Microstructural tectonometamorphic processes and the development of gneissic layering: a mechanism for metamorphic segregation

The Mary granite, in the East Athabasca mylonite triangle, northern Saskatchewan, provides an example and a model for the development of non‐migmatitic gneissic texture. Gneissic compositional layering developed through the simultaneous evolution of three microdomains corresponding to original plagi...

Full description

Saved in:
Bibliographic Details
Published inJournal of metamorphic geology Vol. 18; no. 1; pp. 41 - 57
Main Authors Williams, Melis, Kopf, Hanmer
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Inc 01.01.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Mary granite, in the East Athabasca mylonite triangle, northern Saskatchewan, provides an example and a model for the development of non‐migmatitic gneissic texture. Gneissic compositional layering developed through the simultaneous evolution of three microdomains corresponding to original plagioclase, orthopyroxene and matrix in the igneous rocks. Plagioclase phenocrysts were progressively deformed and recrystallized, first into core and mantle structures, and ultimately into plagioclase‐rich layers or ribbons. Garnet preferentially developed in the outer portions of recrystallized mantles, and, with further deformation, produced garnet‐rich sub‐layers within the plagioclase‐rich gneissic domains. Orthopyroxene was replaced by clinopyroxene and garnet (and hornblende if sufficient water was present), which were, in turn, drawn into layers with new garnet growth along the boundaries. The igneous matrix evolved through a number of transient fabric stages involving S‐C fabrics, S‐C‐C′ fabrics, and ultramylonitic domains. In addition, quartz veins were emplaced and subsequently deformed into quartz‐rich gneissic layers. Moderate to highly strained samples display extreme mineralogical (compositional) segregation, yet most domains can be directly related to the original igneous precursors. The Mary granite was emplaced at approximately 900 °C and 1.0 GPa and was metamorphosed at approximately 750 °C and 1.0 GPa. The igneous rocks crystallized in the medium‐pressure granulite field (Opx–Pl) but were metamorphosed on cooling into the high‐pressure (Grt–Cpx–Pl) granulite field. The compositional segregation resulted from a dynamic, mutually reinforcing interaction between deformation, metamorphic and igneous processes in the deep crust. The production of gneissic texture by processes such as these may be the inevitable result of isobaric cooling of igneous rocks within a tectonically active deep crust.
AbstractList The Mary granite, in the East Athabasca mylonite triangle, northern Saskatchewan, provides an example and a model for the development of non‐migmatitic gneissic texture. Gneissic compositional layering developed through the simultaneous evolution of three microdomains corresponding to original plagioclase, orthopyroxene and matrix in the igneous rocks. Plagioclase phenocrysts were progressively deformed and recrystallized, first into core and mantle structures, and ultimately into plagioclase‐rich layers or ribbons. Garnet preferentially developed in the outer portions of recrystallized mantles, and, with further deformation, produced garnet‐rich sub‐layers within the plagioclase‐rich gneissic domains. Orthopyroxene was replaced by clinopyroxene and garnet (and hornblende if sufficient water was present), which were, in turn, drawn into layers with new garnet growth along the boundaries. The igneous matrix evolved through a number of transient fabric stages involving S‐C fabrics, S‐C‐C′ fabrics, and ultramylonitic domains. In addition, quartz veins were emplaced and subsequently deformed into quartz‐rich gneissic layers. Moderate to highly strained samples display extreme mineralogical (compositional) segregation, yet most domains can be directly related to the original igneous precursors. The Mary granite was emplaced at approximately 900 °C and 1.0 GPa and was metamorphosed at approximately 750 °C and 1.0 GPa. The igneous rocks crystallized in the medium‐pressure granulite field (Opx–Pl) but were metamorphosed on cooling into the high‐pressure (Grt–Cpx–Pl) granulite field. The compositional segregation resulted from a dynamic, mutually reinforcing interaction between deformation, metamorphic and igneous processes in the deep crust. The production of gneissic texture by processes such as these may be the inevitable result of isobaric cooling of igneous rocks within a tectonically active deep crust.
