ( 2004 ) we also show that natural meanders are typically mildly curved and long, i.e. such that both the centrifugal and the topographic secondary flows are weak, but they are almost invariably nonlinear. We then review some recent developments which allow us to treat analytically the flow and bed topography of mildly curved and long nonlinear bends subject to steady forcing, taking advantage of the fact that flow and bed topography in mildly curved long bends are slowly varying. Results show that nonlinearity has a number of consequences: most notably damping of the morphodynamic response and upstream shifting of the location of the nonlinear peak of the flow speed. Next we extend the latter model to the case of unsteady forcing. Results are found to depend crucially on the ratio between the flood duration and a morphodynamic timescale. It turns out that, in a channel subject to a repeated sequence of floods, the system reaches a dynamic equilibrium. We conclude the paper discussing how the present assessment relates to the debate on meander modelling of the late 1980s and suggesting what we see as promising lines of future developments.
River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are nonlinearity and unsteadiness. Linear steady models have played an important role in the development of the subject but suffer from a number of limits. Moreover, rivers are not steady systems; rather their states respond to hydrologic forcing subject to seasonal oscillations, punctuated by the occurrence of flood events. We first derive a classification of river bends based on a systematic assessment of the various physical mechanisms affecting their morphodynamic equilibrium and their evolution in response to variations of hydrodynamic forcing. Using the database by Lagasse etal. (2004) we also show that natural meanders are typically mildly curved and long, i.e. such that both the centrifugal and the topographic secondary flows are weak, but they are almost invariably nonlinear. We then review some recent developments which allow us to treat analytically the flow and bed topography of mildly curved and long nonlinear bends subject to steady forcing, taking advantage of the fact that flow and bed topography in mildly curved long bends are slowly varying. Results show that nonlinearity has a number of consequences: most notably damping of the morphodynamic response and upstream shifting of the location of the nonlinear peak of the flow speed. Next we extend the latter model to the case of unsteady forcing. Results are found to depend crucially on the ratio between the flood duration and a morphodynamic timescale. It turns out that, in a channel subject to a repeated sequence of floods, the system reaches a dynamic equilibrium. We conclude the paper discussing how the present assessment relates to the debate on meander modelling of the late 1980s and suggesting what we see as promising lines of future developments.
River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are nonlinearity and unsteadiness. Linear steady models have played an important role in the development of the subject but suffer from a number of limits. Moreover, rivers are not steady systems; rather their states respond to hydrologic forcing subject to seasonal oscillations, punctuated by the occurrence of flood events. We first derive a classification of river bends based on a systematic assessment of the various physical mechanisms affecting their morphodynamic equilibrium and their evolution in response to variations of hydrodynamic forcing. Using the database by Lagasse et al. (2004) we also show that natural meanders are typically mildly curved and long, i.e. such that both the centrifugal and the topographic secondary flows are weak, but they are almost invariably nonlinear. We then review some recent developments which allow us to treat analytically the flow and bed topography of mildly curved and long nonlinear bends subject to steady forcing, taking advantage of the fact that flow and bed topography in mildly curved long bends are slowly varying. Results show that nonlinearity has a number of consequences: most notably damping of the morphodynamic response and upstream shifting of the location of the nonlinear peak of the flow speed. Next we extend the latter model to the case of unsteady forcing. Results are found to depend crucially on the ratio between the flood duration and a morphodynamic timescale. It turns out that, in a channel subject to a repeated sequence of floods, the system reaches a dynamic equilibrium. We conclude the paper discussing how the present assessment relates to the debate on meander modelling of the late 1980s and suggesting what we see as promising lines of future developments.
