Nonlinearity and unsteadiness in river meandering: a review of progress in theory and modelling
River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are nonlinearity and unsteadiness. Linear steady models have played an important role in the development of the subject but suffer from a number of limits. Moreover, rivers a...
Saved in:
Published in | Earth surface processes and landforms Vol. 36; no. 1; pp. 20 - 38 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.01.2011
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0197-9337 1096-9837 1096-9837 |
DOI | 10.1002/esp.2089 |
Cover
Loading…
Abstract | River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are nonlinearity and unsteadiness. Linear steady models have played an important role in the development of the subject but suffer from a number of limits. Moreover, rivers are not steady systems; rather their states respond to hydrologic forcing subject to seasonal oscillations, punctuated by the occurrence of flood events. We first derive a classification of river bends based on a systematic assessment of the various physical mechanisms affecting their morphodynamic equilibrium and their evolution in response to variations of hydrodynamic forcing. Using the database by Lagasse et al. (2004) we also show that natural meanders are typically mildly curved and long, i.e. such that both the centrifugal and the topographic secondary flows are weak, but they are almost invariably nonlinear. We then review some recent developments which allow us to treat analytically the flow and bed topography of mildly curved and long nonlinear bends subject to steady forcing, taking advantage of the fact that flow and bed topography in mildly curved long bends are slowly varying. Results show that nonlinearity has a number of consequences: most notably damping of the morphodynamic response and upstream shifting of the location of the nonlinear peak of the flow speed. Next we extend the latter model to the case of unsteady forcing. Results are found to depend crucially on the ratio between the flood duration and a morphodynamic timescale. It turns out that, in a channel subject to a repeated sequence of floods, the system reaches a dynamic equilibrium. We conclude the paper discussing how the present assessment relates to the debate on meander modelling of the late 1980s and suggesting what we see as promising lines of future developments. |
---|---|
AbstractList | River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are
nonlinearity
and
unsteadiness
. Linear steady models have played an important role in the development of the subject but suffer from a number of limits. Moreover, rivers are not steady systems; rather their states respond to hydrologic forcing subject to seasonal oscillations, punctuated by the occurrence of flood events. We first derive a classification of river bends based on a systematic assessment of the various physical mechanisms affecting their morphodynamic equilibrium and their evolution in response to variations of hydrodynamic forcing. Using the database by Lagasse
et al
. (
2004
) we also show that natural meanders are typically mildly curved and long, i.e. such that both the centrifugal and the topographic secondary flows are weak, but they are almost invariably nonlinear. We then review some recent developments which allow us to treat analytically the flow and bed topography of mildly curved and long nonlinear bends subject to steady forcing, taking advantage of the fact that flow and bed topography in mildly curved long bends are slowly varying. Results show that nonlinearity has a number of consequences: most notably damping of the morphodynamic response and upstream shifting of the location of the nonlinear peak of the flow speed. Next we extend the latter model to the case of unsteady forcing. Results are found to depend crucially on the ratio between the flood duration and a morphodynamic timescale. It turns out that, in a channel subject to a repeated sequence of floods, the system reaches a dynamic equilibrium. We conclude the paper discussing how the present assessment relates to the debate on meander modelling of the late 1980s and suggesting what we see as promising lines of future developments. River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are nonlinearity and unsteadiness. Linear steady models have played an important role in the development of the subject but suffer from a number of limits. Moreover, rivers are not steady systems; rather their states respond to hydrologic forcing subject to seasonal oscillations, punctuated