Palaeoenvironmental Interpretation of Yedoma Silt (Ice Complex) Deposition as Cold-Climate Loess, Duvanny Yar, Northeast Siberia

Uncertainty about the geological processes that deposited syngenetically frozen ice‐rich silt (yedoma) across hundreds of thousands of square kilometres in central and northern Siberia fundamentally limits our understanding of the Pleistocene geology and palaeoecology of western Beringia, the sedime...

Full description

Saved in:
Bibliographic Details
Published inPermafrost and periglacial processes Vol. 26; no. 3; pp. 208 - 288
Main Authors Murton, Julian B., Goslar, Tomasz, Edwards, Mary E., Bateman, Mark D., Danilov, Petr P., Savvinov, Grigoriy N., Gubin, Stanislav V., Ghaleb, Bassam, Haile, James, Kanevskiy, Mikhail, Lozhkin, Anatoly V., Lupachev, Alexei V., Murton, Della K., Shur, Yuri, Tikhonov, Alexei, Vasil'chuk, Alla C., Vasil'chuk, Yurij K., Wolfe, Stephen A.
Format Journal Article
LanguageEnglish
Published Chichester Blackwell Publishing Ltd 01.07.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Uncertainty about the geological processes that deposited syngenetically frozen ice‐rich silt (yedoma) across hundreds of thousands of square kilometres in central and northern Siberia fundamentally limits our understanding of the Pleistocene geology and palaeoecology of western Beringia, the sedimentary processes that led to sequestration of hundreds of Pg of carbon within permafrost and whether yedoma provides a globally significant record of ice‐age atmospheric conditions or just regional floodplain activity. Here, we test the hypotheses of aeolian versus waterlain deposition of yedoma silt, elucidate the palaeoenvironmental conditions during deposition and develop a conceptual model of silt deposition to clarify understanding of yedoma formation in northern circumpolar regions during the Late Pleistocene. This is based on a field study in 2009 of the Russian stratotype of the ‘Yedoma Suite’, at Duvanny Yar, in the lower Kolyma River, northern Yakutia, supplemented by observations that we have collected there and at other sites in the Kolyma Lowland since the 1970s. We reconstruct a cold‐climate loess region in northern Siberia that forms part of a vast Late Pleistocene permafrost zone extending from northwest Europe across northern Asia to northwest North America, and that was characterised by intense aeolian activity. Five litho‐ and cryostratigraphic units are identified in yedoma remnant 7E at Duvanny Yar, in ascending stratigraphic order: (1) massive silt, (2) peat, (3) stratified silt, (4) yedoma silt and (5) near‐surface silt. The yedoma silt of unit 4 dominates the stratigraphy and is at least 34 m thick. It is characterised by horizontal to gently undulating subtle colour bands but typically lacks primary sedimentary stratification. Texturally, the yedoma silt has mean values of 65 ± 7 per cent silt, 15 ± 8 per cent sand and 21 ± 4 per cent clay. Particle size distributions are bi‐ to polymodal, with a primary mode of about 41 μm (coarse silt) and subsidiary modes are 0.3–0.7 μm (very fine clay to fine clay), 3–5 μm (coarse clay to very fine silt), 8–16 μm (fine silt) and 150–350 μm (fine sand to medium sand). Semidecomposed fine plant material is abundant and fine in‐situ roots are pervasive. Syngenetic ice wedges, cryostructures and microcryostructures record syngenetic freezing of the silt. An age model for silt deposition is constructed from 47 pre‐Holocene accelerator mass spectrometry (AMS) 14C ages, mostly from in‐situ roots and from three optically stimulated luminescence (OSL) ages of quartz sand grains. The 14C ages indicate that silt deposition extends from 19 000 ± 300 cal BP to 50 000 cal BP or beyond. The OSL ages range from 21.2 ± 1.9 ka near the top of the yedoma to 48.6 ± 2.9 ka near the bottom, broadly consistent with the 14C age model. Most of the yedoma silt in unit 4 at Duvanny Yar constitutes cryopedolith (sediment that has experienced incipient pedogenesis along with syngenetic freezing). Mineralised and humified organic remains dispersed within cryopedolith indicate incipient soil formation, but distinct soil horizons are absent. Five buried palaeosols and palaeosol ‘complexes’ are identified within cryopedolith on the basis of sedimentary and geochemical properties. Magnetic susceptibility, organic content, elemental concentrations and ratios tend to deviate from average values of these parameters at five levels in unit 4. The cryopedolith‐palaeosol sequence accreted incrementally upwards on a vegetated palaeo‐land surface with a relief of at least several metres, preserving syngenetic ground ice in the aggrading permafrost. Pollen spectra dated to between about 17 000 and 25 000 14C BP characteristically have frequencies of 20–60 per cent tree/shrub pollen (mainly Betula and Pinus) and 20–60 per cent graminoids, predominantly Poaceae, plus forbs, whereas spectra dated to about 30 000–33 000 14C BP have lower values of woody taxa (about 10%) and are dominated by graminoids (mainly Poaceae), forbs (particularly Caryophyllaceae and Asteraceae) and Selaginella rupestris. The latter are more typical of Last Glacial Maximum (LGM) samples reported elsewhere in Siberia, and the unusually high arboreal pollen values in the LGM yedoma at Duvanny Yar are attributed to long‐distance transport of pollen. Three hypotheses concerning the processes and environmental conditions of yedoma silt deposition at Duvanny Yar are tested. The alluvial‐lacustrine hypothesis and the polygenetic hypothesis are both discounted on sedimentary, palaeoenvironmental, geocryological and palaeoecological grounds. The loessal hypothesis provides the only reasonable explanation to account for the bulk of the unit 4 yedoma silt at this site. Supporting the loessal interpretation are sedimentological and geocryological similarities between the Duvanny Yar loess‐palaeosol sequence and cold‐climate loesses in central and northern Alaska, the Klondike (Yukon), western and central Siberia and northwest Europe. Differences between loess at Duvanny Yar and that in western and central Siberia and northwest Europe include the persistence of permafrost and the abundance of ground ice and fine in‐situ roots within the yedoma. Modern analogues of cold‐climate loess deposition are envisaged at a local scale in cold, humid climates where local entrainment and deposition of loess are generally restricted to large alluvial valleys containing rivers that are glacially sourced or drain areas containing Late Pleistocene glacial deposits, and thus glacially ground silt. The Duvanny Yar yedoma shares sedimentological