Palaeoenvironmental Interpretation of Yedoma Silt (Ice Complex) Deposition as Cold-Climate Loess, Duvanny Yar, Northeast Siberia
Uncertainty about the geological processes that deposited syngenetically frozen ice‐rich silt (yedoma) across hundreds of thousands of square kilometres in central and northern Siberia fundamentally limits our understanding of the Pleistocene geology and palaeoecology of western Beringia, the sedime...
Saved in:
Published in | Permafrost and periglacial processes Vol. 26; no. 3; pp. 208 - 288 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Blackwell Publishing Ltd
01.07.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Uncertainty about the geological processes that deposited syngenetically frozen ice‐rich silt (yedoma) across hundreds of thousands of square kilometres in central and northern Siberia fundamentally limits our understanding of the Pleistocene geology and palaeoecology of western Beringia, the sedimentary processes that led to sequestration of hundreds of Pg of carbon within permafrost and whether yedoma provides a globally significant record of ice‐age atmospheric conditions or just regional floodplain activity. Here, we test the hypotheses of aeolian versus waterlain deposition of yedoma silt, elucidate the palaeoenvironmental conditions during deposition and develop a conceptual model of silt deposition to clarify understanding of yedoma formation in northern circumpolar regions during the Late Pleistocene. This is based on a field study in 2009 of the Russian stratotype of the ‘Yedoma Suite’, at Duvanny Yar, in the lower Kolyma River, northern Yakutia, supplemented by observations that we have collected there and at other sites in the Kolyma Lowland since the 1970s. We reconstruct a cold‐climate loess region in northern Siberia that forms part of a vast Late Pleistocene permafrost zone extending from northwest Europe across northern Asia to northwest North America, and that was characterised by intense aeolian activity.
Five litho‐ and cryostratigraphic units are identified in yedoma remnant 7E at Duvanny Yar, in ascending stratigraphic order: (1) massive silt, (2) peat, (3) stratified silt, (4) yedoma silt and (5) near‐surface silt. The yedoma silt of unit 4 dominates the stratigraphy and is at least 34 m thick. It is characterised by horizontal to gently undulating subtle colour bands but typically lacks primary sedimentary stratification. Texturally, the yedoma silt has mean values of 65 ± 7 per cent silt, 15 ± 8 per cent sand and 21 ± 4 per cent clay. Particle size distributions are bi‐ to polymodal, with a primary mode of about 41 μm (coarse silt) and subsidiary modes are 0.3–0.7 μm (very fine clay to fine clay), 3–5 μm (coarse clay to very fine silt), 8–16 μm (fine silt) and 150–350 μm (fine sand to medium sand). Semidecomposed fine plant material is abundant and fine in‐situ roots are pervasive. Syngenetic ice wedges, cryostructures and microcryostructures record syngenetic freezing of the silt. An age model for silt deposition is constructed from 47 pre‐Holocene accelerator mass spectrometry (AMS) 14C ages, mostly from in‐situ roots and from three optically stimulated luminescence (OSL) ages of quartz sand grains. The 14C ages indicate that silt deposition extends from 19 000 ± 300 cal BP to 50 000 cal BP or beyond. The OSL ages range from 21.2 ± 1.9 ka near the top of the yedoma to 48.6 ± 2.9 ka near the bottom, broadly consistent with the 14C age model.
Most of the yedoma silt in unit 4 at Duvanny Yar constitutes cryopedolith (sediment that has experienced incipient pedogenesis along with syngenetic freezing). Mineralised and humified organic remains dispersed within cryopedolith indicate incipient soil formation, but distinct soil horizons are absent. Five buried palaeosols and palaeosol ‘complexes’ are identified within cryopedolith on the basis of sedimentary and geochemical properties. Magnetic susceptibility, organic content, elemental concentrations and ratios tend to deviate from average values of these parameters at five levels in unit 4. The cryopedolith‐palaeosol sequence accreted incrementally upwards on a vegetated palaeo‐land surface with a relief of at least several metres, preserving syngenetic ground ice in the aggrading permafrost. Pollen spectra dated to between about 17 000 and 25 000 14C BP characteristically have frequencies of 20–60 per cent tree/shrub pollen (mainly Betula and Pinus) and 20–60 per cent graminoids, predominantly Poaceae, plus forbs, whereas spectra dated to about 30 000–33 000 14C BP have lower values of woody taxa (about 10%) and are dominated by graminoids (mainly Poaceae), forbs (particularly Caryophyllaceae and Asteraceae) and Selaginella rupestris. The latter are more typical of Last Glacial Maximum (LGM) samples reported elsewhere in Siberia, and the unusually high arboreal pollen values in the LGM yedoma at Duvanny Yar are attributed to long‐distance transport of pollen.
Three hypotheses concerning the processes and environmental conditions of yedoma silt deposition at Duvanny Yar are tested. The alluvial‐lacustrine hypothesis and the polygenetic hypothesis are both discounted on sedimentary, palaeoenvironmental, geocryological and palaeoecological grounds. The loessal hypothesis provides the only reasonable explanation to account for the bulk of the unit 4 yedoma silt at this site. Supporting the loessal interpretation are sedimentological and geocryological similarities between the Duvanny Yar loess‐palaeosol sequence and cold‐climate loesses in central and northern Alaska, the Klondike (Yukon), western and central Siberia and northwest Europe. Differences between loess at Duvanny Yar and that in western and central Siberia and northwest Europe include the persistence of permafrost and the abundance of ground ice and fine in‐situ roots within the yedoma. Modern analogues of cold‐climate loess deposition are envisaged at a local scale in cold, humid climates where local entrainment and deposition of loess are generally restricted to large alluvial valleys containing rivers that are glacially sourced or drain areas containing Late Pleistocene glacial deposits, and thus glacially ground silt. The Duvanny Yar yedoma shares sedimentological and geocryological features with yedoma interpreted as ice‐rich loess or reworked loess facies at Itkillik (northern Alaska) and in the central Yakutian lowland, and with yedoma in the Laptev Sea region and the New Siberian Archipelago. It is therefore suggested that many lowland yedoma sections across Beringia are primarily of aeolian origin (or consist of reworked aeolian sediments), although other depositional processes (e.g. alluvial and colluvial) may account for some yedoma sequences in river valleys and mountains.
A conceptual model of yedoma silt deposition at Duvanny Yar as cold‐climate loess in Marine Isotope Stage (MIS) 3 and MIS 2 envisages summer or autumn as the main season of loess deposition. In summer, the land surface was snow‐free, unfrozen and relatively dry, making it vulnerable to deflation. Graminoids, forbs and biological soil crust communities trapped and stabilised windblown sediments. Loess accretion resulted from semicontinuous deposition of fine background particles and episodic, discrete dust storms that deposited coarse silt. Winter was characterised by deep thermal contraction cracking beneath thin and dusty snow covers, and snow and frozen ground restricted deflation and sediment trapping by dead grasses. Sources of loess at Duvanny Yar potentially include: (1) sediments and weathered bedrock on uplands to the east, south and southwest of the Kolyma Lowland; (2) alluvium deposited by rivers draining these uplands; and (3) sediments exposed in the Khallerchin tundra to the north and on the emergent continental shelf of the East Siberian Sea. Glacially sourced tributaries of the palaeo‐Kolyma River contributed glacially ground silt into channel and/or floodplain deposits, and some of these were probably reworked by wind and deposited as loess in the Kolyma Lowland.
The palaeoenvironmental reconstruction of the sedimentary sequence at Duvanny Yar is traced from MIS 6 to the late Holocene. It includes thermokarst activity associated with alas lake development in the Kazantsevo interglacial (MIS 5e), loess accumulation, pedogenesis and syngenetic permafrost development, possibly commencing in the Zyryan glacial (70 000–55 000 cal BP) and extending through the Karginsky interstadial (55 000–25 000 cal BP) and Sartan glacial (25 000–15 000 cal BP), cessation of yedoma silt deposition during the Lateglacial, renewed thermokarst activity in the early Holocene, and permafrost aggradation in the mid to late Holocene.
Beringian coastlands from northeast Yakutia through the north Alaskan Coastal Plain to the Tuktoyaktuk Coastlands (Canada) were characterised by extensive aeolian activity (deflation, loess, sand dunes, sand sheets, sand wedges) during MIS 2. Siberian and Canadian high‐pressure cells coupled with a strengthened Aleutian low‐pressure cell would have created enhanced pressure gradient‐driven winds sufficient to entrain sediment on a regional scale. Summer winds are thought to have deflated sediment exposed on the East Siberian Sea shelf and deposited silt as a distal aeolian facies to the south. Additionally, stronger localised winds created by local downslope gravity flows (katabatic winds) may have entrained sediment. Local katabatic winds in summer may have transported silt generally northwards towards the Kolyma Lowland, particularly during times of extended upland glaciation in the North Anyuy Range to the east during the Zyryan (MIS 4) period, whereas winter winds carried limited amounts of silt generally southwards as a result of pressure gradient forces.
The Duvanny Yar yedoma is part of a subcontinental‐scale region of Late Pleistocene cold‐climate loess. One end member, exemplified by the yedoma at Duvanny Yar, was loess rich in syngenetic ground ice (Beringian yedoma). The other, exemplified by loess in northwest Europe, was ice‐poor and subject to complete permafrost degradation at the end of the last ice age. These end members reflect a distinction between enduring cold continuous permafrost conditions leading to stacked ice‐rich transition zones and large syngenetic ice wedges in much of Beringia versus conditions oscillating between cold permafrost, warm permafrost and seasonal frost, leading to repeated permafrost thaw and small ice‐wedge pseudomorphs in northwest Europe. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Uncertainty about the geological processes that deposited syngenetically frozen ice-rich silt (yedoma) across hundreds of thousands of square kilometres in central and northern Siberia fundamentally limits our understanding of the Pleistocene geology and palaeoecology of western Beringia, the sedimentary processes that led to sequestration of hundreds of Pg of carbon within permafrost and whether yedoma provides a globally significant record of ice-age atmospheric conditions or just regional floodplain activity. Here, we test the hypotheses of aeolian versus waterlain deposition of yedoma silt, elucidate the palaeoenvironmental conditions during deposition and develop a conceptual model of silt deposition to clarify understanding of yedoma formation in northern circumpolar regions during the Late Pleistocene. This is based on a field study in 2009 of the Russian stratotype of the 'Yedoma Suite', at Duvanny Yar, in the lower Kolyma River, northern Yakutia, supplemented by observations that we have collected there and at other sites in the Kolyma Lowland since the 1970s. We reconstruct a cold-climate loess region in northern Siberia that forms part of a vast Late Pleistocene permafrost zone extending from northwest Europe across northern Asia to northwest North America, and that was characterised by intense aeolian activity. Five litho- and cryostratigraphic units are identified in yedoma remnant 7E at Duvanny Yar, in ascending stratigraphic order: (1) massive silt, (2) peat, (3) stratified silt, (4) yedoma silt and (5) near-surface silt. The yedoma silt of unit 4 dominates the stratigraphy and is at least 34 m thick. It is characterised by horizontal to gently undulating subtle colour bands but typically lacks primary sedimentary stratification. Texturally, the yedoma silt has mean values of 65 plus or minus 7 per cent silt, 15 plus or minus 8 per cent sand and 21 plus or minus 4 per cent clay. Particle size distributions are bi- to polymodal, with a primary mode of about 41 mu m (coarse silt) and subsidiary modes are 0.3-0.7 mu m (very fine clay to fine clay), 3-5 mu m (coarse clay to very fine silt), 8-16 mu m (fine silt) and 150-350 mu m (fine sand to medium sand). Semidecomposed fine plant material is abundant and fine in-situ roots are pervasive. Syngenetic ice wedges, cryostructures and microcryostructures record syngenetic freezing of the silt. An age model for silt deposition is constructed from 47 pre-Holocene accelerator mass spectrometry (AMS) super(14)C ages, mostly from in-situ roots and from three optically stimulated luminescence (OSL) ages of quartz sand grains. The super(14)C ages indicate that silt deposition extends from 19 000 plus or minus 300 cal BP to 50 000 cal BP or beyond. The OSL ages range from 21.2 plus or minus 1.9 ka near the top of the yedoma to 48.6 plus or minus 2.9 ka near the bottom, broadly consistent with the super(14)C age model. Most of the yedoma silt in unit 4 at Duvanny Yar constitutes cryopedolith (sediment that has experienced incipient pedogenesis along with syngenetic freezing). Mineralised and humified organic remains dispersed within cryopedolith indicate incipient soil formation, but distinct soil horizons are absent. Five buried palaeosols and palaeosol 'complexes' are identified within cryopedolith on the basis of sedimentary and geochemical properties. Magnetic susceptibility, organic content, elemental concentrations and ratios tend to deviate from average values of these parameters at five levels in unit 4. The cryopedolith-palaeosol sequence accreted incrementally upwards on a vegetated palaeo-land surface with a relief of at least several metres, preserving syngenetic ground ice in the aggrading permafrost. Pollen spectra dated to between about 17 000 and 25 000 super(14)C BP characteristically have frequencies of 20-60 per cent tree/shrub pollen (mainly Betula and Pinus) and 20-60 per cent graminoids, predominantly Poaceae, plus forbs, whereas spectra dated to about 30 000-33 000 super(14)C BP have lower values of woody taxa (about 10%) and are dominated by graminoids (mainly Poaceae), forbs (particularly Caryophyllaceae and Asteraceae) and Selaginella rupestris. The latter are more typical of Last Glacial Maximum (LGM) samples reported elsewhere in Siberia, and the unusually high arboreal pollen values in the LGM yedoma at Duvanny Yar are attributed to long-distance transport of pollen. Three hypotheses concerning the processes and environmental conditions of yedoma silt deposition at Duvanny Yar are tested. The alluvial-lacustrine hypothesis and the polygenetic hypothesis are both discounted on sedimentary, palaeoenvironmental, geocryological and palaeoecological grounds. The loessal hypothesis provides the only reasonable explanation to account for the bulk of the unit 4 yedoma silt at this site. Supporting the loessal interpretation are sedimentological and geocryological similarities between the Duvanny Yar loess-palaeosol sequence and cold-climate loesses in central and northern Alaska, the Klondike (Yukon), western and central Siberia and northwest Europe. Differences between loess at Duvanny Yar and that in western and central Siberia and northwest Europe include the persistence of permafrost and the abundance of ground ice and fine in-situ roots within the yedoma. Modern analogues of cold-climate loess deposition are envisaged at a local scale in cold, humid climates where local entrainment and deposition of loess are generally restricted to large alluvial valleys containing rivers that are glacially sourced or drain areas containing Late Pleistocene glacial deposits, and... Uncertainty about the geological processes that deposited syngenetically frozen ice-rich silt (yedoma) across hundreds of thousands of square kilometres in central and northern Siberia fundamentally limits our understanding of the Pleistocene geology and palaeoecology of western Beringia, the sedimentary processes that led to sequestration of hundreds of Pg of carbon within permafrost and whether yedoma provides a globally significant record of ice-age atmospheric conditions or just regional floodplain activity. Here, we test the hypotheses of aeolian versus waterlain deposition of yedoma silt, elucidate the palaeoenvironmental conditions during deposition and develop a conceptual model of silt deposition to clarify understanding of yedoma formation in northern circumpolar regions during the Late Pleistocene. This is based on a field study in 2009 of the Russian stratotype of the 'Yedoma Suite', at Duvanny Yar, in the lower Kolyma River, northern Yakutia, supplemented by observations that we have collected there and at other sites in the Kolyma Lowland since the 1970s. We reconstruct a cold-climate loess region in northern Siberia that forms part of a vast Late Pleistocene permafrost zone extending from northwest Europe across northern Asia to northwest North America, and that was characterised by intense aeolian activity. Five litho- and cryostratigraphic units are identified in yedoma remnant 7E at Duvanny Yar, in ascending stratigraphic order: (1) massive silt, (2) peat, (3) stratified silt, (4) yedoma silt and (5) near-surface silt. The yedoma silt of unit 4 dominates the stratigraphy and is at least 34 m thick. It is characterised by horizontal to gently undulating subtle colour bands but typically lacks primary sedimentary stratification. Texturally, the yedoma silt has mean values of 65 ± 7 per cent silt, 15 ± 8 per cent sand and 21 ± 4 per cent clay. Particle size distributions are bi- to polymodal, with a primary mode of about 41 µm (coarse silt) and subsidiary modes are 0.3-0.7 µm (very fine clay to fine clay), 3-5 µm (coarse clay to very fine silt), 8-16 µm (fine silt) and 150-350 µm (fine sand to medium sand). Semidecomposed fine plant material is abundant and fine in-situ roots are pervasive. Syngenetic ice wedges, cryostructures and microcryostructures record syngenetic freezing of the silt. An age model for silt deposition is constructed from 47 pre-Holocene accelerator mass spectrometry (AMS) 14C ages, mostly from in-situ roots and from three optically stimulated luminescence (OSL) ages of quartz sand grains. The 14C ages indicate that silt deposition extends from 19 000 ± 300 cal BP to 50 000 cal BP or beyond. The OSL ages range from 21.2 ± 1.9 ka near the top of the yedoma to 48.6 ± 2.9 ka near the bottom, broadly consistent with the 14C age model. Most of the yedoma silt in unit 4 at Duvanny Yar constitutes cryopedolith (sediment that has experienced incipient pedogenesis along with syngenetic freezing). Mineralised and humified organic remains dispersed within cryopedolith indicate incipient soil formation, but distinct soil horizons are absent. Five buried palaeosols and palaeosol 'complexes' are identified within cryopedolith on the basis of sedimentary and geochemical properties. Magnetic susceptibility, organic content, elemental concentrations and ratios tend to deviate from average values of these parameters at five levels in unit 4. The cryopedolith-palaeosol sequence accreted incrementally upwards on a vegetated palaeo-land surface with a relief of at least several metres, preserving syngenetic ground ice in the aggrading permafrost. Pollen spectra dated to between about 17 000 and 25 000 14C BP characteristically have frequencies of 20-60 per cent tree/shrub pollen (mainly Betula and Pinus) and 20-60 per cent graminoids, predominantly Poaceae, plus forbs, whereas spectra dated to about 30 000-33 000 14C BP have lower values of woody taxa (about 10%) and are dominated by graminoids (mainly Poaceae), forbs (particularly Caryophyllaceae and Asteraceae) and Selaginella rupestris. The latter are more typical of Last Glacial Maximum (LGM) samples reported elsewhere in Siberia, and the unusually high arboreal pollen values in the LGM yedoma at Duvanny Yar are attributed to long-distance transport of pollen. Three hypotheses concerning the processes and environmental conditions of yedoma silt deposition at Duvanny Yar are tested. The alluvial-lacustrine hypothesis and the polygenetic hypothesis are both discounted on sedimentary, palaeoenvironmental, geocryological and palaeoecological grounds. The loessal hypothesis provides the only reasonable explanation to account for the bulk of the unit 4 yedoma silt at this site. Supporting the loessal interpretation are sedimentological and geocryological similarities between the Duvanny Yar loess-palaeosol sequence and cold-climate loesses in central and northern Alaska, the Klondike (Yukon), western and central Siberia and northwest Europe. Differences between loess at Duvanny Yar and that in western and central Siberia and northwest Europe include the persistence of permafrost and the abundance of ground ice and fine in-situ roots within the yedoma. Modern analogues of cold-climate loess deposition are envisaged at a local scale in cold, humid climates where local entrainment and deposition of loess are generally restricted to large alluvial valleys containing rivers that are glacially sourced or drain areas containing Late Pleistocene glacial deposits, and thus glacially ground silt. The Duvanny Yar yedoma shares sedimentological and geocryological features with yedoma interpreted as ice-rich loess or reworked loess facies at Itkillik (northern Alaska) and in the central Yakutian lowland, and with yedoma in the Laptev Sea region and the New Siberian Archipelago. It is therefore suggested that many lowland yedoma sections across Beringia are primarily of aeolian origin (or consist of reworked aeolian sediments), although other depositional processes (e.g. alluvial and colluvial) may account for some yedoma sequences in river valleys and mountains. A conceptual model of yedoma silt deposition at Duvanny Yar as cold-climate loess in Marine Isotope Stage (MIS) 3 and MIS 2 envisages summer or autumn as the main season of loess deposition. In summer, the land surface was snow-free, unfrozen and relatively dry, making it vulnerable to deflation. Graminoids, forbs and biological soil crust communities trapped and stabilised windblown sediments. Loess accretion resulted from semicontinuous deposition of fine background particles and episodic, discrete dust storms that deposited coarse silt. Winter was characterised by deep thermal contraction cracking beneath thin and dusty snow covers, and snow and frozen ground restricted deflation and sediment trapping by dead grasses. Sources of loess at Duvanny Yar potentially include: (1) sediments and weathered bedrock on uplands to the east, south and southwest of the Kolyma Lowland; (2) alluvium deposited by rivers draining these uplands; and (3) sediments exposed in the Khallerchin tundra to the north and on the emergent continental shelf of the East Siberian Sea. Glacially sourced tributaries of the palaeo-Kolyma River contributed glacially ground silt into channel and/or floodplain deposits, and some of these were probably reworked by wind and deposited as loess in the Kolyma Lowland. The palaeoenvironmental reconstruction of the sedimentary sequence at Duvanny Yar is traced from MIS 6 to the late Holocene. It includes thermokarst activity associated with alas lake development in the Kazantsevo interglacial (MIS 5e), loess accumulation, pedogenesis and syngenetic permafrost development, possibly commencing in the Zyryan glacial (70 000-55 000 cal BP) and extending through the Karginsky interstadial (55 000-25 000 cal BP) and Sartan glacial (25 000-15 000 cal BP), cessation of yedoma silt deposition during the Lateglacial, renewed thermokarst activity in the early Holocene, and permafrost aggradation in the mid to late Holocene. Beringian coastlands from northeast Yakutia through the north Alaskan Coastal Plain to the Tuktoyaktuk Coastlands (Canada) were characterised by extensive aeolian activity (deflation, loess, sand dunes, sand sheets, sand wedges) during MIS 2. Siberian and Canadian high-pressure cells coupled with a strengthened Aleutian low-pressure cell would have created enhanced pressure gradient-driven winds sufficient to entrain sediment on a regional scale. Summer winds are thought to have deflated sediment exposed on the East Siberian Sea shelf and deposited silt as a distal aeolian facies to the south. Additionally, stronger localised winds created by local downslope gravity flows (katabatic winds) may have