by the occurrence of flood events. We first derive a classification of river bends based on a systematic assessment of the various physical mechanisms affecting their morphodynamic equilibrium and their evolution in response to variations of hydrodynamic forcing. Using the database by Lagasse etal. (2004) we also show that natural meanders are typically mildly curved and long, i.e. such that both the centrifugal and the topographic secondary flows are weak, but they are almost invariably nonlinear. We then review some recent developments which allow us to treat analytically the flow and bed topography of mildly curved and long nonlinear bends subject to steady forcing, taking advantage of the fact that flow and bed topography in mildly curved long bends are slowly varying. Results show that nonlinearity has a number of consequences: most notably damping of the morphodynamic response and upstream shifting of the location of the nonlinear peak of the flow speed. Next we extend the latter model to the case of unsteady forcing. Results are found to depend crucially on the ratio between the flood duration and a morphodynamic timescale. It turns out that, in a channel subject to a repeated sequence of floods, the system reaches a dynamic equilibrium. We conclude the paper discussing how the present assessment relates to the debate on meander modelling of the late 1980s and suggesting what we see as promising lines of future developments. River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are nonlinearity and unsteadiness. Linear steady models have played an important role in the development of the subject but suffer from a number of limits. Moreover, rivers are not steady systems; rather their states respond to hydrologic forcing subject to seasonal oscillations, punctuated by the occurrence of flood events. We first derive a classification of river bends based on a systematic assessment of the various physical mechanisms affecting their morphodynamic equilibrium and their evolution in response to variations of hydrodynamic forcing. Using the database by Lagasse et al. (2004) we also show that natural meanders are typically mildly curved and long, i.e. such that both the centrifugal and the topographic secondary flows are weak, but they are almost invariably nonlinear. We then review some recent developments which allow us to treat analytically the flow and bed topography of mildly curved and long nonlinear bends subject to steady forcing, taking advantage of the fact that flow and bed topography in mildly curved long bends are slowly varying. Results show that nonlinearity has a number of consequences: most notably damping of the morphodynamic response and upstream shifting of the location of the nonlinear peak of the flow speed. Next we extend the latter model to the case of unsteady forcing. Results are found to depend crucially on the ratio between the flood duration and a morphodynamic timescale. It turns out that, in a channel subject to a repeated sequence of floods, the system reaches a dynamic equilibrium. We conclude the paper discussing how the present assessment relates to the debate on meander modelling of the late 1980s and suggesting what we see as promising lines of future developments. |
Author | Pittaluga, Michele Bolla Seminara, Giovanni |
Author_xml | – sequence: 1 givenname: Michele Bolla surname: Pittaluga fullname: Pittaluga, Michele Bolla organization: DICAT, Department of Civil, Environmental and Architectural Engineering, University of Genoa, Italy – sequence: 2 givenname: Giovanni surname: Seminara fullname: Seminara, Giovanni email: sem@dicat.unige.it organization: DICAT, Department of Civil, Environmental and Architectural Engineering, University of Genoa, Italy |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24247537$$DView record in Pascal Francis |
BookMark | eNp90V1rFDEUBuAgFdxWwZ-QG9Gb2eZrJhPvZGlrYalCK0JvQjY5WaOzyZrMtu6_b8oulYrtVeDkOS8H3kN0EFMEhN5SMqWEsGMo6ykjvXqBJpSorlE9lwdoQqiSjeJcvkKHpfwkhFLRqwnSFykOIYLJYdxiEx3exDKCcXVWCg4R53ADGa-g_kEOcfkRG5zhJsAtTh6vc1rmvRx_QMq7kFVyMNTc5Wv00puhwJv9e4S-nZ5czT438y9n57NP88YIRlXTOuc9ExSEskwZYhhRi9ZS4ntBjHUgHHFWqY7JhW9JS9vW-t45K_2io3zBj9D7XW496PcGyqhXodh6g4mQNkX3qqNS0q6r8sOzsjLChRKMVPpuT02xZvDZRBuKXuewMnmrmWBCtlz-jbQ5lZLBPxBK9H0rurai71updPoPtWE0Y0hxzCYM_1todgu3YYDtk8H65PLrYx9qjX8evMm_dCe5bPX3izPNr0-vry5nXM_5HRx-r6Q |
CODEN | ESPLDB |