Author Kopf
Melis
Hanmer
Williams
Author_xml – sequence: 1
  surname: Williams
  fullname: Williams
  organization: 1  Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA (mlw@geo.umass.edu), 2 Continental Geoscience Division, Geological Survey of Canada, Ottawa, Ontario, Canada
– sequence: 2
  surname: Melis
  fullname: Melis
  organization: 1  Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA (mlw@geo.umass.edu), 2 Continental Geoscience Division, Geological Survey of Canada, Ottawa, Ontario, Canada
– sequence: 3
  surname: Kopf
  fullname: Kopf
  organization: 1  Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA (mlw@geo.umass.edu), 2 Continental Geoscience Division, Geological Survey of Canada, Ottawa, Ontario, Canada
– sequence: 4
  surname: Hanmer
  fullname: Hanmer
  organization: 1  Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA (mlw@geo.umass.edu), 2 Continental Geoscience Division, Geological Survey of Canada, Ottawa, Ontario, Canada
BookMark eNqNkMtu2zAQRYkiBeqk_Qf-gJThQ7JVZFMYidvATjdpuyRoamjTkUiDZFJ702-PFAdBl1nNADPnAveckzMfPBJCGZQMZH25K1nFq4IJJksOACUAF1V5-EAmb4czMgFei0I2vPlEzlPaATDBhZyQfytnYkg5Ppr8GHVHM5ocfOgx6z7E_dYZuo_BYEqYqPYtzVukLT5hF_Y9-kyDpRuPLqXhs9NHjM5vvlJNezRb7V3qqQ2R_p-XcBNxo7ML_jP5aHWX8MvrvCC_bq7v59-L5c_Fj_m3ZaElZ1Uh5cwKEJZVTQVrXNsWbF0zjrppG8u4XbfAjZy2oE3TDtVmRgNIJsDOpm2zFhdkdsody6aIVu2j63U8KgZq9Kh2atSlRl1q9KhePKrDgF6d0L-uw-O7OXW7WgzLgBcn3KWMhzdcxwdVT8W0Un_uFmrF75e_59WNEuIZi-qNwQ
CitedBy_id crossref_primary_10_1139_cjes_2014_0015
crossref_primary_10_1111_jmg_12150
crossref_primary_10_1007_s00410_006_0061_z
crossref_primary_10_1016_j_jsg_2014_12_002
crossref_primary_10_1007_s00410_006_0066_7
crossref_primary_10_1111_j_1525_1314_2006_00633_x
crossref_primary_10_1016_j_jsg_2006_10_011
crossref_primary_10_1111_j_1525_1314_2012_00995_x
crossref_primary_10_1029_2002TC001405
crossref_primary_10_2138_am_2022_8679
crossref_primary_10_1016_j_epsl_2011_09_024
crossref_primary_10_4028_www_scientific_net_AMR_669_108
crossref_primary_10_1111_jmg_12122
crossref_primary_10_1139_e03_039
crossref_primary_10_1016_j_chemgeo_2018_05_043
crossref_primary_10_1007_s00410_004_0572_4
crossref_primary_10_1016_j_precamres_2017_09_026
crossref_primary_10_1111_jmg_12289
crossref_primary_10_1016_j_precamres_2018_07_016
crossref_primary_10_1016_j_lithos_2005_08_009
crossref_primary_10_1111_j_1525_1314_2006_00647_x
crossref_primary_10_1111_j_1525_1314_2007_00737_x
crossref_primary_10_1130_B31680_1
crossref_primary_10_1016_j_tecto_2013_12_004
crossref_primary_10_1016_j_pnsc_2007_12_001
crossref_primary_10_1016_j_precamres_2022_106817
crossref_primary_10_1016_j_epsl_2018_07_003
crossref_primary_10_1073_pnas_0812150106
crossref_primary_10_1016_j_lithos_2014_11_019
crossref_primary_10_1111_j_1525_1314_2008_00783_x
crossref_primary_10_1046_j_1525_1314_2003_00413_x
crossref_primary_10_1007_s00410_006_0106_3