entrained sediment. Local katabatic winds in summer may have transported silt generally northwards towards the Kolyma Lowland, particularly during times of extended upland glaciation in the North Anyuy Range to the east during the Zyryan (MIS 4) period, whereas winter winds carried limited amounts of silt generally southwards as a result of pressure gradient forces. The Duvanny Yar yedoma is part of a subcontinental-scale region of Late Pleistocene cold-climate loess. One end member, exemplified by the yedoma at Duvanny Yar, was loess rich in syngenetic ground ice (Beringian yedoma). The other, exemplified by loess in northwest Europe, was ice-poor and subject to complete permafrost degradation at the end of the last ice age. These end members reflect a distinction between enduring cold continuous permafrost conditions leading to stacked ice-rich transition zones and large syngenetic ice wedges in much of Beringia versus conditions oscillating between cold permafrost, warm permafrost and seasonal frost, leading to repeated permafrost thaw and small ice-wedge pseudomorphs in northwest Europe. Copyright © 2015 John Wiley & Sons, Ltd. Uncertainty about the geological processes that deposited syngenetically frozen ice‐rich silt (yedoma) across hundreds of thousands of square kilometres in central and northern Siberia fundamentally limits our understanding of the Pleistocene geology and palaeoecology of western Beringia, the sedimentary processes that led to sequestration of hundreds of Pg of carbon within permafrost and whether yedoma provides a globally significant record of ice‐age atmospheric conditions or just regional floodplain activity. Here, we test the hypotheses of aeolian versus waterlain deposition of yedoma silt, elucidate the palaeoenvironmental conditions during deposition and develop a conceptual model of silt deposition to clarify understanding of yedoma formation in northern circumpolar regions during the Late Pleistocene. This is based on a field study in 2009 of the Russian stratotype of the ‘Yedoma Suite’, at Duvanny Yar, in the lower Kolyma River, northern Yakutia, supplemented by observations that we have collected there and at other sites in the Kolyma Lowland since the 1970s. We reconstruct a cold‐climate loess region in northern Siberia that forms part of a vast Late Pleistocene permafrost zone extending from northwest Europe across northern Asia to northwest North America, and that was characterised by intense aeolian activity. Five litho‐ and cryostratigraphic units are identified in yedoma remnant 7E at Duvanny Yar, in ascending stratigraphic order: (1) massive silt, (2) peat, (3) stratified silt, (4) yedoma silt and (5) near‐surface silt. The yedoma silt of unit 4 dominates the stratigraphy and is at least 34 m thick. It is characterised by horizontal to gently undulating subtle colour bands but typically lacks primary sedimentary stratification. Texturally, the yedoma silt has mean values of 65 ± 7 per cent silt, 15 ± 8 per cent sand and 21 ± 4 per cent clay. Particle size distributions are bi‐ to polymodal, with a primary mode of about 41 μm (coarse silt) and subsidiary modes are 0.3–0.7 μm (very fine clay to fine clay), 3–5 μm (coarse clay to very fine silt), 8–16 μm (fine silt) and 150–350 μm (fine sand to medium sand). Semidecomposed fine plant material is abundant and fine in‐situ roots are pervasive. Syngenetic ice wedges, cryostructures and microcryostructures record syngenetic freezing of the silt. An age model for silt deposition is constructed from 47 pre‐Holocene accelerator mass spectrometry (AMS) 14C ages, mostly from in‐situ roots and from three optically stimulated luminescence (OSL) ages of quartz sand grains. The 14C ages indicate that silt deposition extends from 19 000 ± 300 cal BP to 50 000 cal BP or beyond. The OSL ages range from 21.2 ± 1.9 ka near the top of the yedoma to 48.6 ± 2.9 ka near the bottom, broadly consistent with the 14C age model. Most of the yedoma silt in unit 4 at Duvanny Yar constitutes cryopedolith (sediment that has experienced incipient pedogenesis along with syngenetic freezing). Mineralised and humified organic remains dispersed within cryopedolith indicate incipient soil formation, but distinct soil horizons are absent. Five buried palaeosols and palaeosol ‘complexes’ are identified within cryopedolith on the basis of sedimentary and geochemical properties. Magnetic susceptibility, organic content, elemental concentrations and ratios tend to deviate from average values of these parameters at five levels in unit 4. The cryopedolith‐palaeosol sequence accreted incrementally upwards on a vegetated palaeo‐land surface with a relief of at least several metres, preserving syngenetic ground ice in the aggrading permafrost. Pollen spectra dated to between about 17 000 and 25 000 14C BP characteristically have frequencies of 20–60 per cent tree/shrub pollen (mainly Betula and Pinus) and 20–60 per cent graminoids, predominantly Poaceae, plus forbs, whereas spectra dated to about 30 000–33 000 14C BP have lower values of woody taxa (about 10%) and are dominated by graminoids (mainly Poaceae), forbs (particularly Caryophyllaceae and Asteraceae) and Selaginella rupestris. The latter are more typical of Last Glacial Maximum (LGM) samples reported elsewhere in Siberia, and the unusually high arboreal pollen values in the LGM yedoma at Duvanny Yar are attributed to long‐distance transport of pollen. Three hypotheses concerning the processes and environmental conditions of yedoma silt deposition at Duvanny Yar are tested. The alluvial‐lacustrine hypothesis and the polygenetic hypothesis are both discounted on sedimentary, palaeoenvironmental, geocryological and palaeoecological grounds. The loessal hypothesis provides the only reasonable explanation to account for the bulk of the unit 4 yedoma silt at this site. Supporting the loessal interpretation are sedimentological and geocryological similarities between the Duvanny Yar loess‐palaeosol sequence and cold‐climate loesses in central and northern Alaska, the Klondike (Yukon), western and central Siberia and northwest Europe. Differences between loess at Duvanny Yar and that in western and central Siberia and northwest Europe include the persistence of permafrost and the abundance of ground ice and fine in‐situ roots within the yedoma. Modern analogues of cold‐climate loess deposition are envisaged at a local scale in cold, humid climates where local entrainment and deposition of loess are generally restricted to large alluvial valleys containing rivers that are glacially sourced or drain areas containing Late Pleistocene glacial deposits, and thus glacially ground silt. The Duvanny Yar yedoma shares sedimentological and geocryological features with yedoma interpreted as ice‐rich loess or reworked loess facies at Itkillik (northern Alaska) and in the central Yakutian lowland, and with yedoma in the Laptev Sea region and the New Siberian Archipelago. It is therefore suggested that many lowland yedoma sections across Beringia are primarily of aeolian origin (or consist of reworked aeolian sediments), although other depositional processes (e.g. alluvial and colluvial) may account for some yedoma sequences in river valleys and mountains. A conceptual model of yedoma silt deposition at Duvanny Yar as cold‐climate loess in Marine Isotope Stage (MIS) 3 and MIS 2 envisages summer or autumn as the main season of loess deposition. In summer, the land surface was snow‐free, unfrozen and relatively dry, making it vulnerable to deflation. Graminoids, forbs and biological soil crust communities trapped and stabilised windblown sediments. Loess accretion resulted from semicontinuous deposition of fine background particles and episodic, discrete dust storms that deposited coarse silt. Winter was characterised by deep thermal contraction cracking beneath thin and dusty snow covers, and snow and frozen ground restricted deflation and sediment trapping by dead grasses. Sources of loess at Duvanny Yar potentially include: (1) sediments and weathered bedrock on uplands to the east, south and southwest of the Kolyma Lowland; (2) alluvium deposited by rivers draining these uplands; and (3) sediments exposed in the Khallerchin tundra to the north and on the emergent continental shelf of the East Siberian Sea. Glacially sourced tributaries of the palaeo‐Kolyma River contributed glacially ground silt into channel and/or floodplain deposits, and some of these were probably reworked by wind and deposited as loess in the Kolyma Lowland. The palaeoenvironmental reconstruction of the sedimentary sequence at Duvanny Yar is traced from MIS 6 to the late Holocene. It includes thermokarst activity associated with alas lake development in the Kazantsevo interglacial (MIS 5e), loess accumulation, pedogenesis and syngenetic permafrost development, possibly commencing in the Zyryan glacial (70 000–55 000 cal BP) and extending through the Karginsky interstadial (55 000–25 000 cal BP) and Sartan glacial (25 000–15 000 cal BP), cessation of yedoma silt deposition during the Lateglacial, renewed thermokarst activity in the early Holocene, and permafrost aggradation in the mid to late Holocene. Beringian coastlands from northeast Yakutia through the north Alaskan Coastal Plain to the Tuktoyaktuk Coastlands (Canada) were characterised by extensive aeolian activity (deflation, loess, sand dunes, sand sheets, sand wedges) during MIS 2. Siberian and Canadian high‐pressure cells coupled with a strengthened Aleutian low‐pressure cell would have created enhanced pressure gradient‐driven winds sufficient to entrain sediment on a regional scale. Summer winds are thought to have deflated sediment exposed on the East Siberian Sea shelf and deposited silt as a distal aeolian facies to the south. Additionally, stronger localised winds created by local downslope gravity flows (katabatic winds) may have entrained sediment. Local katabatic winds in summer may have transported silt generally northwards towards the Kolyma Lowland, particularly during times of extended upland glaciation in the North Anyuy Range to the east during the Zyryan (MIS 4) period, whereas winter winds carried limited amounts of silt generally southwards as a result of pressure gradient forces. The Duvanny Yar yedoma is part of a subcontinental‐scale region of Late Pleistocene cold‐climate loess. One end member, exemplified by the yedoma at Duvanny Yar, was loess rich in syngenetic ground ice (Beringian yedoma). The other, exemplified by loess in northwest Europe, was ice‐poor and subject to complete permafrost degradation at the end of the last ice age. These end members reflect a distinction between enduring cold continuous permafrost conditions leading to stacked ice‐rich transition zones and large syngenetic ice wedges in much of Beringia versus conditions oscillating between cold permafrost, warm permafrost and seasonal frost, leading to repeated permafrost thaw and small ice‐wedge pseudomorphs in northwest Europe. Copyright © 2015 John Wiley & Sons, Ltd. Uncertainty about the geological processes that deposited syngenetically frozen ice‐rich silt ( yedoma ) across hundreds of thousands of square kilometres in central and northern Siberia fundamentally limits our understanding of the Pleistocene geology and palaeoecology of western Beringia, the sedimentary processes that led to sequestration of hundreds of Pg of carbon within permafrost and whether yedoma provides a globally significant record of ice‐age atmospheric conditions or just regional floodplain activity. Here, we test the hypotheses of aeolian versus waterlain deposition of yedoma silt, elucidate the palaeoenvironmental conditions during deposition and develop a conceptual model of silt deposition to clarify understanding of yedoma formation in northern circumpolar regions during the Late Pleistocene. This is based on a field study in 2009 of the Russian stratotype of the ‘Yedoma Suite’, at Duvanny Yar, in the lower Kolyma River, northern Yakutia, supplemented by observations that we have collected there and at other sites in the Kolyma Lowland since the 1970s. We reconstruct a cold‐climate loess region in northern Siberia that forms part of a vast Late Pleistocene permafrost zone extending from northwest Europe across northern Asia to northwest North America, and that was characterised by intense aeolian activity. Five litho‐ and cryostratigraphic units are identified in yedoma remnant 7E at Duvanny Yar, in ascending stratigraphic order: (1) massive silt, (2) peat, (3) stratified silt, (4) yedoma silt and (5) near‐surface silt. The yedoma silt of unit 4 dominates the stratigraphy and is at least 34 m thick. It is characterised by horizontal to gently undulating subtle colour bands but typically lacks primary sedimentary stratification. Texturally, the yedoma silt has mean values of 65 ± 7 per cent silt, 15 ± 8 per cent sand and 21 ± 4 per cent clay. Particle size distributions are bi‐ to polymodal, with a primary mode of about 41 μm (coarse silt) and subsidiary modes are 0.3–0.7 μm (very fine clay to fine clay), 3–5 μm (coarse clay to very fine silt), 8–16 μm (fine silt) and 150–350 μm (fine sand to medium sand). Semidecomposed fine plant material is abundant and fine in‐situ roots are pervasive. Syngenetic ice wedges, cryostructures and microcryostructures record syngenetic freezing of the silt. An age model for silt deposition is constructed from 47 pre‐Holocene accelerator mass spectrometry (AMS) 14 C ages, mostly from in‐situ roots and from three optically stimulated luminescence (OSL) ages of quartz sand grains. The 14 C ages indicate that silt deposition extends from 19 000 ± 300 cal BP to 50 000 cal BP or beyond. The OSL ages range from 21.2 ± 1.9 ka near the top of the yedoma to 48.6 ± 2.9 ka near the bottom, broadly consistent with the 14 C age model. Most of the yedoma silt in unit 4 at Duvanny Yar constitutes cryopedolith (sediment that has experienced incipient pedogenesis along with syngenetic freezing). Mineralised and humified organic remains dispersed within cryopedolith indicate incipient soil formation, but distinct soil horizons are absent. Five buried palaeosols and palaeosol ‘complexes’ are identified within cryopedolith on the basis of sedimentary and geochemical properties. Magnetic susceptibility, organic content, elemental concentrations and ratios tend to deviate from average values of these parameters at five levels in unit 4. The cryopedolith‐palaeosol sequence accreted incrementally upwards on a vegetated palaeo‐land surface with a relief of at least several metres, preserving syngenetic ground ice in the aggrading permafrost. Pollen spectra dated to between about 17 000 and 25 000 14 C BP characteristically have frequencies of 20–60 per cent tree/shrub pollen (mainly Betula and Pinus ) and 20–60 per cent graminoids, predominantly Poaceae, plus forbs, whereas spectra dated to about 30 000–33 000 14 C BP have lower values of woody taxa (about 10%) and are dominated by graminoids (mainly Poaceae), forbs (particularly Caryophyllaceae and Asteraceae) and Selaginella rupestris . The latter are more typical of Last Glacial Maximum (LGM) samples reported elsewhere in Siberia, and the unusually high arboreal pollen values in the LGM yedoma at Duvanny Yar are attributed to long‐distance transport of pollen. Three hypotheses concerning the processes and environmental conditions of yedoma silt deposition at Duvanny Yar are tested. The alluvial‐lacustrine hypothesis and the polygenetic hypothesis are both discounted on sedimentary, palaeoenvironmental, geocryological and palaeoecological grounds. The loessal hypothesis provides the only reasonable explanation to account for the bulk of the unit 4 yedoma silt at this site. Supporting the loessal interpretation are sedimentological and geocryological similarities between the Duvanny Yar loess‐palaeosol sequence and cold‐climate loesses in central and northern Alaska, the Klondike (Yukon), western and central Siberia and northwest Europe. Differences between loess at Duvanny Yar and that in western and central Siberia and northwest Europe include the persistence of permafrost and the abundance of ground ice and fine in‐situ roots within the yedoma. Modern analogues of cold‐climate loess deposition are envisaged at a local scale in cold, humid climates where local entrainment and deposition of loess are generally restricted to large alluvial valleys containing rivers that are glacially sourced or drain areas containing Late Pleistocene glacial deposits, and thus glacially ground silt. The Duvanny Yar yedoma shares sedimentological and geocryological features with yedoma interpreted as ice‐rich loess or reworked loess facies at Itkillik (northern Alaska) and in the central Yakutian lowland, and with yedoma in the Laptev Sea region and the New Siberian Archipelago. It is therefore suggested that many lowland yedoma sections across Beringia are primarily of aeolian origin (or consist of reworked aeolian sediments), although other depositional processes (e.g. alluvial and colluvial) may account for some yedoma sequences in river valleys and mountains. A conceptual model of yedoma silt deposition at Duvanny Yar as cold‐climate loess in Marine Isotope Stage (MIS) 3 and MIS 2 envisages summer or autumn as the main season of loess deposition. In summer, the land surface was snow‐free, unfrozen and relatively dry, making it vulnerable to deflation. Graminoids, forbs and biological soil crust communities trapped and stabilised windblown sediments. Loess accretion resulted from semicontinuous deposition of fine background particles and episodic, discrete dust storms that deposited coarse silt. Winter was characterised by deep thermal contraction cracking beneath thin and dusty snow covers, and snow and frozen ground restricted deflation and sediment trapping by dead grasses. Sources of loess at Duvanny Yar potentially include: (1) sediments and weathered bedrock on uplands to the east, south and southwest of the Kolyma Lowland; (2) alluvium deposited by rivers draining these uplands; and (3) sediments exposed in the Khallerchin tundra to the north and on the emergent continental shelf of the East Siberian Sea. Glacially sourced tributaries of the palaeo‐Kolyma River contributed glacially ground silt into channel and/or floodplain deposits, and some of these were probably reworked by wind and deposited as loess in the Kolyma Lowland. The palaeoenvironmental reconstruction of the sedimentary sequence at Duvanny Yar is traced from MIS 6 to the late Holocene. It includes thermokarst activity associated with alas lake development in the Kazantsevo interglacial (MIS 5e), loess accumulation, pedogenesis and syngenetic permafrost development, possibly commencing in the Zyryan glacial (70 000–55 000 cal BP) and extending through the Karginsky interstadial (55 000–25 000 cal BP) and Sartan glacial (25 000–15 000 cal BP), cessation of yedoma silt deposition during the Lateglacial, renewed thermokarst activity in the early Holocene, and permafrost aggradation in the mid to late Holocene. Beringian coastlands from northeast Yakutia through the north Alaskan Coastal Plain to the Tuktoyaktuk Coastlands (Canada) were characterised by extensive aeolian activity (deflation, loess, sand dunes, sand sheets, sand wedges) during MIS 2. Siberian and Canadian high‐pressure cells coupled with a strengthened Aleutian low‐pressure cell would have created enhanced pressure gradient‐driven winds sufficient to entrain sediment on a regional scale. Summer winds are thought to have deflated sediment exposed on the East Siberian Sea shelf and deposited silt as a distal aeolian facies to the south. Additionally, stronger localised winds created by local downslope gravity flows (katabatic winds) may have entrained sediment. Local katabatic winds in summer may have transported silt generally northwards towards the Kolyma Lowland, particularly during times of extended upland glaciation in the North Anyuy Range to the east during the Zyryan (MIS 4) period, whereas winter winds carried limited amounts of silt generally southwards as a result of pressure gradient forces. The Duvanny Yar yedoma is part of a subcontinental‐scale region of Late Pleistocene cold‐climate loess. One end member, exemplified by the yedoma at Duvanny Yar, was loess rich in syngenetic ground ice (Beringian yedoma). The other, exemplified by loess in northwest Europe, was ice‐poor and subject to complete permafrost degradation at the end of the last ice age. These end members reflect a distinction between enduring cold continuous permafrost conditions leading to stacked ice‐rich transition zones and large syngenetic ice wedges in much of Beringia versus conditions oscillating between cold permafrost, warm permafrost and seasonal frost, leading to repeated permafrost thaw and small ice‐wedge pseudomorphs in northwest Europe. Copyright © 2015 John Wiley & Sons, Ltd. |
Author | Edwards, Mary E. Lozhkin, Anatoly V. Haile, James Lupachev, Alexei V. Bateman, Mark D. Danilov, Petr P. Tikhonov, Alexei Murton, Della K. Ghaleb, Bassam Goslar, Tomasz Shur, Yuri Vasil'chuk, Alla C. Vasil'chuk, Yurij K. Gubin, Stanislav V. Wolfe, Stephen A. Murton, Julian B. Kanevskiy, Mikhail Savvinov, Grigoriy N. |
Author_xml | – sequence: 1 givenname: Julian B. surname: Murton fullname: Murton, Julian B. email: Correspondence to: J. B. Murton, Permafrost Laboratory, Department of Geography, University of Sussex, Brighton BN1 9QJ, UK., j.b.murton@sussex.ac.uk organization: Permafrost Laboratory, Department of Geography, University of Sussex, Brighton, UK – sequence: 2 givenname: Tomasz surname: Goslar fullname: Goslar, Tomasz organization: Adam Mickiewicz University, Faculty of Physics, Poznan, Poland – sequence: 3 givenname: Mary E. surname: Edwards fullname: Edwards, Mary E. organization: School of Geography, University of Southampton, Southampton, UK – sequence: 4 givenname: Mark D. surname: Bateman fullname: Bateman, Mark D. organization: Department of Geography, University of Sheffield, Sheffield, UK – sequence: 5 givenname: Petr P. surname: Danilov fullname: Danilov, Petr P. organization: Science Research Institute of Applied Ecology of the North of North-East Federal University, Yakutsk, Russia – sequence: 6 givenname: Grigoriy N. surname: Savvinov fullname: Savvinov, Grigoriy N. organization: Science Research Institute of Applied Ecology of the North of North-East Federal University, Yakutsk, Russia – sequence: 7 givenname: Stanislav V. surname: Gubin fullname: Gubin, Stanislav V. organization: Institute of Physicochemical and Biological Problems in Soil Sciences, Russian Academy of Sciences, Moscow, Russia – sequence: 8 givenname: Bassam surname: Ghaleb fullname: Ghaleb, Bassam organization: GEOTOP-UQAM-McGILL, Université du Québec à Montréal, QC, Montreal, Canada – sequence: 9 givenname: James surname: Haile fullname: Haile, James organization: School of Biological Sciences, Murdoch University, Murdoch, WA, Australia – sequence: 10 givenname: Mikhail surname: Kanevskiy fullname: Kanevskiy, Mikhail organization: Institute of Northern Engineering, University of Alaska Fairbanks, AK, Fairbanks, USA – sequence: 11 givenname: Anatoly V. surname: Lozhkin fullname: Lozhkin, Anatoly V. organization: North East Interdisciplinary Science Research Institute, Far East Branch Russian Academy of Sciences, Magadan, Russia – sequence: 12 givenname: Alexei V. surname: Lupachev fullname: Lupachev, Alexei V. organization: Institute of Physicochemical and Biological Problems in Soil Sciences, Russian Academy of Sciences, Moscow, Russia – sequence: 13 givenname: Della K. surname: Murton fullname: Murton, Della K. organization: Department of Geography, University of Cambridge, Cambridge, UK – sequence: 14 givenname: Yuri surname: Shur fullname: Shur, Yuri organization: Institute of Northern Engineering, University of Alaska Fairbanks, AK, Fairbanks, USA – sequence: 15 givenname: Alexei surname: Tikhonov fullname: Tikhonov, Alexei organization: Zoological Institute, Russian Academy of Sciences, Universitetskaya nab.1, Saint-Petersburg, Russia – sequence: 16 givenname: Alla C. surname: Vasil'chuk fullname: Vasil'chuk, Alla C. organization: Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia – sequence: 17 givenname: Yurij K. surname: Vasil'chuk fullname: Vasil'chuk, Yurij K. organization: Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia – sequence: 18 givenname: Stephen A. surname: Wolfe fullname: Wolfe, Stephen A. organization: Geological Survey of Canada, Natural Resources Canada, ON, Ottawa, Canada |
BookMark | eNp1kVFrFDEQxxepYFsLfoSALxW6Z7KbTXYf9artwVGvVTn6FOa2E0zNJmuSq703P7o5TxSLfZqQ_ObHZP4HxZ7zDoviBaMTRmn1ehzHCWt5_aTYZ7TrStbUdG975k0pJKfPioMYbymlbc34fvFjARbQo7szwbsBXQJLZi5hGAMmSMY74jW5xhs_APlobCLHsx7J1A-jxftX5BRHH80vDmK-tjfl1JoBEpK5xxhPyOn6DpzbkGsIJ-TCh_QFIabsWmEw8Lx4qsFGPPpdD4vP7999mp6X8w9ns-mbeQm8YnUJlRayFpArtlJoRkXTVlLzql_1Qre04wIp1LppNFvlB6krAMmEWEkUgPVhcbzzjsF_W2NMajCxR2vBoV9HxSSTPEu6NqMvH6C3fh1cni5TtO0y2XV_hX3wMQbUagz532GjGFXbKFSOQm2jyOjkAdqb3W5TAGP_11DuGr4bi5tHxWqxWPzLm5jw_g8P4avKW5ONWl6cqSvOLpfy7bla1j8Bu5WrjA |