CitedBy_id | crossref_primary_10_1002_jgrf_20084 crossref_primary_10_1002_esp_2185 crossref_primary_10_1063_5_0010038 crossref_primary_10_1016_j_advwatres_2017_10_033 crossref_primary_10_1134_S0097807819040134 crossref_primary_10_1029_2024WR037583 crossref_primary_10_1063_1_5012596 crossref_primary_10_1016_j_earscirev_2024_104769 crossref_primary_10_1016_j_geomorph_2017_08_008 crossref_primary_10_1029_2011JF001979 crossref_primary_10_1002_2013JF002812 crossref_primary_10_1002_rra_3461 crossref_primary_10_1080_09715010_2024_2388231 crossref_primary_10_1130_G38740_1 crossref_primary_10_1029_2021RG000761 crossref_primary_10_1061__ASCE_HY_1943_7900_0001324 crossref_primary_10_3390_w10040518 crossref_primary_10_1007_s11442_020_1758_z crossref_primary_10_1029_2018WR023639 crossref_primary_10_1016_j_geomorph_2012_04_010 crossref_primary_10_1002_esp_3303 crossref_primary_10_1016_j_quaint_2020_01_012 crossref_primary_10_2166_hydro_2024_171 crossref_primary_10_1038_ngeo2282 crossref_primary_10_1111_jfr3_12704 crossref_primary_10_3390_hydrology9090160 crossref_primary_10_1144_SP540_2022_138 crossref_primary_10_1016_j_jher_2023_08_002 crossref_primary_10_1002_2017WR020726 crossref_primary_10_1016_j_jher_2016_01_004 crossref_primary_10_1002_2016JF003929 crossref_primary_10_1016_j_jhydrol_2022_127604 crossref_primary_10_1016_j_geomorph_2024_109427 crossref_primary_10_1029_2024GL110650 crossref_primary_10_1029_2011WR011117 crossref_primary_10_1002_2014JF003252 crossref_primary_10_1016_j_advwatres_2015_11_017 |
Cites_doi | 10.1080/00221688009499539 10.1130/0016-7606(1994)106<1494:CATCDP>2.3.CO;2 10.1029/008WSA19 10.1017/S0022112003006979 10.1029/2006WR004916 10.1029/WR020i009p01301 10.1029/2001WR000681 10.1017/S0022112006008925 10.1029/98WR00372 10.1017/S002211200100427X 10.1029/2008WR007298 10.1029/2002WR001434 10.1029/2005JG000073 10.1029/2000WR900396 10.1016/S0169-555X(98)00029-4 10.1086/626637 10.1029/2005RG000185 10.1017/S0022112001004281 10.1061/JYCEAJ.0004109 10.1017/S0022112081000451 10.1029/WR019i005p01173 10.1080/00221689509498657 10.1029/90WR01699 10.1086/628140 10.1029/WM012 10.1029/WM012p0181 10.1002/esp.3290030207 10.1017/S0022112085002440 10.1017/S0022112070000745 10.1029/2006WR005234 10.1029/WM012p0321 10.1029/2008JF001101 10.1029/2005JF000416 10.1073/pnas.0909417106 |
ContentType | Journal Article |
Copyright | Copyright © 2010 John Wiley & Sons, Ltd. Tous droits réservés © Prodig - Bibliographie Géographique Internationale (BGI), 2011 |
Copyright_xml | – notice: Copyright © 2010 John Wiley & Sons, Ltd. – notice: Tous droits réservés © Prodig - Bibliographie Géographique Internationale (BGI), 2011 |
DBID | BSCLL AAYXX CITATION IQODW 8FD FR3 KR7 7QH 7UA C1K F1W H97 L.G |
DOI | 10.1002/esp.2089 |
DatabaseName | Istex CrossRef Pascal-Francis Technology Research Database Engineering Research Database Civil Engineering Abstracts Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1096-9837 |
EndPage | 38 |
ExternalDocumentID | 24247537 10_1002_esp_2089 ESP2089 ark_67375_WNG_3ZFZTSC3_L |
Genre | miscellaneous |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TEORI UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XKC XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG CITATION 8W4 AAPBV ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS IPNFZ IQODW 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 KR7 7QH 7UA C1K F1W H97 L.G |
ID | FETCH-LOGICAL-a4219-5ddff241e49c29a0a209b5c10f840acde4d0dc99627bf505155cf8ddc7fb613b3 |
IEDL.DBID | DR2 |
ISSN | 0197-9337 1096-9837 |
IngestDate | Fri Jul 11 09:57:59 EDT 2025 Fri Jul 11 01:03:02 EDT 2025 Fri Nov 25 06:05:14 EST 2022 Thu Apr 24 23:08:54 EDT 2025 Tue Jul 01 02:51:55 EDT 2025 Wed Jan 22 16:42:26 EST 2025 Wed Oct 30 09:51:34 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Topography Classification Channel geometry Model Stream River bed Fluvial dynamics Bibliography Meander Sediment transport |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4219-5ddff241e49c29a0a209b5c10f840acde4d0dc99627bf505155cf8ddc7fb613b3 |
Notes | istex:1A410EAB17EF26E315B38A16D9B5D08C4F7A06FA ark:/67375/WNG-3ZFZTSC3-L ArticleID:ESP2089 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1770349420 |
PQPubID | 23500 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_896177166 proquest_miscellaneous_1770349420 pascalfrancis_primary_24247537 crossref_primary_10_1002_esp_2089 crossref_citationtrail_10_1002_esp_2089 wiley_primary_10_1002_esp_2089_ESP2089 istex_primary_ark_67375_WNG_3ZFZTSC3_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-01 January 2011 2011-01-00 2011 20110101 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
PublicationTitle | Earth surface processes and landforms |
PublicationTitleAlternate | Earth Surf. Process. Landforms |