Author Pittaluga, Michele Bolla
Seminara, Giovanni
Author_xml – sequence: 1
  givenname: Michele Bolla
  surname: Pittaluga
  fullname: Pittaluga, Michele Bolla
  organization: DICAT, Department of Civil, Environmental and Architectural Engineering, University of Genoa, Italy
– sequence: 2
  givenname: Giovanni
  surname: Seminara
  fullname: Seminara, Giovanni
  email: sem@dicat.unige.it
  organization: DICAT, Department of Civil, Environmental and Architectural Engineering, University of Genoa, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24247537$$DView record in Pascal Francis
BookMark eNp90V1rFDEUBuAgFdxWwZ-QG9Gb2eZrJhPvZGlrYalCK0JvQjY5WaOzyZrMtu6_b8oulYrtVeDkOS8H3kN0EFMEhN5SMqWEsGMo6ykjvXqBJpSorlE9lwdoQqiSjeJcvkKHpfwkhFLRqwnSFykOIYLJYdxiEx3exDKCcXVWCg4R53ADGa-g_kEOcfkRG5zhJsAtTh6vc1rmvRx_QMq7kFVyMNTc5Wv00puhwJv9e4S-nZ5czT438y9n57NP88YIRlXTOuc9ExSEskwZYhhRi9ZS4ntBjHUgHHFWqY7JhW9JS9vW-t45K_2io3zBj9D7XW496PcGyqhXodh6g4mQNkX3qqNS0q6r8sOzsjLChRKMVPpuT02xZvDZRBuKXuewMnmrmWBCtlz-jbQ5lZLBPxBK9H0rurai71updPoPtWE0Y0hxzCYM_1todgu3YYDtk8H65PLrYx9qjX8evMm_dCe5bPX3izPNr0-vry5nXM_5HRx-r6Q
CODEN ESPLDB
CitedBy_id crossref_primary_10_1002_jgrf_20084
crossref_primary_10_1002_esp_2185
crossref_primary_10_1063_5_0010038
crossref_primary_10_1016_j_advwatres_2017_10_033
crossref_primary_10_1134_S0097807819040134
crossref_primary_10_1029_2024WR037583
crossref_primary_10_1063_1_5012596
crossref_primary_10_1016_j_earscirev_2024_104769
crossref_primary_10_1016_j_geomorph_2017_08_008
crossref_primary_10_1029_2011JF001979
crossref_primary_10_1002_2013JF002812
crossref_primary_10_1002_rra_3461
crossref_primary_10_1080_09715010_2024_2388231
crossref_primary_10_1130_G38740_1
crossref_primary_10_1029_2021RG000761
crossref_primary_10_1061__ASCE_HY_1943_7900_0001324
crossref_primary_10_3390_w10040518
crossref_primary_10_1007_s11442_020_1758_z
crossref_primary_10_1029_2018WR023639
crossref_primary_10_1016_j_geomorph_2012_04_010
crossref_primary_10_1002_esp_3303
crossref_primary_10_1016_j_quaint_2020_01_012
crossref_primary_10_2166_hydro_2024_171
crossref_primary_10_1038_ngeo2282
crossref_primary_10_1111_jfr3_12704
crossref_primary_10_3390_hydrology9090160
crossref_primary_10_1144_SP540_2022_138
crossref_primary_10_1016_j_jher_2023_08_002
crossref_primary_10_1002_2017WR020726
crossref_primary_10_1016_j_jher_2016_01_004
crossref_primary_10_1002_2016JF003929
crossref_primary_10_1016_j_jhydrol_2022_127604
crossref_primary_10_1016_j_geomorph_2024_109427
crossref_primary_10_1029_2024GL110650
crossref_primary_10_1029_2011WR011117
crossref_primary_10_1002_2014JF003252
crossref_primary_10_1016_j_advwatres_2015_11_017
Cites_doi 10.1080/00221688009499539
10.1130/0016-7606(1994)106<1494:CATCDP>2.3.CO;2
10.1029/008WSA19
10.1017/S0022112003006979
10.1029/2006WR004916
10.1029/WR020i009p01301
10.1029/2001WR000681
10.1017/S0022112006008925
10.1029/98WR00372
10.1017/S002211200100427X
10.1029/2008WR007298
10.1029/2002WR001434
10.1029/2005JG000073
10.1029/2000WR900396
10.1016/S0169-555X(98)00029-4
10.1086/626637
10.1029/2005RG000185
10.1017/S0022112001004281
10.1061/JYCEAJ.0004109
10.1017/S0022112081000451
10.1029/WR019i005p01173
10.1080/00221689509498657
10.1029/90WR01699
10.1086/628140
10.1029/WM012
10.1029/WM012p0181
10.1002/esp.3290030207
10.1017/S0022112085002440
10.1017/S0022112070000745
10.1029/2006WR005234
10.1029/WM012p0321
10.1029/2008JF001101
10.1029/2005JF000416
10.1073/pnas.0909417106
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons, Ltd.
Tous droits réservés © Prodig - Bibliographie Géographique Internationale (BGI), 2011
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons, Ltd.