CODEN | PEPPED |
CitedBy_id | crossref_primary_10_1016_j_quaint_2020_04_015 crossref_primary_10_3390_v15020564 crossref_primary_10_1017_qua_2016_15 crossref_primary_10_1002_ppp_2052 crossref_primary_10_1134_S0031030120080110 crossref_primary_10_1080_14702541_2016_1156149 crossref_primary_10_1134_S1064229323602536 crossref_primary_10_5194_bg_14_1261_2017 crossref_primary_10_3934_environsci_2019_1_14 crossref_primary_10_1029_2022EF002779 crossref_primary_10_1111_gcb_70071 crossref_primary_10_3389_feart_2021_704141 crossref_primary_10_1016_j_palaeo_2017_08_006 crossref_primary_10_3389_feart_2021_703339 crossref_primary_10_1016_j_grj_2017_02_004 crossref_primary_10_1134_S1064229322080099 crossref_primary_10_1111_bor_12476 crossref_primary_10_5194_soil_7_347_2021 crossref_primary_10_1002_ppp_1933 crossref_primary_10_1002_ppp_2105 crossref_primary_10_1016_j_geomorph_2016_09_034 crossref_primary_10_1002_ppp_2102 crossref_primary_10_1002_ppp_2185 crossref_primary_10_1080_01431161_2018_1519281 crossref_primary_10_3390_atmos8060105 crossref_primary_10_1371_journal_pgen_1010798 crossref_primary_10_1029_2018JG004735 crossref_primary_10_3389_feart_2021_727315 crossref_primary_10_7256_2453_8922_2023_4_68845 crossref_primary_10_1017_qua_2021_27 crossref_primary_10_1016_j_earscirev_2024_104782 crossref_primary_10_1017_qua_2024_58 crossref_primary_10_3389_feart_2020_528632 crossref_primary_10_1016_j_geoderma_2023_116456 crossref_primary_10_1038_s41467_017_02421_3 crossref_primary_10_1016_j_earscirev_2019_102947 crossref_primary_10_3390_rs13020178 crossref_primary_10_1038_ngeo2795 crossref_primary_10_1016_j_quascirev_2018_01_002 crossref_primary_10_5194_cp_15_1443_2019 crossref_primary_10_5194_gmd_14_521_2021 crossref_primary_10_3389_feart_2022_741932 crossref_primary_10_1002_ppp_1912 crossref_primary_10_1016_j_sedgeo_2016_01_018 crossref_primary_10_1016_j_quaint_2017_11_048 crossref_primary_10_1134_S0869593822050070 crossref_primary_10_3799_dqkx_2024_075 crossref_primary_10_3390_geosciences7020024 crossref_primary_10_1016_j_quascirev_2019_106073 crossref_primary_10_3389_feart_2021_703304 crossref_primary_10_3897_BDJ_8_e51586 crossref_primary_10_1007_s10661_022_10270_x crossref_primary_10_1080_1088937X_2019_1648581 crossref_primary_10_1111_bor_12431 crossref_primary_10_1111_sed_13037 crossref_primary_10_1016_j_quaint_2021_01_005 crossref_primary_10_1002_ldr_4866 crossref_primary_10_3389_feart_2021_718904 crossref_primary_10_1002_ppp_2096 crossref_primary_10_1134_S1064229323602615 crossref_primary_10_1144_EGSP28_5 crossref_primary_10_1029_2020GL092087 crossref_primary_10_5194_bg_15_953_2018 crossref_primary_10_1016_j_geomorph_2015_10_023 crossref_primary_10_1016_j_pgeola_2018_05_004 crossref_primary_10_1111_ter_12642 crossref_primary_10_1111_bor_12286 crossref_primary_10_7256_2453_8922_2021_2_36145 crossref_primary_10_55959_MSU0137_0944_17_2023_78_4_29_43 crossref_primary_10_1134_S1064229320100087 crossref_primary_10_1016_j_soilbio_2017_10_001 crossref_primary_10_3389_feart_2021_680565 crossref_primary_10_1111_bor_12569 crossref_primary_10_5194_tc_14_4525_2020 crossref_primary_10_1017_qua_2018_3 crossref_primary_10_3389_feart_2021_744775 crossref_primary_10_31857_S2949178924020018 crossref_primary_10_1038_s41598_024_67947_1 crossref_primary_10_1080_14614103_2021_1975252 crossref_primary_10_3103_S0145875218010131 crossref_primary_10_1002_ppp_2233 crossref_primary_10_1002_ppp_2194 crossref_primary_10_1002_ppp_2230 crossref_primary_10_1134_S0869593820030065 crossref_primary_10_1002_ppp_2191 crossref_primary_10_1016_j_micron_2021_103067 crossref_primary_10_1139_as_2021_0049 crossref_primary_10_1016_j_earscirev_2017_07_007 crossref_primary_10_5194_cp_13_795_2017 crossref_primary_10_1038_s41467_024_50346_5 crossref_primary_10_1002_ppp_2128 crossref_primary_10_1016_j_geoderma_2017_01_028 crossref_primary_10_1002_ppp_2243 crossref_primary_10_1186_s40645_020_00345_z crossref_primary_10_3103_S014768742304004X crossref_primary_10_1016_j_geomorph_2017_11_003 crossref_primary_10_1016_j_earscirev_2020_103496 crossref_primary_10_1016_j_geomorph_2024_109108 |
Cites_doi | 10.1016/B978-0-444-53643-3.00106-0 10.1191/0309133303pp365ra 10.1130/G21489.1 10.1002/esp.3290060314 10.1111/j.1365-3091.1996.tb02023.x 10.3133/pp1262 10.1016/j.quageo.2009.03.007 10.1016/S0277-3791(00)00102-5 10.1175/2007JHM845.1 10.1306/D4268298-2B26-11D7-8648000102C1865D 10.5194/cp-9-1211-2013 10.1016/S0341-8162(03)00109-7 10.1002/ppp.1782 10.1016/S1350-4487(00)00104-9 10.1017/S0016756800065298 10.1139/e17-106 10.1002/esp.3290090102 10.1111/j.1365-3091.2010.01189.x 10.1139/e17-054 10.1139/e17‐015 10.1016/j.quaint.2006.12.006 10.1016/j.quascirev.2010.11.024 10.1002/(SICI)1099-1417(199609/10)11:5<389::AID-JQS260>3.0.CO;2-K 10.1139/e07-015 10.1016/j.quascirev.2006.07.002 10.1002/jqs.1258 10.1002/esp.3290060312 10.1016/j.quaint.2005.12.003 10.1139/e78-114 10.1126/science.211.4480.381 10.1016/S0033-5894(03)00037-1 10.1111/j.1751-8369.1982.tb00479.x 10.1016/j.sedgeo.2003.12.007 10.2307/2937050 10.1111/j.1365-2486.2006.01259.x 10.4000/quaternaire.171 10.1016/B978-0-444-53447-7.00063-5 10.1130/0016-7606(1988)100<0948:TFPTAL>2.3.CO;2 10.1029/2007GC001938 10.1134/S1064229308060021 10.1016/j.quascirev.2005.07.023 10.1073/pnas.1118386109 10.1016/S0012-8252(01)00045-9 10.1111/bor.12070 10.1017/S0033822200034202 10.1002/gj.1088 10.1111/j.1365-3091.2006.00783.x 10.1016/S0277-3791(00)00129-3 10.1016/B978-0-444-53643-3.00186-2 10.1080/10889379509377563 10.1130/GSATG54A.1 10.1016/j.yqres.2006.02.008 10.1029/2006GL027484 10.1002/ppp.3430010304 10.1016/j.quascirev.2010.04.019 10.1016/j.palaeo.2006.06.005 10.1139/e86‐055 10.1016/j.earscirev.2013.03.001 10.1002/ppp.3430010104 10.4095/226434 10.1002/ppp.3430010207 10.1016/S0921-8181(00)00060-6 10.3133/ofr20131078 10.1002/jqs.750 10.1002/esp.3290060313 10.1029/2010GL046573 10.1016/S1350-4487(03)00053-2 10.1029/2011GB004104 10.5194/cp-3-261-2007 10.1130/GSAB-54-1433 10.1016/j.quaint.2011.07.034 10.1029/2002JD002558 10.1139/cjes-37-6-849 10.1111/j.1502-3885.2009.00116.x 10.1016/B978-0-444-53643-3.00117-5 10.1046/j.1365-246X.2003.01829.x 10.1029/2010JG001634 10.1016/j.quascirev.2006.12.006 10.1016/j.nimb.2004.04.005 10.2136/sssabookser5.1.2ed 10.1002/ppp.3430040105 10.1016/S0341-8162(96)00075-6 10.1038/nature04604 10.1016/j.quascirev.2013.01.014 10.1016/S0277-3791(03)00182-3 10.1002/esp.3290090606 10.1002/jqs.1234 10.1016/j.quaint.2010.11.009 10.1016/j.quaint.2011.01.013 10.1016/j.quascirev.2014.03.009. 10.1029/2011JG001647 10.1016/B0-44-452747-8/00161-7 10.1111/j.1502-3885.2012.00299.x 10.1016/j.quascirev.2010.12.022 10.1016/S0277-3791(00)00127-X 10.1111/j.0435-3676.2000.00138.x 10.1016/S0277-3791(00)00099-8 10.1130/DNAG-GNA-L.459 10.1016/j.quascirev.2009.04.016 10.1016/B978-0-12-355860-2.50009-0 10.1007/s10933-006-9018-5 10.1016/S0277-3791(02)00005-7 10.1130/0016-7606(1966)77[1089:EFAERW]2.0.CO;2 10.1016/j.quascirev.2010.11.010 10.1016/j.quaint.2010.08.002 10.1002/ppp.647 10.1002/ppp.1764 10.2307/1551414 10.1080/10889379009377440 10.1017/S0033822200019755 10.1038/nature12921 10.1002/(SICI)1099-1530(199804/06)9:23.0.CO;2-T 10.1016/B978-0-12-374739-6.00312-2 10.1134/S1064229312010115 10.3133/ofr72326 10.1002/ppp.620 10.1016/1350-4487(94)90086-8 10.1002/ppp.674 10.1016/B978-0-12-374739-6.00206-2 10.1016/j.quascirev.2004.09.007 10.1016/B978-0-12-355860-2.50008-9 10.1016/0033-5894(90)90040-R 10.1016/B978-0-444-53643-3.00097-2 10.1002/ppp.1779 10.1029/2006GC001284 10.3133/pp862 10.1002/ppp.486 10.4095/101584 10.1016/j.yqres.2010.12.003 10.1016/S0277-3791(00)00134-7 10.1016/j.quascirev.2010.12.026 10.1130/G24940A.1 10.1038/231382a0 10.1016/j.aeolia.2013.06.001 10.1002/jqs.3390080302 10.1086/625877 10.1016/0016-7061(96)00007-9 10.1002/ppp.518 10.1134/S0869593806050078 10.1002/jqs.1283 10.1017/S0033822200041199 10.1016/S0277-3791(99)00045-1 10.1016/j.quascirev.2011.07.020 10.1016/1359-0189(90)90035-V 10.1139/e17-116 10.1657/1523-0430(07-022)[MUHS]2.0.CO;2 10.1016/S0277-3791(00)00128-1 10.1016/S0012-821X(97)00218-5 10.1134/S0026261708030156 10.1016/j.geoderma.2007.11.012 10.1002/esp.3315 10.1111/j.1502-3885.1999.tb00241.x 10.1016/j.quaint.2008.12.012 10.1016/j.agrformet.2008.06.018 10.1126/science.1128908 10.1016/j.yqres.2005.01.003 10.1016/j.palaeo.2005.06.004 10.1006/qres.1995.1002 10.1111/j.1365-2699.2004.01203.x 10.1029/2002JD002559 10.1002/(SICI)1099-1417(1998090)13:5<471::AID-JQS401>3.0.CO;2-T 10.1002/esp.3290130206 10.1139/e05-115 10.1002/ppp.558 10.1016/B978-0-444-53643-3.00116-3 10.1016/j.yqres.2004.02.003 10.1002/ppp.3430020304 10.1016/S0277-3791(03)00167-7 10.3133/pp835 10.1006/qres.1999.2097 10.1177/030913338400800202 10.1016/j.geoderma.2012.08.001 10.1016/j.aeolia.2011.08.002 10.1016/j.quaint.2010.04.004 10.1007/978-1-4020-2121-3_19 10.1006/qres.2001.2274 10.4095/127955 10.1002/(SICI)1099-1417(1998090)13:5<391::AID-JQS397>3.0.CO;2-6 10.1016/j.quascirev.2009.08.001 10.1006/qres.1995.1016 10.1016/S0277-3791(02)00038-0 10.1016/j.aeolia.2012.08.001 10.1007/978-90-481-2642-2 10.1016/j.quascirev.2011.01.021 10.1016/B978-0-12-355860-2.50037-5 10.1016/S0037-0738(02)00082-9 10.1139/B06-026 10.1130/0016-7606(1955)66[699:OOTUSN]2.0.CO;2 10.1016/j.earscirev.2009.12.001 10.1007/978-3-540-69371-0_13 10.1016/j.quascirev.2011.02.010 10.1016/j.earscirev.2010.04.002 10.1134/S1064229310110062 10.1046/j.1365-3091.1997.d01-38.x 10.1002/ppp.416. 10.1016/j.geomorph.2010.04.024 10.1086/622281 10.1002/esp.3290020204 10.14430/arctic1191 10.1016/B978-0-444-53643-3.00145-X 10.1007/s00254-006-0432-9 10.1002/esp.3290140406 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7QH 7TG 7UA C1K F1W H96 KL. L.G |
DOI | 10.1002/ppp.1843 |
DatabaseName | Istex CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1099-1530 |
EndPage | 288 |
ExternalDocumentID | 3795385681 10_1002_ppp_1843 PPP1843 ark_67375_WNG_R41QW7BH_W |
Genre | article |
GeographicLocations | Asia Russia, Sakha, Kolyma R Russia, Yakutia INW, Russia, Siberia Beringia North America ANE, Europe INE, USA, Alaska |
GeographicLocations_xml | – name: Asia – name: Beringia – name: Russia, Sakha, Kolyma R – name: INE, USA, Alaska – name: Russia, Yakutia – name: North America – name: INW, Russia, Siberia – name: ANE, Europe |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WIB WIH WIK WMRSR WOHZO WQJ WRC WSUWO WWD WXSBR XG1 XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7QH 7TG 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H96 KL. L.G |
ID | FETCH-LOGICAL-a4213-a2f6736aa2fe876f1065827f42cbc6f80946e0a3f55f1b27f7f2aa7166b7e6ae3 |
IEDL.DBID | DR2 |
ISSN | 1045-6740 |
IngestDate | Thu Jul 10 22:04:49 EDT 2025 Sat Jul 05 06:40:58 EDT 2025 Tue Jul 01 01:50:12 EDT 2025 Thu Apr 24 23:13:06 EDT 2025 Wed Jan 22 17:05:15 EST 2025 Wed Oct 30 09:54:04 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4213-a2f6736aa2fe876f1065827f42cbc6f80946e0a3f55f1b27f7f2aa7166b7e6ae3 |
Notes | ArticleID:PPP1843 istex:E1EAC3142B5B33B87B95FB9282B373E31D30E6DE ark:/67375/WNG-R41QW7BH-W ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppp.1843 |
PQID | 1708971799 |
PQPubID | 1036355 |
PageCount | 81 |
ParticipantIDs | proquest_miscellaneous_1717494698 proquest_journals_1708971799 crossref_primary_10_1002_ppp_1843 crossref_citationtrail_10_1002_ppp_1843 wiley_primary_10_1002_ppp_1843_PPP1843 istex_primary_ark_67375_WNG_R41QW7BH_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2015 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: July 2015 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Permafrost and periglacial processes |
PublicationTitleAlternate | Permafrost and Periglac. Process |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Arinushkina EV. 1970. Guidelines for Chemical Analysis of Soils. Moscow State University Press: Moscow. Huijzer AS, Vandenberghe J. 1998. Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe. Journal of Quaternary Science 13: 391-417. DOI:10.1002/(SICI)1099-1417(1998090)13:5<391::AID-JQS397>3.0.CO;2-6. Gubin SV, Lupachev AV. 2008. Soil formation and the underlying permafrost. Eurasian Soil Science 41: 574-585. DOI:10.1134/S1064229308060021. Murton JB, French HM. 1993. Thaw modification of frost-fissure wedges, Richards Island, Pleistocene Mackenzie Delta, western Canadian Arctic. Journal of Quaternary Science 8: 185-196. DOI:10.1002/jqs.3390080302. Marsh J, Nouvet S, Sanborn P, Coxson D. 2006. Composition and function of biological soil crust communities along topographic gradients in grasslands of central interior British Columbia (Chilcotin) and southwestern Yukon (Kluane). Canadian Journal of Botany 84: 717-736. DOI:10.1139/B06-026. Sanborn PT, Smith CAS, Froese DG, Zazula GD, Westgate JA. 2006. Full-glacial paleosols in perennially frozen loess sequences, Klondike goldfields, Yukon Territory, Canada. Quaternary Research 66: 147-157. DOI:10.1016/j.yqres.2006.02.008. Carter LD. 1981. A Pleistocene sand sea on the Alaskan Arctic Coastal Plain. Science 212: 381-383. DOI:10.1126/science.211.4480.381. Konishchev VN. 2009. Climate warming and permafrost. Moscow State University. Geography-Environment-Sustainability 1: 4-19. Lozhkin AV, Anderson PM, Matrosova TV, Minyuk PS. 2006. The pollen record from El'gygytgyn Lake: Implications for vegetation and climate histories of northern Chukotka since the late Middle Pleistocene. Journal of Paleolimnology 37: 135-153. DOI:10.1007/s10933-006-9018-5. Murton JB. 1996a. Thermokarst-lake-basin sediments, Tuktoyaktuk Coastlands, Western Arctic Canada. Sedimentology 43: 737-760. DOI:10.1111/j.1365-3091.1996.tb02023.x. Meyer H, Dereviagin A, Siegert C, Schirrmeister L, Hubberten HW. 2002b. Palaeoclimate reconstruction on Big Lyakhovsky Island, North Siberia-hydrogen and oxygen isotopes in ice wedges. Permafrost and Periglacial Processes 13: 91-105. DOI:10.1002/ppp.416. Péwé TL. 1951. An observation of wind-blown silt. Journal of Geology 59: 399-401. Konert M, Vandenberghe J. 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44: 523-535. DOI:10.1046/j.1365-3091.1997.d01-38.x. Lopatina DA, Zanina OG. 2006. Paleobotanical analysis of materials from fossil gopher burrows and Upper Pleistocene host deposits, the Kolyma Lowland lower reaches. Stratigraphy and Geological Correlation 14: 549-560. DOI:10.1134/S0869593806050078. Zech M, Zech R, Zech W, Glaser B, Brodowski S, Amelung W. 2008. Characterisation and palaeoclimate of a loess-like permafrost palaeosol sequence in NE Siberia. Geoderma 143: 281-295. DOI:10.1016/j.geoderma.2007.11.012. Laxton NF, Burn CR, Smith CAS. 1996. Productivity of loessal grasslands in the Kluane Lake region, Yukon Territory, and the Beringian "production paradox. Arctic 49: 129-140. DOI: 10.14430/arctic1191 McCulloch DS, Hopkins DM. 1966. Evidence for an early recent warm interval in northwestern Alaska. Geological Society of America Bulletin 77: 1089-1108. DOI:10.1130/0016-7606(1966)77[1089:EFAERW]2.0.CO;2. Velichko AA, Timireva SN, Kremenetski KV, MacDonald GM, Smith LC. 2011. West Siberian Plain as a late glacial desert. Quaternary International 237: 45-53. DOI:10.1016/j.quaint.2011.01.013. Majhi I, Yang D. 2008. Streamflow characteristics and changes in Kolyma Basin in Siberia. Journal of Hydrometeorology 9: 267-279. DOI:10.1175/2007JHM845.1. Popov AI. 1953. Lithogenesis of alluvial lowlands in the cold climatic conditions. Izvestiya (Transactions) of the USSR Academy of Sciences, Geography 2: 29-41 (in Russian). Shur Y, French HM, Bray MT, Anderson DA. 2004. Syngenetic permafrost growth: cryostratigraphic observations from the CRREL Tunnel near Fairbanks, Alaska. Permafrost and Periglacial Processes 15: 339-347. DOI:10.1002/ppp.486. Zanina OG, Gubin SV, Kuzmina SA, Maximovich SV, Lopatina DA. 2011. Late-Pleistocene (MIS 3-2) palaeoenvironments as recorded by sediments, palaeosols, and ground-squirrel nests at Duvanny Yar, Kolyma lowland, northeast Siberia. Quaternary Science Reviews 30: 2107-2123. DOI:10.1016/j.quascirev.2011.01.021. Hao Q, Oldfield F, Bloemendal J, Guo Z. 2008. Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the past 22 m.y. Geology 36: 727-730. DOI:10.1130/G24940A.1. Bateman MD, Murton JB, Boulter CB. 2010. The source of De variability in periglacial sand wedges: Depositional processes versus measurement issues. Quaternary Geochronology 5: 250-256. DOI:10.1016/j.quageo.2009.03.007. van Everdingen RO (ed). 1998, revised May 2005. Multi-language Glossary of Permafrost and Related Ground-ice Terms. National Snow and Ice Data Center/World Data Center for Glaciology: Boulder, Colorado. Frechen M, Kehl M, Rolf C, Sarvati R, Skowronek A. 2009. Loess chronology of the Caspian Lowland in northern Iran. Quaternary International 198: 220-233. DOI:10.1016/j.quaint.2008.12.012. Lupachev AV, Gubin SV. 2012. Suprapermafrost organic-accumulative horizons in the tundra cryozems of northern Yakutia. Eurasian Soil Science 45: 45-55. DOI:10.1134/S1064229312010115. Mücher HJ, De Ploey J. 1984. Formation of afterflow silt loam deposits and structural modification due to drying under warm conditions: an experimental and micromorphological approach. Earth Surface Processes and Landforms 9: 523-531. DOI:10.1002/esp.3290090606. Vasil'chuk YK. 1992. Oxygen isotope composition of ground ice (application to paleogeocryological reconstructions). Theoretical Problems Department, Russian Academy of Sciences and Geological Faculty of Moscow University, Research Institute of Engineering Site Investigations: Moscow, Vol. 2: 93-96 (in Russian with English contents section). Vasil'chuk YK. 2005. Heterochroneity and heterogeneity of the Duvanny Yar Edoma. Doklady Earth Sciences 402: 568-573. Gallet S, Jahn B, Van Vliet-Lanoë B, Dia A, Rossello EA. 1998. Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth and Planetary Science Letters 156: 157-172. DOI:10.1016/S0012-821X(97)00218-5. Romanovskii NN. 1993. Fundamentals of Cryogenesis of Lithosphere. Moscow University Press: Moscow (in Russian). Wang T, Ta WQ, Liu LC. 2007. Dust emission from desertified lands in the Heihe River Basin, Northwest China. Environmental Geology 51: 1341-1347. DOI:10.1007/s00254-006-0432-9. Vasil'chuk AC, Kim J-C, Vasil'chuk YK. 2005. AMS 14C dating of pollen concentrate from Late Pleistocene ice wedges from the Bison and Seyaha sites in Siberia. Radiocarbon 47: 243-256. Gale SJ, Hoare PG. 1991. Quaternary Sediments. Belhaven: New York. Muhs DR, Budahn JR, McGeehin JP, Bettis EA III, Skipp G, Paces JB, Wheeler EA. 2013. Loess origin, transport, and deposition over the past 10,000 years, Wrangell-St. Elias National Park, Alaska. Aeolian Research 11: 85-99. DOI:10.1016/j.aeolia.2013.06.001. Rybakova NO. 1990. Changes in the vegetation cover and climate in the Kolyma lowlands in late-Quaternary time. Polar Geography 14: 279-286. DOI:10.1080/10889379009377440. Stakhov VL, Gubin SV, Maksimovich SV, Rebrikov DV, Savilova AM, Kochkina GA, Ozerskaya SM, Ivanushkina NE, Vorobyova EA. 2008. Microbial communities of ancient seeds derived from permanently frozen Pleistocene deposits. Microbiology 77: 348-355. DOI:10.1134/S0026261708030156. Bateman MD, Catt JA. 1996. An absolute chronology for the raised beach deposits at Sewerby, E. Yorkshire, UK. Journal of Quaternary Science 11: 389-395. DOI:10.1002/(SICI)1099-1417(199609/10)11:5<389::AID-JQS260>3.0.CO;2-K. Kaplina TN, Giterman RYe, Lakhtina OV, Abrashov BA, Sher AV. 1978. Duvanny Yar, a key section of upper Pleistocene sediments of the Kolyma lowland. Bulletin of the Commission of the USSR Academy of Sciences for Studying the Quaternary 48: 49-65 (in Russian). Translation 1863194. Geological Survey of Canada: Ottawa. Gubin SV, Veremeeva AA. 2010. Parent materials enriched in organic matter in the northeast of Russia. Eurasian Soil Science 43: 1238-1243. DOI:10.1134/S1064229310110062. Kasse K, Bohncke S, Vandenberghe J. 1995. Fluvial periglacial environments, climate and vegetation during the Middle Weichselian in the northern Netherlands with special reference to the Hengelo Interstadial. Mededelingen Rijks Geologische Dienst 52: 387-414. Zhou Y, Lu H, Zhang J, Mason JA, Zhou L. 2009. Luminescence dating of sand-loess sequences and response of Mu Us and Otindag sand fields (north China) to climatic changes. Journal of Quaternary Science 24: 336-344. DOI:10.1002/jqs.1234. Alfimov AV, Berman DI, Sher AV. 2003. Tundra-steppe insect assemblages and reconstructions of late Pleistocene climate in the lower reaches of the Kolyma River. Zoologicheskiy Zhurnal 82: 281-300 (in Russian). Briant RM, Bateman MD. 2009. Luminescence dating indicates radiocarbon age underestimation in late Pleistocene fluvial deposits from eastern England. Journal of Quaternary Science 24: 916-927. DOI:10.1002/jqs.1258. Garrels RM, MacKenzie FT. 1971. Evolution of Sedimentary Rocks. Norton: New York. Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, Lorenzen ED, Vestergård M, Gussarova G, Haile J, Craine J, Bergmann G, Gielly L, Boessenkool S, Epp LS, Pearman PB, Cheddadi R, Murray D, Bråthen KA, Yoccoz N, Binney H, Cruaud C, Wincker P, Goslar T, Alsos IG, Bellemain E, Brysting AK, Elven R, Sønstebø JH, Murton J, Sher A, Rasmussen M, Rønn R, Mourier T, Cooper A, Austin J, Möller P, Froese D, Zazula G, Pompanon F, Rioux D, Niderkorn V, Tikhonov A, Savvinov G, Roberts RG, MacPhee RDE, Gilbert MPT, Kjær K, Orlando L, Brochmann C, Taberle P. 2014. Fifty thousand years of arctic vegetation and megafauna diet. Nature 506: 47-51. DOI:10.1038/nature12921. Muhs DR, McGeeh 2011; 116 2011; 237 2010; 99 2011; 234 2013; 67 2009; 198 2008; 36 2003; 393 1996; 71 2005; 63 2013; 121 1998; 156 2003; 152 1984; 53 2000; 19 2011; 240 2001; 56 2010; 5 1992; 2 2006; 441 1998; 13 2001; 54 1995; 52 1999; 28 2007; 166 1981; 6 2005; 85 2001; 28 2006a; 33 2001; 20 2004; 55 1981; 212 1986; 23 2005; 402 1995; 43 2008; 41 2008; 40 2012; 45 2002a; 70 1998; 9 2004; 61 1990; 14 1990; 17 2013; 24 2008; 9 1915; 23 2008; 77 2008; 1 2008; 2 1954; 91 2013; 11 2000 2006b; 312 2006; 242 2014; XVIII 2003; 1 2003; 82 2004; 223‐224 2009b; 20 2007; 26 2012a; 26 1991; 2 2014; 92 2006; 12 2012 2011 1943; 54 2010 2006; 17 2013; 42 2006; 14 2010; 121 1954 2009 2008 1975b 2007 1952 2006 2009a; 16 2004 1978; 15 2003 1975a 1995; 19 2001a; 43 2007; 51 2002 2000; 82A 1955 1991; 25 2013; 38 2014; 506 2002; 21 1963 1988a 2014 2013 2007; 42 2009; 1 1996; 49 2007; 44 1989; 14 1969 2004; 166 2013; 2 1997; 44 2006; 152–153 2002; 152 2010; 101 2006; 37 1976 1975 1974 2003; 59 1973 1988; 100 1972 1971 1970 2011; 58 1957; 19 1979 2010; 23 1996b; 66 1990 2006; 25 2005; 228 1987 1986 1985 1984 1983 1982 1981 2007; 2 2007; 3 1980 2013; 192 2009; 19 1988b; 1 1989 1990; 34 2006; 53 1973; III 2010; 39 2002; 6 2001b; 379 1983; XI 2011; 75 1998 1997 1997; 29 2003; 37 1996 1988; 13 1994 1993 2013a 1992 1991 1996a; 43 2002b; 13 1966; 77 1955; 66 2014; 43 2012; 109 1996; 11 1999 1953; 2 1990; 1 2010; 43 2011a; 116 2011b; 30 2003; 108 2006; 43 1984; 8 2013b; 9 1991; 61 1997; 34 1984; 9 2013b; 3 2003; 27 2013b; 2 1978; 48 2005; 16 2003; 22 1993; 8 1994; 23 2011a 2003; 18 2008; 148 1977; VI 2008; 143 1993; 4 2005; 24 2009; 51 1982; 2 2006; 66 2000; 53 2005; 32 2012b 2005; 33 2012; 260 2009; 24 2009; 20 2008; 19 2013a; 9 2013a; 4 2006; 7 1952; IX 2011; 30 2011; 38 1987; 19 2009; 28 2005; 47 1988; 1 1994; 8 2012; 2 2012; 3 2006; 84 2011b; 241 2000; 37 1979; VIII 2000; 32 2004; 15 1977; 2 1985; 39‐1 1951; 59 2013; XVII e_1_2_9_79_1 e_1_2_9_254_1 e_1_2_9_94_1 e_1_2_9_10_1 Vasil'chuk AC (e_1_2_9_276_1) 2005; 47 e_1_2_9_216_1 Kasse K (e_1_2_9_117_1) 1995; 52 Gubin SV (e_1_2_9_80_1) 1984; 53 e_1_2_9_231_1 Davydov SP (e_1_2_9_46_1) 2008 Zhestkova TN (e_1_2_9_320_1) 1986 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 Arnalds O (e_1_2_9_15_1) 2010; 23 e_1_2_9_314_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 Vadyunina AF (e_1_2_9_265_1) 1986 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_204_1 e_1_2_9_227_1 e_1_2_9_288_1 Begét JE (e_1_2_9_21_1) 1988 Liu T (e_1_2_9_142_1) 1985 Tomirdiaro SV (e_1_2_9_264_1) 1987 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_280_1 Vasil'chuk YK (e_1_2_9_278_1) 2005; 402 Gubin SV (e_1_2_9_88_1) 2014 e_1_2_9_111_1 Gale SJ (e_1_2_9_68_1) 1991 Kaplina TN (e_1_2_9_114_1) 1981 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_302_1 Ryabchun VK (e_1_2_9_226_1) 1973 e_1_2_9_172_1 e_1_2_9_232_1 e_1_2_9_255_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 Popov AI (e_1_2_9_211_1) 1952 e_1_2_9_95_1 e_1_2_9_217_1 Jorgenson MT (e_1_2_9_108_1) 2008 CAVM Team (e_1_2_9_41_1) 2003 e_1_2_9_270_1 e_1_2_9_293_1 Lozhkin AV (e_1_2_9_144_1) 1976 Velichko A (e_1_2_9_285_1) 2002 e_1_2_9_167_1 e_1_2_9_106_1 Vtyurin BI (e_1_2_9_296_1) 1975 Popov AI (e_1_2_9_214_1) 1973 e_1_2_9_315_1 Kanevskiy M (e_1_2_9_110_1) 2008 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 Rosenbaum GE (e_1_2_9_223_1) 1973 e_1_2_9_61_1 e_1_2_9_243_1 e_1_2_9_84_1 e_1_2_9_228_1 