PublicationYear | 2011 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Blondeaux P, Seminara G. 1985. A unified bar-bend theory of river meanders. Journal of Fluid Mechanics 157: 449-470. Lanzoni S, Siviglia A, Frascati A, Seminara G. 2006. Long waves in erodible channels and morphodynamic influence. Water Resources Research 42: W06D17. Seminara G. 2006. Meanders. Journal of Fluid Mechanics 554: 271-297. Pizzuto JE. 1994. Channel adjustments to changing discharges, Powder River, Montana. Geological Society of America Bulletin 106: 1494-1501. Wolman MG, Miller JP. 1960. Magnitude and frequency of forces in geomorphic processes. Journal of Geology 68: 54-74. Talmon AM, Struiskma N, van Mierlo MCLM. 1995. Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slopes. Journal of Hydraulic Research 33: 495-517. Ikeda S, Parker G, Sawai K. 1981. Bend theory of river meanders. Part 1. Linear development. Journal of Fluid Mechanics 112: 363-377. Zolezzi G, Seminara G. 2001. Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening. Journal of Fluid Mechanics 438: 183-211. Smith JD, McLean SR. 1984. A model for flow in meandering streams. Water Resources Research 20: 1301-1315. Lagasse PF, Spitz WJ, Zevenbergen LW, Zachmann DW. 2004. Handbook for Predicting Stream Meander Migration. NCHRP Report 533, TRB, National Research Council: Washington, DC. Langbein WB, Leopold LB. 1966. River Meanders: Theory of Minimum Variance. Professional Paper 422-H, US Geological Survey: Reston, VA. Parker G. 1984. Lateral bedload on side slopes. Discussion, ASCE 110(HY2): 197-199. Camporeale C, Perona P, Porporato A, Ridolfi L. 2007. Hierarchy of models for meandering rivers and related morphodynamic processes. Reviews of Geophysics 45: RG1001. Kalkwijk J, de Vriend H. 1980. Computation of the flow in shallow river bends. Journal of Hydraulic Research 18: 327-342. Braudrick CA, Dietrich WE, Leverich GT, Sklar LS. 2009. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers. Proceedings of the National Academy of Sciences USA 106: 16936-16941. Sun T, Meakin P, Jøssang T. 2001. A computer model for meandering rivers with multiple bed load sediment sizes 1. Theory. Water Resources Research 37: 2227-2241. Seminara G, Zolezzi G, Tubino M, Zardi D. 2001. Downstream and upstream influence in river meandering. Part 2. Planimetric development. Journal of Fluid Mechanics 438: 213-230. Perucca E, Camporeale C, Ridolfi L. 2007. Significance of the riparian vegetation dynamics on meandering river morphodynamics. Water Resources Research 43: W03430. Smith CE. 1998. Modeling high sinuosity meanders in a small flume. Geomorphology 25: 19-30. Engelund F, Hansen E. 1967. A Monograph on Sediment Transport in Alluvial Streams. Danish Technical Press: Copenhagen. Lanzoni S, Seminara G. 2006. On the nature of meander instability. Journal of Geophysical Research 111: F04006. Seminara G, Solari L, Parker G. 2002. Bed load at low Shields stress on arbitrarily sloping beds: failure of the Bagnold hypothesis. Water Resources Research 38: 1249. Frascati A, Lanzoni S. 2009. Morphodynamic regime and long term evolution of meandering rivers. Journal of Geophysics Research 114: F02002. Dietrich WE, Smith JD. 1983. Influence of the point bar on flow through curved channels. Water Resources Research 19: 1173-1192. Ikeda S, Parker G (eds). 1989. River Meandering. Water Research Monograph 12, American Geophysical Union: Washington, DC. Hooke RB. 1975. Distribution of sediment transport and shear stress in a meander bend. Journal of Geology 83: 543-565. Engelund F. 1974. Flow and bed topography in channel bends. Journal of the Hydraulics Division, ASCE 100: 1631-1648. Wolman MG, Gerson R. 1978. Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surface Processes and Landforms 3: 189-208. Batchelor GK. 1970. The stress system in a suspension of force-free particles. Journal of Fluid Mechanics 41: 545-570. Blanckaert K, de Vriend HJ. 2004. Secondary flow in sharp open-channel bends. Journal of Fluid Mechanics 498: 353-380. Bolla Pittaluga M, Nobile G, Seminara G. 2009. A non linear model for river meandering. Water Resources Research 45: W04432. Perucca E, Camporeale C, Ridolfi L. 2006. Influence of river meandering dynamics on riparian vegetation pattern formation. Journal of Geophysical Research 111: G01001. Seminara G, Solari L. 1998. Finite amplitude bed deformations in totally and partially transporting wide channel bends. Water Resources Research 34: 1585-1598. Federici B, Paola C. 2003. Dynamics of channel bifurcations in non cohesive sediments. Water Resources Research 39: 1162. Tubino M. 1991. Growth of alternate bars in unsteady flow. Water Resources Research 27: 37-52. 