and geocryological features with yedoma interpreted as ice‐rich loess or reworked loess facies at Itkillik (northern Alaska) and in the central Yakutian lowland, and with yedoma in the Laptev Sea region and the New Siberian Archipelago. It is therefore suggested that many lowland yedoma sections across Beringia are primarily of aeolian origin (or consist of reworked aeolian sediments), although other depositional processes (e.g. alluvial and colluvial) may account for some yedoma sequences in river valleys and mountains. A conceptual model of yedoma silt deposition at Duvanny Yar as cold‐climate loess in Marine Isotope Stage (MIS) 3 and MIS 2 envisages summer or autumn as the main season of loess deposition. In summer, the land surface was snow‐free, unfrozen and relatively dry, making it vulnerable to deflation. Graminoids, forbs and biological soil crust communities trapped and stabilised windblown sediments. Loess accretion resulted from semicontinuous deposition of fine background particles and episodic, discrete dust storms that deposited coarse silt. Winter was characterised by deep thermal contraction cracking beneath thin and dusty snow covers, and snow and frozen ground restricted deflation and sediment trapping by dead grasses. Sources of loess at Duvanny Yar potentially include: (1) sediments and weathered bedrock on uplands to the east, south and southwest of the Kolyma Lowland; (2) alluvium deposited by rivers draining these uplands; and (3) sediments exposed in the Khallerchin tundra to the north and on the emergent continental shelf of the East Siberian Sea. Glacially sourced tributaries of the palaeo‐Kolyma River contributed glacially ground silt into channel and/or floodplain deposits, and some of these were probably reworked by wind and deposited as loess in the Kolyma Lowland. The palaeoenvironmental reconstruction of the sedimentary sequence at Duvanny Yar is traced from MIS 6 to the late Holocene. It includes thermokarst activity associated with alas lake development in the Kazantsevo interglacial (MIS 5e), loess accumulation, pedogenesis and syngenetic permafrost development, possibly commencing in the Zyryan glacial (70 000–55 000 cal BP) and extending through the Karginsky interstadial (55 000–25 000 cal BP) and Sartan glacial (25 000–15 000 cal BP), cessation of yedoma silt deposition during the Lateglacial, renewed thermokarst activity in the early Holocene, and permafrost aggradation in the mid to late Holocene. Beringian coastlands from northeast Yakutia through the north Alaskan Coastal Plain to the Tuktoyaktuk Coastlands (Canada) were characterised by extensive aeolian activity (deflation, loess, sand dunes, sand sheets, sand wedges) during MIS 2. Siberian and Canadian high‐pressure cells coupled with a strengthened Aleutian low‐pressure cell would have created enhanced pressure gradient‐driven winds sufficient to entrain sediment on a regional scale. Summer winds are thought to have deflated sediment exposed on the East Siberian Sea shelf and deposited silt as a distal aeolian facies to the south. Additionally, stronger localised winds created by local downslope gravity flows (katabatic winds) may have entrained sediment. Local katabatic winds in summer may have transported silt generally northwards towards the Kolyma Lowland, particularly during times of extended upland glaciation in the North Anyuy Range to the east during the Zyryan (MIS 4) period, whereas winter winds carried limited amounts of silt generally southwards as a result of pressure gradient forces. The Duvanny Yar yedoma is part of a subcontinental‐scale region of Late Pleistocene cold‐climate loess. One end member, exemplified by the yedoma at Duvanny Yar, was loess rich in syngenetic ground ice (Beringian yedoma). The other, exemplified by loess in northwest Europe, was ice‐poor and subject to complete permafrost degradation at the end of the last ice age. These end members reflect a distinction between enduring cold continuous permafrost conditions leading to stacked ice‐rich transition zones and large syngenetic ice wedges in much of Beringia versus conditions oscillating between cold permafrost, warm permafrost and seasonal frost, leading to repeated permafrost thaw and small ice‐wedge pseudomorphs in northwest Europe. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList Uncertainty about the geological processes that deposited syngenetically frozen ice-rich silt (yedoma) across hundreds of thousands of square kilometres in central and northern Siberia fundamentally limits our understanding of the Pleistocene geology and palaeoecology of western Beringia, the sedimentary processes that led to sequestration of hundreds of Pg of carbon within permafrost and whether yedoma provides a globally significant record of ice-age atmospheric conditions or just regional floodplain activity. Here, we test the hypotheses of aeolian versus waterlain deposition of yedoma silt, elucidate the palaeoenvironmental conditions during deposition and develop a conceptual model of silt deposition to clarify understanding of yedoma formation in northern circumpolar regions during the Late Pleistocene. This is based on a field study in 2009 of the Russian stratotype of the 'Yedoma Suite', at Duvanny Yar, in the lower Kolyma River, northern Yakutia, supplemented by observations that we have collected there and at other sites in the Kolyma Lowland since the 1970s. We reconstruct a cold-climate loess region in northern Siberia that forms part of a vast Late Pleistocene permafrost zone extending from northwest Europe across northern Asia to northwest North America, and that was characterised by intense aeolian activity. Five litho- and cryostratigraphic units are identified in yedoma remnant 7E at Duvanny Yar, in ascending stratigraphic order: (1) massive silt, (2) peat, (3) stratified silt, (4) yedoma silt and (5) near-surface silt. The yedoma silt of unit 4 dominates the stratigraphy and is at least 34 m thick. It is characterised by horizontal to gently undulating subtle colour bands but typically lacks primary sedimentary stratification. Texturally, the yedoma silt has mean values of 65 plus or minus 7 per cent silt, 15 plus or minus 8 per cent sand and 21 plus or minus 4 per cent clay. Particle size distributions are bi- to polymodal, with a primary mode of about 41 mu m (coarse silt) and subsidiary modes are 0.3-0.7 mu m (very fine clay to fine clay), 3-5 mu m (coarse clay to very fine silt), 8-16 mu m (fine silt) and 150-350 mu m (fine sand to medium sand). Semidecomposed fine plant material is abundant and fine in-situ roots are