e_1_2_9_266_1 e_1_2_9_23_1 Fortier D (e_1_2_9_56_1) 2008 e_1_2_9_205_1 e_1_2_9_220_1 e_1_2_9_281_1 Mücher HJ (e_1_2_9_170_1) 1974 Black RF (e_1_2_9_25_1) 1974 Hopkins DM (e_1_2_9_100_1) 1988 e_1_2_9_118_1 e_1_2_9_156_1 e_1_2_9_179_1 Veremeeva AA (e_1_2_9_289_1) 2008 e_1_2_9_303_1 e_1_2_9_69_1 e_1_2_9_171_1 e_1_2_9_194_1 Tomirdiaro SV (e_1_2_9_261_1) 1980 Murzaev EM (e_1_2_9_196_1) 1984 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_256_1 e_1_2_9_233_1 Konishchev VN (e_1_2_9_130_1) 1983 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_294_1 e_1_2_9_92_1 Arkhangelov AA (e_1_2_9_12_1) 1977 e_1_2_9_271_1 Velichko AA (e_1_2_9_286_1) 1984 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_316_1 e_1_2_9_162_1 e_1_2_9_218_1 e_1_2_9_16_1 e_1_2_9_185_1 Kanevskiy M (e_1_2_9_109_1) 2003 e_1_2_9_20_1 e_1_2_9_221_1 Rousseau D‐D (e_1_2_9_225_1) 2007 e_1_2_9_244_1 e_1_2_9_43_1 Kaplina TN (e_1_2_9_116_1) 1978; 48 e_1_2_9_206_1 e_1_2_9_8_1 Konishchev VN (e_1_2_9_131_1) 2009; 1 e_1_2_9_282_1 e_1_2_9_113_1 e_1_2_9_159_1 Schweger CE (e_1_2_9_236_1) 1997 Kanevskiy M (e_1_2_9_112_1) 2012 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_304_1 e_1_2_9_28_1 e_1_2_9_229_1 e_1_2_9_174_1 Popov AI (e_1_2_9_213_1) 1955 e_1_2_9_234_1 e_1_2_9_257_1 Gubin SV (e_1_2_9_83_1) 2002; 6 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 Vasil'chuk YK (e_1_2_9_279_1) 2006 e_1_2_9_317_1 e_1_2_9_272_1 e_1_2_9_295_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_123_1 e_1_2_9_146_1 e_1_2_9_219_1 e_1_2_9_17_1 Konishchev VN (e_1_2_9_129_1) 1981 e_1_2_9_184_1 Sher AV (e_1_2_9_240_1) 1979 Gravis GF (e_1_2_9_76_1) 1969 e_1_2_9_161_1 Everdingen RO (e_1_2_9_273_1) 1998 Gullentops F (e_1_2_9_90_1) 1957; 19 e_1_2_9_67_1 e_1_2_9_44_1 Dinter DA (e_1_2_9_49_1) 1990 e_1_2_9_268_1 Meyer H (e_1_2_9_165_1) 2002; 70 e_1_2_9_7_1 e_1_2_9_82_1 Shur YL (e_1_2_9_247_1) 1988 Gasanov SH (e_1_2_9_71_1) 1981 Kolpakov VV (e_1_2_9_126_1) 1982 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_305_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_29_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_235_1 Romanovskii NN (e_1_2_9_222_1) 1993 e_1_2_9_318_1 e_1_2_9_258_1 Gubin SV (e_1_2_9_85_1) 2012; 2 Hopkins DM (e_1_2_9_101_1) 1982 e_1_2_9_250_1 e_1_2_9_103_1 e_1_2_9_149_1 Black RF (e_1_2_9_26_1) 1983 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_310_1 Tomirdiaro SV (e_1_2_9_260_1) 1973 e_1_2_9_64_1 e_1_2_9_200_1 e_1_2_9_246_1 Dijkmans JWA (e_1_2_9_48_1) 1991; 25 Brigham‐Grette J (e_1_2_9_33_1) 2004 e_1_2_9_306_1 Vorobyov LA (e_1_2_9_292_1) 1998 e_1_2_9_2_1 Vasil'chuk AC (e_1_2_9_275_1) 2008 e_1_2_9_138_1 e_1_2_9_321_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_208_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 Shur YL (e_1_2_9_242_1) 1998 e_1_2_9_99_1 Vasil'chuk YK (e_1_2_9_277_1) 1992 e_1_2_9_319_1 e_1_2_9_259_1 e_1_2_9_91_1 e_1_2_9_274_1 e_1_2_9_297_1 Vandenberghe J (e_1_2_9_269_1) 1985; 39 e_1_2_9_251_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 Sher AV (e_1_2_9_239_1) 1997 e_1_2_9_42_1 e_1_2_9_201_1 e_1_2_9_307_1 e_1_2_9_65_1 e_1_2_9_262_1 e_1_2_9_137_1 e_1_2_9_322_1 Gubin SV (e_1_2_9_81_1) 1994; 8 Gubin SV (e_1_2_9_87_1) 2013 Vasil'chuk YK (e_1_2_9_284_1) 2003; 393 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 Koronovsky N (e_1_2_9_133_1) 2002 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_298_1 e_1_2_9_96_1 e_1_2_9_237_1 Vandenberghe J (e_1_2_9_267_1) 1993 Fyodorov‐Davydov DG (e_1_2_9_66_1) 2003 e_1_2_9_252_1 e_1_2_9_290_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 Anderson PM (e_1_2_9_5_1) 2002 e_1_2_9_62_1 e_1_2_9_202_1 Edwards ME (e_1_2_9_52_1) 1997 e_1_2_9_308_1 e_1_2_9_24_1 Arinushkina EV (e_1_2_9_14_1) 1970 e_1_2_9_4_1 Shur Y (e_1_2_9_245_1) 2008 Yurtsev BA (e_1_2_9_311_1) 1981 Alfimov AV (e_1_2_9_3_1) 2003; 82 e_1_2_9_323_1 Konishchev VN (e_1_2_9_128_1) 1973 e_1_2_9_155_1 Shur YL (e_1_2_9_248_1) 1988 e_1_2_9_178_1 e_1_2_9_47_1 Mücher HJ (e_1_2_9_169_1) 1990 e_1_2_9_132_1 Lupachev AV (e_1_2_9_150_1) 2008 e_1_2_9_193_1 e_1_2_9_300_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_299_1 e_1_2_9_97_1 Arkhangelov AA (e_1_2_9_13_1) 1979 Popov AI (e_1_2_9_212_1) 1953; 2 Vasil'chuk YK (e_1_2_9_283_1) 2001; 379 e_1_2_9_230_1 e_1_2_9_253_1 e_1_2_9_291_1 e_1_2_9_127_1 Jahn A (e_1_2_9_107_1) 1975 Carter LD (e_1_2_9_40_1) 1988 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 Zanina OG (e_1_2_9_312_1) 2005; 85 e_1_2_9_313_1 e_1_2_9_180_1 e_1_2_9_63_1 Shahgedanova M (e_1_2_9_238_1) 2002 e_1_2_9_287_1 e_1_2_9_309_1 e_1_2_9_203_1 e_1_2_9_249_1 e_1_2_9_86_1 e_1_2_9_241_1 Tomirdiaro SV (e_1_2_9_263_1) 1986 Carter LD (e_1_2_9_39_1) 1983 e_1_2_9_139_1 e_1_2_9_324_1 e_1_2_9_177_1 e_1_2_9_154_1 Rosenbaum GE (e_1_2_9_224_1) 1983 Gubin SV (e_1_2_9_89_1) 2011 e_1_2_9_301_1 e_1_2_9_192_1 |
References_xml | – reference: Murton JB, Frechen M, Maddy D. 2007. Luminescence dating of Mid- to Late Wisconsinan aeolian sand as a constraint on the last advance of the Laurentide Ice Sheet across the Tuktoyaktuk Coastlands, western Arctic Canada. Canadian Journal of Earth Sciences 44: 857-869. DOI:10.1139/e07-015. – reference: Tomirdiaro SV. 1980. Loess-ice Formation of East Siberia in Late Pleistocene and Holocene. Nauka: Moscow. – reference: Murton JB. 2009b. Stratigraphy and paleoenvironments of Richards Island and the eastern Beaufort Continental Shelf during the last glacial-interglacial cycle. Permafrost and Periglacial Processes 20: 107-125. DOI:10.1002/ppp.647. – reference: Vandenberghe J, Mücher H, Roebroeks W, Gemke D. 1985. Lithostratigraphy and palaeoenvironment of the Pleistocene deposits at Maastricht-Belvédère. Mededelingen Rijks Geologische Dienst 39-1: 7-18. hdl: handle.net/1887/28104 – reference: Guthrie RD. 2006. New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature 441: 207-209. DOI:10.1038/nature04604. – reference: Murton JB, Worsley P, Gozdzik J. 2000. Sand veins and wedges in cold aeolian environments. Quaternary Science Reviews 19: 899-922. DOI:10.1016/S0277-3791(99)00045-1. – reference: Ballantyne CK. 2002. Paraglacial geomorphology. Quaternary Science Reviews 21: 1935-2017. DOI:10.1016/S0277-3791(02)00005-7. – reference: Briant RM, Bateman MD. 2009. Luminescence dating indicates radiocarbon age underestimation in late Pleistocene fluvial deposits from eastern England. Journal of Quaternary Science 24: 916-927. DOI:10.1002/jqs.1258. – reference: Gubin SV, Veremeeva AA. 2010. Parent materials enriched in organic matter in the northeast of Russia. Eurasian Soil Science 43: 1238-1243. DOI:10.1134/S1064229310110062. – reference: van Everdingen RO (ed). 1998, revised May 2005. Multi-language Glossary of Permafrost and Related Ground-ice Terms. National Snow and Ice Data Center/World Data Center for Glaciology: Boulder, Colorado. – reference: Frechen M, Zander A, Zykina V, Boenigk W. 2005. The loess record from the section at Kurtak in Middle Siberia. Palaeogeography, Palaeoclimatology, Palaeocology 228: 228-244. DOI:10.1016/j.palaeo.2005.06.004. – reference: Roberts RG, Galbraith RF, Yoshidaa H, Laslett GM, Olley JM. 2000. Distinguishing dose populations in sediment mixtures: a test of single-grain optical dating procedures using mixtures of laboratory-dosed quartz. Radiation Measurements 32: 459-465. DOI:10.1016/S1350-4487(00)00104-9. – reference: Wang T, Ta WQ, Liu LC. 2007. Dust emission from desertified lands in the Heihe River Basin, Northwest China. Environmental Geology 51: 1341-1347. DOI:10.1007/s00254-006-0432-9. – reference: Strauss J, Schirrmeister L, Wetterich S, Borchers A, Davydov SP. 2012a. Grain-size properties and organic-carbon stock of Yedoma Ice Complex permafrost from the Kolyma lowland, northeastern Siberia. Global Biogeochemical Cycles 26: GB3003. DOI:10.1029/2011GB004104. – reference: Mücher HJ, De Ploey J. 1984. Formation of afterflow silt loam deposits and structural modification due to drying under warm conditions: an experimental and micromorphological approach. Earth Surface Processes and Landforms 9: 523-531. DOI:10.1002/esp.3290090606. – reference: Chlachula J, Rutter NW, Evans ME. 1997. A late Quaternary loess-paleosol record at Kurtak, southern Siberia. Canadian Journal of Earth Sciences 34: 679-686. DOI:10.1139/e17-054. – reference: Muhs DR, Ager TA, Skipp G, Beann J, Budahn J, McGeehin JP. 2008. Paleoclimatic significance of chemical weathering in loess-derived paleosols of subarctic central Alaska. Arctic, Antarctic and Alpine Research 40: 396-411. DOI:10.1657/1523-0430(07-022)[MUHS]2.0.CO;2. – reference: Kemp RA. 2001. Pedogenic modification of loess: significance for palaeoclimatic reconstructions. Earth-Science Reviews 54: 145-156. DOI:10.1016/S0012-8252(01)00045-9. – reference: Dutta K, Schuur EAG, Neff JC, Zimov SA. 2006. Potential carbon release from permafrost soils of Northeastern Siberia. Global Change Biology 12: 2336-2351. DOI:10.1111/j.1365-2486.2006.01259.x. – reference: Chlachula J. 2003. The Siberian loess record and its significance for reconstruction of Pleistocene climate change in north-central Asia. Quaternary Science Reviews 22: 1879-1906. DOI:10.1016/S0277-3791(03)00182-3. – reference: Vtyurin BI. 1975. Ground Ice in the USSR. Nauka: Moscow (in Russian). – reference: Zazula GD, Froese DG, Elias SA, Kuzmina S, La Farge C, Reyes AV, Sanborn PT, Schweger CE, Smith CAS, Mathewes RW. 2006. Vegetation buried under Dawson tephra (25,300 14C years BP) and locally diverse late Pleistocene paleoenvironments of Goldbottom Creek, Yukon, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 242: 253-286. DOI:10.1016/j.palaeo.2006.06.005. – reference: Murton JB, French HM, Lamothe M. 1997. Late Wisconsinan erosion and aeolian deposition, Summer and Hadwen Islands, Mackenzie Delta area, western Canadian Arctic: optical dating and implications for glacial chronology. Canadian Journal of Earth Sciences 34: 190-199. DOI:10.1139/e17-015. – reference: Westgate JA, Preece SJ, Froese DG, Walter RC, Sandhu AS, Schweger CE. 2001. Dating Early and Middle (Reid) Pleistocene glaciations in Central Yukon by tephrochronology. Quaternary Research 56: 335-348. DOI:10.1006/qres.2001.2274. – reference: Bateman MD, Murton JB, Boulter CB. 2010. The source of De variability in periglacial sand wedges: Depositional processes versus measurement issues. Quaternary Geochronology 5: 250-256. DOI:10.1016/j.quageo.2009.03.007. – reference: Matsuoka N, Murton J. 2008. Frost weathering: recent advances and future directions. Permafrost and Periglacial Processes 19: 195-210. DOI:10.1002/ppp.620. – reference: Hao Q, Oldfield F, Bloemendal J, Guo Z. 2008. Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the past 22 m.y. Geology 36: 727-730. DOI:10.1130/G24940A.1. – reference: Vandenberghe J. 2013. Grain size of fine-grained windblown sediment: a powerful proxy for process identification. Earth-Science Reviews 121: 18-30. DOI:10.1016/j.earscirev.2013.03.001. – reference: Kienast F, Wetterich S, Kuzmina S, Schirrmeister L, Andreev AA, Tarasov P, Nazarova L, Kossler A, Frolova A, Kunitsky VK. 2011. Paleontological records indicate the occurrence of open woodlands in a dry inland climate at the present-day Arctic coast in western Beringia during the Last Interglacial. Quaternary Science Reviews 30: 2134-2159. DOI:10.1016/j.quascirev.2010.11.024. – reference: Huijzer AS, Vandenberghe J. 1998. Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe. Journal of Quaternary Science 13: 391-417. DOI:10.1002/(SICI)1099-1417(1998090)13:5<391::AID-JQS397>3.0.CO;2-6. – reference: Vasil'chuk AC, Kim J-C, Vasil'chuk YK. 2005. AMS 14C dating of pollen concentrate from Late Pleistocene ice wedges from the Bison and Seyaha sites in Siberia. Radiocarbon 47: 243-256. – reference: Dijkmans JWA, Mücher HJ. 1989. Niveo-aeolian sedimentation of loess and sand: an experimental and micromorphological approach. Earth Surface Processes and Landforms 14: 303-315. DOI:10.1002/esp.3290140406. – reference: Walker DA, Everett KR. 1991. Loess ecosystems of northern Alaska: regional gradient and toposequence at Prudhoe Bay. Ecological Monographs 61: 437-464. DOI:10.2307/2937050. – reference: Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D. 2012. Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proceedings of the National Academy of Sciences 109: 4008-4013. DOI:10.1073/pnas.1118386109. – reference: Lewkowicz AG, Young KL. 1991. Observations of aeolian transport and niveo-aeolian deposition at three lowland sites, Canadian Arctic Archipelago. Permafrost and Periglacial Processes 2: 197-210. DOI:10.1002/ppp.3430020304. – reference: Dallimore SR, Wolfe SA, Matthews JV Jr, Vincent J-S. 1997. Mid-Wisconsinan eolian deposits of the Kittigazuit Formation, Tuktoyaktuk Coastlands, Northwest Territories, Canada. Canadian Journal of Earth Sciences 34: 1421-1441. DOI:10.1139/e17-116. – reference: Velichko AA, Timireva SN, Kremenetski KV, MacDonald GM, Smith LC. 2011. West Siberian Plain as a late glacial desert. Quaternary International 237: 45-53. DOI:10.1016/j.quaint.2011.01.013. – reference: Vasil'chuk YK, Vasil'chuk AC, Rank D, Kutschera W, Kim J-C. 2001a. Radiocarbon dating of δ18O - δD plots in Late Pleistocene ice-wedges of the Duvanny Yar (Lower Kolyma River, Northern Yakutia). In Proceedings of the 17th International 14C Conference, Carmi I, Boaretto E (eds). Radiocarbon 43(2B): 541-553. – reference: Gubin SV. 1994. Late Pleistocene soil formation in coastal lowlands of northern Yakutia. Soil Science 8: 5-14 (in Russian). – reference: Zanina OG, Gubin SV, Kuzmina SA, Maximovich SV, Lopatina DA. 2011. Late-Pleistocene (MIS 3-2) palaeoenvironments as recorded by sediments, palaeosols, and ground-squirrel nests at Duvanny Yar, Kolyma lowland, northeast Siberia. Quaternary Science Reviews 30: 2107-2123. DOI:10.1016/j.quascirev.2011.01.021. – reference: Fuchs M, Kreutzer S, Rousseau DD, Antoine P, Hatté C, Lagroix F, Moine O, Gauthier C, Svoboda J, Lisá L. 2013. The loess sequence of Dolní Vestonice, Czech Republic: A new OSL-based chronology of the Last Climatic Cycle. Boreas 42: 664-677. DOI:10.1111/j.1502-3885.2012.00299.x. – reference: Höfle C, Ping CL. 1996. Properties and soil development of late-Pleistocene paleosols from Seward Peninsula, northwest Alaska. Geoderma 71: 219-243. DOI:10.1016/0016-7061(96)00007-9. – reference: Gubin SV, Zanina OG. 2014. Variation of soil cover during the Ice Complex deposit formation, Kolyma Lowland (Part 2). Earth Cryosphere XVIII(1): 77-82. – reference: Popp S, Belolyubsky I, Lehmkuhl F, Prokopiev A, Siegert C, Spektor V, Stauch G, Diekmann B. 2007. Sediment provenance of late Quaternary morainic, fluvial and loess-like deposits in the southwestern Verkhoyansk Mountains (eastern Siberia) and implications for regional palaeoenvironmental reconstructions. Geological Journal 42: 477-497. DOI:10.1002/gj.1088. – reference: Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt, J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet Th, Hewitt CD, Kageyama M, Kitoh A, Lâıné A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Y. Yu Y, Zhao Y. 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features. Climate of the Past 3: 261-277. DOI: 10.5194/cp-3-261-2007 – reference: Meyer H, Dereviagrin A, Seigert C, Hubberten H-W. 2002a. Paleoclimate studies on Bykovsky Peninsula, North Siberia-hydrogen and oxygen isotopes in ground ice. Polarforschung 70: 37-51. – reference: Pye K. 1984. Loess. Progress in Physical Geography 8: 176-217. – reference: Haesaerts P, Chekha VP, Damblon F, Drozdov NI, Orlova LA, Van der Plicht J. 2005. The loess-palaeosol succession of Kurtak (Yenisei basin, Siberia): a reference record from the Karga Stage (MIS 3). Quaternaire 16: 3-24. – reference: Pigati JS, Quade J, Wilson J, Jull AJT, Lifton NA. 2007. Development of low-background vacuum extraction and graphitization systems for 14C dating of old (40-60 ka) samples. Quaternary International 166: 4-14. DOI:10.1016/j.quaint.2006.12.006. – reference: Meyer H, Dereviagin A, Siegert C, Schirrmeister L, Hubberten HW. 2002b. Palaeoclimate reconstruction on Big Lyakhovsky Island, North Siberia-hydrogen and oxygen isotopes in ice wedges. Permafrost and Periglacial Processes 13: 91-105. DOI:10.1002/ppp.416. – reference: Majhi I, Yang D. 2008. Streamflow characteristics and changes in Kolyma Basin in Siberia. Journal of Hydrometeorology 9: 267-279. DOI:10.1175/2007JHM845.1. – reference: Willemse NW, Koster EA, Hoogakker B, van Tatenhove FGM. 2003. A continuous record of Holocene eolian activity in West Greenland. Quaternary Research 59: 322-334. DOI:10.1016/S0033-5894(03)00037-1. – reference: Bateman MD, Catt JA. 1996. An absolute chronology for the raised beach deposits at Sewerby, E. Yorkshire, UK. Journal of Quaternary Science 11: 389-395. DOI:10.1002/(SICI)1099-1417(199609/10)11:5<389::AID-JQS260>3.0.CO;2-K. – reference: Gallet S, Jahn B, Van Vliet-Lanoë B, Dia A, Rossello EA. 1998. Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth and Planetary Science Letters 156: 157-172. DOI:10.1016/S0012-821X(97)00218-5. – reference: Popov AI. 1953. Lithogenesis of alluvial lowlands in the cold climatic conditions. Izvestiya (Transactions) of the USSR Academy of Sciences, Geography 2: 29-41 (in Russian). – reference: Mountney NP, Russell AJ. 2004. Sedimentology of cold-climate aeolian sandsheet deposits in the Askja region of northeast Iceland. Sedimentary Geology 166: 223-244. DOI:10.1016/j.sedgeo.2003.12.007. – reference: Shur Y, French HM, Bray MT, Anderson DA. 2004. Syngenetic permafrost growth: cryostratigraphic observations from the CRREL Tunnel near Fairbanks, Alaska. Permafrost and Periglacial Processes 15: 339-347. DOI:10.1002/ppp.486. – reference: Vasil'chuk YK. 1992. Oxygen isotope composition of ground ice (application to paleogeocryological reconstructions). Theoretical Problems Department, Russian Academy of Sciences and Geological Faculty of Moscow University, Research Institute of Engineering Site Investigations: Moscow, Vol. 2: 93-96 (in Russian with English contents section). – reference: Froese DG, Westgate JA, Sanborn PT, Reyes AV, Pearce NJG. 2009. The Klondike goldfields and Pleistocene environments of Beringia. GSA Today 19: 4-10. DOI:10.1130/GSATG54A.1. – reference: Bateman MD, Murton JB. 2006. Late Pleistocene glacial and periglacial aeolian activity in the Tuktoyaktuk Coastlands, NWT, Canada. Quaternary Science Reviews 25: 2552-2568. DOI:10.1016/j.quascirev.2005.07.023. – reference: Hamilton TD, Craig JL, Sellmann PV. 1988. The Fox permafrost tunnel: A late Quaternary geologic record in central Alaska. Geological Society of American Bulletin 100: 948-969. DOI:10.1130/0016-7606(1988)100<0948:TFPTAL>2.3.CO;2. – reference: Lopatina DA, Zanina OG. 2006. Paleobotanical analysis of materials from fossil gopher burrows and Upper Pleistocene host deposits, the Kolyma Lowland lower reaches. Stratigraphy and Geological Correlation 14: 549-560. DOI:10.1134/S0869593806050078. – reference: Vandenberghe J, Nugteren G. 2001. Rapid climatic changes recorded in loess succcessions. Global and Planetary Change 28: 1-9. DOI:10.1016/S0921-8181(00)00060-6. – reference: Gubin SV, Lupachev AV. 2008. Soil formation and the underlying permafrost. Eurasian Soil Science 41: 574-585. DOI:10.1134/S1064229308060021. – reference: Goslar T, van der Knaap WO, van Leeuwen J, Kamenik C. 2009. Free-shape 14C age-depth modelling of an intensively dated modern peat profile. Journal of Quaternary Science 24: 481-499. DOI:10.1002/jqs.1283. – reference: Lozhkin AV, Anderson PM. 2013b. Vegetation responses to interglacial warming in the Arctic, examples from Lake El'gygytgyn, northeast Siberia. Climate of the Past 9: 1211-1219. DOI:10.5194/cp-9-1211-2013. – reference: Vriend M, Prins MA, Buylaert JP, Vandenberghe J, Lu H. 2011. Contrasting dust supply patterns across the north-western Chinese Loess Plateau during the last glacial-interglacial cycle. Quaternary International 240: 167-180. DOI:10.1016/j.quaint.2010.11.009. – reference: Jackson MG, Oskarsson N, Trønnes RG, McManus JF, Oppo DW, Grönvold K, Hart SR, Sachs JP. 2005. Holocene loess deposition in Iceland: evidence for millennial-scale atmosphere-ocean coupling in the North Atlantic. Geology 33: 509-512. DOI:10.1130/G21489.1. – reference: Gasanov SH. 1981. Cryolithological Analysis. Nauka: Moscow (in Russian). – reference: Veremeeva AA, Gubin SV. 2009. Modern tundra landscapes of the Kolyma Lowland and their evolution in the Holocene. Permafrost and Periglacial Processes 20: 399-406. DOI:10.1002/ppp.674. – reference: Vandenberghe J, French HM, Gorbunov A, Marchenko S, Velichko AA, Jin H, Cui Z, Zhang T, Wan X. 2014. The Last Permafrost Maximum (LPM) map of the northern hemisphere: permafrost extent and mean annual air temperatures, 25-17 ka BP. Boreas 43: 652-666. DOI:10.1111/bor.12070. – reference: Zanina OG. 2005. Fossil rodent burrows in frozen Late Pleistocene beds of the Kolyma lowland. Entomological Review 85(Supplement 1): 133-140. – reference: Schaetzl RJ, Luehmann MD. 2013. Coarse-textured basal zones in thin loess deposits: products of sediment mixing and/or paleoenvironmental change. Geoderma 192: 277-285. DOI:10.1016/j.geoderma.2012.08.001. – reference: Bigelow NH, Brubaker LB, Edwards ME, Harrison SP, Prentice IC, Anderson PM, Andreev AA, Bartlein PJ, Christiansen TR, Cramer W, Kaplan JO, Lozhkin AV, Matveyeva NV, Murray DF, McGuire AD, Razzhivin VY, Ritchie JC, Smith B, Walker DA, Gajewski K, Wolf V, Holmqvist BH, Igarashi Y, Kremenetskii K, Paus A, Pisaric MFJ, Volkova VS. 2003. Climate change and arctic ecosystems: 1. Vegetation changes north of 55 N between the last glacial maximum, mid-Holocene, and present. Journal of Geophysical Research 108: D19, 8170. DOI: 10.1029/2002JD002558 – reference: Vasil'chuk YK. 2006. Ice Wedge: Heterocyclity, Heterogeneity, Heterochroneity. Moscow University Press: Moscow (in Russian). – reference: Zazula GD, Froese DG, Elias SA, Kuzmina S, Mathewes RW. 2007. Arctic ground squirrels of the mammoth-steppe: paleoecology of middens from the last glaciation, Yukon Territory, Canada. Quaternary Science Reviews 26: 979-1003. DOI:10.1016/j.quascirev.2006.12.006. – reference: Gubin SV. 2002. Pedogenesis-the main component of the Late Pleistocene Ice Complex forming. Earth Cryosphere 6: 82-91 (in Russian). – reference: Lupachev AV, Gubin SV. 2012. Suprapermafrost organic-accumulative horizons in the tundra cryozems of northern Yakutia. Eurasian Soil Science 45: 45-55. DOI:10.1134/S1064229312010115. – reference: Sun D, Su R, Li Z, Lu H. 2011. The ultrafine component in Chinese loess and its variation over the past 7.6 Ma: implications for the history of pedogenesis. Sedimentology 58: 916-935. DOI:10.1111/j.1365-3091.2010.01189.x. – reference: Vasil'chuk YK. 2013. Syngenetic ice wedges: cyclical formation, radiocarbon age and stable-isotope records. Permafrost and Periglacial Processes 24: 82-93. DOI:10.1002/ppp.1764. – reference: Gale SJ, Hoare PG. 1991. Quaternary Sediments. Belhaven: New York. – reference: Pitcher WS, Shearman DJ, Pugh DC. 1954. The loess of Pegwell Bay, Kent, and its associated frost soils. Geological Magazine 91: 308-314. – reference: Bryant ID. 1982. Loess deposits in Lower Adventdalen, Spitsbergen. Polar Research 2: 93-103. – reference: Shur Y, Hinkel KM, Nelson FE. 2005. The transient layer: implications for geocryology and climate-change science. Permafrost and Periglacial Processes 16: 5-17. DOI:10.1002/ppp.518. – reference: Murton JB. 1996a. Thermokarst-lake-basin sediments, Tuktoyaktuk Coastlands, Western Arctic Canada. Sedimentology 43: 737-760. DOI:10.1111/j.1365-3091.1996.tb02023.x. – reference: Vasil'chuk YK, Vasil'chuk AC. 1998. Oxgyen-isotope and C14 data associated with Late Pleistocene syngenetic ice-wedges in mountains of Magadan region, Siberia. Permafrost and Periglacial Processes 9: 177-183. DOI:10.1002/(SICI)1099-1530(199804/06)9:23.0.CO;2-T. – reference: McCulloch DS, Hopkins DM. 1966. Evidence for an early recent warm interval in northwestern Alaska. Geological Society of America Bulletin 77: 1089-1108. DOI:10.1130/0016-7606(1966)77[1089:EFAERW]2.0.CO;2. – reference: Muhs DR, Budahn JR. 2006. Geochemical evidence for the origin of late Quaternary loess in central Alaska. Canadian Journal of Earth Sciences 43: 323-337. DOI:10.1139/e05-115. – reference: Antoine P, Rousseau D-D, Degeai J-P, Moine O, Lagroix F, Kreutzer S, Fuchs M, Hatté C, Gauthier C, Svoboda J, Lisá L. 2013. High-resolution record of the environmental response to climatic variations during the Last Interglacial-Glacial cycle in Central Europe: the loess-palaeosol sequence of Dolní Vestonice (Czech Republic). Quaternary Science Reviews 67: 17-38. DOI:10.1016/j.quascirev.2013.01.014. – reference: Hugenholtz CH, Wolfe SA. 2010. Rates and environmental controls on aeolian dust accumulation, Athabasca Valley, Canadian Rocky Mountains. Geomorphology 121: 274-282. DOI:10.1016/j.geomorph.2010.04.024. – reference: Mackay JR. 1990. Some observations on the growth and deformation of epigenetic, syngenetic and anti-syngenetic ice wedges. Permafrost and Periglacial Processes 1: 15-29. DOI:10.1002/ppp.3430010104. – reference: McCave IN, Hall IR, Bianchi GG. 2006. Laser vs. settling velocity differences in silt grainsize measurements: estimation of palaeocurrent vigour. Sedimentology 53: 919-928. DOI:10.1111/j.1365-3091.2006.00783.x. – reference: Hopkins DM, Matthews JV, Jr, Schweger CE, Young SB (eds). 