2009; 45 2002; 38 1984; 20 1983; 19 1995; 33 2008 1978; 3 2003; 39 1989b 1989a 2004 1992 1974; 100 2009; 114 1936 1979 2006; 111 1978 2006; 554 1998; 25 1984; 110 1991; 27 2006; 42 1994; 106 2004; 498 1980; 18 1981; 112 1960; 68 1965 1985; 157 1970; 41 2001; 37 2001; 438 2007; 43 2007; 45 1975; 83 1998; 34 1967 1989 2009; 106 1966 e_1_2_8_28_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 Parker G (e_1_2_8_29_1) 1984; 110 Lagasse PF (e_1_2_8_23_1) 2004 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 Kobayashi K (e_1_2_8_22_1) 2008 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_45_1 e_1_2_8_44_1 Langbein WB (e_1_2_8_24_1) 1966 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 Johannesson H (e_1_2_8_20_1) 1989 e_1_2_8_35_1 Graf WL (e_1_2_8_14_1) 1979 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_37_1 Howard A (e_1_2_8_16_1) 1992 Lumley JL (e_1_2_8_27_1) 1978 Engelund F (e_1_2_8_11_1) 1967 e_1_2_8_32_1 e_1_2_8_31_1 Engelund F (e_1_2_8_10_1) 1974; 100 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – reference: Seminara G, Solari L. 1998. Finite amplitude bed deformations in totally and partially transporting wide channel bends. Water Resources Research 34: 1585-1598. – reference: Seminara G. 2006. Meanders. Journal of Fluid Mechanics 554: 271-297. – reference: Pizzuto JE. 1994. Channel adjustments to changing discharges, Powder River, Montana. Geological Society of America Bulletin 106: 1494-1501. – reference: Blanckaert K, de Vriend HJ. 2004. Secondary flow in sharp open-channel bends. Journal of Fluid Mechanics 498: 353-380. – reference: Kalkwijk J, de Vriend H. 1980. Computation of the flow in shallow river bends. Journal of Hydraulic Research 18: 327-342. – reference: Bolla Pittaluga M, Nobile G, Seminara G. 2009. A non linear model for river meandering. Water Resources Research 45: W04432. – reference: Ikeda S, Parker G, Sawai K. 1981. Bend theory of river meanders. Part 1. Linear development. Journal of Fluid Mechanics 112: 363-377. – reference: Talmon AM, Struiskma N, van Mierlo MCLM. 1995. Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slopes. Journal of Hydraulic Research 33: 495-517. – reference: Langbein WB, Leopold LB. 1966. River Meanders: Theory of Minimum Variance. Professional Paper 422-H, US Geological Survey: Reston, VA. – reference: Tubino M. 1991. Growth of alternate bars in unsteady flow. Water Resources Research 27: 37-52. – reference: Wolman MG, Miller JP. 1960. Magnitude and frequency of forces in geomorphic processes. Journal of Geology 68: 54-74. – reference: Perucca E, Camporeale C, Ridolfi L. 2007. Significance of the riparian vegetation dynamics on meandering river morphodynamics. Water Resources Research 43: W03430. – reference: Sun T, Meakin P, Jøssang T. 2001. A computer model for meandering rivers with multiple bed load sediment sizes 1. Theory. Water Resources Research 37: 2227-2241. – reference: Wolman MG, Gerson R. 1978. Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surface Processes and Landforms 3: 189-208. – reference: Lanzoni S, Siviglia A, Frascati A, Seminara G. 2006. Long waves in erodible channels and morphodynamic influence. Water Resources Research 42: W06D17. – reference: Zolezzi G, Seminara G. 2001. Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening. Journal of Fluid Mechanics 438: 183-211. – reference: Smith JD, McLean SR. 1984. A model for flow in meandering streams. Water Resources Research 20: 1301-1315. – reference: Hooke RB. 1975. Distribution of sediment transport and shear stress in a meander bend. Journal of Geology 83: 543-565. – reference: Lanzoni S, Seminara G. 2006. On the nature of meander instability. Journal of Geophysical Research 111: F04006. – reference: Seminara G, Zolezzi G, Tubino M, Zardi D. 2001. Downstream and upstream influence in river meandering. Part 2. Planimetric development. Journal of Fluid Mechanics 438: 213-230. – reference: Batchelor GK. 1970. The stress system in a suspension of force-free particles. Journal of Fluid Mechanics 41: 545-570. – reference: Blondeaux P, Seminara G. 1985. A unified bar-bend theory of river meanders. Journal of Fluid Mechanics 157: 449-470. – reference: Smith CE. 1998. Modeling high sinuosity meanders in a small flume. Geomorphology 25: 19-30. – reference: Dietrich WE, Smith JD. 1983. Influence of the point bar on flow through curved channels. Water Resources Research 19: 1173-1192. – reference: Camporeale C, Perona P, Porporato A, Ridolfi L. 2007. Hierarchy of models for meandering rivers and related morphodynamic processes. Reviews of Geophysics 45: RG1001. – reference: Lagasse PF, Spitz WJ, Zevenbergen LW, Zachmann DW. 2004. Handbook for Predicting Stream Meander Migration. NCHRP Report 533, TRB, National Research Council: Washington, DC. – reference: Ikeda S, Parker G (eds). 