pervasive. Syngenetic ice wedges, cryostructures and microcryostructures record syngenetic freezing of the silt. An age model for silt deposition is constructed from 47 pre-Holocene accelerator mass spectrometry (AMS) super(14)C ages, mostly from in-situ roots and from three optically stimulated luminescence (OSL) ages of quartz sand grains. The super(14)C ages indicate that silt deposition extends from 19 000 plus or minus 300 cal BP to 50 000 cal BP or beyond. The OSL ages range from 21.2 plus or minus 1.9 ka near the top of the yedoma to 48.6 plus or minus 2.9 ka near the bottom, broadly consistent with the super(14)C age model. Most of the yedoma silt in unit 4 at Duvanny Yar constitutes cryopedolith (sediment that has experienced incipient pedogenesis along with syngenetic freezing). Mineralised and humified organic remains dispersed within cryopedolith indicate incipient soil formation, but distinct soil horizons are absent. Five buried palaeosols and palaeosol 'complexes' are identified within cryopedolith on the basis of sedimentary and geochemical properties. Magnetic susceptibility, organic content, elemental concentrations and ratios tend to deviate from average values of these parameters at five levels in unit 4. The cryopedolith-palaeosol sequence accreted incrementally upwards on a vegetated palaeo-land surface with a relief of at least several metres, preserving syngenetic ground ice in the aggrading permafrost. Pollen spectra dated to between about 17 000 and 25 000 super(14)C BP characteristically have frequencies of 20-60 per cent tree/shrub pollen (mainly Betula and Pinus) and 20-60 per cent graminoids, predominantly Poaceae, plus forbs, whereas spectra dated to about 30 000-33 000 super(14)C BP have lower values of woody taxa (about 10%) and are dominated by graminoids (mainly Poaceae), forbs (particularly Caryophyllaceae and Asteraceae) and Selaginella rupestris. The latter are more typical of Last Glacial Maximum (LGM) samples reported elsewhere in Siberia, and the unusually high arboreal pollen values in the LGM yedoma at Duvanny Yar are attributed to long-distance transport of pollen. Three hypotheses concerning the processes and environmental conditions of yedoma silt deposition at Duvanny Yar are tested. The alluvial-lacustrine hypothesis and the polygenetic hypothesis are both discounted on sedimentary, palaeoenvironmental, geocryological and palaeoecological grounds. The loessal hypothesis provides the only reasonable explanation to account for the bulk of the unit 4 yedoma silt at this site. Supporting the loessal interpretation are sedimentological and geocryological similarities between the Duvanny Yar loess-palaeosol sequence and cold-climate loesses in central and northern Alaska, the Klondike (Yukon), western and central Siberia and northwest Europe. Differences between loess at Duvanny Yar and that in western and central Siberia and northwest Europe include the persistence of permafrost and the abundance of ground ice and fine in-situ roots within the yedoma. Modern analogues of cold-climate loess deposition are envisaged at a local scale in cold, humid climates where local entrainment and deposition of loess are generally restricted to large alluvial valleys containing rivers that are glacially sourced or drain areas containing Late Pleistocene glacial deposits, and...
Uncertainty about the geological processes that deposited syngenetically frozen ice-rich silt (yedoma) across hundreds of thousands of square kilometres in central and northern Siberia fundamentally limits our understanding of the Pleistocene geology and palaeoecology of western Beringia, the sedimentary processes that led to sequestration of hundreds of Pg of carbon within permafrost and whether yedoma provides a globally significant record of ice-age atmospheric conditions or just regional floodplain activity. Here, we test the hypotheses of aeolian versus waterlain deposition of yedoma silt, elucidate the palaeoenvironmental conditions during deposition and develop a conceptual model of silt deposition to clarify understanding of yedoma formation in northern circumpolar regions during the Late Pleistocene. This is based on a field study in 2009 of the Russian stratotype of the 'Yedoma Suite', at Duvanny Yar, in the lower Kolyma River, northern Yakutia, supplemented by observations that we have collected there and at other sites in the Kolyma Lowland since the 1970s. We reconstruct a cold-climate loess region in northern Siberia that forms part of a vast Late Pleistocene permafrost zone extending from northwest Europe across northern Asia to northwest North America, and that was characterised by intense aeolian activity. Five litho- and cryostratigraphic units are identified in yedoma remnant 7E at Duvanny Yar, in ascending stratigraphic order: (1) massive silt, (2) peat, (3) stratified silt, (4) yedoma silt and (5) near-surface silt. The yedoma silt of unit 4 dominates the stratigraphy and is at least 34 m thick. It is characterised by horizontal to gently undulating subtle colour bands but typically lacks primary sedimentary stratification. Texturally, the yedoma silt has mean values of 65 ± 7 per cent silt, 15 ± 8 per cent sand and 21 ± 4 per cent clay. Particle size distributions are bi- to polymodal, with a primary mode of about 41 µm (coarse silt) and subsidiary modes are 0.3-0.7 µm (very fine clay to fine clay), 3-5 µm (coarse clay to very fine silt), 8-16 µm (fine silt) and 150-350 µm (fine sand to medium sand). Semidecomposed fine plant material is abundant and fine in-situ roots are pervasive. Syngenetic ice wedges, cryostructures and microcryostructures record syngenetic freezing of the silt. An age model for silt deposition is constructed from 47 pre-Holocene accelerator mass spectrometry (AMS) 14C ages, mostly from in-situ roots and from three optically stimulated luminescence (OSL) ages of quartz sand grains. The 14C ages indicate that silt deposition extends from 19 000 ± 300 cal BP to 50 000 cal BP or beyond. The OSL ages range from 21.2 ± 1.9 ka near the top of the yedoma to 48.6 ± 2.9 ka near the bottom, broadly consistent with the 14C age model. Most of the yedoma silt in unit 4 at Duvanny Yar constitutes cryopedolith (sediment that has experienced incipient pedogenesis along with syngenetic freezing). Mineralised and humified organic remains dispersed within cryopedolith indicate incipient soil formation, but distinct soil horizons are absent. Five buried palaeosols and palaeosol 'complexes' are identified within cryopedolith on the basis of sedimentary and geochemical properties. Magnetic susceptibility, organic