1982. Paleoecology of Beringia. Academic Press: New York. – reference: Crusius J, Schroth AW, Gassó S, Moy CM, Levy RC, Gatica M. 2011. Glacial flour dust storms in the Gulf of Alaska: Hydrologic and meteorological controls and their importance as a source of bioavailable iron. Geophysical Research Letters 38: L06602. DOI:10.1029/2010GL046573. – reference: Sanborn PT, Smith CAS, Froese DG, Zazula GD, Westgate JA. 2006. Full-glacial paleosols in perennially frozen loess sequences, Klondike goldfields, Yukon Territory, Canada. Quaternary Research 66: 147-157. DOI:10.1016/j.yqres.2006.02.008. – reference: Anderson PM, Lozhkin AV (eds). 2002. Late Quaternary Vegetation and Climate of Siberia and the Russian Far East. National Oceanic and Atmospheric Administration and Russian Academy of Sciences: Magadan, Russia. – reference: Muhs DR, Budahn JR, McGeehin JP, Bettis EA III, Skipp G, Paces JB, Wheeler EA. 2013. Loess origin, transport, and deposition over the past 10,000 years, Wrangell-St. Elias National Park, Alaska. Aeolian Research 11: 85-99. DOI:10.1016/j.aeolia.2013.06.001. – reference: Vorobyov LA. 1998. Chemical Analysis of Soil. Moscow State University Press: Moscow. – reference: Garrels RM, MacKenzie FT. 1971. Evolution of Sedimentary Rocks. Norton: New York. – reference: Konishchev VN. 2009. Climate warming and permafrost. Moscow State University. Geography-Environment-Sustainability 1: 4-19. – reference: Kuhry P, Grosse G, Harden JW, Hugelius G, Koven CD, Ping C-L, Schirrmeister L, Tarnocai C. 2013. Characterisation of the permafrost carbon pool. Permafrost and Periglacial Processes 24: 146-155. DOI:10.1002/ppp.1782. – reference: Marsh J, Nouvet S, Sanborn P, Coxson D. 2006. Composition and function of biological soil crust communities along topographic gradients in grasslands of central interior British Columbia (Chilcotin) and southwestern Yukon (Kluane). Canadian Journal of Botany 84: 717-736. DOI:10.1139/B06-026. – reference: Vasil'chuk YK, Vasil'chuk AC, van der Plicht J, Kucschera V, Rank D. 2001b. Radiocarbon dating of the Late Pleistocene ice wedges in the Bizon Section in the lower reaches of the Kolyma River. Doklady Earth Sciences 379: 589-593. – reference: Kienast F, Schirrmeister L, Siegert C. 2005. Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage. Quaternary Research 63: 283-300. DOI:10.1016/j.yqres.2005.01.003. – reference: French HM, Pollard WH. 1986. Ground-ice investigations, Klondike District, Yukon Territory. Canadian Journal of Earth Sciences 23: 550-560. DOI:10.1139/e86-055 – reference: Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV. 2003. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research 108: D19, 8171. DOI:10.1029/2002JD002559. – reference: Murton DK, Murton JB. 2012. Middle and Late Pleistocene glacial lakes of lowland Britain and the southern North Sea Basin. Quaternary International 260: 115-142. DOI:10.1016/j.quaint.2011.07.034. – reference: Yurtsev BA. 1981. Relic Steppe Complexes of North-East Asia. Nauka: Novosibirsk (in Russian). – reference: Binney HA, Willis KJ, Edwards ME, Bhagwat SA, Anderson PM, Andreev AA, Blaauw M, Damblon F, Haesaerts P, Kienast F, Kremenetski KV, Krivonogov SK, Lozhkin AV, MacDonald GM, Novenko PO, Sapelko T, Väliranta M, Vazhenina L. 2009. The distribution of late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database. Quaternary Science Reviews 28: 2445-2464. DOI:10.1016/j.quascirev.2009.04.016. – reference: McTainsh GH, Nickling WG, Lynch AW. 1997. Dust deposition and particle size in Mali, West Africa. Catena 29: 307-322. DOI:10.1016/S0341-8162(96)00075-6. – reference: Vreeken WJ, Mücher HJ. 1981. (Re)deposition of loess in southern Limbourg, The Netherlands: 1. Field evidence for conditions of deposition of the Lower Silt Loam complex. Earth Surface Processes and Landforms 6: 337-354. DOI:10.1002/esp.3290060313. – reference: Alfimov AV, Berman DI, Sher AV. 2003. Tundra-steppe insect assemblages and reconstructions of late Pleistocene climate in the lower reaches of the Kolyma River. Zoologicheskiy Zhurnal 82: 281-300 (in Russian). – reference: Gullentops F. 1957. Stratigraphie du Pleistocène supérieur en Belgique. Geologie en Mijnbouw 19: 305. – reference: Smith CAS, Swanson DK, Moore JP, Ahrens JP, Bockheim JG, Kimble JM, Mazhitova GG, Ping CL, Tarnocai C. 1995. A description and classification of soils and landscapes of the lower Kolyma River, northeastern Russia. Polar Geography and Geology 19: 107-126. DOI:10.1080/10889379509377563. – reference: Liu T. 1985. Loess in China, Second edition. Beijing/Berlin: China Ocean Press/Springer-Verlag. – reference: Muhs DR. 2013a. The geologic records of dust in the Quaternary. Aeolian Research 9: 3-48. DOI:10.1016/j.aeolia.2012.08.001. – reference: Carter LD. 1981. A Pleistocene sand sea on the Alaskan Arctic Coastal Plain. Science 212: 381-383. DOI:10.1126/science.211.4480.381. – reference: Murzaev EM. 1984. Dictionary of Folk Geographical Terms. Mysl: Moscow (in Russian). – reference: de Leffingwell EK. 1915. Ground-ice wedges-the dominant form of ground-ice on the north coast of Alaska. Journal of Geology 23: 635-654. – reference: Goslar T, Czernik J, Goslar E. 2004. Low-energy 14C AMS in Poznan radiocarbon Laboratory, Poland. Nuclear Instruments and Methods in Physics Research B 223-224: 5-11. – reference: Konishchev VN, Rogov VV. 1993. Investigations of cryogenic weathering in Europe and Northern Asia. Permafrost and Periglacial Processes 4: 49-64. DOI:10.1002/ppp.3430040105. – reference: Zech M, Zech R, Zech W, Glaser B, Brodowski S, Amelung W. 2008. Characterisation and palaeoclimate of a loess-like permafrost palaeosol sequence in NE Siberia. Geoderma 143: 281-295. DOI:10.1016/j.geoderma.2007.11.012. – reference: Begét JE. 2001. Continuous Late Quaternary proxy climate records from loess in Beringia. Quaternary Science Reviews 20: 499-507. DOI:10.1016/S0277-3791(00)00102-5. – reference: Wetterich S, Rudaya N, Tumskoy V, Andreev AA, Opel T, Schirrmeister L, Meyer L. 2011b. Last Glacial Maximum records in permafrost of the East Siberian Arctic. Quaternary Science Reviews 30: 3139-3151. DOI:10.1016/j.quascirev.2011.07.020. – reference: Antoine P, Catt J, Lautridou J-P, Sommé J. 2003. The loess and coversands of northern France and southern England. Journal of Quaternary Science 18: 309-318. DOI:10.1002/jqs.750. – reference: Kaplina TN, Giterman RYe, Lakhtina OV, Abrashov BA, Sher AV. 1978. Duvanny Yar, a key section of upper Pleistocene sediments of the Kolyma lowland. Bulletin of the Commission of the USSR Academy of Sciences for Studying the Quaternary 48: 49-65 (in Russian). Translation 1863194. Geological Survey of Canada: Ottawa. – reference: Dijkmans JWA, Törnqvist TE. 1991. Modern periglacial eolian deposits and landforms in the Søndre Strømfjord area, West Greenland and their palaeoenvironmental implications. Meddelelser om Grønland Geoscience 25: 1-39. – reference: McKenna Neuman C. 1990. Observations of winter aeolian transport and niveo-aeolian deposition at Crater Lake, Pangnirtung Pass, N.W.T., Canada. Permafrost and Periglacial Processes 1: 235-247. DOI:10.1002/ppp.3430010304. – reference: Prins MA, Vriend M, Nugteren G, Vandenberghe J, Lu HY, Zheng HB, Weltje GJ. 2007. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain-size records. Quaternary Science Reviews 26: 230-242. DOI:10.1016/j.quascirev.2006.07.002. – reference: Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS III. 2006a. Permafrost carbon: Stock and decomposability of a globally significant carbon pool. Geophysical Research Letters 33: L20502. DOI:10.1029/2006GL027484. – reference: Wolfe SA, Bond J, Lamothe M. 2011. Dune stabilization in central and southern Yukon in relation to early Holocene environmental changes, northwestern North America. Quaternary Science Reviews 30: 324-334. DOI:10.1016/j.quascirev.2010.11.010. – reference: Lea PD, Waythomas CF. 1990. Late-Pleistocene eolian sand sheets in Alaska. Quaternary Research 34: 269-281. DOI:10.1016/0033-5894(90)90040-R. – reference: Sun D, Bloemendal J, Rea DK, An Z, Vandenberghe J, Lu H, Su R, Liu T. 2004. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications. Catena 55: 325-340. DOI:10.1016/S0341-8162(03)00109-7. – reference: Astakhov V. 2014. The postglacial Pleistocene of the northern Russian mainland. Quaternary Science Reviews 92: 388-408. DOI:10.1016/j.quascirev.2014.03.009. – reference: Nickling WG. 1978. Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory. Canadian Journal of Earth Sciences 15: 1069-1084. DOI:10.1139/e78-114. – reference: Bray MT, French HM, Shur Y. 2006. Further cryostratigraphic observations in the CRREL permafrost tunnel, Fox, Alaska. Permafrost and Periglacial Processes 17: 233-243. DOI:10.1002/ppp.558. – reference: Brigham-Grette J. 2001. New perspectives on Beringian Quaternary paleogeography, stratigraphy, and glacial history. Quaternary Science Reviews 20: 15-24. DOI:10.1016/S0277-3791(00)00134-7. – reference: Muhs DR, McGeehin JP, Beann J, Fisher E. 2004. Holocene loess deposition and soil formation as competing processes, Matanuska Valley, southern Alaska. Quaternary Research 61: 265-276. DOI:10.1016/j.yqres.2004.02.003. – reference: Kotler E, Burn CR. 2000. Cryostratigraphy of the Klondike "muck" deposits west-central Yukon Territory. Canadian Journal of Earth Sciences 37: 849-861. DOI:10.1139/cjes-37-6-849. – reference: Konert M, Vandenberghe J. 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44: 523-535. DOI:10.1046/j.1365-3091.1997.d01-38.x. – reference: Froese DG, Westgate JA, Preece S, Storer J. 2002. Age and significance of the late Pleistocene Dawson tephra in eastern Beringia. Quaternary Science Reviews 21: 2137-2142. DOI:10.1016/S0277-3791(02)00038-0. – reference: Mücher HJ, De Ploey J, Savat J. 1981. Response of loess materials to simulated translocation by water: micromorphological observations. Earth Surface Processes and Landforms 6: 331-336. DOI:10.1002/esp.3290060312. – reference: Machalett B, Oches EA, Frechen M, Zoller L, Hambach U, Mavlyanova NG, Markovic SB, Endlicher W. 2008. Aeolian dust dynamics in central Asia during the Pleistocene: Driven by the long-term migration, seasonality, and permanency of the Asiatic polar front. Geochemistry Geophysics Geosystems 9: Q08Q09. DOI:10.1029/2007GC001938. – reference: Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, Lorenzen ED, Vestergård M, Gussarova G, Haile J, Craine J, Bergmann G, Gielly L, Boessenkool S, Epp LS, Pearman PB, Cheddadi R, Murray D, Bråthen KA, Yoccoz N, Binney H, Cruaud C, Wincker P, Goslar T, Alsos IG, Bellemain E, Brysting AK, Elven R, Sønstebø JH, Murton J, Sher A, Rasmussen M, Rønn R, Mourier T, Cooper A, Austin J, Möller P, Froese D, Zazula G, Pompanon F, Rioux D, Niderkorn V, Tikhonov A, Savvinov G, Roberts RG, MacPhee RDE, Gilbert MPT, Kjær K, Orlando L, Brochmann C, Taberle P. 2014. Fifty thousand years of arctic vegetation and megafauna diet. Nature 506: 47-51. DOI:10.1038/nature12921. – reference: Maher BA, Prospero JM, Mackie D, Gaiero D, Hesse PP, Balkanski Y. 2010. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews 99: 61-97. DOI:10.1016/j.earscirev.2009.12.001. – reference: Andreev AA, Schirrmeister L, Tarasov PE, Ganopolski A, Brovkin V, Siegert C, Wetterich S, Hubberten H-W. 2011. Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from pollen records. Quaternary Science Reviews 30: 2182-2199. DOI:10.1016/j.quascirev.2010.12.026. – reference: Lozhkin AV, Anderson PM. 2011. Forest or no forest: implications of the vegetation record for climatic stability in Western Beringia during Oxygen Isotope Stage 3. Quaternary Science Reviews 30: 2160-2181. DOI:10.1016/j.quascirev.2010.12.022. – reference: Tomirdiaro SV, Chyornen'kiy BI. 1987. Cryogenic Eolian Deposits of the Eastern Arctic and Subarctic. Nauka: Moscow (in Russian). – reference: Rybakova NO. 1990. Changes in the vegetation cover and climate in the Kolyma lowlands in late-Quaternary time. Polar Geography 14: 279-286. DOI:10.1080/10889379009377440. – reference: Lozhkin AV, Anderson PM. 1995. The last interglaciation in northeast Siberia. Quaternary Research 43: 147-158. DOI:10.1006/qres.1995.1016. – reference: Galbraith RF, Green PF. 1990. Estimating the component ages in a finite mixture. Radiation Measurements 17: 197-206. DOI:10.1016/1359-0189(90)90035-V. – reference: Zimov SA, Schuur EAG, Chapin FS III. 2006b. Permafrost and the global carbon budget. Science 312: 1612-1613. DOI:10.1126/science.1128908. – reference: Antoine P, Rousseau D-D, Lautridou JP, Hatté C. 1999. Last interglacial-glacial climatic cycle in loess-palaeosol successions of north-western France. Boreas 28: 551-563. – reference: Fraser TA, Burn CR. 1997. On the nature and origin of "muck" deposits in the Klondike area, Yukon Territory. Canadian Journal of Earth Sciences 34: 1333-1344. DOI:10.1139/e17-106. – reference: Griffin CG, Frey KE, Rogan J, Holmes RM. 2011. Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery. Journal of Geophysical Research 116: G03018. DOI:10.1029/2010JG001634. – reference: Höfle C, Edwards ME, Hopkins DM, Mann DH, Ping CL. 2000. The full-glacial environment of the northern Seward Peninsula, Alaska, reconstructed from the 21,500-Year-Old Kitluk Paleosol. Quaternary Research 53: 143-153. DOI:10.1006/qres.1999.2097. – reference: Vreeken WJ. 1984. (Re)deposition of loess in southern Limbourg, The Netherlands. 3. Field evidence for conditions of deposition of the middle and upper silt loam complexes, and landscape evolution at Nagelbeek. Earth Surface Processes and Landforms 9: 1-18. DOI:10.1002/esp.3290090102. – reference: Vasil'chuk YK, Vasil'chuk AC, Kim J-C. 2003. The AMS radiocarbon dating of pollen concentrate from the Late Pleistocene ice wedge of the Bison Section, Kolyma region. Doklady Earth Sciences 393: 1141-1145. – reference: McCave IN, Hall IR. 2006. Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow-speed proxies. Geochemistry, Geophysics, Geosystems 7: Q10N05. DOI:10.1029/2006GC001284. – reference: Velichko AA, Morozova TD, Nechaev VP, Rutter NW, Dlusskii KG, Little EC, Catto NR, Semenov VV, Evans ME. 2006. Loess/paleosol/cryogenic formation and structure near the northern limit of loess deposition, East European Plain, Russia. Quaternary International 152-153: 14-30. DOI:10.1016/j.quaint.2005.12.003. – reference: CAVM Team. 2003. Circumpolar Arctic Vegetation Map (1:7,500,000 scale). Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. US Fish and Wildlife Service: Anchorage, Alaska. – reference: Park H, Yamazaki T, Yamamoto K, Ohta T. 2008. Tempo-spatial characteristics of energy budget and evapotranspiration in the eastern Siberia. Agricultural and Forest Meteorology 148: 1990-2005. DOI:10.1016/j.agrformet.2008.06.018. – reference: Koster EA, Dijkmans JWA. 1988. Niveo-aeolian deposits and denivation forms, with special reference to the Great Kobuk Sand Dunes, Northwestern Alaska. Earth Surface Processes and Landforms 13: 153-170. DOI:10.1002/esp.3290130206. – reference: Werner K, Tarasov PE, Andreev AA, Müller S, Kienast F, Zech M, Zech W, Diekmann B. 2010. A 12.5-ka history of vegetation dynamics and mire development with evidence of the Younger Dryas larch presence in the Verkhoyansk Mountains, East Siberia, Russia. Boreas 39: 56-68. DOI:10.1111/j.1502-3885.2009.00116.x. – reference: Muhs DR, Ager TA, Bettis EA III, McGeehin J, Been JM, Begét JE, Pavich MJ, Stafford TW Jr, Stevens De ASP. 2003. Stratigraphy and paleoclimatic significance of late Quaternary loess-paleosol sequences of the last interglacial-glacial cycle in central Alaska. Quaternary Science Reviews 22: 1947-1986. DOI:10.1016/S0277-3791(03)00167-7. – reference: French HM, Shur Y. 2010. The principles of cryostratigraphy. Earth-Science Reviews 101: 190-206. DOI:10.1016/j.earscirev.2010.04.002. – reference: Murton JB, Kolstrup E. 2003. Ice-wedge casts as indicators of palaeotemperatures: precise proxy or wishful thinking? Progress in Physical Geography 27: 155-170. DOI:10.1191/0309133303pp365ra. – reference: Laxton NF, Burn CR, Smith CAS. 1996. Productivity of loessal grasslands in the Kluane Lake region, Yukon Territory, and the Beringian "production paradox. Arctic 49: 129-140. DOI: 10.14430/arctic1191 – reference: Anderson PM, Lozhkin AV. 2001. The Stage 3 interstadial complex (Karginskii/middle Wisconsinan interval) of Beringia: variations in paleoenvironments and implications for paleoclimatic interpretations. Quaternary Science Reviews 20: 93-125. DOI:10.1016/S0277-3791(00)00129-3. – reference: Vadyunina AF, Korchagina ZA. 1986. Methods of Investigation of Physical Properties of Soils, Third edition. Agropromizdat: Moscow. – reference: Kanevskiy M, Shur Y, Fortier D, Jorgenson MT, Stephani E. 2011. Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure. Quaternary Research 75: 584-596. DOI:10.1016/j.yqres.2010.12.003. – reference: Taber S. 1943. Perennially frozen ground in Alaska: its origin and history. Bulletin of the Geological Society of America 54: 1433-1548. DOI:10.1130/GSAB-54-1433. – reference: Schirrmeister L, Grosse G, Wetterich S, Overduin PP, Strauss J, Schuur EAG, Hubberten H-W. 2011a. Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. Journal of Geophysical Research 116: G00M02. DOI:10.1029/2011JG001647. – reference: Sher AV, Kaplina TN, Giterman RE, Lozhkin AV, Arkhangelov AA, Kiselyov SV, Kouznetsov Yu V, Virina EI, Zazhigin VS. 1979. Late Cenozoic of the Kolyma Lowland: XIV Pacific Science Congress, Khabarovsk August 1979, Tour Guide XI. USSR Academy of Sciences: Moscow. – reference: Frechen M, Kehl M, Rolf C, Sarvati R, Skowronek A. 2009. Loess chronology of the Caspian Lowland in northern Iran. Quaternary International 198: 220-233. DOI:10.1016/j.quaint.2008.12.012. – reference: Gubin SV. 1984. Palaeopedological analysis of Late Pleistocene (Yedoma) deposits of the Duvanny Yar exposure. Bulletin of Quaternary Commission 53: 125-128 (in Russian). – reference: Mücher HJ, De Ploey J. 1977. Experimental and micromorphological investigation of erosion and redeposition of loess by water. Earth Surface Processes and Landforms 2: 117-124. DOI:10.1002/esp.3290020204. – reference: Alfimov AV, Berman DI. 2001. Beringian climate during the late Pleistocene and Holocene. Quaternary Science Reviews 20: 127-134. DOI:10.1016/S0277-3791(00)00128-1. – reference: Nikolayev VI, Mikhalev DV. 1995. An oxygen-isotope paleothermometer from ice in Siberian permafrost. Quaternary Research 43: 14-21. DOI:10.1006/qres.1995.1002. – reference: Péwé TL. 1955. Origin of the upland silt near Fairbanks, Alaska. Geological Society of America Bulletin 66: 699-724. – reference: Shur YL. 1988a. Upper horizon of permafrost and thermokarst. Nauka: Novosibirsk (in Russian). – reference: Klute A (ed). 1986. Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, Second Edition. Soil Science Society of America Book Series No. 5 and American Society of Agronomy. Agronomy Monographs 9(1): Madison, Wisconsin. – reference: French HM, Guglielmin M. 2000. Frozen ground phenomena in the vicinity of Terra Nova Bay, Northern Victoria Land, Antarctica: a preliminary report. Geografiska Annaler 82A: 513-526. DOI:10.1111/j.0435-3676.2000.00138.x. – reference: Stakhov VL, Gubin SV, Maksimovich SV, Rebrikov DV, Savilova AM, Kochkina GA, Ozerskaya SM, Ivanushkina NE, Vorobyova EA. 2008. Microbial communities of ancient seeds derived from permanently frozen Pleistocene deposits. Microbiology 77: 348-355. DOI:10.1134/S0026261708030156. – reference: Gubin SV, Zanina OG. 2013. Variation of soil cover during the Ice Complex deposit formation, Kolyma Lowland (Part 1). Earth Cryosphere XVII(4): 48-56. – reference: Murton JB, French HM. 1993. Thaw modification of frost-fissure wedges, Richards Island, Pleistocene Mackenzie Delta, western Canadian Arctic. Journal of Quaternary Science 8: 185-196. DOI:10.1002/jqs.3390080302. – reference: Gravis GF. 1969. Slope Deposits in Yakutia. Nauka: Moscow, (in Russian). – reference: Murton JB. 1996b. Morphology and paleoenvironmental significance of Quaternary sand veins, sand wedges, and composite wedges, Tuktoyaktuk Coastlands, Western Arctic Canada. Journal of Sedimentary Research 66: 17-25. DOI:10.1306/D4268298-2B26-11D7-8648000102C1865D. – reference: Péwé TL. 1951. An observation of wind-blown silt. Journal of Geology 59: 399-401. – reference: Schirrmeister L, Kunitsky V, Grosse G, Wetterich S, Meyer H, Schwamborn G, Babiy O, Derevyagin A, Siegert C. 2011b. Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on North-East Siberian Arctic coastal lowlands and islands - A review. Quaternary International 241: 3-25. DOI:10.1016/j.quaint.2010.04.004. – reference: Sun D, Bloemendal J, Rea DK, Vandenberghe J, Jiang F, An Z, Su R. 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology 152: 263-277. DOI:10.1016/S0037-0738(02)00082-9. – reference: Arinushkina EV. 1970. Guidelines for Chemical Analysis of Soils. Moscow State University Press: Moscow. – reference: Gubin SV, Lupachev AV. 2012. Approaches to the distinguishing and investigation of buried soils in frozen deposits of Ice Complex. Earth Cryosphere 2: 79-84 (in Russian). – reference: Jahn A. 1975. Problems of the Periglacial Zone (Zagadnienia strefy peryglacjalnef). Panstwowe wydawnictwo Naukowe: Warsaw. – reference: Konishchev VN. 1981. Formirovanie sostava dispersnykh porod v kriolitosfere. [Formation of Soil Composition in Permafrost Regions.] Nauka: Novosibirsk (in Russian). – reference: Vandenberghe J, Huijzer BS, Mücher H, Laan W. 1998. Short climatic oscillations in a western European loess sequence (Kesselt, Belgium). Journal of Quaternary Science 13: 471-485. DOI:10.1002/(SICI)1099-1417(1998090)13:5<471::AID-JQS401>3.0.CO;2-T. – reference: Walker DA, Everett KR. 1987. Road dust and its environmental impact on Alaskan taiga and tundra. Arctic and Alpine Research 19: 479-489. DOI:10.2307/1551414. – reference: Brubaker LB, Anderson PM, Edwards ME, Lozhkin AV. 2005. Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data. Journal of Biogeography 32: 833-848. DOI:10.1111/j.1365-2699.2004.01203.x. – reference: Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51: 1111-1150. – reference: Mücher HJ, Vreeken WJ. 1981. (Re)deposition of loess in southern Limbourg, The Netherlands: 2. Micromorphology of the Lower Silt Loam complex and comparison with deposits produced under laboratory conditions. Earth Surface Processes and Landforms 6: 355-363. DOI:10.1002/esp.3290060314. – reference: Burn CR, Smith MW. 1990. Development of thermokarst lakes during the Holocene at sites near Mayo, Yukon Territory. Permafrost and Periglacial Processes 1: 161-176. DOI:10.1002/ppp.3430010207. – reference: Sher AV, Kuzmina SA, Kuznetsova TV, Sulerzhitsky LD. 2005. New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals. Quaternary Science Reviews 24: 533-569. DOI:10.1016/j.quascirev.2004.09.007. – reference: Bullard JE. 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes and Landforms 38: 71-89. DOI:10.1002/esp.3315. – reference: Romanovskii NN. 1993. Fundamentals of Cryogenesis of Lithosphere. Moscow University Press: Moscow (in Russian). – reference: Zhu R, Matasova G, Kazansky A, Zykina V, Sun JM. 2003. Rock magnetic record of the last glacial-interglacial cycle from the Kurtak loess section, southern Siberia. Geophysical Journal International 152: 335-343. DOI:10.1046/j.1365-246X.2003.01829.x. – reference: Vasil'chuk YK. 2005. Heterochroneity and heterogeneity of the Duvanny Yar Edoma. Doklady Earth Sciences 402: 568-573. – reference: Goetcheus VG, Birks HH. 2001. Full-glacial upland tundra vegetation preserved under tephra in Beringia National Park, Seward Peninsula, Alaska. Quaternary Science Reviews 20: 135-147. DOI:10.1016/S0277-3791(00)00127-X. – reference: Kasse K, Bohncke S, Vandenberghe J. 1995. Fluvial periglacial environments, climate and vegetation during the Middle Weichselian in the northern Netherlands with special reference to the Hengelo Interstadial. Mededelingen Rijks Geologische Dienst 52: 387-414. – reference: Kokelj S, Jorgenson MT. 2013. Advances in thermokarst research. Permafrost and Periglacial Processes 24: 108-119. DOI:10.1002/ppp.1779. – reference: Zárate MA, Tripaldi A. 2012. The aeolian system of central Argentina. Aeolian Research 3: 401-417. DOI:10.1016/j.aeolia.2011.08.002. – reference: Murray AS, Wintle AG. 