1989. River Meandering. Water Research Monograph 12, American Geophysical Union: Washington, DC. – reference: Perucca E, Camporeale C, Ridolfi L. 2006. Influence of river meandering dynamics on riparian vegetation pattern formation. Journal of Geophysical Research 111: G01001. – reference: Frascati A, Lanzoni S. 2009. Morphodynamic regime and long term evolution of meandering rivers. Journal of Geophysics Research 114: F02002. – reference: Federici B, Paola C. 2003. Dynamics of channel bifurcations in non cohesive sediments. Water Resources Research 39: 1162. – reference: Parker G. 1984. Lateral bedload on side slopes. Discussion, ASCE 110(HY2): 197-199. – reference: Braudrick CA, Dietrich WE, Leverich GT, Sklar LS. 2009. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers. Proceedings of the National Academy of Sciences USA 106: 16936-16941. – reference: Engelund F. 1974. Flow and bed topography in channel bends. Journal of the Hydraulics Division, ASCE 100: 1631-1648. – reference: Engelund F, Hansen E. 1967. A Monograph on Sediment Transport in Alluvial Streams. Danish Technical Press: Copenhagen. – reference: Seminara G, Solari L, Parker G. 2002. Bed load at low Shields stress on arbitrarily sloping beds: failure of the Bagnold hypothesis. Water Resources Research 38: 1249. – start-page: 321 year: 1989 end-page: 377 – start-page: 379 year: 1989b end-page: 415 – volume: 68 start-page: 54 year: 1960 end-page: 74 article-title: Magnitude and frequency of forces in geomorphic processes publication-title: Journal of Geology – volume: 41 start-page: 545 year: 1970 end-page: 570 article-title: The stress system in a suspension of force‐free particles publication-title: Journal of Fluid Mechanics – volume: 111 start-page: G01001 year: 2006 article-title: Influence of river meandering dynamics on riparian vegetation pattern formation publication-title: Journal of Geophysical Research – volume: 83 start-page: 543 year: 1975 end-page: 565 article-title: Distribution of sediment transport and shear stress in a meander bend publication-title: Journal of Geology – year: 1966 – volume: 111 start-page: F04006 year: 2006 article-title: On the nature of meander instability publication-title: Journal of Geophysical Research – volume: 106 start-page: 1494 year: 1994 end-page: 1501 article-title: Channel adjustments to changing discharges, Powder River, Montana publication-title: Geological Society of America Bulletin – volume: 19 start-page: 1173 year: 1983 end-page: 1192 article-title: Influence of the point bar on flow through curved channels publication-title: Water Resources Research – year: 1989 – volume: 157 start-page: 449 year: 1985 end-page: 470 article-title: A unified bar‐bend theory of river meanders publication-title: Journal of Fluid Mechanics – volume: 33 start-page: 495 year: 1995 end-page: 517 article-title: Laboratory measurements of the direction of sediment transport on transverse alluvial‐bed slopes publication-title: Journal of Hydraulic Research – volume: 20 start-page: 1301 year: 1984 end-page: 1315 article-title: A model for flow in meandering streams publication-title: Water Resources Research – volume: 25 start-page: 19 year: 1998 end-page: 30 article-title: Modeling high sinuosity meanders in a small flume publication-title: Geomorphology – volume: 438 start-page: 183 year: 2001 end-page: 211 article-title: Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening publication-title: Journal of Fluid Mechanics – volume: 554 start-page: 271 year: 2006 end-page: 297 article-title: Meanders publication-title: Journal of Fluid Mechanics – volume: 38 start-page: 1249 year: 2002 article-title: Bed load at low Shields stress on arbitrarily sloping beds: failure of the Bagnold hypothesis publication-title: Water Resources Research – start-page: 267 year: 2004 end-page: 282 – volume: 114 start-page: F02002 year: 2009 article-title: Morphodynamic regime and long term evolution of meandering rivers publication-title: Journal of Geophysics Research – start-page: 1289 year: 2008 end-page: 1296 – volume: 43 start-page: W03430 year: 2007 article-title: Significance of the riparian vegetation dynamics on meandering river morphodynamics publication-title: Water Resources Research – volume: 110 start-page: 197 year: 1984 end-page: 199 article-title: Lateral bedload on side slopes publication-title: Discussion, ASCE – volume: 18 start-page: 327 year: 1980 end-page: 342 article-title: Computation of the flow in shallow river bends publication-title: Journal of Hydraulic Research – volume: 438 start-page: 213 year: 2001 end-page: 230 article-title: Downstream and upstream influence in river meandering. Part 2. Planimetric development publication-title: Journal of Fluid Mechanics – year: 1936 – volume: 42 start-page: W06D17 year: 2006 article-title: Long waves in erodible channels and morphodynamic influence publication-title: Water Resources Research – volume: 34 start-page: 1585 year: 1998 end-page: 1598 article-title: Finite amplitude bed deformations in totally and partially transporting wide channel bends publication-title: Water Resources Research – volume: 27 start-page: 37 year: 1991 end-page: 52 article-title: Growth of alternate bars in unsteady flow publication-title: Water Resources Research – year: 1965 – start-page: 289 year: 1978 end-page: 324 – year: 1967 – volume: 45 start-page: W04432 year: 2009 article-title: A non linear model for river meandering publication-title: Water Resources Research – volume: 37 start-page: 2227 year: 2001 end-page: 2241 article-title: A computer model for meandering rivers with multiple bed load sediment sizes 1. Theory publication-title: Water Resources Research – volume: 106 start-page: 16936 year: 2009 end-page: 16941 article-title: Experimental evidence for the conditions necessary to sustain meandering in coarse‐bedded rivers publication-title: Proceedings of the National Academy of Sciences USA – year: 2004 – volume: 3 start-page: 189 year: 1978 end-page: 208 article-title: Relative scales of time and effectiveness of climate in watershed geomorphology publication-title: Earth Surface Processes and Landforms – start-page: 15 year: 1992 end-page: 62 – volume: 498 start-page: 353 year: 2004 end-page: 380 article-title: Secondary flow in sharp open‐channel bends publication-title: Journal of Fluid Mechanics – start-page: 181 year: 1989a end-page: 213 – volume: 100 start-page: 1631 year: 1974 end-page: 1648 article-title: Flow and bed topography in channel bends publication-title: Journal of the Hydraulics Division, ASCE – volume: 112 start-page: 363 year: 1981 end-page: 377 article-title: Bend theory of river meanders. Part 1. Linear development publication-title: Journal of Fluid Mechanics – volume: 39 start-page: 1162 year: 2003 article-title: Dynamics of channel bifurcations in non cohesive sediments publication-title: Water Resources Research – volume: 45 start-page: RG1001 year: 2007 article-title: Hierarchy of models for meandering rivers and related morphodynamic processes publication-title: Reviews of Geophysics – start-page: 13 year: 1979 end-page: 32 – ident: e_1_2_8_21_1 doi: 10.1080/00221688009499539 – ident: e_1_2_8_32_1 doi: 10.1130/0016-7606(1994)106<1494:CATCDP>2.3.CO;2 – ident: e_1_2_8_43_1 doi: 10.1029/008WSA19 – ident: e_1_2_8_3_1 doi: 10.1017/S0022112003006979 – ident: e_1_2_8_26_1 doi: 10.1029/2006WR004916 – ident: e_1_2_8_37_1 – ident: e_1_2_8_39_1 doi: 10.1029/WR020i009p01301 – ident: e_1_2_8_36_1 doi: 10.1029/2001WR000681 – ident: e_1_2_8_33_1 doi: 10.1017/S0022112006008925 – ident: e_1_2_8_34_1 doi: 10.1029/98WR00372 – start-page: 15 volume-title: Floodplain Processes year: 1992 ident: e_1_2_8_16_1 – ident: e_1_2_8_46_1 doi: 10.1017/S002211200100427X – start-page: 13 volume-title: Adjustments of the Fluvial System year: 1979 ident: e_1_2_8_14_1 – ident: e_1_2_8_5_1 doi: 10.1029/2008WR007298 – ident: e_1_2_8_12_1 doi: 10.1029/2002WR001434 – start-page: 379 volume-title: River Meandering year: 1989 ident: e_1_2_8_20_1 – ident: e_1_2_8_30_1 doi: 10.1029/2005JG000073 – volume-title: Handbook for Predicting Stream Meander Migration year: 2004 ident: e_1_2_8_23_1 – ident: e_1_2_8_40_1 doi: 10.1029/2000WR900396 – volume: 110 start-page: 197 year: 1984 ident: e_1_2_8_29_1 article-title: Lateral bedload on side slopes publication-title: Discussion, ASCE – ident: e_1_2_8_38_1 doi: 10.1016/S0169-555X(98)00029-4 – ident: e_1_2_8_45_1 doi: 10.1086/626637 – ident: e_1_2_8_7_1 doi: 10.1029/2005RG000185 – ident: e_1_2_8_35_1 doi: 10.1017/S0022112001004281 – volume-title: River Meanders: Theory of Minimum Variance year: 1966 ident: e_1_2_8_24_1 – volume: 100 start-page: 1631 year: 1974 ident: e_1_2_8_10_1 article-title: Flow and bed topography in channel bends publication-title: Journal of the Hydraulics Division, ASCE doi: 10.1061/JYCEAJ.0004109 – ident: e_1_2_8_18_1 doi: 10.1017/S0022112081000451 – ident: e_1_2_8_9_1 doi: 10.1029/WR019i005p01173 – ident: e_1_2_8_41_1 doi: 