crossref_primary_10_1016_j_epsl_2014_08_030
crossref_primary_10_1016_j_jsg_2020_104188
crossref_primary_10_1016_j_precamres_2017_03_010
crossref_primary_10_1130_B31922_1
crossref_primary_10_1111_j_1525_1314_2005_00618_x
crossref_primary_10_1016_j_precamres_2013_01_001
crossref_primary_10_1016_j_jsg_2008_10_001
crossref_primary_10_1016_S1342_937X_05_70891_1
crossref_primary_10_1146_annurev_earth_063016_020625
crossref_primary_10_1029_2017TC004891
crossref_primary_10_1016_S0191_8141_00_00009_2
crossref_primary_10_1007_s00410_008_0301_5
crossref_primary_10_1016_j_jsg_2020_104015
crossref_primary_10_1029_2005TC001912
crossref_primary_10_1139_cjes_2014_0040
crossref_primary_10_1111_j_1525_1314_2007_00736_x
crossref_primary_10_1029_2009TC002514
crossref_primary_10_1016_j_tecto_2016_11_003
crossref_primary_10_1130_G21273_1
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
DOI 10.1046/j.1525-1314.2000.00235.x
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1525-1314
EndPage 57
ExternalDocumentID 10_1046_j_1525_1314_2000_00235_x
JMG235
ark_67375_WNG_M2TLVC5F_3
Genre article
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGCDD
AGJLS
AHBTC
AHEFC
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XJT
XOL
ZY4
ZZTAW
~02
~IA
~WT
AITYG
HGLYW
OIG
AAYXX
CITATION
ID FETCH-LOGICAL-a4215-448f303f15950bebfd0f6612ea9d9f12fbd02c47d0ac9d1328ca004130f87d9b3
IEDL.DBID DR2
ISSN 0263-4929
IngestDate Thu Sep 26 18:51:18 EDT 2024
Sat Aug 24 01:00:02 EDT 2024
Wed Jan 17 05:00:29 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4215-448f303f15950bebfd0f6612ea9d9f12fbd02c47d0ac9d1328ca004130f87d9b3
Notes istex:1FA32419B9B24295647A23C6C8AA5DBD91307E0F
ArticleID:JMG235
ark:/67375/WNG-M2TLVC5F-3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1046/j.1525-1314.2000.00235.x
PageCount 17
ParticipantIDs crossref_primary_10_1046_j_1525_1314_2000_00235_x
wiley_primary_10_1046_j_1525_1314_2000_00235_x_JMG235
istex_primary_ark_67375_WNG_M2TLVC5F_3
PublicationCentury 2000
PublicationDate 2000-01
January 2000
2000-01-00
PublicationDateYYYYMMDD 2000-01-01
PublicationDate_xml – month: 01
  year: 2000
  text: 2000-01
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle Journal of metamorphic geology
PublicationTitleAlternate Journal of Metamorphic Geology
PublicationYear 2000
Publisher Blackwell Science Inc
Publisher_xml – name: Blackwell Science Inc
SSID ssj0013234
Score 1.8689265
Snippet The Mary granite, in the East Athabasca mylonite triangle, northern Saskatchewan, provides an example and a model for the development of non‐migmatitic...
SourceID crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 41
SubjectTerms gneiss
granulite
lower crust
metamorphic segregation
Title Microstructural tectonometamorphic processes and the development of gneissic layering: a mechanism for metamorphic segregation