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37: 377-381. DOI:10.1016/S1350-4487(03)00053-2. – reference: Zazula GD, Froese DG, Elias SA, Kuzmina S, Mathewes RW. 2011. Early Wisconsinan (MIS 4) Arctic ground squirrel middens and a squirrel-eye-view of the mammoth-steppe. Quaternary Science Reviews 30: 2220-2237. DOI:10.1016/j.quascirev.2010.04.019. – reference: Antoine P, Rousseau D-D, Moine O, Kunesch S, Hatté C, Lang A, Tissoux H, Zöller L. 2009. Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quaternary Science Reviews 28: 2955-2973. DOI:10.1016/j.quascirev.2009.08.001. – reference: Novothny A, Frechen M, Horváth E, Wacha L, Rolf C. 2011. Investigating the penultimate and last glacial cycles of the Süttö loess section (Hungary) using luminescence dating, high-resolution grain size, and magnetic susceptibility data. Quaternary International 234: 75-85. DOI:10.1016/j.quaint.2010.08.002. – reference: Guthrie RD. 2001. Origin and causes of the mammoth steppe: A story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quaternary Science Reviews 20: 549-574. DOI:10.1016/S0277-3791(00)00099-8. – reference: Lozhkin AV, Anderson PM, Matrosova TV, Minyuk PS. 2006. The pollen record from El'gygytgyn Lake: Implications for vegetation and climate histories of northern Chukotka since the late Middle Pleistocene. Journal of Paleolimnology 37: 135-153. DOI:10.1007/s10933-006-9018-5. – reference: Boeskorov GG, Lazarev PA, Sher AV, Davydov SP, Bakulina NT, Shchelchkova MV, Binladen J, Willerslev E, Buigues B, Tikhonov AN. 2011. Woolly rhino discovery in the lower Kolyma River. Quaternary Science Reviews 30: 2262-2272. DOI:10.1016/j.quascirev.2011.02.010. – reference: Arnalds O. 2010. Dust sources and deposition of aeolian materials in Iceland. Icelandic Agricultural Sciences 23: 3-21. – reference: Zhou Y, Lu H, Zhang J, Mason JA, Zhou L. 2009. Luminescence dating of sand-loess sequences and response of Mu Us and Otindag sand fields (north China) to climatic changes. Journal of Quaternary Science 24: 336-344. DOI:10.1002/jqs.1234. – reference: Prescott JR, Hutton JT. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term variations. Radiation Measurements 23: 497-500. DOI:10.1016/1350-4487(94)90086-8. – start-page: 22 year: 1982 end-page: 29 – start-page: 817 year: 1973 end-page: 818 – volume: 32 start-page: 833 year: 2005 end-page: 848 article-title: Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data publication-title: Journal of Biogeography – volume: XVII start-page: 48 issue: 4 year: 2013 end-page: 56 article-title: Variation of soil cover during the Ice Complex deposit formation, Kolyma Lowland (Part 1) publication-title: Earth Cryosphere – volume: 75 start-page: 584 year: 2011 end-page: 596 article-title: Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure publication-title: Quaternary Research – year: 1989 – volume: 92 start-page: 388 year: 2014 end-page: 408 article-title: The postglacial Pleistocene of the northern Russian mainland publication-title: Quaternary Science Reviews – start-page: 72 year: 1976 end-page: 77 – volume: 1 start-page: 15 year: 1990 end-page: 29 article-title: Some observations on the growth and deformation of epigenetic, syngenetic and anti‐syngenetic ice wedges publication-title: Permafrost and Periglacial Processes – year: 1990 – volume: 2 start-page: 93 year: 1982 end-page: 103 article-title: Loess deposits in Lower Adventdalen, Spitsbergen publication-title: Polar Research – year: 2014 – volume: 51 start-page: 1111 year: 2009 end-page: 1150 article-title: IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP publication-title: Radiocarbon – volume: 260 start-page: 115 year: 2012 end-page: 142 article-title: Middle and Late Pleistocene glacial lakes of lowland Britain and the southern North Sea Basin publication-title: Quaternary International – start-page: 173 year: 2013a end-page: 201 – volume: 2 start-page: 606 year: 2007 end-page: 619 – start-page: 643 year: 1993 end-page: 647 – volume: 28 start-page: 2445 year: 2009 end-page: 2464 article-title: The distribution of late‐Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database publication-title: Quaternary Science Reviews – volume: 1 start-page: 889 year: 2008 end-page: 894 – volume: 85 start-page: 133 issue: Supplement 1 year: 2005 end-page: 140 article-title: Fossil rodent burrows in frozen Late Pleistocene beds of the Kolyma lowland publication-title: Entomological Review – volume: 43 start-page: 652 year: 2014 end-page: 666 article-title: The Last Permafrost Maximum (LPM) map of the northern hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP publication-title: Boreas – volume: 41 start-page: 574 year: 2008 end-page: 585 article-title: Soil formation and the underlying permafrost publication-title: Eurasian Soil Science – year: 1972 – volume: 9 start-page: 1 year: 1984 end-page: 18 article-title: (Re)deposition of loess in southern Limbourg, The Netherlands. 3. Field evidence for conditions of deposition of the middle and upper silt loam complexes, and landscape evolution at Nagelbeek publication-title: Earth Surface Processes and Landforms – volume: 26 start-page: 979 year: 2007 end-page: 1003 article-title: Arctic ground squirrels of the mammoth‐steppe: paleoecology of middens from the last glaciation, Yukon Territory, Canada publication-title: Quaternary Science Reviews – volume: 393 start-page: 1141 year: 2003 end-page: 1145 article-title: The AMS radiocarbon dating of pollen concentrate from the Late Pleistocene ice wedge of the Bison Section, Kolyma region publication-title: Doklady Earth Sciences – volume: 1 start-page: 706 year: 1988 end-page: 711 – volume: 66 start-page: 699 year: 1955 end-page: 724 article-title: Origin of the upland silt near Fairbanks, Alaska publication-title: Geological Society of America Bulletin – volume: 53 start-page: 143 year: 2000 end-page: 153 article-title: The full‐glacial environment of the northern Seward Peninsula, Alaska, reconstructed from the 21,500‐Year‐Old Kitluk Paleosol publication-title: Quaternary Research – volume: 108 start-page: 8171 year: 2003 article-title: Climate change and Arctic ecosystems: 2. Modeling, paleodata‐model comparisons, and future projections publication-title: Journal of Geophysical Research – volume: 15 start-page: 1069 year: 1978 end-page: 1084 article-title: Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory publication-title: Canadian Journal of Earth Sciences – volume: 23 start-page: 497 year: 1994 end-page: 500 article-title: Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long‐term variations publication-title: Radiation Measurements – year: 1975b – volume: 19 start-page: 107 year: 1995 end-page: 126 article-title: A description and classification of soils and landscapes of the lower Kolyma River, northeastern Russia publication-title: Polar Geography and Geology – volume: 36 start-page: 727 year: 2008 end-page: 730 article-title: Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the past 22 m.y publication-title: Geology – volume: 143 start-page: 281 year: 2008 end-page: 295 article-title: Characterisation and palaeoclimate of a loess‐like permafrost palaeosol sequence in NE Siberia publication-title: Geoderma – volume: 28 start-page: 551 year: 1999 end-page: 563 article-title: Last interglacial–glacial climatic cycle in loess‐palaeosol successions of north‐western France publication-title: Boreas – year: 2007 – volume: 16 start-page: 5 year: 2005 end-page: 17 article-title: The transient layer: implications for geocryology and climate‐change science publication-title: Permafrost and Periglacial Processes – year: 2012b – volume: 2 start-page: 1803 year: 2008 end-page: 1808 – year: 1973 – volume: 47 start-page: 243 year: 2005 end-page: 256 article-title: AMS C dating of pollen concentrate from Late Pleistocene ice wedges from the Bison and Seyaha sites in Siberia publication-title: Radiocarbon – start-page: 459 year: 1990 end-page: 490 – volume: 25 start-page: 1 year: 1991 end-page: 39 article-title: Modern periglacial eolian deposits and landforms in the Søndre Strømfjord area, West Greenland and their palaeoenvironmental implications publication-title: Meddelelser om Grønland Geoscience – volume: 2 start-page: 79 year: 2012 end-page: 84 article-title: Approaches to the distinguishing and investigation of buried soils in frozen deposits of Ice Complex publication-title: Earth Cryosphere – volume: 11 start-page: 85 year: 2013 end-page: 99 article-title: Loess origin, transport, and deposition over the past 10,000 years, Wrangell‐St. Elias National Park, Alaska publication-title: Aeolian Research – volume: XI start-page: 65 year: 1983 end-page: 80 – year: 2011a – volume: 30 start-page: 3139 year: 2011b end-page: 3151 article-title: Last Glacial Maximum records in permafrost of the East Siberian Arctic publication-title: Quaternary Science Reviews – year: 1984 – volume: 20 start-page: 15 year: 2001 end-page: 24 article-title: New perspectives on Beringian Quaternary paleogeography, stratigraphy, and glacial history publication-title: Quaternary Science Reviews – volume: 8 start-page: 5 year: 1994 end-page: 14 article-title: Late Pleistocene soil formation in coastal lowlands of northern Yakutia publication-title: Soil Science – volume: 30 start-page: 2220 year: 2011 end-page: 2237 article-title: Early Wisconsinan (MIS 4) Arctic ground squirrel middens and a squirrel‐eye‐view of the mammoth‐steppe publication-title: Quaternary Science Reviews – volume: 312 start-page: 1612 year: 2006b end-page: 1613 article-title: Permafrost and the global carbon budget publication-title: Science – volume: 26 year: 2012a article-title: Grain‐size properties and organic‐carbon stock of Yedoma Ice Complex permafrost from the Kolyma lowland, northeastern Siberia publication-title: Global Biogeochemical Cycles – year: 2002 – start-page: 425 year: 1982 end-page: 444 – volume: 34 start-page: 1421 year: 1997 end-page: 1441 article-title: Mid‐Wisconsinan eolian deposits of the Kittigazuit Formation, Tuktoyaktuk Coastlands, Northwest Territories, Canada publication-title: Canadian Journal of Earth Sciences – volume: 1 start-page: 4 year: 2009 end-page: 19 article-title: Climate warming and permafrost. Moscow State University publication-title: Geography‐Environment‐Sustainability – start-page: 59 year: 1997 end-page: 72 – volume: 506 start-page: 47 year: 2014 end-page: 51 article-title: Fifty thousand years of arctic vegetation and megafauna diet publication-title: Nature – volume: 4 start-page: 27 year: 2013a end-page: 38 – start-page: 816 year: 1973 end-page: 817 – volume: 28 start-page: 2955 year: 2009 end-page: 2973 article-title: Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high‐resolution record from Nussloch, Germany publication-title: Quaternary Science Reviews – volume: 14 start-page: 279 year: 1990 end-page: 286 article-title: Changes in the vegetation cover and climate in the Kolyma lowlands in late‐Quaternary time publication-title: Polar Geography – year: 2013 – volume: 99 start-page: 61 year: 2010 end-page: 97 article-title: Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum publication-title: Earth‐Science Reviews – volume: 53 start-page: 125 year: 1984 end-page: 128 article-title: Palaeopedological analysis of Late Pleistocene (Yedoma) deposits of the Duvanny Yar exposure publication-title: Bulletin of Quaternary Commission – year: 1985 – volume: 91 start-page: 308 year: 1954 end-page: 314 article-title: The loess of Pegwell Bay, Kent, and its associated frost soils publication-title: Geological Magazine – year: 2009 – volume: 43 start-page: 737 year: 1996a end-page: 760 article-title: Thermokarst‐lake‐basin sediments, Tuktoyaktuk Coastlands, Western Arctic Canada publication-title: Sedimentology – start-page: 284 year: 2002 end-page: 313 – volume: 109 start-page: 4008 year: 2012 end-page: 4013 article-title: Regeneration of whole fertile plants from 30,000‐y‐old fruit tissue buried in Siberian permafrost publication-title: Proceedings of the National Academy of Sciences – volume: 2 start-page: 117 year: 1977 end-page: 124 article-title: Experimental and micromorphological investigation of erosion and redeposition of loess by water publication-title: Earth Surface Processes and Landforms – volume: 24 start-page: 82 year: 2013 end-page: 93 article-title: Syngenetic ice wedges: cyclical formation, radiocarbon age and stable‐isotope records publication-title: Permafrost and Periglacial Processes – volume: 19 start-page: 479 year: 1987 end-page: 489 article-title: Road dust and its environmental impact on Alaskan taiga and tundra publication-title: Arctic and Alpine Research – volume: 9 start-page: 3 year: 2013a end-page: 48 article-title: The geologic records of dust in the Quaternary publication-title: Aeolian Research – volume: 32 start-page: 459 year: 2000 end-page: 465 article-title: Distinguishing dose populations in sediment mixtures: a test of single‐grain optical dating procedures using mixtures of laboratory‐dosed quartz publication-title: Radiation Measurements – volume: 19 start-page: 195 year: 2008 end-page: 210 article-title: Frost weathering: recent advances and future directions publication-title: Permafrost and Periglacial Processes – volume: 43 start-page: 541 issue: 2B year: 2001a end-page: 553 article-title: Radiocarbon dating of δ O ‐ δD plots in Late Pleistocene ice‐wedges of the Duvanny Yar (Lower Kolyma River, Northern Yakutia). In , Carmi I, Boaretto E (eds) publication-title: Radiocarbon – volume: 116 start-page: G03018 year: 2011 article-title: Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery publication-title: Journal of Geophysical Research – volume: 2 start-page: 191 year: 2013 end-page: 201 – start-page: 41 year: 2003 end-page: 42 – volume: XVIII start-page: 77 issue: 1 year: 2014 end-page: 82 article-title: Variation of soil cover during the Ice Complex deposit formation, Kolyma Lowland (Part 2) publication-title: Earth Cryosphere – year: 1979 – start-page: 1418 year: 2007 end-page: 1429 – volume: 20 start-page: 399 year: 2009 end-page: 406 article-title: Modern tundra landscapes of the Kolyma Lowland and their evolution in the Holocene publication-title: Permafrost and Periglacial Processes – start-page: 287 year: 2008 end-page: 288 – year: 1988a – year: 2004 – volume: 156 start-page: 157 year: 1998 end-page: 172 article-title: Loess geochemistry and its implications for particle origin and composition of the upper continental crust publication-title: Earth and Planetary Science Letters – start-page: 865 year: 2011 end-page: 875 – volume: 82A start-page: 513 year: 2000 end-page: 526 article-title: Frozen ground phenomena in the vicinity of Terra Nova Bay, Northern Victoria Land, Antarctica: a preliminary report publication-title: Geografiska Annaler – volume: 30 start-page: 2160 year: 2011 end-page: 2181 article-title: Forest or no forest: implications of the vegetation record for climatic stability in Western Beringia during Oxygen Isotope Stage 3 publication-title: Quaternary Science Reviews – volume: 16 start-page: 3 year: 2005 end-page: 24 article-title: The loess‐palaeosol succession of Kurtak (Yenisei basin, Siberia): a reference record from the Karga Stage (MIS 3) publication-title: Quaternaire – start-page: 96 year: 1986 end-page: 110 – volume: 1 start-page: 672 year: 1988 end-page: 677 – volume: 44 start-page: 523 year: 1997 end-page: 535 article-title: Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction publication-title: Sedimentology – volume: 30 start-page: 2262 year: 2011 end-page: 2272 article-title: Woolly rhino discovery in the lower Kolyma River publication-title: Quaternary Science Reviews – volume: 2 start-page: 29 year: 1953 end-page: 41 article-title: Lithogenesis of alluvial lowlands in the cold climatic conditions. ( ) publication-title: Geography – volume: 26 start-page: 230 year: 2007 end-page: 242 article-title: Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain‐size records publication-title: Quaternary Science Reviews – volume: 20 start-page: 107 year: 2009b end-page: 125 article-title: Stratigraphy and paleoenvironments of Richards Island and the eastern Beaufort Continental Shelf during the last glacial‐interglacial cycle publication-title: Permafrost and Periglacial Processes – volume: 13 start-page: 471 year: 1998 end-page: 485 article-title: Short climatic oscillations in a western European loess sequence (Kesselt, Belgium) publication-title: Journal of Quaternary Science – volume: 16 start-page: 185 year: 2009a end-page: 203 – volume: 13 start-page: 91 year: 2002b end-page: 105 article-title: Palaeoclimate reconstruction on Big Lyakhovsky Island, North Siberia—hydrogen and oxygen isotopes in ice wedges publication-title: Permafrost and Periglacial Processes – volume: 17 start-page: 233 year: 2006 end-page: 243 article-title: Further cryostratigraphic observations in the CRREL permafrost tunnel, Fox, Alaska publication-title: Permafrost and Periglacial Processes – start-page: 375 year: 2013 end-page: 394 – volume: 24 start-page: 146 year: 2013 end-page: 155 article-title: Characterisation of the permafrost carbon pool publication-title: Permafrost and Periglacial Processes – volume: 100 start-page: 948 year: 1988 end-page: 969 article-title: The Fox permafrost tunnel: A late Quaternary geologic record in central Alaska publication-title: Geological Society of American Bulletin – volume: 24 start-page: 533 year: 2005 end-page: 569 article-title: New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals publication-title: Quaternary Science Reviews – volume: 152 start-page: 263 year: 2002 end-page: 277 article-title: Grain‐size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components publication-title: Sedimentary Geology – volume: 402 start-page: 568 year: 2005 end-page: 573 article-title: Heterochroneity and heterogeneity of the Duvanny Yar Edoma publication-title: Doklady Earth Sciences – volume: 52 start-page: 387 year: 1995 end-page: 414 article-title: Fluvial periglacial environments, climate and vegetation during the Middle Weichselian in the northern Netherlands with special reference to the Hengelo Interstadial publication-title: Mededelingen Rijks Geologische Dienst – year: 2003 – volume: 1 start-page: 333 year: 2008 end-page: 336 – volume: 49 start-page: 129 year: 1996 end-page: 140 article-title: Productivity of loessal grasslands in the Kluane Lake region, Yukon Territory, and the Beringian “production paradox publication-title: Arctic – volume: 24 start-page: 336 year: 2009 end-page: 344 article-title: Luminescence dating of sand–loess sequences and response of Mu Us and Otindag sand fields (north China) to climatic changes publication-title: Journal of Quaternary Science – volume: 30 start-page: 2182 year: 2011 end-page: 2199 article-title: Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from pollen records publication-title: Quaternary Science Reviews – volume: 3 start-page: 401 year: 2012 end-page: 417 article-title: The aeolian system of central Argentina publication-title: Aeolian Research – volume: 2 start-page: 224 year: 2013 end-page: 235 – volume: 166 start-page: 223 year: 2004 end-page: 244 article-title: Sedimentology of cold‐climate aeolian sandsheet deposits in the Askja region of northeast Iceland publication-title: Sedimentary Geology – volume: 34 start-page: 190 year: 1997 end-page: 199 article-title: Late Wisconsinan erosion and aeolian deposition, Summer and Hadwen Islands, Mackenzie Delta area, western Canadian Arctic: optical dating and implications for glacial chronology publication-title: Canadian Journal of Earth Sciences – volume: 5 start-page: 250 year: 2010 end-page: 256 article-title: The source of De variability in periglacial sand wedges: Depositional processes versus measurement issues publication-title: Quaternary Geochronology – volume: 9 start-page: 523 year: 1984 end-page: 531 article-title: Formation of afterflow silt loam deposits and structural modification due to drying under warm conditions: an experimental and micromorphological approach publication-title: Earth Surface Processes and Landforms – volume: 108 year: 2003 article-title: Climate change and arctic ecosystems: 1. Vegetation changes north of 55 N between the last glacial maximum, mid‐Holocene, and present publication-title: Journal of Geophysical Research – volume: 101 start-page: 190 year: 2010 end-page: 206 article-title: The principles of cryostratigraphy publication-title: Earth‐Science Reviews – volume: 6 start-page: 331 year: 1981 end-page: 336 article-title: Response of loess materials to simulated translocation by water: micromorphological observations publication-title: Earth Surface Processes and Landforms – volume: 51 start-page: 1341 year: 2007 end-page: 1347 article-title: Dust emission from desertified lands in the Heihe River Basin, Northwest China publication-title: Environmental Geology – volume: 42 start-page: 664 year: 2013 end-page: 677 article-title: The loess sequence of Dolní Vestonice, Czech Republic: A new OSL‐based chronology of the Last Climatic Cycle publication-title: Boreas – volume: 234 start-page: 75 year: 2011 end-page: 85 article-title: Investigating the penultimate and last glacial cycles of the Süttö loess section (Hungary) using luminescence dating, high‐resolution grain size, and magnetic susceptibility data publication-title: Quaternary International – volume: 19 start-page: 305 year: 1957 article-title: Stratigraphie du Pleistocène supérieur en Belgique publication-title: Geologie en Mijnbouw – volume: 121 start-page: 18 year: 2013 end-page: 30 article-title: Grain size of fine‐grained windblown sediment: a powerful proxy for process identification publication-title: Earth‐Science Reviews – volume: 21 start-page: 1935 year: 2002 end-page: 2017 article-title: Paraglacial geomorphology publication-title: Quaternary Science Reviews – year: 1963 – volume: 2 start-page: 1083 year: 2008 end-page: 1085 – year: 1980 – volume: 17 start-page: 197 year: 1990 end-page: 206 article-title: Estimating the component ages in a finite mixture publication-title: Radiation Measurements – volume: 25 start-page: 2552 year: 2006 end-page: 2568 article-title: Late Pleistocene glacial and periglacial aeolian activity in the Tuktoyaktuk Coastlands, NWT, Canada publication-title: Quaternary Science Reviews – volume: 6 start-page: 355 year: 1981 end-page: 363 article-title: (Re)deposition of loess in southern Limbourg, The Netherlands: 2. Micromorphology of the Lower Silt Loam complex and comparison with deposits produced under laboratory conditions publication-title: Earth Surface Processes and Landforms – volume: 40 start-page: 396 year: 2008 end-page: 411 article-title: Paleoclimatic significance of chemical weathering in loess‐derived paleosols of subarctic central Alaska publication-title: Arctic, Antarctic and Alpine Research – volume: 70 start-page: 37 year: 2002a end-page: 51 article-title: Paleoclimate studies on Bykovsky Peninsula, North Siberia—hydrogen and oxygen isotopes in ground ice publication-title: Polarforschung – start-page: 68 year: 1983 end-page: 73 – volume: 3 start-page: 261 year: 2007 end-page: 277 article-title: Results of PMIP2 coupled simulations of the Mid‐Holocene and Last Glacial Maximum – Part 1: experiments and large‐scale features publication-title: Climate of the Past – volume: 237 start-page: 45 year: 2011 end-page: 53 article-title: West Siberian Plain as a late glacial desert publication-title: Quaternary International – volume: 59 start-page: 322 year: 2003 end-page: 334 article-title: A continuous record of Holocene eolian activity in West Greenland publication-title: Quaternary Research – volume: 9 start-page: 267 year: 2008 end-page: 279 article-title: Streamflow characteristics and changes in Kolyma Basin in Siberia publication-title: Journal of Hydrometeorology – volume: 20 start-page: 127 year: 2001 end-page: 134 article-title: Beringian climate during the late Pleistocene and Holocene publication-title: Quaternary Science Reviews – start-page: 461 year: 1996 end-page: 468 – volume: 13 start-page: 153 year: 1988 end-page: 170 article-title: Niveo‐aeolian deposits and denivation forms, with special reference to the Great Kobuk Sand Dunes, Northwestern Alaska publication-title: Earth Surface Processes and Landforms – volume: 192 start-page: 277 year: 2013 end-page: 285 article-title: Coarse‐textured basal zones in thin loess deposits: products of sediment mixing and/or paleoenvironmental change publication-title: Geoderma – year: 1991 – volume: 53 start-page: 919 year: 2006 end-page: 928 article-title: Laser vs. settling velocity differences in silt grainsize measurements: estimation of palaeocurrent vigour publication-title: Sedimentology – year: 2011 – start-page: 100 year: 1989 end-page: 137 – volume: 19 start-page: 899 year: 2000 end-page: 922 article-title: Sand veins and wedges in cold aeolian environments publication-title: Quaternary Science Reviews – year: 1981 – volume: 71 start-page: 219 year: 1996 end-page: 243 article-title: Properties and soil development of late‐Pleistocene paleosols from