– notice: Tous droits réservés © Prodig - Bibliographie Géographique Internationale (BGI), 2011
DBID BSCLL
AAYXX
CITATION
IQODW
8FD
FR3
KR7
7QH
7UA
C1K
F1W
H97
L.G
DOI 10.1002/esp.2089
DatabaseName Istex
CrossRef
Pascal-Francis
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1096-9837
EndPage 38
ExternalDocumentID 24247537
10_1002_esp_2089
ESP2089
ark_67375_WNG_3ZFZTSC3_L
Genre miscellaneous
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XKC
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
8W4
AAPBV
ABHUG
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IPNFZ
IQODW
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
KR7
7QH
7UA
C1K
F1W
H97
L.G
ID FETCH-LOGICAL-a4219-5ddff241e49c29a0a209b5c10f840acde4d0dc99627bf505155cf8ddc7fb613b3
IEDL.DBID DR2
ISSN 0197-9337
1096-9837
IngestDate Fri Jul 11 09:57:59 EDT 2025
Fri Jul 11 01:03:02 EDT 2025
Fri Nov 25 06:05:14 EST 2022
Thu Apr 24 23:08:54 EDT 2025
Tue Jul 01 02:51:55 EDT 2025
Wed Jan 22 16:42:26 EST 2025
Wed Oct 30 09:51:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Topography
Classification
Channel geometry
Model
Stream
River bed
Fluvial dynamics
Bibliography
Meander
Sediment transport
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4219-5ddff241e49c29a0a209b5c10f840acde4d0dc99627bf505155cf8ddc7fb613b3
Notes istex:1A410EAB17EF26E315B38A16D9B5D08C4F7A06FA
ark:/67375/WNG-3ZFZTSC3-L
ArticleID:ESP2089
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1770349420
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_896177166
proquest_miscellaneous_1770349420
pascalfrancis_primary_24247537
crossref_primary_10_1002_esp_2089
crossref_citationtrail_10_1002_esp_2089
wiley_primary_10_1002_esp_2089_ESP2089
istex_primary_ark_67375_WNG_3ZFZTSC3_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01
January 2011
2011-01-00
2011
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Earth surface processes and landforms
PublicationTitleAlternate Earth Surf. Process. Landforms
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Blondeaux P, Seminara G. 1985. A unified bar-bend theory of river meanders. Journal of Fluid Mechanics 157: 449-470.
Lanzoni S, Siviglia A, Frascati A, Seminara G. 2006. Long waves in erodible channels and morphodynamic influence. Water Resources Research 42: W06D17.
Seminara G. 2006. Meanders. Journal of Fluid Mechanics 554: 271-297.
Pizzuto JE. 1994. Channel adjustments to changing discharges, Powder River, Montana. Geological Society of America Bulletin 106: 1494-1501.
Wolman MG, Miller JP. 1960. Magnitude and frequency of forces in geomorphic processes. Journal of Geology 68: 54-74.
Talmon AM, Struiskma N, van Mierlo MCLM. 1995. Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slopes. Journal of Hydraulic Research 33: 495-517.
Ikeda S, Parker G, Sawai K. 1981. Bend theory of river meanders. Part 1. Linear development. Journal of Fluid Mechanics 112: 363-377.
Zolezzi G, Seminara G. 2001. Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening. Journal of Fluid Mechanics 438: 183-211.
Smith JD, McLean SR. 1984. A model for flow in meandering streams. Water Resources Research 20: 1301-1315.
Lagasse PF, Spitz WJ, Zevenbergen LW, Zachmann DW. 2004. Handbook for Predicting Stream Meander Migration. NCHRP Report 533, TRB, National Research Council: Washington, DC.
Langbein WB, Leopold LB. 1966. River Meanders: Theory of Minimum Variance. Professional Paper 422-H, US Geological Survey: Reston, VA.
Parker G. 1984. Lateral bedload on side slopes. Discussion, ASCE 110(HY2): 197-199.
Camporeale C, Perona P, Porporato A, Ridolfi L. 2007. Hierarchy of models for meandering rivers and related morphodynamic processes. Reviews of Geophysics 45: RG1001.
Kalkwijk J, de Vriend H. 1980. Computation of the flow in shallow river bends. Journal of Hydraulic Research 18: 327-342.
Braudrick CA, Dietrich WE, Leverich GT, Sklar LS. 2009. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers. Proceedings of the National Academy of Sciences USA 106: 16936-16941.
Sun T, Meakin P, Jøssang T. 2001. A computer model for meandering rivers with multiple bed load sediment sizes 1. Theory. Water Resources Research 37: 2227-2241.
Seminara G, Zolezzi G, Tubino M, Zardi D. 2001. Downstream and upstream influence in river meandering. Part 2. Planimetric development. Journal of Fluid Mechanics 438: 213-230.
Perucca E, Camporeale C, Ridolfi L. 2007. Significance of the riparian vegetation dynamics on meandering river morphodynamics. Water Resources Research 43: W03430.
Smith CE. 1998. Modeling high sinuosity meanders in a small flume. Geomorphology 25: 19-30.
Engelund F, Hansen E. 1967. A Monograph on Sediment Transport in Alluvial Streams. Danish Technical Press: Copenhagen.
Lanzoni S, Seminara G. 2006. On the nature of meander instability. Journal of Geophysical Research 111: F04006.
Seminara G, Solari L, Parker G. 2002. Bed load at low Shields stress on arbitrarily sloping beds: failure of the Bagnold hypothesis. Water Resources Research 38: 1249.
Frascati A, Lanzoni S. 2009. Morphodynamic regime and long term evolution of meandering rivers. Journal of Geophysics Research 114: F02002.
Dietrich WE, Smith JD. 1983. Influence of the point bar on flow through curved channels. Water Resources Research 19: 1173-1192.
Ikeda S, Parker G (eds). 1989. River Meandering. Water Research Monograph 12, American Geophysical Union: Washington, DC.
Hooke RB. 1975. Distribution of sediment transport and shear stress in a meander bend. Journal of Geology 83: 543-565.