URI https://api.istex.fr/ark:/67375/WNG-M2TLVC5F-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1525-1314.2000.00235.x
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEN4YjYkX30Z8ZQ_GW0kfW9p6M0QgRDgYUG7NbneXIFIIYAIe_O3ObAuC8WCMtx66m3a_2c7XnZlvCLkW4IKQmVsBuGOLMR1Zgnsc_lqFq0QJCEOAtcONZqnWZvWO38nzn7AWJtOHWB644c4w32vc4FxkXUhso277Ylr3WI7nmKMRzNByPb-IfBJ19ZAfPborAQUTYIY_Ds9iQAnypJ48wPnjRGueagsXfbbOYI0LquyR_uLhs8yTfvFtKorJ-zddx_95u32ymzNVepeZ1gHZUOkh2a6aTsDzI_LRwFS-TH4WpTsoRiOwQkJN-WAI6PUSOsqqENSE8lRSoJpUfuUo0aGm3VQB8HDnK58bTcRbyulAYTVybzKgQKjp6nwT1R2rrrGlY9Ku3LfKNStv5mBxBrQCzCDU4C410CffFkpoaWvgBq7ikYy042ohbTdhgbR5EknAK0w4ioF5tg4DGQnvhGymw1SdEgojEpRNC4DMMAFgMu6rqBRy6UfAVnmBOAvg4lGm2RGbWDvDujRc1xjXFTtwojYqrGs8K5Abg_ByAB_3Mect8OPnZjVuuK2Hp7Jfib0C8Q1uv545rjeqcHH2x3HnZCer_sdTnwuyCbCqS-BBU3FlLPwToF_6eA
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQCMHCG1GeHhBbSprYTcOGgLZA0wGVx2bZsV0haIraIhUGfjt3TniKASG2DLGV3CP3xXf3HSG7CkIQInMvgnDsMWZjT8lQwl-rCoyqAmCIsHc4aVebl-zsht8U44CwFybnh3g_cEPPcN9rdHA8kN4v0pK5l_OAe5Ww4s5GsEQrCHkZAOUUeD9HLz2-CD6lFFyKGf45Qo8BKCjKeooU5487fYlVUyj28VcM64JQfZ7cvz1-XntyV34cqXL6_I3Z8Z_eb4HMFWCVHubWtUgmTLZEphtuGPDTMnlJsJovZ6BF9g6KCQlskjAj2euDAm9T-pA3IpghlZmmgDap_ihTon1Lu5kB3cOd9_LJ0SIeUEl7BhuSb4c9Cpiaft5vaLoD03XmtEIu6yedo6ZXzHPwJANkAZZQsxAxLSAo7iujrPYtwIPAyFjHthJYpf0gZZH2ZRprUFgtlcgHFvq2FulYhatkMutnZo1QWJEic1oEeIYp0CaT3MTVmtQ8BsAqS6TypjnxkNN2CJduZ9iahnIVKFccwon0qCBXMS6RPafi9wVycIdlbxEX1-2GSIJO6-qI10VYItwp7tc7i7OkARfrf1y3Q2aanaQlWqft8w0ym5MB4CHQJpkEFZstgEUjte3M_RVlwv6Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQCMTCG1GeHhBbSprYTcOGKC2vVgjx2iw7titUmla0SMDAb-fOSUtBDAixZYid5D4799l395mQXQUuCJm5F4E79hizsadkKGHVqgKjykAYIqwdbjTLJzfs7J7f5_lPWAuT6UOMNtxwZrj_NU7wnrb7eVQym-Q84F4pLLmtEczQCkJeBD45xeAZuBCrXgVjEQUXYYYlR-gx4AR5Vk8e4fyxpy-uagqt_vKVwjofVJsn7eHbZ6kn7eLzQBWTt2_Cjv_zeQtkLqeq9DAbW4tkwqRLZLrujgJ-XSbvDczly_RnUbuDYjgCSyTMQHa6AN9DQntZGYLpU5lqClyT6s8kJdq1tJUaQB7ufJSvThTxgEraMViO_NDvUGDUdLy_vmk9mZYbTCvkpnZ8fXTi5ac5eJIBr4BxULHgLy3wJ-4ro6z2LZCDwMhYx7YUWKX9IGGR9mUSa8CrkkhUAwt9W4l0rMJVMpl2U7NGKLRIUDctAjbDFIDJJDdxuSI1j4GuygIpDYETvUy0Q7hgO8PCNLSrQLviEZwojgp2FS8FsucQHjWQT21Meou4uGvWRSO4vrg94jURFgh3uP26Z3HWqMPF-h_b7ZCZy2pNXJw2zzfIbKYEgDtAm2QSEDZbwIkGatsN9g9fNf1H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructural+tectonometamorphic+processes+and+the+development+of+gneissic+layering%3A+a+mechanism+for+metamorphic+segregation&rft.jtitle=Journal+of+metamorphic+geology&rft.au=Williams&rft.au=Melis&rft.au=Kopf&rft.au=Hanmer&rft.date=2000-01-01&rft.issn=0263-4929&rft.eissn=1525-1314&rft.volume=18&rft.issue=1&rft.spage=41&rft.epage=57&rft_id=info:doi/10.1046%2Fj.1525-1314.2000.00235.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1046_j_1525_1314_2000_00235_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-4929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-4929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-4929&client=summon