content, elemental concentrations and ratios tend to deviate from average values of these parameters at five levels in unit 4. The cryopedolith-palaeosol sequence accreted incrementally upwards on a vegetated palaeo-land surface with a relief of at least several metres, preserving syngenetic ground ice in the aggrading permafrost. Pollen spectra dated to between about 17 000 and 25 000 14C BP characteristically have frequencies of 20-60 per cent tree/shrub pollen (mainly Betula and Pinus) and 20-60 per cent graminoids, predominantly Poaceae, plus forbs, whereas spectra dated to about 30 000-33 000 14C BP have lower values of woody taxa (about 10%) and are dominated by graminoids (mainly Poaceae), forbs (particularly Caryophyllaceae and Asteraceae) and Selaginella rupestris. The latter are more typical of Last Glacial Maximum (LGM) samples reported elsewhere in Siberia, and the unusually high arboreal pollen values in the LGM yedoma at Duvanny Yar are attributed to long-distance transport of pollen. Three hypotheses concerning the processes and environmental conditions of yedoma silt deposition at Duvanny Yar are tested. The alluvial-lacustrine hypothesis and the polygenetic hypothesis are both discounted on sedimentary, palaeoenvironmental, geocryological and palaeoecological grounds. The loessal hypothesis provides the only reasonable explanation to account for the bulk of the unit 4 yedoma silt at this site. Supporting the loessal interpretation are sedimentological and geocryological similarities between the Duvanny Yar loess-palaeosol sequence and cold-climate loesses in central and northern Alaska, the Klondike (Yukon), western and central Siberia and northwest Europe. Differences between loess at Duvanny Yar and that in western and central Siberia and northwest Europe include the persistence of permafrost and the abundance of ground ice and fine in-situ roots within the yedoma. Modern analogues of cold-climate loess deposition are envisaged at a local scale in cold, humid climates where local entrainment and deposition of loess are generally restricted to large alluvial valleys containing rivers that are glacially sourced or drain areas containing Late Pleistocene glacial deposits, and thus glacially ground silt. The Duvanny Yar yedoma shares sedimentological and geocryological features with yedoma interpreted as ice-rich loess or reworked loess facies at Itkillik (northern Alaska) and in the central Yakutian lowland, and with yedoma in the Laptev Sea region and the New Siberian Archipelago. It is therefore suggested that many lowland yedoma sections across Beringia are primarily of aeolian origin (or consist of reworked aeolian sediments), although other depositional processes (e.g. alluvial and colluvial) may account for some yedoma sequences in river valleys and mountains. A conceptual model of yedoma silt deposition at Duvanny Yar as cold-climate loess in Marine Isotope Stage (MIS) 3 and MIS 2 envisages summer or autumn as the main season of loess deposition. In summer, the land surface was snow-free, unfrozen and relatively dry, making it vulnerable to deflation. Graminoids, forbs and biological soil crust communities trapped and stabilised windblown sediments. Loess accretion resulted from semicontinuous deposition of fine background particles and episodic, discrete dust storms that deposited coarse silt. Winter was characterised by deep thermal contraction cracking beneath thin and dusty snow covers, and snow and frozen ground restricted deflation and sediment trapping by dead grasses. Sources of loess at Duvanny Yar potentially include: (1) sediments and weathered bedrock on uplands to the east, south and southwest of the Kolyma Lowland; (2) alluvium deposited by rivers draining these uplands; and (3) sediments exposed in the Khallerchin tundra to the north and on the emergent continental shelf of the East Siberian Sea. Glacially sourced tributaries of the palaeo-Kolyma River contributed glacially ground silt into channel and/or floodplain deposits, and some of these were probably reworked by wind and deposited as loess in the Kolyma Lowland. The palaeoenvironmental reconstruction of the sedimentary sequence at Duvanny Yar is traced from MIS 6 to the late Holocene. It includes thermokarst activity associated with alas lake development in the Kazantsevo interglacial (MIS 5e), loess accumulation, pedogenesis and syngenetic permafrost development, possibly commencing in the Zyryan glacial (70 000-55 000 cal BP) and extending through the Karginsky interstadial (55 000-25 000 cal BP) and Sartan glacial (25 000-15 000 cal BP), cessation of yedoma silt deposition during the Lateglacial, renewed thermokarst activity in the early Holocene, and permafrost aggradation in the mid to late Holocene. Beringian coastlands from northeast Yakutia through the north Alaskan Coastal Plain to the Tuktoyaktuk Coastlands (Canada) were characterised by extensive aeolian activity (deflation, loess, sand dunes, sand sheets, sand wedges) during MIS 2. Siberian and Canadian high-pressure cells coupled with a strengthened Aleutian low-pressure cell would have created enhanced pressure gradient-driven winds sufficient to entrain sediment on a regional scale. Summer winds are thought to have deflated sediment exposed on the East Siberian Sea shelf and deposited silt as a distal aeolian facies to the south. Additionally, stronger localised winds created by local downslope gravity flows (katabatic winds) may have entrained sediment. Local katabatic winds in summer may have transported silt generally northwards towards the Kolyma Lowland, particularly during times of extended upland glaciation in the North Anyuy Range to the east during the Zyryan (MIS 4) period, whereas winter winds carried limited amounts of silt generally southwards as a result of pressure gradient forces. The Duvanny Yar yedoma is part of a subcontinental-scale region of Late Pleistocene cold-climate loess. One end member, exemplified by the yedoma at Duvanny Yar, was loess rich in syngenetic ground ice (Beringian yedoma). The other, exemplified by loess in northwest Europe, was ice-poor and subject to complete permafrost degradation at the end of the last ice age. These end members reflect a distinction between enduring cold continuous permafrost conditions leading to stacked ice-rich transition zones and large syngenetic ice wedges in much of Beringia versus conditions oscillating between cold permafrost, warm permafrost and seasonal frost, leading to repeated permafrost thaw and small ice-wedge pseudomorphs in northwest Europe. Copyright © 2015 John Wiley & Sons, Ltd.