Engelund F. 1974. Flow and bed topography in channel bends. Journal of the Hydraulics Division, ASCE 100: 1631-1648.
Wolman MG, Gerson R. 1978. Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surface Processes and Landforms 3: 189-208.
Batchelor GK. 1970. The stress system in a suspension of force-free particles. Journal of Fluid Mechanics 41: 545-570.
Blanckaert K, de Vriend HJ. 2004. Secondary flow in sharp open-channel bends. Journal of Fluid Mechanics 498: 353-380.
Bolla Pittaluga M, Nobile G, Seminara G. 2009. A non linear model for river meandering. Water Resources Research 45: W04432.
Perucca E, Camporeale C, Ridolfi L. 2006. Influence of river meandering dynamics on riparian vegetation pattern formation. Journal of Geophysical Research 111: G01001.
Seminara G, Solari L. 1998. Finite amplitude bed deformations in totally and partially transporting wide channel bends. Water Resources Research 34: 1585-1598.
Federici B, Paola C. 2003. Dynamics of channel bifurcations in non cohesive sediments. Water Resources Research 39: 1162.
Tubino M. 1991. Growth of alternate bars in unsteady flow. Water Resources Research 27: 37-52.
2009; 45
2002; 38
1984; 20
1983; 19
1995; 33
2008
1978; 3
2003; 39
1989b
1989a
2004
1992
1974; 100
2009; 114
1936
1979
2006; 111
1978
2006; 554
1998; 25
1984; 110
1991; 27
2006; 42
1994; 106
2004; 498
1980; 18
1981; 112
1960; 68
1965
1985; 157
1970; 41
2001; 37
2001; 438
2007; 43
2007; 45
1975; 83
1998; 34
1967
1989
2009; 106
1966
e_1_2_8_28_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
Parker G (e_1_2_8_29_1) 1984; 110
Lagasse PF (e_1_2_8_23_1) 2004
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
Kobayashi K (e_1_2_8_22_1) 2008
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_45_1
e_1_2_8_44_1
Langbein WB (e_1_2_8_24_1) 1966
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
Johannesson H (e_1_2_8_20_1) 1989
e_1_2_8_35_1
Graf WL (e_1_2_8_14_1) 1979
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_37_1
Howard A (e_1_2_8_16_1) 1992
Lumley JL (e_1_2_8_27_1) 1978
Engelund F (e_1_2_8_11_1) 1967
e_1_2_8_32_1
e_1_2_8_31_1
Engelund F (e_1_2_8_10_1) 1974; 100
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – reference: Seminara G, Solari L. 1998. Finite amplitude bed deformations in totally and partially transporting wide channel bends. Water Resources Research 34: 1585-1598.
– reference: Seminara G. 2006. Meanders. Journal of Fluid Mechanics 554: 271-297.
– reference: Pizzuto JE. 1994. Channel adjustments to changing discharges, Powder River, Montana. Geological Society of America Bulletin 106: 1494-1501.
– reference: Blanckaert K, de Vriend HJ. 2004. Secondary flow in sharp open-channel bends. Journal of Fluid Mechanics 498: 353-380.
– reference: Kalkwijk J, de Vriend H. 1980. Computation of the flow in shallow river bends. Journal of Hydraulic Research 18: 327-342.
– reference: Bolla Pittaluga M, Nobile G, Seminara G. 2009. A non linear model for river meandering. Water Resources Research 45: W04432.
– reference: Ikeda S, Parker G, Sawai K. 1981. Bend theory of river meanders. Part 1. Linear development. Journal of Fluid Mechanics 112: 363-377.
– reference: Talmon AM, Struiskma N, van Mierlo MCLM. 1995. Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slopes. Journal of Hydraulic Research 33: 495-517.
– reference: Langbein WB, Leopold LB. 1966. River Meanders: Theory of Minimum Variance. Professional Paper 422-H, US Geological Survey: Reston, VA.
– reference: Tubino M. 1991. Growth of alternate bars in unsteady flow. Water Resources Research 27: 37-52.
– reference: Wolman MG, Miller JP. 1960. Magnitude and frequency of forces in geomorphic processes. Journal of Geology 68: 54-74.
– reference: Perucca E, Camporeale C, Ridolfi L. 2007. Significance of the riparian vegetation dynamics on meandering river morphodynamics. Water Resources Research 43: W03430.
– reference: Sun T, Meakin P, Jøssang T. 2001. A computer model for meandering rivers with multiple bed load sediment sizes 1. Theory. Water Resources Research 37: 2227-2241.
– reference: Wolman MG, Gerson R. 1978. Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surface Processes and Landforms 3: 189-208.
– reference: Lanzoni S, Siviglia A, Frascati A, Seminara G. 2006. Long waves in erodible channels and morphodynamic influence. Water Resources Research 42: W06D17.
– reference: Zolezzi G, Seminara G. 2001. Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening. Journal of Fluid Mechanics 438: 183-211.