Seward Peninsula, northwest Alaska publication-title: Geoderma – volume: 39 start-page: 56 year: 2010 end-page: 68 article-title: A 12.5‐ka history of vegetation dynamics and mire development with evidence of the Younger Dryas larch presence in the Verkhoyansk Mountains, East Siberia, Russia publication-title: Boreas – volume: VIII start-page: 145 year: 1979 end-page: 156 – volume: 77 start-page: 1089 year: 1966 end-page: 1108 article-title: Evidence for an early recent warm interval in northwestern Alaska publication-title: Geological Society of America Bulletin – volume: 242 start-page: 253 year: 2006 end-page: 286 article-title: Vegetation buried under Dawson tephra (25,300 C years BP) and locally diverse late Pleistocene paleoenvironments of Goldbottom Creek, Yukon, Canada publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology – start-page: 1 year: 2002 end-page: 35 – start-page: 247 year: 1974 end-page: 275 – volume: 66 start-page: 17 year: 1996b end-page: 25 article-title: Morphology and paleoenvironmental significance of Quaternary sand veins, sand wedges, and composite wedges, Tuktoyaktuk Coastlands, Western Arctic Canada publication-title: Journal of Sedimentary Research – volume: 27 start-page: 155 year: 2003 end-page: 170 article-title: Ice‐wedge casts as indicators of palaeotemperatures: precise proxy or wishful thinking? publication-title: Progress in Physical Geography – year: 1975 – volume: 2 start-page: 573 year: 2013b end-page: 584 – start-page: 108 year: 1986 end-page: 113 – volume: 84 start-page: 717 year: 2006 end-page: 736 article-title: Composition and function of biological soil crust communities along topographic gradients in grasslands of central interior British Columbia (Chilcotin) and southwestern Yukon (Kluane) publication-title: Canadian Journal of Botany – year: 1952 – volume: 43 start-page: 147 year: 1995 end-page: 158 article-title: The last interglaciation in northeast Siberia publication-title: Quaternary Research – volume: 1 start-page: 867 year: 1988b end-page: 871 – year: 1998 – volume: 82 start-page: 281 year: 2003 end-page: 300 article-title: Tundra‐steppe insect assemblages and reconstructions of late Pleistocene climate in the lower reaches of the Kolyma River publication-title: Zoologicheskiy Zhurnal – volume: 61 start-page: 437 year: 1991 end-page: 464 article-title: Loess ecosystems of northern Alaska: regional gradient and toposequence at Prudhoe Bay publication-title: Ecological Monographs – year: 1986 – volume: 20 start-page: 499 year: 2001 end-page: 507 article-title: Continuous Late Quaternary proxy climate records from loess in Beringia publication-title: Quaternary Science Reviews – volume: 34 start-page: 269 year: 1990 end-page: 281 article-title: Late‐Pleistocene eolian sand sheets in Alaska publication-title: Quaternary Research – volume: 8 start-page: 185 year: 1993 end-page: 196 article-title: Thaw modification of frost‐fissure wedges, Richards Island, Pleistocene Mackenzie Delta, western Canadian Arctic publication-title: Journal of Quaternary Science – volume: 14 start-page: 549 year: 2006 end-page: 560 article-title: Paleobotanical analysis of materials from fossil gopher burrows and Upper Pleistocene host deposits, the Kolyma Lowland lower reaches publication-title: Stratigraphy and Geological Correlation – volume: 8 start-page: 176 year: 1984 end-page: 217 article-title: Loess publication-title: Progress in Physical Geography – year: 1969 – start-page: 121 year: 2008 end-page: 122 – volume: 223‐224 start-page: 5 year: 2004 end-page: 11 article-title: Low‐energy 14C AMS in Poznan radiocarbon Laboratory, Poland publication-title: Nuclear Instruments and Methods in Physics Research B – start-page: 191 year: 2012 end-page: 196 – volume: 1 start-page: 235 year: 1990 end-page: 247 article-title: Observations of winter aeolian transport and niveo‐aeolian deposition at Crater Lake, Pangnirtung Pass, N.W.T., Canada publication-title: Permafrost and Periglacial Processes – volume: 6 start-page: 82 year: 2002 end-page: 91 article-title: Pedogenesis—the main component of the Late Pleistocene Ice Complex forming publication-title: Earth Cryosphere – volume: 54 start-page: 1433 year: 1943 end-page: 1548 article-title: Perennially frozen ground in Alaska: its origin and history publication-title: Bulletin of the Geological Society of America – start-page: 109 year: 1983 end-page: 114 – volume: 37 start-page: 135 year: 2006 end-page: 153 article-title: The pollen record from El'gygytgyn Lake: Implications for vegetation and climate histories of northern Chukotka since the late Middle Pleistocene publication-title: Journal of Paleolimnology – volume: 37 start-page: 377 year: 2003 end-page: 381 article-title: The single aliquot regenerative dose protocol: potential for improvements in reliability publication-title: Radiation Measurements – start-page: 29 year: 2004 end-page: 61 – volume: 1 start-page: 513 year: 2003 end-page: 518 – start-page: 92 year: 1997 end-page: 94 – volume: 23 start-page: 550 year: 1986 end-page: 560 article-title: Ground‐ice investigations, Klondike District, Yukon Territory publication-title: Canadian Journal of Earth Sciences – year: 1993 – volume: 240 start-page: 167 year: 2011 end-page: 180 article-title: Contrasting dust supply patterns across the north‐western Chinese Loess Plateau during the last glacial–interglacial cycle publication-title: Quaternary International – volume: 1 start-page: 790 year: 1988 end-page: 795 – volume: 28 start-page: 1 year: 2001 end-page: 9 article-title: Rapid climatic changes recorded in loess succcessions publication-title: Global and Planetary Change – volume: VI start-page: 26 year: 1977 end-page: 57 – volume: 121 start-page: 274 year: 2010 end-page: 282 article-title: Rates and environmental controls on aeolian dust accumulation, Athabasca Valley, Canadian Rocky Mountains publication-title: Geomorphology – volume: 67 start-page: 17 year: 2013 end-page: 38 article-title: High‐resolution record of the environmental response to climatic variations during the Last Interglacial–Glacial cycle in Central Europe: the loess‐palaeosol sequence of Dolní Vestonice (Czech Republic) publication-title: Quaternary Science Reviews – volume: III start-page: 7 year: 1973 end-page: 62 – start-page: 73 year: 1997 end-page: 78 – volume: 166 start-page: 4 year: 2007 end-page: 14 article-title: Development of low‐background vacuum extraction and graphitization systems for 14C dating of old (40–60 ka) samples publication-title: Quaternary International – year: 1987 – volume: 6 start-page: 337 year: 1981 end-page: 354 article-title: (Re)deposition of loess in southern Limbourg, The Netherlands: 1. Field evidence for conditions of deposition of the Lower Silt Loam complex publication-title: Earth Surface Processes and Landforms – volume: 2 start-page: 1827 year: 2008 end-page: 1832 – volume: 1 start-page: 161 year: 1990 end-page: 176 article-title: Development of thermokarst lakes during the Holocene at sites near Mayo, Yukon Territory publication-title: Permafrost and Periglacial Processes – volume: 20 start-page: 135 year: 2001 end-page: 147 article-title: Full‐glacial upland tundra vegetation preserved under tephra in Beringia National Park, Seward Peninsula, Alaska publication-title: Quaternary Science Reviews – volume: 44 start-page: 857 year: 2007 end-page: 869 article-title: Luminescence dating of Mid‐ to Late Wisconsinan aeolian sand as a constraint on the last advance of the Laurentide Ice Sheet across the Tuktoyaktuk Coastlands, western Arctic Canada publication-title: Canadian Journal of Earth Sciences – volume: 2 start-page: 197 year: 1991 end-page: 210 article-title: Observations of aeolian transport and niveo‐aeolian deposition at three lowland sites, Canadian Arctic Archipelago publication-title: Permafrost and Periglacial Processes – volume: 58 start-page: 916 year: 2011 end-page: 935 article-title: The ultrafine component in Chinese loess and its variation over the past 7.6 Ma: implications for the history of pedogenesis publication-title: Sedimentology – volume: 1 start-page: 451 year: 2008 end-page: 456 – year: 1992 – year: 2010 – start-page: 153 year: 1981 end-page: 180 – volume: 11 start-page: 389 year: 1996 end-page: 395 article-title: An absolute chronology for the raised beach deposits at Sewerby, E. Yorkshire, UK publication-title: Journal of Quaternary Science – volume: 61 start-page: 265 year: 2004 end-page: 276 article-title: Holocene loess deposition and soil formation as competing processes, Matanuska Valley, southern Alaska publication-title: Quaternary Research – volume: 2 start-page: 542 year: 2013 end-page: 552 – volume: 55 start-page: 325 year: 2004 end-page: 340 article-title: Bimodal grain‐size distribution of Chinese loess, and its palaeoclimatic implications publication-title: Catena – volume: 7 start-page: Q10N05 year: 2006 article-title: Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow‐speed proxies publication-title: Geochemistry, Geophysics, Geosystems – volume: 152 start-page: 335 year: 2003 end-page: 343 article-title: Rock magnetic record of the last glacial‐interglacial cycle from the Kurtak loess section, southern Siberia publication-title: Geophysical Journal International – volume: 24 start-page: 916 year: 2009 end-page: 927 article-title: Luminescence dating indicates radiocarbon age underestimation in late Pleistocene fluvial deposits from eastern England publication-title: Journal of Quaternary Science – volume: 441 start-page: 207 year: 2006 end-page: 209 article-title: New carbon dates link climatic change with human colonization and Pleistocene extinctions publication-title: Nature – volume: 2 start-page: 93 year: 1992 end-page: 96 – volume: 20 start-page: 93 year: 2001 end-page: 125 article-title: The Stage 3 interstadial complex (Karginskii/middle Wisconsinan interval) of Beringia: variations in paleoenvironments and implications for paleoclimatic interpretations publication-title: Quaternary Science Reviews – volume: 152–153 start-page: 14 year: 2006 end-page: 30 article-title: Loess/paleosol/cryogenic formation and structure near the northern limit of loess deposition, East European Plain, Russia publication-title: Quaternary International – year: 1970 – volume: 34 start-page: 1333 year: 1997 end-page: 1344 article-title: On the nature and origin of “muck” deposits in the Klondike area, Yukon Territory publication-title: Canadian Journal of Earth Sciences – volume: IX start-page: 3 year: 1952 end-page: 18 – start-page: 824 year: 1973 end-page: 825 – start-page: 11 year: 2011 end-page: 21 – volume: 66 start-page: 147 year: 2006 end-page: 157 article-title: Full‐glacial paleosols in perennially frozen loess sequences, Klondike goldfields, Yukon Territory, Canada publication-title: Quaternary Research – volume: 20 start-page: 549 year: 2001 end-page: 574 article-title: Origin and causes of the mammoth steppe: A story of cloud cover, woolly mammal tooth pits, buckles, and inside‐out Beringia publication-title: Quaternary Science Reviews – volume: 23 start-page: 635 year: 1915 end-page: 654 article-title: Ground‐ice wedges—the dominant form of ground‐ice on the north coast of Alaska publication-title: Journal of Geology – volume: 3 start-page: 436 year: 2013b end-page: 451 – volume: 18 start-page: 309 year: 2003 end-page: 318 article-title: The loess and coversands of northern France and southern England publication-title: Journal of Quaternary Science – volume: 148 start-page: 1990 year: 2008 end-page: 2005 article-title: Tempo‐spatial characteristics of energy budget and evapotranspiration in the eastern Siberia publication-title: Agricultural and Forest Meteorology – volume: 23 start-page: 3 year: 2010 end-page: 21 article-title: Dust sources and deposition of aeolian materials in Iceland publication-title: Icelandic Agricultural Sciences – volume: 228 start-page: 228 year: 2005 end-page: 244 article-title: The loess record from the section at Kurtak in Middle Siberia publication-title: Palaeogeography, Palaeoclimatology, Palaeocology – volume: 9 start-page: Q08Q09 year: 2008 article-title: Aeolian dust dynamics in central Asia during the Pleistocene: Driven by the long‐term migration, seasonality, and permanency of the Asiatic polar front publication-title: Geochemistry Geophysics Geosystems – volume: 33 start-page: L20502 year: 2006a article-title: Permafrost carbon: Stock and decomposability of a globally significant carbon pool publication-title: Geophysical Research Letters – volume: 38 start-page: 71 year: 2013 end-page: 89 article-title: Contemporary glacigenic inputs to the dust cycle publication-title: Earth Surface Processes and Landforms – volume: 43 start-page: 323 year: 2006 end-page: 337 article-title: Geochemical evidence for the origin of late Quaternary loess in central Alaska publication-title: Canadian Journal of Earth Sciences – volume: 77 start-page: 348 year: 2008 end-page: 355 article-title: Microbial communities of ancient seeds derived from permanently frozen Pleistocene deposits publication-title: Microbiology – volume: 42 start-page: 477 year: 2007 end-page: 497 article-title: Sediment provenance of late Quaternary morainic, fluvial and loess‐like deposits in the southwestern Verkhoyansk Mountains (eastern Siberia) and implications for regional palaeoenvironmental reconstructions publication-title: Geological Journal – volume: 198 start-page: 220 year: 2009 end-page: 233 article-title: Loess chronology of the Caspian Lowland in northern Iran publication-title: Quaternary International – volume: 48 start-page: 49 year: 1978 end-page: 65 article-title: Duvanny Yar, a key section of upper Pleistocene sediments of the Kolyma lowland publication-title: Bulletin of the Commission of the USSR Academy of Sciences for Studying the Quaternary – volume: 241 start-page: 3 year: 2011b end-page: 25 article-title: Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on North‐East Siberian Arctic coastal lowlands and islands – A review publication-title: Quaternary International – start-page: 36 year: 2002 end-page: 69 – year: 1971 – volume: 29 start-page: 307 year: 1997 end-page: 322 article-title: Dust deposition and particle size in Mali, West Africa publication-title: Catena – volume: 212 start-page: 381 year: 1981 end-page: 383 article-title: A Pleistocene sand sea on the Alaskan Arctic Coastal Plain publication-title: Science – volume: 15 start-page: 339 year: 2004 end-page: 347 article-title: Syngenetic permafrost growth: cryostratigraphic observations from the CRREL Tunnel near Fairbanks, Alaska publication-title: Permafrost and Periglacial Processes – year: 1994 – volume: 38 start-page: L06602 year: 2011 article-title: Glacial flour dust storms in the Gulf of Alaska: Hydrologic and meteorological controls and their importance as a source of bioavailable iron publication-title: Geophysical Research Letters – volume: 22 start-page: 1879 year: 2003 end-page: 1906 article-title: The Siberian loess record and its significance for reconstruction of Pleistocene climate change in north‐central Asia publication-title: Quaternary Science Reviews – volume: 63 start-page: 283 year: 2005 end-page: 300 article-title: Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage publication-title: Quaternary Research – year: 1982 – volume: 116 start-page: G00M02 year: 2011a article-title: Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic publication-title: Journal of Geophysical Research – year: 1975a – start-page: 94 year: 1984 end-page: 118 – start-page: 823 year: 1973 end-page: 824 – volume: 24 start-page: 108 year: 2013 end-page: 119 article-title: Advances in thermokarst research publication-title: Permafrost and Periglacial Processes – volume: 22 start-page: 1947 year: 2003 end-page: 1986 article-title: Stratigraphy and paleoclimatic significance of late Quaternary loess‐paleosol sequences of the last interglacial‐glacial cycle in central Alaska publication-title: Quaternary Science Reviews – start-page: 993 year: 1998 end-page: 999 – start-page: 393 year: 2004 end-page: 416 – volume: 59 start-page: 399 year: 1951 end-page: 401 article-title: An observation of wind‐blown silt publication-title: Journal of Geology – volume: 37 start-page: 849 year: 2000 end-page: 861 article-title: Cryostratigraphy of the Klondike “muck” deposits west‐central Yukon Territory publication-title: Canadian Journal of Earth Sciences – volume: 30 start-page: 2134 year: 2011 end-page: 2159 article-title: Paleontological records indicate the occurrence of open woodlands in a dry inland climate at the present‐day Arctic coast in western Beringia during the Last Interglacial publication-title: Quaternary Science Reviews – volume: 24 start-page: 481 year: 2009 end-page: 499 article-title: Free‐shape C age‐depth modelling of an intensively dated modern peat profile publication-title: Journal of Quaternary Science – volume: 19 start-page: 4 year: 2009 end-page: 10 article-title: The Klondike goldfields and Pleistocene environments of Beringia publication-title: GSA Today – volume: 14 start-page: 303 year: 1989 end-page: 315 article-title: Niveo‐aeolian sedimentation of loess and sand: an experimental and micromorphological approach publication-title: Earth Surface Processes and Landforms – start-page: 5 issue: 2 year: 1955 end-page: 25 – start-page: 553 year: 1974 end-page: 566 – year: 1983 – start-page: 841 year: 2011 end-page: 848 – volume: 21 start-page: 2137 year: 2002 end-page: 2142 article-title: Age and significance of the late Pleistocene Dawson tephra in eastern Beringia publication-title: Quaternary Science Reviews – volume: 54 start-page: 145 year: 2001 end-page: 156 article-title: Pedogenic modification of loess: significance for palaeoclimatic reconstructions publication-title: Earth‐Science Reviews – year: 2000 – volume: 43 start-page: 1238 year: 2010 end-page: 1243 article-title: Parent materials enriched in organic matter in the northeast of Russia publication-title: Eurasian Soil Science – volume: 56 start-page: 335 year: 2001 end-page: 348 article-title: Dating Early and Middle (Reid) Pleistocene glaciations in Central Yukon by tephrochronology publication-title: Quaternary Research – volume: 12 start-page: 2336 year: 2006 end-page: 2351 article-title: Potential carbon release from permafrost soils of Northeastern Siberia publication-title: Global Change Biology – year: 1954 – volume: 39‐1 start-page: 7 year: 1985 end-page: 18 article-title: Lithostratigraphy and palaeoenvironment of the Pleistocene deposits at Maastricht–Belvédère publication-title: Mededelingen Rijks Geologische Dienst – volume: 34 start-page: 679 year: 1997 end-page: 686 article-title: A late Quaternary loess‐paleosol record at Kurtak, southern Siberia publication-title: Canadian Journal of Earth Sciences – volume: 45 start-page: 45 year: 2012 end-page: 55 article-title: Suprapermafrost organic‐accumulative horizons in the tundra cryozems of northern Yakutia publication-title: Eurasian Soil Science – volume: 9 start-page: 177 year: 1998 end-page: 183 article-title: Oxgyen‐isotope and C data associated with Late Pleistocene syngenetic ice‐wedges in mountains of Magadan region, Siberia publication-title: Permafrost and Periglacial Processes – volume: 379 start-page: 589 year: 2001b end-page: 593 article-title: Radiocarbon dating of the Late Pleistocene ice wedges in the Bizon Section in the lower reaches of the Kolyma River publication-title: Doklady Earth Sciences – volume: 30 start-page: 2107 year: 2011 end-page: 2123 article-title: Late‐Pleistocene (MIS 3–2) palaeoenvironments as recorded by sediments, palaeosols, and ground‐squirrel nests at Duvanny Yar, Kolyma lowland, northeast Siberia publication-title: Quaternary Science Reviews – year: 2006 – start-page: 29 year: 1982 end-page: 37 – volume: 33 start-page: 509 year: 2005 end-page: 512 article-title: Holocene loess deposition in Iceland: evidence for millennial‐scale atmosphere‐ocean coupling in the North Atlantic publication-title: Geology – volume: 13 start-page: 391 year: 1998 end-page: 417 article-title: Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe publication-title: Journal of Quaternary Science – volume: XI start-page: 56 year: 1983 end-page: 64 – volume: 4 start-page: 49 year: 1993 end-page: 64 article-title: Investigations of cryogenic weathering in Europe and Northern Asia publication-title: Permafrost and Periglacial Processes – volume: 30 start-page: 324 year: 2011 end-page: 334 article-title: Dune stabilization in central and southern Yukon in relation to early Holocene environmental changes, northwestern North America publication-title: Quaternary Science Reviews – volume: 9 start-page: 1211 year: 2013b end-page: 1219 article-title: Vegetation responses to interglacial warming in the Arctic, examples from Lake El'gygytgyn, northeast Siberia publication-title: Climate of the Past – volume: 43 start-page: 14 year: 1995 end-page: 21 article-title: An oxygen‐isotope paleothermometer from ice in Siberian permafrost publication-title: Quaternary Research – year: 1999 – start-page: 3 year: 1982 end-page: 28 – ident: e_1_2_9_234_1 doi: 10.1016/B978-0-444-53643-3.00106-0 – ident: e_1_2_9_190_1 doi: 10.1191/0309133303pp365ra – ident: e_1_2_9_106_1 doi: 10.1130/G21489.1 – ident: e_1_2_9_172_1 doi: 10.1002/esp.3290060314 – ident: e_1_2_9_254_1 – ident: e_1_2_9_299_1 – ident: e_1_2_9_183_1 doi: 10.1111/j.1365-3091.1996.tb02023.x – ident: e_1_2_9_208_1 doi: 10.3133/pp1262 – ident: e_1_2_9_20_1 doi: 10.1016/j.quageo.2009.03.007 – ident: e_1_2_9_78_1 – volume: 8 start-page: 5 year: 1994 ident: e_1_2_9_81_1 article-title: Late Pleistocene soil formation in coastal lowlands of northern Yakutia publication-title: Soil Science – ident: e_1_2_9_22_1 doi: 10.1016/S0277-3791(00)00102-5 – start-page: 22 volume-title: Permafrost and Geologic Processes and Paleogeography of the Lowlands of North‐East Asia year: 1982 ident: e_1_2_9_126_1 – ident: e_1_2_9_156_1 doi: 10.1175/2007JHM845.1 – ident: e_1_2_9_153_1 – start-page: 68 volume-title: Permafrost year: 1983 ident: e_1_2_9_26_1 – ident: e_1_2_9_184_1 doi: 10.1306/D4268298-2B26-11D7-8648000102C1865D – start-page: 59 volume-title: Insects of the Yukon year: 1997 ident: e_1_2_9_236_1 – ident: e_1_2_9_148_1 doi: 10.5194/cp-9-1211-2013 – ident: e_1_2_9_256_1 doi: 10.1016/S0341-8162(03)00109-7 – ident: e_1_2_9_136_1 doi: 10.1002/ppp.1782 – ident: e_1_2_9_221_1 doi: 10.1016/S1350-4487(00)00104-9 – ident: e_1_2_9_210_1 doi: 10.1017/S0016756800065298 – ident: e_1_2_9_57_1 doi: 10.1139/e17-106 – ident: e_1_2_9_293_1 doi: 10.1002/esp.3290090102 – ident: e_1_2_9_257_1 doi: 10.1111/j.1365-3091.2010.01189.x – ident: e_1_2_9_43_1 doi: 10.1139/e17-054 – start-page: 48 issue: 4 year: 2013 ident: e_1_2_9_87_1 article-title: Variation of soil cover during the Ice Complex deposit formation, Kolyma Lowland (Part 1) publication-title: Earth Cryosphere – ident: e_1_2_9_191_1 doi: 10.1139/e17‐015 – ident: e_1_2_9_209_1 doi: 10.1016/j.quaint.2006.12.006 – ident: e_1_2_9_122_1 doi: 10.1016/j.quascirev.2010.11.024 – ident: e_1_2_9_18_1 doi: 10.1002/(SICI)1099-1417(199609/10)11:5<389::AID-JQS260>3.0.CO;2-K – volume-title: Chemical Analysis of Soil year: 1998 ident: e_1_2_9_292_1 – ident: e_1_2_9_235_1 – ident: e_1_2_9_28_1 – volume: 1 start-page: 4 year: 2009 ident: e_1_2_9_131_1 article-title: Climate warming and permafrost. Moscow State University publication-title: Geography‐Environment‐Sustainability – ident: e_1_2_9_193_1 doi: 10.1139/e07-015 – ident: e_1_2_9_218_1 doi: 10.1016/j.quascirev.2006.07.002 – ident: e_1_2_9_31_1 doi: 10.1002/jqs.1258 – ident: e_1_2_9_173_1 doi: 10.1002/esp.3290060312 – start-page: 3 volume-title: Permafrost of different regions of USSR year: 1952 ident: e_1_2_9_211_1 – ident: e_1_2_9_258_1 – ident: e_1_2_9_287_1 doi: 10.1016/j.quaint.2005.12.003 – ident: e_1_2_9_199_1 doi: 10.1139/e78-114 – ident: e_1_2_9_252_1 – ident: e_1_2_9_119_1 – volume-title: Formirovanie sostava dispersnykh porod v kriolitosfere year: 1981 ident: e_1_2_9_129_1 – ident: e_1_2_9_38_1 doi: 10.1126/science.211.4480.381 – ident: e_1_2_9_305_1 doi: 10.1016/S0033-5894(03)00037-1 – ident: e_1_2_9_35_1 doi: 10.1111/j.1751-8369.1982.tb00479.x – ident: e_1_2_9_167_1 doi: 10.1016/j.sedgeo.2003.12.007 – ident: e_1_2_9_298_1 doi: 10.2307/2937050 – ident: e_1_2_9_51_1 doi: 10.1111/j.1365-2486.2006.01259.x – ident: e_1_2_9_93_1 doi: 10.4000/quaternaire.171 – ident: e_1_2_9_72_1 doi: 10.1016/B978-0-444-53447-7.00063-5 – ident: e_1_2_9_94_1 doi: 10.1130/0016-7606(1988)100<0948:TFPTAL>2.3.CO;2 – ident: e_1_2_9_152_1 doi: 10.1029/2007GC001938 – volume: 70 start-page: 37 year: 2002 ident: e_1_2_9_165_1 article-title: Paleoclimate studies on Bykovsky Peninsula, North Siberia—hydrogen and oxygen isotopes in ground ice publication-title: Polarforschung – start-page: 153 volume-title: History of Development of Permafrost in Eurasia year: 1981 ident: e_1_2_9_114_1 – ident: e_1_2_9_84_1 doi: 