Uncertainty about the geological processes that deposited syngenetically frozen ice‐rich silt (yedoma) across hundreds of thousands of square kilometres in central and northern Siberia fundamentally limits our understanding of the Pleistocene geology and palaeoecology of western Beringia, the sedimentary processes that led to sequestration of hundreds of Pg of carbon within permafrost and whether yedoma provides a globally significant record of ice‐age atmospheric conditions or just regional floodplain activity. Here, we test the hypotheses of aeolian versus waterlain deposition of yedoma silt, elucidate the palaeoenvironmental conditions during deposition and develop a conceptual model of silt deposition to clarify understanding of yedoma formation in northern circumpolar regions during the Late Pleistocene. This is based on a field study in 2009 of the Russian stratotype of the ‘Yedoma Suite’, at Duvanny Yar, in the lower Kolyma River, northern Yakutia, supplemented by observations that we have collected there and at other sites in the Kolyma Lowland since the 1970s. We reconstruct a cold‐climate loess region in northern Siberia that forms part of a vast Late Pleistocene permafrost zone extending from northwest Europe across northern Asia to northwest North America, and that was characterised by intense aeolian activity. Five litho‐ and cryostratigraphic units are identified in yedoma remnant 7E at Duvanny Yar, in ascending stratigraphic order: (1) massive silt, (2) peat, (3) stratified silt, (4) yedoma silt and (5) near‐surface silt. The yedoma silt of unit 4 dominates the stratigraphy and is at least 34 m thick. It is characterised by horizontal to gently undulating subtle colour bands but typically lacks primary sedimentary stratification. Texturally, the yedoma silt has mean values of 65 ± 7 per cent silt, 15 ± 8 per cent sand and 21 ± 4 per cent clay. Particle size distributions are bi‐ to polymodal, with a primary mode of about 41 μm (coarse silt) and subsidiary modes are 0.3–0.7 μm (very fine clay to fine clay), 3–5 μm (coarse clay to very fine silt), 8–16 μm (fine silt) and 150–350 μm (fine sand to medium sand). Semidecomposed fine plant material is abundant and fine in‐situ roots are pervasive. Syngenetic ice wedges, cryostructures and microcryostructures record syngenetic freezing of the silt. An age model for silt deposition is constructed from 47 pre‐Holocene accelerator mass spectrometry (AMS) 14C ages, mostly from in‐situ roots and from three optically stimulated luminescence (OSL) ages of quartz sand grains. The 14C ages indicate that silt deposition extends from 19 000 ± 300 cal BP to 50 000 cal BP or beyond. The OSL ages range from 21.2 ± 1.9 ka near the top of the yedoma to 48.6 ± 2.9 ka near the bottom, broadly consistent with the 14C age model. Most of the yedoma silt in unit 4 at Duvanny Yar constitutes cryopedolith (sediment that has experienced incipient pedogenesis along with syngenetic freezing). Mineralised and humified organic remains dispersed within cryopedolith indicate incipient soil formation, but distinct soil horizons are absent. Five buried palaeosols and palaeosol ‘complexes’ are identified within cryopedolith on the basis of sedimentary and geochemical properties. Magnetic susceptibility, organic content, elemental concentrations and ratios tend to deviate from average values of these parameters at five levels in unit 4. The cryopedolith‐palaeosol sequence accreted incrementally upwards on a vegetated palaeo‐land surface with a relief of at least several metres, preserving syngenetic ground ice in the aggrading permafrost. Pollen spectra dated to between about 17 000 and 25 000 14C BP characteristically have frequencies of 20–60 per cent tree/shrub pollen (mainly Betula and Pinus) and 20–60 per cent graminoids, predominantly Poaceae, plus forbs, whereas spectra dated to about 30 000–33 000 14C BP have lower values of woody taxa (about 10%) and are dominated by graminoids (mainly Poaceae), forbs (particularly Caryophyllaceae and Asteraceae) and Selaginella rupestris. The latter are more typical of Last Glacial Maximum (LGM) samples reported elsewhere in Siberia, and the unusually high arboreal pollen values in the LGM yedoma at Duvanny Yar are attributed to long‐distance transport of pollen. Three hypotheses concerning the processes and environmental conditions of yedoma silt deposition at Duvanny Yar are tested. The alluvial‐lacustrine hypothesis and the polygenetic hypothesis are both discounted on sedimentary, palaeoenvironmental, geocryological and palaeoecological grounds. The loessal hypothesis provides the only reasonable explanation to account for the bulk of the unit 4 yedoma silt at this site. Supporting the loessal interpretation are sedimentological and geocryological similarities between the Duvanny Yar loess‐palaeosol sequence and cold‐climate loesses in central and northern Alaska, the Klondike (Yukon), western and central Siberia and northwest Europe. Differences between loess at Duvanny Yar and that in western and central Siberia and northwest Europe include the persistence of permafrost and the abundance of ground ice and fine in‐situ roots within the yedoma. Modern analogues of cold‐climate loess deposition are envisaged at a local scale in cold, humid climates where local entrainment and deposition of loess are generally restricted to large alluvial valleys containing rivers that are glacially sourced or drain areas containing Late Pleistocene glacial deposits, and thus glacially ground silt. The Duvanny Yar yedoma shares sedimentological and geocryological features with yedoma interpreted as ice‐rich loess or reworked loess facies at Itkillik (northern Alaska) and in the central Yakutian lowland, and with yedoma in the Laptev Sea region and the New Siberian Archipelago. It is therefore suggested that many lowland yedoma sections across Beringia are primarily of aeolian origin (or consist of reworked aeolian sediments), although other depositional processes (e.g. alluvial and colluvial) may account for some yedoma sequences in river valleys and mountains. A conceptual model of yedoma silt deposition at Duvanny Yar as cold‐climate loess in Marine Isotope Stage (MIS) 3 and MIS 2 envisages summer or autumn as the main season of loess deposition. In summer, the land surface was snow‐free, unfrozen and relatively dry, making it vulnerable to deflation. Graminoids, forbs and biological soil crust communities trapped and stabilised windblown sediments. Loess accretion resulted from semicontinuous deposition of fine background particles and episodic, discrete