– reference: Smith JD, McLean SR. 1984. A model for flow in meandering streams. Water Resources Research 20: 1301-1315.
– reference: Hooke RB. 1975. Distribution of sediment transport and shear stress in a meander bend. Journal of Geology 83: 543-565.
– reference: Lanzoni S, Seminara G. 2006. On the nature of meander instability. Journal of Geophysical Research 111: F04006.
– reference: Seminara G, Zolezzi G, Tubino M, Zardi D. 2001. Downstream and upstream influence in river meandering. Part 2. Planimetric development. Journal of Fluid Mechanics 438: 213-230.
– reference: Batchelor GK. 1970. The stress system in a suspension of force-free particles. Journal of Fluid Mechanics 41: 545-570.
– reference: Blondeaux P, Seminara G. 1985. A unified bar-bend theory of river meanders. Journal of Fluid Mechanics 157: 449-470.
– reference: Smith CE. 1998. Modeling high sinuosity meanders in a small flume. Geomorphology 25: 19-30.
– reference: Dietrich WE, Smith JD. 1983. Influence of the point bar on flow through curved channels. Water Resources Research 19: 1173-1192.
– reference: Camporeale C, Perona P, Porporato A, Ridolfi L. 2007. Hierarchy of models for meandering rivers and related morphodynamic processes. Reviews of Geophysics 45: RG1001.
– reference: Lagasse PF, Spitz WJ, Zevenbergen LW, Zachmann DW. 2004. Handbook for Predicting Stream Meander Migration. NCHRP Report 533, TRB, National Research Council: Washington, DC.
– reference: Ikeda S, Parker G (eds). 1989. River Meandering. Water Research Monograph 12, American Geophysical Union: Washington, DC.
– reference: Perucca E, Camporeale C, Ridolfi L. 2006. Influence of river meandering dynamics on riparian vegetation pattern formation. Journal of Geophysical Research 111: G01001.
– reference: Frascati A, Lanzoni S. 2009. Morphodynamic regime and long term evolution of meandering rivers. Journal of Geophysics Research 114: F02002.
– reference: Federici B, Paola C. 2003. Dynamics of channel bifurcations in non cohesive sediments. Water Resources Research 39: 1162.
– reference: Parker G. 1984. Lateral bedload on side slopes. Discussion, ASCE 110(HY2): 197-199.
– reference: Braudrick CA, Dietrich WE, Leverich GT, Sklar LS. 2009. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers. Proceedings of the National Academy of Sciences USA 106: 16936-16941.
– reference: Engelund F. 1974. Flow and bed topography in channel bends. Journal of the Hydraulics Division, ASCE 100: 1631-1648.
– reference: Engelund F, Hansen E. 1967. A Monograph on Sediment Transport in Alluvial Streams. Danish Technical Press: Copenhagen.
– reference: Seminara G, Solari L, Parker G. 2002. Bed load at low Shields stress on arbitrarily sloping beds: failure of the Bagnold hypothesis. Water Resources Research 38: 1249.
– start-page: 321
  year: 1989
  end-page: 377
– start-page: 379
  year: 1989b
  end-page: 415
– volume: 68
  start-page: 54
  year: 1960
  end-page: 74
  article-title: Magnitude and frequency of forces in geomorphic processes
  publication-title: Journal of Geology
– volume: 41
  start-page: 545
  year: 1970
  end-page: 570
  article-title: The stress system in a suspension of force‐free particles
  publication-title: Journal of Fluid Mechanics
– volume: 111
  start-page: G01001
  year: 2006
  article-title: Influence of river meandering dynamics on riparian vegetation pattern formation
  publication-title: Journal of Geophysical Research
– volume: 83
  start-page: 543
  year: 1975
  end-page: 565
  article-title: Distribution of sediment transport and shear stress in a meander bend
  publication-title: Journal of Geology
– year: 1966
– volume: 111
  start-page: F04006
  year: 2006
  article-title: On the nature of meander instability
  publication-title: Journal of Geophysical Research
– volume: 106
  start-page: 1494
  year: 1994
  end-page: 1501
  article-title: Channel adjustments to changing discharges, Powder River, Montana
  publication-title: Geological Society of America Bulletin