10.1080/00221689509498657 – volume-title: A Monograph on Sediment Transport in Alluvial Streams year: 1967 ident: e_1_2_8_11_1 – start-page: 1289 volume-title: Proceedings of River Flow 2008 year: 2008 ident: e_1_2_8_22_1 – ident: e_1_2_8_42_1 doi: 10.1029/90WR01699 – ident: e_1_2_8_15_1 doi: 10.1086/628140 – ident: e_1_2_8_8_1 – ident: e_1_2_8_17_1 doi: 10.1029/WM012 – ident: e_1_2_8_19_1 doi: 10.1029/WM012p0181 – ident: e_1_2_8_44_1 doi: 10.1002/esp.3290030207 – ident: e_1_2_8_4_1 doi: 10.1017/S0022112085002440 – ident: e_1_2_8_2_1 doi: 10.1017/S0022112070000745 – ident: e_1_2_8_31_1 doi: 10.1029/2006WR005234 – start-page: 289 volume-title: Topics in Applied Physics year: 1978 ident: e_1_2_8_27_1 – ident: e_1_2_8_28_1 doi: 10.1029/WM012p0321 – ident: e_1_2_8_13_1 doi: 10.1029/2008JF001101 – ident: e_1_2_8_25_1 doi: 10.1029/2005JF000416 – ident: e_1_2_8_6_1 doi: 10.1073/pnas.0909417106 |
SSID | ssj0011489 |
Score | 2.140584 |
Snippet | River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are nonlinearity and... River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are nonlinearity and unsteadiness... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20 |
SubjectTerms | Assessments Bends Bgi / Prodig Curved Dynamical systems Floods Fluvial forms and processes Freshwater Geomorphology modelling morphodynamics Nonlinearity Physical geography river meandering Rivers sediment transport Topography |
Title | Nonlinearity and unsteadiness in river meandering: a review of progress in theory and modelling |
URI | https://api.istex.fr/ark:/67375/WNG-3ZFZTSC3-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fesp.2089 https://www.proquest.com/docview/1770349420 https://www.proquest.com/docview/896177166 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5KpehLtVXxaC0riD6lzUk2l-2blJ6WUg9iWyz1YdkrSm2OnAtYf70zu0n0SAsiBPIySTab2d1vNvN9A_Ba1NqUOveJMCJNuFNZIpSoE-2cKrnCmCIQad-Py6NzfnxRXLRZlcSFifoQ_YYbjYwwX9MAV3q2-1s01M1IbrIm7h6lahEe-tgrRxHKF5EpXSUYs1ed7mya7XYXLq1E96hTf1BmpJph5_hY1WIJdv4JXsPqM3oIn7t2x6STq53FXO-Yn39JOv7fiz2C9RaUsnfRizZgxTWbcL-tj_7lZhPWDkMB4JvHIMfxEYqK3jHVWLZogqOE9Hn2tWFTyvRg1y7QZnBh3GOKRYIMm3gW8sFay0CijDcJBXmIGf8EzkcHZ_tHSVukIVEcZ7uksNZ7hAGOC5MJlaosFboww9Rj6KiMddym1giq8aN9ESrKGF9bayqvEUro_CmsNpPGPQNWm6Li3JfcWsGLoVF5qRVOEjoflvgeYgBvuw8mTatgToU0vsmovZxJ7DpJXTeAV73l96jacYvNm_DNewM1vaIst6qQn8aHMr8cXZ6d7ufyZADbS07RX0DMGoz2Knxa5yUSByf9cVGNmyxmclhVQf8nSwfA7rCpBYJIjFpLbFBwiztbLA9OP9D5-b8avoAHcQucji1YnU8X7iViqLneDqPlFytDGkI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qS6lffLSK56ONUOynbfd2s4_oJ6m9nno9SnvFUgohT5TqntwDrH-9mWR39aQFERb2y2TzmiQz2ZnfD2CblVLlMrURUyyOqBFJxAQrI2mMyKlwPoVPpD0a5v0z-uE8O1-CN00uTMCHaC_ccGX4_RoXOF5I7_1GDTVTxJss2R1YQUJvpC94d9JiR6Gdz0KudBE5r71okGfjZK8puXAWreCw_sDYSDF1w2MDr8WC4fmn-erPn959uGxaHsJOrnbnM7mrfv4F6vifXXsA92q7lLwNivQQlky1Dms1Rfrn63VYPfQcwNcbwIehDoG8d0RUmswrrys-gp58qcgEgz3IN-MzZ9zZ-JoIEnJkyNgSHxJWS_o8yvARz8mDyfGP4Kx3MNrvRzVPQySo2_CiTGtrnSVgKFMJE7FIYiYz1Y2t8x6F0obqWCuGND_SZp5URtlSa1VY6awJmT6G5WpcmSdASpUVlNqcas1o1lUizaVw-4RMu7nrB-vATjNjXNUg5sil8ZUH-OWEu6HjOHQdeNlKfg_AHTfIvPKT3gqIyRUGuhUZ_zQ85OlF72J0up_yQQc2F7SiLYDJNc7hK1xtjZpwtz7xp4uozHg-5d2i8BBASdwBcotMyZwd6RzX3DXI68WtLeYHp8f4fvqvgluw1h8dDfjg_fDjM7gbbsTxeQ7Ls8ncvHAm1Uxu-qXzC6tpHlw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BK44XjgJiOYqREDylzSbOYd5Q6bZAWVW0FVV5sHwKVMhWe0iUX8-MnQQWUQkhRcrLZOM4M_Y32ZnvA3gmam1KnftEGJEm3KksEUrUiXZOlVxhThEaad-Py90j_va4OG6rKqkXJvJD9B_cKDLCek0Bfmb95i_SUDcjuslaXIZVXmKsECD60FNHEcwXsVW6SjBprzri2TTb7K5c2opWaVa_U2mkmuHs-ChrsYQ7f0evYfsZ3YRP3cBj1cnpxmKuN8yPPzgd_-_JbsGNFpWyV9GNbsMl16zBtVYg_fP5GlzZCQrA53dAjuMtFKneMdVYtmiCp4T6efalYVMq9WDfXOibwZ3xJVMsdsiwiWehIKy1DF2U8UeCIg-1xt-Fo9H24dZu0qo0JIrjcpcU1nqPOMBxYTKhUpWlQhdmmHrMHZWxjtvUGkEiP9oXQVLG-NpaU3mNWELn92ClmTTuPrDaFBXnvuTWCl4MjcpLrXCV0PmwxOcQA3jRvTBpWgpzUtL4KiP5ciZx6iRN3QCe9pZnkbbjLzbPwzvvDdT0lMrcqkJ-HO_I_GR0cniwlcu9AawvOUV_AbXWYLpX4d06L5EYnfSXi2rcZDGTw6oKBEBZOgB2gU0tEEVi2lrigIJbXDhiuX2wT-cH_2r4BK7uvx7JvTfjdw_hevwcTscjWJlPF-4x4qm5Xg-B8xNhtB0U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinearity+and+unsteadiness+in+river+meandering+%3A+a+review+of+progress+in+theory+and+modelling&rft.jtitle=Earth+surface+processes+and+landforms&rft.au=BOLLA+PITTALUGA%2C+M&rft.au=SEMINARA%2C+G&rft.date=2011&rft.pub=Wiley&rft.issn=0197-9337&rft.eissn=1096-9837&rft.volume=36&rft.issue=1&rft.spage=20&rft.epage=38&rft_id=info:doi/10.1002%2Fesp.2089&rft.externalDBID=n%2Fa&rft.externalDocID=24247537 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-9337&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-9337&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-9337&client=summon |