dust storms that deposited coarse silt. Winter was characterised by deep thermal contraction cracking beneath thin and dusty snow covers, and snow and frozen ground restricted deflation and sediment trapping by dead grasses. Sources of loess at Duvanny Yar potentially include: (1) sediments and weathered bedrock on uplands to the east, south and southwest of the Kolyma Lowland; (2) alluvium deposited by rivers draining these uplands; and (3) sediments exposed in the Khallerchin tundra to the north and on the emergent continental shelf of the East Siberian Sea. Glacially sourced tributaries of the palaeo‐Kolyma River contributed glacially ground silt into channel and/or floodplain deposits, and some of these were probably reworked by wind and deposited as loess in the Kolyma Lowland. The palaeoenvironmental reconstruction of the sedimentary sequence at Duvanny Yar is traced from MIS 6 to the late Holocene. It includes thermokarst activity associated with alas lake development in the Kazantsevo interglacial (MIS 5e), loess accumulation, pedogenesis and syngenetic permafrost development, possibly commencing in the Zyryan glacial (70 000–55 000 cal BP) and extending through the Karginsky interstadial (55 000–25 000 cal BP) and Sartan glacial (25 000–15 000 cal BP), cessation of yedoma silt deposition during the Lateglacial, renewed thermokarst activity in the early Holocene, and permafrost aggradation in the mid to late Holocene. Beringian coastlands from northeast Yakutia through the north Alaskan Coastal Plain to the Tuktoyaktuk Coastlands (Canada) were characterised by extensive aeolian activity (deflation, loess, sand dunes, sand sheets, sand wedges) during MIS 2. Siberian and Canadian high‐pressure cells coupled with a strengthened Aleutian low‐pressure cell would have created enhanced pressure gradient‐driven winds sufficient to entrain sediment on a regional scale. Summer winds are thought to have deflated sediment exposed on the East Siberian Sea shelf and deposited silt as a distal aeolian facies to the south. Additionally, stronger localised winds created by local downslope gravity flows (katabatic winds) may have entrained sediment. Local katabatic winds in summer may have transported silt generally northwards towards the Kolyma Lowland, particularly during times of extended upland glaciation in the North Anyuy Range to the east during the Zyryan (MIS 4) period, whereas winter winds carried limited amounts of silt generally southwards as a result of pressure gradient forces. The Duvanny Yar yedoma is part of a subcontinental‐scale region of Late Pleistocene cold‐climate loess. One end member, exemplified by the yedoma at Duvanny Yar, was loess rich in syngenetic ground ice (Beringian yedoma). The other, exemplified by loess in northwest Europe, was ice‐poor and subject to complete permafrost degradation at the end of the last ice age. These end members reflect a distinction between enduring cold continuous permafrost conditions leading to stacked ice‐rich transition zones and large syngenetic ice wedges in much of Beringia versus conditions oscillating between cold permafrost, warm permafrost and seasonal frost, leading to repeated permafrost thaw and small ice‐wedge pseudomorphs in northwest Europe. Copyright © 2015 John Wiley & Sons, Ltd.
Uncertainty about the geological processes that deposited syngenetically frozen ice‐rich silt ( yedoma ) across hundreds of thousands of square kilometres in central and northern Siberia fundamentally limits our understanding of the Pleistocene geology and palaeoecology of western Beringia, the sedimentary processes that led to sequestration of hundreds of Pg of carbon within permafrost and whether yedoma provides a globally significant record of ice‐age atmospheric conditions or just regional floodplain activity. Here, we test the hypotheses of aeolian versus waterlain deposition of yedoma silt, elucidate the palaeoenvironmental conditions during deposition and develop a conceptual model of silt deposition to clarify understanding of yedoma formation in northern circumpolar regions during the Late Pleistocene. This is based on a field study in 2009 of the Russian stratotype of the ‘Yedoma Suite’, at Duvanny Yar, in the lower Kolyma River, northern Yakutia, supplemented by observations that we have collected there and at other sites in the Kolyma Lowland since the 1970s. We reconstruct a cold‐climate loess region in northern Siberia that forms part of a vast Late Pleistocene permafrost zone extending from northwest Europe across northern Asia to northwest North America, and that was characterised by intense aeolian activity. Five litho‐ and cryostratigraphic units are identified in yedoma remnant 7E at Duvanny Yar, in ascending stratigraphic order: (1) massive silt, (2) peat, (3) stratified silt, (4) yedoma silt and (5) near‐surface silt. The yedoma silt of unit 4 dominates the stratigraphy and is at least 34 m thick. It is characterised by horizontal to gently undulating subtle colour bands but typically lacks primary sedimentary stratification. Texturally, the yedoma silt has mean values of 65 ± 7 per cent silt, 15 ± 8 per cent sand and 21 ± 4 per cent clay. Particle size distributions are bi‐ to polymodal, with a primary mode of about 41 μm (coarse silt) and subsidiary modes are 0.3–0.7 μm (very fine clay to fine clay), 3–5 μm (coarse clay to very fine silt), 8–16 μm (fine silt) and 150–350 μm (fine sand to medium sand). Semidecomposed fine plant material is abundant and fine in‐situ roots are pervasive. Syngenetic ice wedges, cryostructures and microcryostructures record syngenetic freezing of the silt. An age model for silt deposition is constructed from 47 pre‐Holocene accelerator mass spectrometry (AMS) 14 C ages, mostly from in‐situ roots and from three optically stimulated luminescence (OSL) ages of quartz sand grains. The 14 C ages indicate that silt deposition extends from 19 000 ± 300 cal BP to 50 000 cal BP or beyond. The OSL ages range from 21.2 ± 1.9 ka near the top of the yedoma to 48.6 ± 2.9 ka near the bottom, broadly consistent with the 14 C age model. Most of the yedoma silt in unit 4 at Duvanny Yar constitutes cryopedolith (sediment that has experienced incipient pedogenesis along with syngenetic freezing). Mineralised and humified organic remains dispersed within cryopedolith indicate incipient soil formation, but distinct soil horizons are absent. Five buried palaeosols and palaeosol ‘complexes’ are identified within cryopedolith on the basis of sedimentary and geochemical properties. Magnetic susceptibility, organic content, elemental