– volume: 19
  start-page: 1173
  year: 1983
  end-page: 1192
  article-title: Influence of the point bar on flow through curved channels
  publication-title: Water Resources Research
– year: 1989
– volume: 157
  start-page: 449
  year: 1985
  end-page: 470
  article-title: A unified bar‐bend theory of river meanders
  publication-title: Journal of Fluid Mechanics
– volume: 33
  start-page: 495
  year: 1995
  end-page: 517
  article-title: Laboratory measurements of the direction of sediment transport on transverse alluvial‐bed slopes
  publication-title: Journal of Hydraulic Research
– volume: 20
  start-page: 1301
  year: 1984
  end-page: 1315
  article-title: A model for flow in meandering streams
  publication-title: Water Resources Research
– volume: 25
  start-page: 19
  year: 1998
  end-page: 30
  article-title: Modeling high sinuosity meanders in a small flume
  publication-title: Geomorphology
– volume: 438
  start-page: 183
  year: 2001
  end-page: 211
  article-title: Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening
  publication-title: Journal of Fluid Mechanics
– volume: 554
  start-page: 271
  year: 2006
  end-page: 297
  article-title: Meanders
  publication-title: Journal of Fluid Mechanics
– volume: 38
  start-page: 1249
  year: 2002
  article-title: Bed load at low Shields stress on arbitrarily sloping beds: failure of the Bagnold hypothesis
  publication-title: Water Resources Research
– start-page: 267
  year: 2004
  end-page: 282
– volume: 114
  start-page: F02002
  year: 2009
  article-title: Morphodynamic regime and long term evolution of meandering rivers
  publication-title: Journal of Geophysics Research
– start-page: 1289
  year: 2008
  end-page: 1296
– volume: 43
  start-page: W03430
  year: 2007
  article-title: Significance of the riparian vegetation dynamics on meandering river morphodynamics
  publication-title: Water Resources Research
– volume: 110
  start-page: 197
  year: 1984
  end-page: 199
  article-title: Lateral bedload on side slopes
  publication-title: Discussion, ASCE
– volume: 18
  start-page: 327
  year: 1980
  end-page: 342
  article-title: Computation of the flow in shallow river bends
  publication-title: Journal of Hydraulic Research
– volume: 438
  start-page: 213
  year: 2001
  end-page: 230
  article-title: Downstream and upstream influence in river meandering. Part 2. Planimetric development
  publication-title: Journal of Fluid Mechanics
– year: 1936
– volume: 42
  start-page: W06D17
  year: 2006
  article-title: Long waves in erodible channels and morphodynamic influence
  publication-title: Water Resources Research
– volume: 34
  start-page: 1585
  year: 1998
  end-page: 1598
  article-title: Finite amplitude bed deformations in totally and partially transporting wide channel bends
  publication-title: Water Resources Research
– volume: 27
  start-page: 37
  year: 1991
  end-page: 52
  article-title: Growth of alternate bars in unsteady flow
  publication-title: Water Resources Research
– year: 1965
– start-page: 289
  year: 1978
  end-page: 324
– year: 1967
– volume: 45
  start-page: W04432
  year: 2009
  article-title: A non linear model for river meandering
  publication-title: Water Resources Research
– volume: 37
  start-page: 2227
  year: 2001
  end-page: 2241
  article-title: A computer model for meandering rivers with multiple bed load sediment sizes 1. Theory
  publication-title: Water Resources Research
– volume: 106
  start-page: 16936
  year: 2009
  end-page: 16941
  article-title: Experimental evidence for the conditions necessary to sustain meandering in coarse‐bedded rivers
  publication-title: Proceedings of the National Academy of Sciences USA
– year: 2004
– volume: 3
  start-page: 189
  year: 1978
  end-page: 208
  article-title: Relative scales of time and effectiveness of climate in watershed geomorphology
  publication-title: Earth Surface Processes and Landforms
– start-page: 15
  year: 1992
  end-page: 62