10.1134/S1064229308060021 – ident: e_1_2_9_19_1 doi: 10.1016/j.quascirev.2005.07.023 – ident: e_1_2_9_310_1 doi: 10.1073/pnas.1118386109 – ident: e_1_2_9_120_1 doi: 10.1016/S0012-8252(01)00045-9 – ident: e_1_2_9_272_1 doi: 10.1111/bor.12070 – ident: e_1_2_9_220_1 doi: 10.1017/S0033822200034202 – start-page: 5 volume-title: The Materials for the Fundamentals of the Study on Frozen Zones of the Earth's Crust year: 1955 ident: e_1_2_9_213_1 – ident: e_1_2_9_216_1 doi: 10.1002/gj.1088 – ident: e_1_2_9_160_1 doi: 10.1111/j.1365-3091.2006.00783.x – ident: e_1_2_9_103_1 – volume: 402 start-page: 568 year: 2005 ident: e_1_2_9_278_1 article-title: Heterochroneity and heterogeneity of the Duvanny Yar Edoma publication-title: Doklady Earth Sciences – start-page: 1 volume-title: The Physical Geography of Northern Eurasia year: 2002 ident: e_1_2_9_133_1 – start-page: 65 volume-title: Problems of Cryolithology year: 1983 ident: e_1_2_9_224_1 – ident: e_1_2_9_198_1 – ident: e_1_2_9_4_1 doi: 10.1016/S0277-3791(00)00129-3 – volume-title: Cryolithological Analysis year: 1981 ident: e_1_2_9_71_1 – ident: e_1_2_9_147_1 doi: 10.1016/B978-0-444-53643-3.00186-2 – volume-title: Multi‐language Glossary of Permafrost and Related Ground‐ice Terms year: 1998 ident: e_1_2_9_273_1 – ident: e_1_2_9_249_1 doi: 10.1080/10889379509377563 – ident: e_1_2_9_64_1 doi: 10.1130/GSATG54A.1 – ident: e_1_2_9_229_1 doi: 10.1016/j.yqres.2006.02.008 – ident: e_1_2_9_215_1 – volume-title: Relic Steppe Complexes of North‐East Asia year: 1981 ident: e_1_2_9_311_1 – volume: 2 start-page: 29 year: 1953 ident: e_1_2_9_212_1 article-title: Lithogenesis of alluvial lowlands in the cold climatic conditions. Izvestiya (Transactions) of the USSR Academy of Sciences publication-title: Geography – start-page: 41 volume-title: Permafrost, Extended Abstracts Reporting Current Research and New Information, Eighth International Conference on Permafrost year: 2003 ident: e_1_2_9_66_1 – start-page: 867 volume-title: Permafrost, Fifth International Conference, August 2–5, 1988 year: 1988 ident: e_1_2_9_248_1 – ident: e_1_2_9_323_1 doi: 10.1029/2006GL027484 – ident: e_1_2_9_194_1 – ident: e_1_2_9_163_1 doi: 10.1002/ppp.3430010304 – start-page: 72 volume-title: The Bering Land Bridge and its role for the History of Holarctic floras and faunas in the Late Cenozoic year: 1976 ident: e_1_2_9_144_1 – ident: e_1_2_9_317_1 doi: 10.1016/j.quascirev.2010.04.019 – start-page: 93 volume-title: Oxygen isotope composition of ground ice (application to paleogeocryological reconstructions) year: 1992 ident: e_1_2_9_277_1 – ident: e_1_2_9_315_1 doi: 10.1016/j.palaeo.2006.06.005 – start-page: 77 issue: 1 year: 2014 ident: e_1_2_9_88_1 article-title: Variation of soil cover during the Ice Complex deposit formation, Kolyma Lowland (Part 2) publication-title: Earth Cryosphere – ident: e_1_2_9_61_1 doi: 10.1139/e86‐055 – ident: e_1_2_9_266_1 doi: 10.1016/j.earscirev.2013.03.001 – ident: e_1_2_9_154_1 doi: 10.1002/ppp.3430010104 – ident: e_1_2_9_308_1 doi: 10.4095/226434 – ident: e_1_2_9_37_1 doi: 10.1002/ppp.3430010207 – volume: 6 start-page: 82 year: 2002 ident: e_1_2_9_83_1 article-title: Pedogenesis—the main component of the Late Pleistocene Ice Complex forming publication-title: Earth Cryosphere – ident: e_1_2_9_268_1 doi: 10.1016/S0921-8181(00)00060-6 – ident: e_1_2_9_79_1 doi: 10.3133/ofr20131078 – volume-title: Soil Micro‐Morphology: a Basic and Applied Science. Proceedings of the Eighth International Working Meeting of Soil Micromorphology year: 1990 ident: e_1_2_9_169_1 – ident: e_1_2_9_8_1 doi: 10.1002/jqs.750 – start-page: 121 volume-title: Extended Abstracts of the Ninth International Conference on Permafrost year: 2008 ident: e_1_2_9_108_1 – ident: e_1_2_9_294_1 doi: 10.1002/esp.3290060313 – ident: e_1_2_9_44_1 doi: 10.1029/2010GL046573 – start-page: 993 volume-title: Permafrost Seventh International Conference, June 23–27, 1998, Proceedings year: 1998 ident: e_1_2_9_242_1 – ident: e_1_2_9_181_1 doi: 10.1016/S1350-4487(03)00053-2 – ident: e_1_2_9_253_1 doi: 10.1029/2011GB004104 – ident: e_1_2_9_118_1 – start-page: 94 volume-title: Late Quaternary Environments of the Soviet Union year: 1984 ident: e_1_2_9_286_1 – ident: e_1_2_9_29_1 doi: 10.5194/cp-3-261-2007 – ident: e_1_2_9_259_1 doi: 10.1130/GSAB-54-1433 – volume: 379 start-page: 589 year: 2001 ident: e_1_2_9_283_1 article-title: Radiocarbon dating of the Late Pleistocene ice wedges in the Bizon Section in the lower reaches of the Kolyma River publication-title: Doklady Earth Sciences – ident: e_1_2_9_182_1 doi: 10.1016/j.quaint.2011.07.034 – ident: e_1_2_9_23_1 doi: 10.1029/2002JD002558 – start-page: 36 volume-title: The Physical Geography of Northern Eurasia year: 2002 ident: e_1_2_9_285_1 – start-page: 145 volume-title: Problems of Cryolithology year: 1979 ident: e_1_2_9_13_1 – volume-title: Late Quaternary Vegetation and Climate of Siberia and the Russian Far East year: 2002 ident: e_1_2_9_5_1 – ident: e_1_2_9_135_1 doi: 10.1139/cjes-37-6-849 – ident: e_1_2_9_301_1 doi: 10.1111/j.1502-3885.2009.00116.x – ident: e_1_2_9_53_1 doi: 10.1016/B978-0-444-53643-3.00117-5 – ident: e_1_2_9_322_1 doi: 10.1046/j.1365-246X.2003.01829.x – ident: e_1_2_9_77_1 doi: 10.1029/2010JG001634 – ident: e_1_2_9_316_1 doi: 10.1016/j.quascirev.2006.12.006 – start-page: 26 volume-title: Problems of Cryolithology year: 1977 ident: e_1_2_9_12_1 – ident: e_1_2_9_74_1 doi: 10.1016/j.nimb.2004.04.005 – ident: e_1_2_9_124_1 doi: 10.2136/sssabookser5.1.2ed – ident: e_1_2_9_132_1 doi: 10.1002/ppp.3430040105 – ident: e_1_2_9_319_1 – ident: e_1_2_9_164_1 doi: 10.1016/S0341-8162(96)00075-6 – ident: e_1_2_9_92_1 doi: 10.1038/nature04604 – ident: e_1_2_9_10_1 doi: 10.1016/j.quascirev.2013.01.014 – ident: e_1_2_9_42_1 doi: 10.1016/S0277-3791(03)00182-3 – ident: e_1_2_9_168_1 doi: 10.1002/esp.3290090606 – ident: e_1_2_9_321_1 doi: 10.1002/jqs.1234 – ident: e_1_2_9_295_1 doi: 10.1016/j.quaint.2010.11.009 – volume-title: Fundamentals of Cryogenesis of Lithosphere year: 1993 ident: e_1_2_9_222_1 – ident: e_1_2_9_288_1 doi: 10.1016/j.quaint.2011.01.013 – ident: e_1_2_9_16_1 doi: 10.1016/j.quascirev.2014.03.009. – start-page: 451 volume-title: Proceedings of the Ninth International Conference on Permafrost year: 2008 ident: e_1_2_9_56_1 – ident: e_1_2_9_232_1 doi: 10.1029/2011JG001647 – ident: e_1_2_9_50_1 doi: 10.1016/B0-44-452747-8/00161-7 – ident: e_1_2_9_65_1 doi: 10.1111/j.1502-3885.2012.00299.x – ident: e_1_2_9_146_1 doi: 10.1016/j.quascirev.2010.12.022 – ident: e_1_2_9_73_1 doi: 10.1016/S0277-3791(00)00127-X – ident: e_1_2_9_60_1 doi: 10.1111/j.0435-3676.2000.00138.x – ident: e_1_2_9_303_1 – ident: e_1_2_9_91_1 doi: 10.1016/S0277-3791(00)00099-8 – start-page: 247 volume-title: Glacial geomorphology year: 1974 ident: e_1_2_9_25_1 – start-page: 459 volume-title: The Arctic Ocean Region. The Geology of North America, Vol. L year: 1990 ident: e_1_2_9_49_1 doi: 10.1130/DNAG-GNA-L.459 – ident: e_1_2_9_24_1 doi: 10.1016/j.quascirev.2009.04.016 – volume: 39 start-page: 7 year: 1985 ident: e_1_2_9_269_1 article-title: Lithostratigraphy and palaeoenvironment of the Pleistocene deposits at Maastricht–Belvédère publication-title: Mededelingen Rijks Geologische Dienst – start-page: 606 volume-title: Encyclopedia of Quaternary Science year: 2007 ident: e_1_2_9_225_1 – ident: e_1_2_9_262_1 doi: 10.1016/B978-0-12-355860-2.50009-0 – ident: e_1_2_9_149_1 doi: 10.1007/s10933-006-9018-5 – ident: e_1_2_9_17_1 doi: 10.1016/S0277-3791(02)00005-7 – start-page: 816 volume-title: USSR Contribution, Permafrost Second International Conference, 13–28 July 1973, Yakutsk, USSR year: 1973 ident: e_1_2_9_226_1 – ident: e_1_2_9_161_1 doi: 10.1130/0016-7606(1966)77[1089:EFAERW]2.0.CO;2 – volume-title: Dictionary of Folk Geographical Terms year: 1984 ident: e_1_2_9_196_1 – ident: e_1_2_9_309_1 doi: 10.1016/j.quascirev.2010.11.010 – ident: e_1_2_9_201_1 doi: 10.1016/j.quaint.2010.08.002 – ident: e_1_2_9_186_1 doi: 10.1002/ppp.647 – ident: e_1_2_9_280_1 doi: 10.1002/ppp.1764 – ident: e_1_2_9_297_1 doi: 10.2307/1551414 – ident: e_1_2_9_227_1 doi: 10.1080/10889379009377440 – volume: 47 start-page: 243 year: 2005 ident: e_1_2_9_276_1 article-title: AMS 14C dating of pollen concentrate from Late Pleistocene ice wedges from the Bison and Seyaha sites in Siberia publication-title: Radiocarbon doi: 10.1017/S0033822200019755 – start-page: 1083 volume-title: Proceedings of the Ninth International Conference on Permafrost, June 29–July 3, 2008 year: 2008 ident: e_1_2_9_150_1 – ident: e_1_2_9_306_1 doi: 10.1038/nature12921 – ident: e_1_2_9_82_1 – volume-title: Loess‐ice Formation of East Siberia in Late Pleistocene and Holocene year: 1980 ident: e_1_2_9_261_1 – ident: e_1_2_9_281_1 doi: 10.1002/(SICI)1099-1530(199804/06)9:23.0.CO;2-T – ident: e_1_2_9_307_1 doi: 10.1016/B978-0-12-374739-6.00312-2 – ident: e_1_2_9_151_1 doi: 10.1134/S1064229312010115 – ident: e_1_2_9_228_1 doi: 10.3133/ofr72326 – ident: e_1_2_9_158_1 doi: 10.1002/ppp.620 – ident: e_1_2_9_217_1 doi: 10.1016/1350-4487(94)90086-8 – ident: e_1_2_9_290_1 doi: 10.1002/ppp.674 – ident: e_1_2_9_187_1 doi: 10.1016/B978-0-12-374739-6.00206-2 – ident: e_1_2_9_241_1 doi: 10.1016/j.quascirev.2004.09.007 – ident: e_1_2_9_99_1 doi: 10.1016/B978-0-12-355860-2.50008-9 – ident: e_1_2_9_139_1 doi: 10.1016/0033-5894(90)90040-R – ident: e_1_2_9_188_1 doi: 10.1016/B978-0-444-53643-3.00097-2 – volume: 82 start-page: 281 year: 2003 ident: e_1_2_9_3_1 article-title: Tundra‐steppe insect assemblages and reconstructions of late Pleistocene climate in the lower reaches of the Kolyma River publication-title: Zoologicheskiy Zhurnal – ident: e_1_2_9_125_1 doi: 10.1002/ppp.1779 – ident: e_1_2_9_159_1 doi: 10.1029/2006GC001284 – ident: e_1_2_9_207_1 doi: 10.3133/pp862 – ident: e_1_2_9_243_1 doi: 10.1002/ppp.486 – start-page: 284 volume-title: The Physical Geography of Northern Eurasia year: 2002 ident: e_1_2_9_238_1 – start-page: 790 volume-title: Permafrost year: 1988 ident: e_1_2_9_100_1 – ident: e_1_2_9_123_1 doi: 10.4095/101584 – ident: e_1_2_9_111_1 doi: 10.1016/j.yqres.2010.12.003 – ident: e_1_2_9_32_1 doi: 10.1016/S0277-3791(00)00134-7 – ident: e_1_2_9_6_1 doi: 10.1016/j.quascirev.2010.12.026 – volume-title: Paleoecology of Beringia year: 1982 ident: e_1_2_9_101_1 – volume-title: Late Cenozoic of the Kolyma Lowland: XIV Pacific Science Congress, Khabarovsk August 1979, Tour Guide XI year: 1979 ident: e_1_2_9_240_1 – ident: e_1_2_9_95_1 doi: 10.1130/G24940A.1 – volume-title: Cryogenic Eolian Deposits of the Eastern Arctic and Subarctic year: 1987 ident: e_1_2_9_264_1 – ident: e_1_2_9_98_1 – ident: e_1_2_9_137_1 – ident: e_1_2_9_70_1 doi: 10.1038/231382a0 – ident: e_1_2_9_180_1 doi: 10.1016/j.aeolia.2013.06.001 – ident: e_1_2_9_189_1 doi: 10.1002/jqs.3390080302 – ident: e_1_2_9_204_1 doi: 10.1086/625877 – ident: e_1_2_9_96_1 doi: 10.1016/0016-7061(96)00007-9 – start-page: 824 volume-title: USSR Contribution, Permafrost Second International Conference, 13–28 July 1973, Yakutsk, USSR year: 1973 ident: e_1_2_9_214_1 – ident: e_1_2_9_244_1 doi: 10.1002/ppp.518 – volume: 48 start-page: 49 year: 1978 ident: e_1_2_9_116_1 article-title: Duvanny Yar, a key section of upper Pleistocene sediments of the Kolyma lowland publication-title: Bulletin of the Commission of the USSR Academy of Sciences for Studying the Quaternary – ident: e_1_2_9_143_1 doi: 10.1134/S0869593806050078 – ident: e_1_2_9_75_1 doi: 10.1002/jqs.1283 – volume: 2 start-page: 79 year: 2012 ident: e_1_2_9_85_1 article-title: Approaches to the distinguishing and investigation of buried soils in frozen deposits of Ice Complex publication-title: Earth Cryosphere – volume-title: Circumpolar Arctic Vegetation Map year: 2003 ident: e_1_2_9_41_1 – start-page: 672 volume-title: Permafrost year: 1988 ident: e_1_2_9_21_1 – ident: e_1_2_9_282_1 doi: 10.1017/S0033822200041199 – ident: e_1_2_9_192_1 doi: 10.1016/S0277-3791(99)00045-1 – start-page: 823 volume-title: USSR Contribution, Permafrost Second International Conference, 13–28 July 1973, Yakutsk, USSR year: 1973 ident: e_1_2_9_128_1 – ident: e_1_2_9_304_1 doi: 10.1016/j.quascirev.2011.07.020 – volume-title: Guidelines for Chemical Analysis of Soils year: 1970 ident: e_1_2_9_14_1 – start-page: 706 volume-title: Permafrost year: 1988 ident: e_1_2_9_40_1 – start-page: 7 volume-title: Problems of Cryolithology year: 1973 ident: e_1_2_9_223_1 – ident: e_1_2_9_67_1 doi: 10.1016/1359-0189(90)90035-V – ident: e_1_2_9_45_1 doi: 10.1139/e17-116 – ident: e_1_2_9_274_1 – ident: e_1_2_9_179_1 doi: 10.1657/1523-0430(07-022)[MUHS]2.0.CO;2 – start-page: 11 volume-title: Plant Archaeogenetics year: 2011 ident: e_1_2_9_89_1 – start-page: 29 volume-title: Entering America. Northeast Asia and Beringia before the Last Glacial Maximum year: 2004 ident: e_1_2_9_33_1 – ident: e_1_2_9_195_1 – volume-title: Ground Ice in the USSR year: 1975 ident: e_1_2_9_296_1 – start-page: 287 volume-title: Proceedings of the Ninth International Conference on Permafrost, June 29–July 3, 2008 year: 2008 ident: e_1_2_9_245_1 – ident: e_1_2_9_2_1 doi: 10.1016/S0277-3791(00)00128-1 – volume-title: Upper horizon of permafrost and thermokarst year: 1988 ident: e_1_2_9_247_1 – ident: e_1_2_9_69_1 doi: 10.1016/S0012-821X(97)00218-5 – start-page: 333 volume-title: Proceedings of the Ninth International Conference on Permafrost year: 2008 ident: e_1_2_9_46_1 – ident: e_1_2_9_251_1 doi: 10.1134/S0026261708030156 – ident: e_1_2_9_318_1 doi: 10.1016/j.geoderma.2007.11.012 – ident: e_1_2_9_36_1 doi: 10.1002/esp.3315 – ident: e_1_2_9_7_1 doi: 10.1111/j.1502-3885.1999.tb00241.x – ident: e_1_2_9_59_1 doi: 10.1016/j.quaint.2008.12.012 – volume: 85 start-page: 133 issue: 1 year: 2005 ident: e_1_2_9_312_1 article-title: Fossil rodent burrows in frozen Late Pleistocene beds of the Kolyma lowland publication-title: Entomological Review – volume-title: Ice Wedge: Heterocyclity, Heterogeneity, Heterochroneity year: 2006 ident: e_1_2_9_279_1 – ident: e_1_2_9_203_1 doi: 10.1016/j.agrformet.2008.06.018 – ident: e_1_2_9_324_1 doi: 10.1126/science.1128908 – ident: e_1_2_9_121_1 doi: 10.1016/j.yqres.2005.01.003 – ident: e_1_2_9_58_1 doi: 10.1016/j.palaeo.2005.06.004 – ident: e_1_2_9_200_1 doi: 10.1006/qres.1995.1002 – ident: e_1_2_9_34_1 doi: 10.1111/j.1365-2699.2004.01203.x – ident: e_1_2_9_113_1 doi: 10.1029/2002JD002559 – start-page: 96 volume-title: Beringia in the Cenozoic Era year: 1986 ident: e_1_2_9_263_1 – ident: e_1_2_9_270_1 doi: 10.1002/(SICI)1099-1417(1998090)13:5<471::AID-JQS401>3.0.CO;2-T – volume: 25 start-page: 1 year: 1991 ident: e_1_2_9_48_1 article-title: Modern periglacial eolian deposits and landforms in the Søndre Strømfjord area, West Greenland and their palaeoenvironmental implications publication-title: Meddelelser om Grønland Geoscience – ident: e_1_2_9_115_1 – start-page: 889 volume-title: Proceedings of the Ninth International Conference on Permafrost year: 2008 ident: e_1_2_9_110_1 – ident: e_1_2_9_134_1 doi: 10.1002/esp.3290130206 – ident: e_1_2_9_176_1 doi: 10.1139/e05-115 – start-page: 1803 volume-title: Proceedings of the Ninth International Conference on Permafrost, June 29–July 3, 2008 year: 2008 ident: e_1_2_9_275_1 – ident: e_1_2_9_162_1 – ident: e_1_2_9_30_1 doi: 10.1002/ppp.558 – ident: e_1_2_9_202_1 – start-page: 553 volume-title: Soil Microscopy: Proceedings of the Fourth International Working‐Meeting on Soil Micromorphology, Department of Geography, Queen's University, Kingston, Ontario, Canada, 27th–31st August, 1973 year: 1974 ident: e_1_2_9_170_1 – ident: e_1_2_9_54_1 doi: 10.1016/B978-0-444-53643-3.00116-3 – ident: e_1_2_9_178_1 doi: 10.1016/j.yqres.2004.02.003 – ident: e_1_2_9_141_1 doi: 10.1002/ppp.3430020304 – ident: e_1_2_9_177_1 doi: 10.1016/S0277-3791(03)00167-7 – ident: e_1_2_9_206_1 doi: 10.3133/pp835 – ident: e_1_2_9_97_1 doi: 10.1006/qres.1999.2097 – ident: e_1_2_9_55_1 – ident: e_1_2_9_219_1 doi: 10.1177/030913338400800202 – ident: e_1_2_9_231_1 doi: 10.1016/j.geoderma.2012.08.001 – start-page: 817 volume-title: USSR Contribution, Permafrost Second International Conference, 13–28 July 1973, Yakutsk, USSR year: 1973 ident: e_1_2_9_260_1 – ident: e_1_2_9_230_1 – start-page: 92 volume-title: Beringia Paleoenvironmental Workshop September 1997 year: 1997 ident: e_1_2_9_239_1 – volume: 393 start-page: 1141 year: 2003 ident: e_1_2_9_284_1 article-title: The AMS radiocarbon dating of pollen concentrate from the Late Pleistocene ice wedge of the Bison Section, Kolyma region publication-title: Doklady Earth Sciences – start-page: 56 volume-title: Problems of Cryolithology year: 1983 ident: e_1_2_9_130_1 – ident: e_1_2_9_314_1 doi: 10.1016/j.aeolia.2011.08.002 – start-page: 108 volume-title: Geocryology Studies year: 1986 ident: e_1_2_9_320_1 – volume: 23 start-page: 3 year: 2010 ident: e_1_2_9_15_1 article-title: Dust sources and deposition of aeolian materials in Iceland publication-title: Icelandic Agricultural Sciences – volume: 53 start-page: 125 year: 1984 ident: e_1_2_9_80_1 article-title: Palaeopedological analysis of Late Pleistocene (Yedoma) deposits of the Duvanny Yar exposure publication-title: Bulletin of Quaternary Commission – ident: e_1_2_9_11_1 – ident: e_1_2_9_233_1 doi: 10.1016/j.quaint.2010.04.004 – volume-title: Loess in China year: 1985 ident: e_1_2_9_142_1 – ident: e_1_2_9_271_1 doi: 10.1007/978-1-4020-2121-3_19 – volume: 52 start-page: 387 year: 1995 ident: e_1_2_9_117_1 article-title: Fluvial periglacial environments, climate and vegetation during the Middle Weichselian in the northern Netherlands with special reference to the Hengelo Interstadial publication-title: Mededelingen Rijks Geologische Dienst – ident: e_1_2_9_302_1 doi: 10.1006/qres.2001.2274 – ident: e_1_2_9_291_1 doi: 10.4095/127955 – ident: e_1_2_9_104_1 doi: 10.1002/(SICI)1099-1417(1998090)13:5<391::AID-JQS397>3.0.CO;2-6 – ident: e_1_2_9_9_1 doi: 10.1016/j.quascirev.2009.08.001 – ident: e_1_2_9_105_1 – volume-title: Quaternary Sediments year: 1991 ident: e_1_2_9_68_1 – ident: e_1_2_9_145_1 doi: 10.1006/qres.1995.1016 – ident: e_1_2_9_197_1 – ident: e_1_2_9_63_1 doi: 10.1016/S0277-3791(02)00038-0 – ident: e_1_2_9_174_1 doi: 10.1016/j.aeolia.2012.08.001 – ident: e_1_2_9_246_1 doi: 10.1007/978-90-481-2642-2 – ident: e_1_2_9_313_1 doi: 10.1016/j.quascirev.2011.01.021 – ident: e_1_2_9_237_1 doi: 10.1016/B978-0-12-355860-2.50037-5 – volume-title: Slope Deposits in Yakutia year: 1969 ident: e_1_2_9_76_1 – volume-title: Problems of the Periglacial Zone (Zagadnienia strefy peryglacjalnef) year: 1975 ident: e_1_2_9_107_1 – start-page: 643 volume-title: Proceedings of the Sixth International Conference on Permafrost year: 1993 ident: e_1_2_9_267_1 – ident: e_1_2_9_255_1 doi: 10.1016/S0037-0738(02)00082-9 – ident: e_1_2_9_157_1 doi: 10.1139/B06-026 – ident: e_1_2_9_250_1 – ident: e_1_2_9_205_1 doi: 10.1130/0016-7606(1955)66[699:OOTUSN]2.0.CO;2 – ident: e_1_2_9_155_1 doi: 10.1016/j.earscirev.2009.12.001 – ident: e_1_2_9_185_1 doi: 10.1007/978-3-540-69371-0_13 – volume-title: Methods of Investigation of Physical Properties of Soils year: 1986 ident: e_1_2_9_265_1 – ident: e_1_2_9_27_1 doi: 10.1016/j.quascirev.2011.02.010 – volume: 19 start-page: 305 year: 1957 ident: e_1_2_9_90_1 article-title: Stratigraphie du Pleistocène supérieur en Belgique publication-title: Geologie en Mijnbouw – start-page: 109 volume-title: Permafrost year: 1983 ident: e_1_2_9_39_1 – start-page: 1827 volume-title: Proceedings of the Ninth International Conference on Permafrost, June 29–July 3, 2008 year: 2008 ident: e_1_2_9_289_1 – ident: e_1_2_9_62_1 doi: 10.1016/j.earscirev.2010.04.002 – start-page: 191 volume-title: Tenth International Conference on Permafrost, June 25–29, 2012, Salekhard, Russia, Vol. 1, International Contributions year: 2012 ident: e_1_2_9_112_1 – start-page: 73 volume-title: Terrestrial Paleoenvironmental Studies in Beringia: Proceedings of a Joint Russian‐American Workshop, Fairbanks, Alaska, 1991 year: 1997 ident: e_1_2_9_52_1 – ident: e_1_2_9_86_1 doi: 10.1134/S1064229310110062 – ident: e_1_2_9_127_1 doi: 10.1046/j.1365-3091.1997.d01-38.x – ident: e_1_2_9_166_1 doi: 10.1002/ppp.416. – ident: e_1_2_9_102_1 doi: 10.1016/j.geomorph.2010.04.024 – ident: e_1_2_9_140_1 doi: 10.1086/622281 – ident: e_1_2_9_171_1 doi: 10.1002/esp.3290020204 – start-page: 513 volume-title: Permafrost, Proceedings of the Eighth International Conference on Permafrost year: 2003 ident: e_1_2_9_109_1 – ident: e_1_2_9_138_1 doi: 10.14430/arctic1191 – ident: e_1_2_9_175_1 doi: 10.1016/B978-0-444-53643-3.00145-X – ident: e_1_2_9_300_1 doi: 10.1007/s00254-006-0432-9 – ident: e_1_2_9_47_1 doi: 10.1002/esp.3290140406 |
SSID | ssj0008314 |
Score | 2.4307811 |
Snippet | Uncertainty about the geological processes that deposited syngenetically frozen ice‐rich silt (yedoma) across hundreds of thousands of square kilometres in... Uncertainty about the geological processes that deposited syngenetically frozen ice‐rich silt ( yedoma ) across hundreds of thousands of square kilometres in... Uncertainty about the geological processes that deposited syngenetically frozen ice-rich silt (yedoma) across hundreds of thousands of square kilometres in... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 208 |
SubjectTerms | Accretion aeolian Alluvium Archipelagoes Beringia Clay Coastal plains cryostructures depositional processes Dunes Dust storms Ground ice Holocene Humid climates ice wedges Kolyma loess Mass spectrometry Mountains palaeosols permafrost Pleistocene Pollen radiocarbon dating River valleys Rivers Sand Sediments Silt Snow Stratigraphy Summer Tundra Water analysis Winter yedoma |
Title | Palaeoenvironmental Interpretation of Yedoma Silt (Ice Complex) Deposition as Cold-Climate Loess, Duvanny Yar, Northeast Siberia |
URI | https://api.istex.fr/ark:/67375/WNG-R41QW7BH-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fppp.1843 https://www.proquest.com/docview/1708971799 https://www.proquest.com/docview/1717494698 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2hIgQvUAoVKW21SBUXqU7s9S1-hIY0RVCFXpRWfVjtOrNqVGNHuUgNT4gv4Bv7Jcz4kjaolSqeLNmztrOeGZ-Jz55hbAsTY-z7bt-KhG0sD1zbinztWBC4xgcMzSCm9c7f9oPOsfflxD8pWZW0FqbQh5j_4UaRkedrCnClx41r0dDhcFinZiWYfomqRXjo4Fo5qunmst5YbBC33rMr3VlbNKqBC2-ihzSplwsw8yZYzd827WfsrLrPgmRyUZ9OdD3--Y-E4__9kGX2tASh_GPhNc_ZA0hX2OOyH_r5bIU92s0b_s5esN9dlSjIbqyHw4GLTEWeGX4K_eyH4oeDZMLf78XAKc8kcPmBt6DihXE1xt1J_-rXn51kgEgZ-NcME-02b00Rz6czfqpG2zz_kkQdhfBsmuLjJTtufz7a6Vhl3wZLecJxLSUMscUUbgGTrXEI5ojQeCLWcWCaWFEGYCt0Bt84Gg-ERiiFhVugQwgUuKtsKc1SeMU47lWuxipa4KA-rSN2tBc5sY11qdCuV2Pvqmco41LUnHprJLKQYxYSZ1fS7NbYm7nlsBDyuMXmbe4GcwM1uiDiW-jL3v6uPPCc773wU0f2amy98hNZxvxYOqHdjEJS2MNrzQ9jtNInGJVCNiUbrAAj6tqJ18qd4s6bkd1ul7Zr9zV8zZ4gmvMLLvE6W5qMprCBiGmiN_PY-AvhOxLL |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED6NTWj7wssAURhgJMSLtHSJ89aIT7CxddBVZWzqJiFZdmpr00JSda208gnxC_iN_BLunKRbEUiIT5Hsc-w4d-c7-_wcwDNUjGkY-gMn4a5xAu27ThIqz9GRb0KNohmldN95rxu1D4P3R-HRAryu78KU-BCzDTeSDKuvScBpQ3rjEjV0OBw2KVvJNViihN7Wn9q_xI5q-RbYG90Niq4P3Bp51uUbdcu5tWiJpvViztC8aq7a9Wb7JnyuR1qGmZw1J2PVTL_-BuL4n59yC25Udih7UzLObVjQ-SosVynRT6arcH3H5vyd3oHvPZlJXVy5EocN54MVWWHYsR4UXyT7dJqN2cvdVDNSNZm-eMW2dB0axuQ5FmeDn99-bGanaCxr1ilQ166zrQma9PmUHcvROrOHSZRUCN-mSETuwuH2u4PNtlOlbnBkwD3fkdxQwJjEp0Z9azyydHhsAp6qNDItdCoj7Urkh9B4Citiw6VE3y1SsY6k9u_BYl7k-j4wLJW-QkeaY6MBXSX2VJB4qYuuKVd-0IAX9U8UaYVrTuk1MlEiMnOBsytodhvwdEY5LLE8_kDz3PLBjECOzij2LQ5Fv7sj9gPvYz9-2xb9BqzVjCIqsT8XXuy2kphA9rCvWTUKLJ3CyFwXE6JBJzChxJ3Yl-WKvw5G9Ho9ej74V8InsNw-2OuIzm73w0NYQeMuLEOL12BxPJroR2hAjdVjKyi_APW4FuY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJj5eBgwQZQOMhPiQli5xvtpHWOk6GFUYTN3Eg2UntpgWkqhrpZUntL9gfyN_CXf56FYEEuLJkn2OHefufBeffwfwDBVj7PtuYnW5bSxPu7bV9ZVj6cA1vkbRDGK67_xhGAz2vXcH_kEdVUl3YSp8iPkPN5KMUl-TgBeJ2bwADS2Kok3JSq7CshfYHeLo3t4FdFTHLXG90dug4HrPboBnbb7Z9FzYipZpVU8X7MzL1mq53fRvwZdmolWUyXF7OlHt-PtvGI7_9ya3YaW2Qtnrim3uwBWdrcKNOiH619kqXNsuM_7O7sJZJFOp80sX4rDjYqgiyw071En-TbJPR-mEvdyJNSNFk-rTV6ynm8AwJk-wOk1-_jjfSo_QVNZsN0dNu8F6UzTosxk7lOMNVh4lUUohfJoiAbkH-_23n7cGVp24wZIed1xLckPhYhJLjdrWOGTn8NB4PFZxYDroUgbalsgNvnEUNoSGS4meW6BCHUjt3oelLM_0A2BYK12FbjTHTgldJHaU13ViGx1TrlyvBS-abyjiGtWckmukosJj5gJXV9DqtuDpnLKokDz-QPO8ZIM5gRwfU-Rb6IvRcFvsec7HUfhmIEYtWG_4RNRCfyKcENkwJIg9HGvejOJKZzAy0_mUaNAF7FLaThyrZIq_TkZEUUTlw38lfALXo15f7O4M36_BTbTs_CqueB2WJuOpfoTW00Q9LsXkF8MvFZ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Palaeoenvironmental+Interpretation+of+Yedoma+Silt+%28Ice+Complex%29+Deposition+as+Cold%E2%80%90Climate+Loess%2C+Duvanny+Yar%2C+Northeast+Siberia&rft.jtitle=Permafrost+and+periglacial+processes&rft.au=Murton%2C+Julian+B.&rft.au=Goslar%2C+Tomasz&rft.au=Edwards%2C+Mary+E.&rft.au=Bateman%2C+Mark+D.&rft.date=2015-07-01&rft.issn=1045-6740&rft.eissn=1099-1530&rft.volume=26&rft.issue=3&rft.spage=208&rft.epage=288&rft_id=info:doi/10.1002%2Fppp.1843&rft.externalDBID=10.1002%252Fppp.1843&rft.externalDocID=PPP1843 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-6740&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-6740&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-6740&client=summon |