concentrations and ratios tend to deviate from average values of these parameters at five levels in unit 4. The cryopedolith‐palaeosol sequence accreted incrementally upwards on a vegetated palaeo‐land surface with a relief of at least several metres, preserving syngenetic ground ice in the aggrading permafrost. Pollen spectra dated to between about 17 000 and 25 000 14 C BP characteristically have frequencies of 20–60 per cent tree/shrub pollen (mainly Betula and Pinus ) and 20–60 per cent graminoids, predominantly Poaceae, plus forbs, whereas spectra dated to about 30 000–33 000 14 C BP have lower values of woody taxa (about 10%) and are dominated by graminoids (mainly Poaceae), forbs (particularly Caryophyllaceae and Asteraceae) and Selaginella rupestris . The latter are more typical of Last Glacial Maximum (LGM) samples reported elsewhere in Siberia, and the unusually high arboreal pollen values in the LGM yedoma at Duvanny Yar are attributed to long‐distance transport of pollen. Three hypotheses concerning the processes and environmental conditions of yedoma silt deposition at Duvanny Yar are tested. The alluvial‐lacustrine hypothesis and the polygenetic hypothesis are both discounted on sedimentary, palaeoenvironmental, geocryological and palaeoecological grounds. The loessal hypothesis provides the only reasonable explanation to account for the bulk of the unit 4 yedoma silt at this site. Supporting the loessal interpretation are sedimentological and geocryological similarities between the Duvanny Yar loess‐palaeosol sequence and cold‐climate loesses in central and northern Alaska, the Klondike (Yukon), western and central Siberia and northwest Europe. Differences between loess at Duvanny Yar and that in western and central Siberia and northwest Europe include the persistence of permafrost and the abundance of ground ice and fine in‐situ roots within the yedoma. Modern analogues of cold‐climate loess deposition are envisaged at a local scale in cold, humid climates where local entrainment and deposition of loess are generally restricted to large alluvial valleys containing rivers that are glacially sourced or drain areas containing Late Pleistocene glacial deposits, and thus glacially ground silt. The Duvanny Yar yedoma shares sedimentological and geocryological features with yedoma interpreted as ice‐rich loess or reworked loess facies at Itkillik (northern Alaska) and in the central Yakutian lowland, and with yedoma in the Laptev Sea region and the New Siberian Archipelago. It is therefore suggested that many lowland yedoma sections across Beringia are primarily of aeolian origin (or consist of reworked aeolian sediments), although other depositional processes (e.g. alluvial and colluvial) may account for some yedoma sequences in river valleys and mountains. A conceptual model of yedoma silt deposition at Duvanny Yar as cold‐climate loess in Marine Isotope Stage (MIS) 3 and MIS 2 envisages summer or autumn as the main season of loess deposition. In summer, the land surface was snow‐free, unfrozen and relatively dry, making it vulnerable to deflation. Graminoids, forbs and biological soil crust communities trapped and stabilised windblown sediments. Loess accretion resulted from semicontinuous deposition of fine background particles and episodic, discrete dust storms that deposited coarse silt. Winter was characterised by deep thermal contraction cracking beneath thin and dusty snow covers, and snow and frozen ground restricted deflation and sediment trapping by dead grasses. Sources of loess at Duvanny Yar potentially include: (1) sediments and weathered bedrock on uplands to the east, south and southwest of the Kolyma Lowland; (2) alluvium deposited by rivers draining these uplands; and (3) sediments exposed in the Khallerchin tundra to the north and on the emergent continental shelf of the East Siberian Sea. Glacially sourced tributaries of the palaeo‐Kolyma River contributed glacially ground silt into channel and/or floodplain deposits, and some of these were probably reworked by wind and deposited as loess in the Kolyma Lowland. The palaeoenvironmental reconstruction of the sedimentary sequence at Duvanny Yar is traced from MIS 6 to the late Holocene. It includes thermokarst activity associated with alas lake development in the Kazantsevo interglacial (MIS 5e), loess accumulation, pedogenesis and syngenetic permafrost development, possibly commencing in the Zyryan glacial (70 000–55 000 cal BP) and extending through the Karginsky interstadial (55 000–25 000 cal BP) and Sartan glacial (25 000–15 000 cal BP), cessation of yedoma silt deposition during the Lateglacial, renewed thermokarst activity in the early Holocene, and permafrost aggradation in the mid to late Holocene. Beringian coastlands from northeast Yakutia through the north Alaskan Coastal Plain to the Tuktoyaktuk Coastlands (Canada) were characterised by extensive aeolian activity (deflation, loess, sand dunes, sand sheets, sand wedges) during MIS 2. Siberian and Canadian high‐pressure cells coupled with a strengthened Aleutian low‐pressure cell would have created enhanced pressure gradient‐driven winds sufficient to entrain sediment on a regional scale. Summer winds are thought to have deflated sediment exposed on the East Siberian Sea shelf and deposited silt as a distal aeolian facies to the south. Additionally, stronger localised winds created by local downslope gravity flows (katabatic winds) may have entrained sediment. Local katabatic winds in summer may have transported silt generally northwards towards the Kolyma Lowland, particularly during times of extended upland glaciation in the North Anyuy Range to the east during the Zyryan (MIS 4) period, whereas winter winds carried limited amounts of silt generally southwards as a result of pressure gradient forces. The Duvanny Yar yedoma is part of a subcontinental‐scale region of Late Pleistocene cold‐climate loess. One end member, exemplified by the yedoma at Duvanny Yar, was loess rich in syngenetic ground ice (Beringian yedoma). The other, exemplified by loess in northwest Europe, was ice‐poor and subject to complete permafrost degradation at the end of the last ice age. These end members reflect a distinction between enduring cold continuous permafrost conditions leading to stacked ice‐rich transition zones and large syngenetic ice wedges in much of Beringia versus conditions oscillating between cold permafrost, warm permafrost and seasonal frost, leading to repeated permafrost thaw and small ice‐wedge pseudomorphs in northwest Europe. Copyright © 2015 John Wiley & Sons, Ltd.