– volume: 498
  start-page: 353
  year: 2004
  end-page: 380
  article-title: Secondary flow in sharp open‐channel bends
  publication-title: Journal of Fluid Mechanics
– start-page: 181
  year: 1989a
  end-page: 213
– volume: 100
  start-page: 1631
  year: 1974
  end-page: 1648
  article-title: Flow and bed topography in channel bends
  publication-title: Journal of the Hydraulics Division, ASCE
– volume: 112
  start-page: 363
  year: 1981
  end-page: 377
  article-title: Bend theory of river meanders. Part 1. Linear development
  publication-title: Journal of Fluid Mechanics
– volume: 39
  start-page: 1162
  year: 2003
  article-title: Dynamics of channel bifurcations in non cohesive sediments
  publication-title: Water Resources Research
– volume: 45
  start-page: RG1001
  year: 2007
  article-title: Hierarchy of models for meandering rivers and related morphodynamic processes
  publication-title: Reviews of Geophysics
– start-page: 13
  year: 1979
  end-page: 32
– ident: e_1_2_8_21_1
  doi: 10.1080/00221688009499539
– ident: e_1_2_8_32_1
  doi: 10.1130/0016-7606(1994)106<1494:CATCDP>2.3.CO;2
– ident: e_1_2_8_43_1
  doi: 10.1029/008WSA19
– ident: e_1_2_8_3_1
  doi: 10.1017/S0022112003006979
– ident: e_1_2_8_26_1
  doi: 10.1029/2006WR004916
– ident: e_1_2_8_37_1
– ident: e_1_2_8_39_1
  doi: 10.1029/WR020i009p01301
– ident: e_1_2_8_36_1
  doi: 10.1029/2001WR000681
– ident: e_1_2_8_33_1
  doi: 10.1017/S0022112006008925
– ident: e_1_2_8_34_1
  doi: 10.1029/98WR00372
– start-page: 15
  volume-title: Floodplain Processes
  year: 1992
  ident: e_1_2_8_16_1
– ident: e_1_2_8_46_1
  doi: 10.1017/S002211200100427X
– start-page: 13
  volume-title: Adjustments of the Fluvial System
  year: 1979
  ident: e_1_2_8_14_1
– ident: e_1_2_8_5_1
  doi: 10.1029/2008WR007298
– ident: e_1_2_8_12_1
  doi: 10.1029/2002WR001434
– start-page: 379
  volume-title: River Meandering
  year: 1989
  ident: e_1_2_8_20_1
– ident: e_1_2_8_30_1
  doi: 10.1029/2005JG000073
– volume-title: Handbook for Predicting Stream Meander Migration
  year: 2004
  ident: e_1_2_8_23_1
– ident: e_1_2_8_40_1
  doi: 10.1029/2000WR900396
– volume: 110
  start-page: 197
  year: 1984
  ident: e_1_2_8_29_1
  article-title: Lateral bedload on side slopes
  publication-title: Discussion, ASCE
– ident: e_1_2_8_38_1
  doi: 10.1016/S0169-555X(98)00029-4
– ident: e_1_2_8_45_1
  doi: 10.1086/626637
– ident: e_1_2_8_7_1
  doi: 10.1029/2005RG000185
– ident: e_1_2_8_35_1
  doi: 10.1017/S0022112001004281
– volume-title: River Meanders: Theory of Minimum Variance
  year: 1966
  ident: e_1_2_8_24_1
– volume: 100
  start-page: 1631
  year: 1974
  ident: e_1_2_8_10_1
  article-title: Flow and bed topography in channel bends
  publication-title: Journal of the Hydraulics Division, ASCE
  doi: 10.1061/JYCEAJ.0004109
– ident: e_1_2_8_18_1
  doi: 10.1017/S0022112081000451
– ident: e_1_2_8_9_1
  doi: 10.1029/WR019i005p01173
– ident: e_1_2_8_41_1
  doi: 10.1080/00221689509498657
– volume-title: A Monograph on Sediment Transport in Alluvial Streams
  year: 1967
  ident: e_1_2_8_11_1
– start-page: 1289
  volume-title: Proceedings of River Flow 2008
  year: 2008
  ident: e_1_2_8_22_1
– ident: e_1_2_8_42_1
  doi: 10.1029/90WR01699
– ident: e_1_2_8_15_1
  doi: 10.1086/628140
– ident: e_1_2_8_8_1
– ident: e_1_2_8_17_1
  doi: 10.1029/WM012
– ident: e_1_2_8_19_1
  doi: 10.1029/WM012p0181
– ident: e_1_2_8_44_1
  doi: 10.1002/esp.3290030207
– ident: e_1_2_8_4_1
  doi: 10.1017/S0022112085002440
– ident: e_1_2_8_2_1
  doi: 10.1017/S0022112070000745
– ident: e_1_2_8_31_1
  doi: 10.1029/2006WR005234
– start-page: 289
  volume-title: Topics in Applied Physics
  year: 1978
  ident: e_1_2_8_27_1
– ident: e_1_2_8_28_1
  doi: 10.1029/WM012p0321
– ident: e_1_2_8_13_1
  doi: 10.1029/2008JF001101
– ident: e_1_2_8_25_1
  doi: 10.1029/2005JF000416
– ident: e_1_2_8_6_1
  doi: 10.1073/pnas.0909417106
SSID ssj0011489
Score 2.140584
Snippet River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are nonlinearity and...
River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are nonlinearity and unsteadiness...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20
SubjectTerms Assessments
Bends
Bgi / Prodig
Curved
Dynamical systems
Floods
Fluvial forms and processes
Freshwater
Geomorphology
modelling
morphodynamics
Nonlinearity
Physical geography
river meandering
Rivers
sediment transport
Topography
Title Nonlinearity and unsteadiness in river meandering: a review of progress in theory and modelling
URI https://api.istex.fr/ark:/67375/WNG-3ZFZTSC3-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fesp.2089
https://www.proquest.com/docview/1770349420
https://www.proquest.com/docview/896177166
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5KpehLtVXxaC0riD6lzUk2l-2blJ6WUg9iWyz1YdkrSm2OnAtYf70zu0n0SAsiBPIySTab2d1vNvN9A_Ba1NqUOveJMCJNuFNZIpSoE-2cKrnCmCIQad-Py6NzfnxRXLRZlcSFifoQ_YYbjYwwX9MAV3q2-1s01M1IbrIm7h6lahEe-tgrRxHKF5EpXSUYs1ed7mya7XYXLq1E96hTf1BmpJph5_hY1WIJdv4JXsPqM3oIn7t2x6STq53FXO-Yn39JOv7fiz2C9RaUsnfRizZgxTWbcL-tj_7lZhPWDkMB4JvHIMfxEYqK3jHVWLZogqOE9Hn2tWFTyvRg1y7QZnBh3GOKRYIMm3gW8sFay0CijDcJBXmIGf8EzkcHZ_tHSVukIVEcZ7uksNZ7hAGOC5MJlaosFboww9Rj6KiMddym1giq8aN9ESrKGF9bayqvEUro_CmsNpPGPQNWm6Li3JfcWsGLoVF5qRVOEjoflvgeYgBvuw8mTatgToU0vsmovZxJ7DpJXTeAV73l96jacYvNm_DNewM1vaIst6qQn8aHMr8cXZ6d7ufyZADbS07RX0DMGoz2Knxa5yUSByf9cVGNmyxmclhVQf8nSwfA7rCpBYJIjFpLbFBwiztbLA9OP9D5-b8avoAHcQucji1YnU8X7iViqLneDqPlFytDGkI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qS6lffLSK56ONUOynbfd2s4_oJ6m9nno9SnvFUgohT5TqntwDrH-9mWR39aQFERb2y2TzmiQz2ZnfD2CblVLlMrURUyyOqBFJxAQrI2mMyKlwPoVPpD0a5v0z-uE8O1-CN00uTMCHaC_ccGX4_RoXOF5I7_1GDTVTxJss2R1YQUJvpC94d9JiR6Gdz0KudBE5r71okGfjZK8puXAWreCw_sDYSDF1w2MDr8WC4fmn-erPn959uGxaHsJOrnbnM7mrfv4F6vifXXsA92q7lLwNivQQlky1Dms1Rfrn63VYPfQcwNcbwIehDoG8d0RUmswrrys-gp58qcgEgz3IN-MzZ9zZ-JoIEnJkyNgSHxJWS_o8yvARz8mDyfGP4Kx3MNrvRzVPQySo2_CiTGtrnSVgKFMJE7FIYiYz1Y2t8x6F0obqWCuGND_SZp5URtlSa1VY6awJmT6G5WpcmSdASpUVlNqcas1o1lUizaVw-4RMu7nrB-vATjNjXNUg5sil8ZUH-OWEu6HjOHQdeNlKfg_AHTfIvPKT3gqIyRUGuhUZ_zQ85OlF72J0up_yQQc2F7SiLYDJNc7hK1xtjZpwtz7xp4uozHg-5d2i8BBASdwBcotMyZwd6RzX3DXI68WtLeYHp8f4fvqvgluw1h8dDfjg_fDjM7gbbsTxeQ7Ls8ncvHAm1Uxu-qXzC6tpHlw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BK44XjgJiOYqREDylzSbOYd5Q6bZAWVW0FVV5sHwKVMhWe0iUX8-MnQQWUQkhRcrLZOM4M_Y32ZnvA3gmam1KnftEGJEm3KksEUrUiXZOlVxhThEaad-Py90j_va4OG6rKqkXJvJD9B_cKDLCek0Bfmb95i_SUDcjuslaXIZVXmKsECD60FNHEcwXsVW6SjBprzri2TTb7K5c2opWaVa_U2mkmuHs-ChrsYQ7f0evYfsZ3YRP3cBj1cnpxmKuN8yPPzgd_-_JbsGNFpWyV9GNbsMl16zBtVYg_fP5GlzZCQrA53dAjuMtFKneMdVYtmiCp4T6efalYVMq9WDfXOibwZ3xJVMsdsiwiWehIKy1DF2U8UeCIg-1xt-Fo9H24dZu0qo0JIrjcpcU1nqPOMBxYTKhUpWlQhdmmHrMHZWxjtvUGkEiP9oXQVLG-NpaU3mNWELn92ClmTTuPrDaFBXnvuTWCl4MjcpLrXCV0PmwxOcQA3jRvTBpWgpzUtL4KiP5ciZx6iRN3QCe9pZnkbbjLzbPwzvvDdT0lMrcqkJ-HO_I_GR0cniwlcu9AawvOUV_AbXWYLpX4d06L5EYnfSXi2rcZDGTw6oKBEBZOgB2gU0tEEVi2lrigIJbXDhiuX2wT-cH_2r4BK7uvx7JvTfjdw_hevwcTscjWJlPF-4x4qm5Xg-B8xNhtB0U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinearity+and+unsteadiness+in+river+meandering+%3A+a+review+of+progress+in+theory+and+modelling&rft.jtitle=Earth+surface+processes+and+landforms&rft.au=BOLLA+PITTALUGA%2C+M&rft.au=SEMINARA%2C+G&rft.date=2011&rft.pub=Wiley&rft.issn=0197-9337&rft.eissn=1096-9837&rft.volume=36&rft.issue=1&rft.spage=20&rft.epage=38&rft_id=info:doi/10.1002%2Fesp.2089&rft.externalDBID=n%2Fa&rft.externalDocID=24247537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-9337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-9337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-9337&client=summon