Author Edwards, Mary E.
Lozhkin, Anatoly V.
Haile, James
Lupachev, Alexei V.
Bateman, Mark D.
Danilov, Petr P.
Tikhonov, Alexei
Murton, Della K.
Ghaleb, Bassam
Goslar, Tomasz
Shur, Yuri
Vasil'chuk, Alla C.
Vasil'chuk, Yurij K.
Gubin, Stanislav V.
Wolfe, Stephen A.
Murton, Julian B.
Kanevskiy, Mikhail
Savvinov, Grigoriy N.
Author_xml – sequence: 1
  givenname: Julian B.
  surname: Murton
  fullname: Murton, Julian B.
  email: Correspondence to: J. B. Murton, Permafrost Laboratory, Department of Geography, University of Sussex, Brighton BN1 9QJ, UK., j.b.murton@sussex.ac.uk
  organization: Permafrost Laboratory, Department of Geography, University of Sussex, Brighton, UK
– sequence: 2
  givenname: Tomasz
  surname: Goslar
  fullname: Goslar, Tomasz
  organization: Adam Mickiewicz University, Faculty of Physics, Poznan, Poland
– sequence: 3
  givenname: Mary E.
  surname: Edwards
  fullname: Edwards, Mary E.
  organization: School of Geography, University of Southampton, Southampton, UK
– sequence: 4
  givenname: Mark D.
  surname: Bateman
  fullname: Bateman, Mark D.
  organization: Department of Geography, University of Sheffield, Sheffield, UK
– sequence: 5
  givenname: Petr P.
  surname: Danilov
  fullname: Danilov, Petr P.
  organization: Science Research Institute of Applied Ecology of the North of North-East Federal University, Yakutsk, Russia
– sequence: 6
  givenname: Grigoriy N.
  surname: Savvinov
  fullname: Savvinov, Grigoriy N.
  organization: Science Research Institute of Applied Ecology of the North of North-East Federal University, Yakutsk, Russia
– sequence: 7
  givenname: Stanislav V.
  surname: Gubin
  fullname: Gubin, Stanislav V.
  organization: Institute of Physicochemical and Biological Problems in Soil Sciences, Russian Academy of Sciences, Moscow, Russia
– sequence: 8
  givenname: Bassam
  surname: Ghaleb
  fullname: Ghaleb, Bassam
  organization: GEOTOP-UQAM-McGILL, Université du Québec à Montréal, QC, Montreal, Canada
– sequence: 9
  givenname: James
  surname: Haile
  fullname: Haile, James
  organization: School of Biological Sciences, Murdoch University, Murdoch, WA, Australia
– sequence: 10
  givenname: Mikhail
  surname: Kanevskiy
  fullname: Kanevskiy, Mikhail
  organization: Institute of Northern Engineering, University of Alaska Fairbanks, AK, Fairbanks, USA
– sequence: 11
  givenname: Anatoly V.
  surname: Lozhkin
  fullname: Lozhkin, Anatoly V.
  organization: North East Interdisciplinary Science Research Institute, Far East Branch Russian Academy of Sciences, Magadan, Russia
– sequence: 12
  givenname: Alexei V.
  surname: Lupachev
  fullname: Lupachev, Alexei V.
  organization: Institute of Physicochemical and Biological Problems in Soil Sciences, Russian Academy of Sciences, Moscow, Russia
– sequence: 13
  givenname: Della K.
  surname: Murton
  fullname: Murton, Della K.
  organization: Department of Geography, University of Cambridge, Cambridge, UK
– sequence: 14
  givenname: Yuri
  surname: Shur
  fullname: Shur, Yuri
  organization: Institute of Northern Engineering, University of Alaska Fairbanks, AK, Fairbanks, USA
– sequence: 15
  givenname: Alexei
  surname: Tikhonov
  fullname: Tikhonov, Alexei
  organization: Zoological Institute, Russian Academy of Sciences, Universitetskaya nab.1, Saint-Petersburg, Russia
– sequence: 16
  givenname: Alla C.
  surname: Vasil'chuk
  fullname: Vasil'chuk, Alla C.
  organization: Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
– sequence: 17
  givenname: Yurij K.
  surname: Vasil'chuk
  fullname: Vasil'chuk, Yurij K.
  organization: Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
– sequence: 18
  givenname: Stephen A.
  surname: Wolfe
  fullname: Wolfe, Stephen A.
  organization: Geological Survey of Canada, Natural Resources Canada, ON, Ottawa, Canada
BookMark eNp1kVFrFDEQxxepYFsLfoSALxW6Z7KbTXYf9artwVGvVTn6FOa2E0zNJmuSq703P7o5TxSLfZqQ_ObHZP4HxZ7zDoviBaMTRmn1ehzHCWt5_aTYZ7TrStbUdG975k0pJKfPioMYbymlbc34fvFjARbQo7szwbsBXQJLZi5hGAMmSMY74jW5xhs_APlobCLHsx7J1A-jxftX5BRHH80vDmK-tjfl1JoBEpK5xxhPyOn6DpzbkGsIJ-TCh_QFIabsWmEw8Lx4qsFGPPpdD4vP7999mp6X8w9ns-mbeQm8YnUJlRayFpArtlJoRkXTVlLzql_1Qre04wIp1LppNFvlB6krAMmEWEkUgPVhcbzzjsF_W2NMajCxR2vBoV9HxSSTPEu6NqMvH6C3fh1cni5TtO0y2XV_hX3wMQbUagz532GjGFXbKFSOQm2jyOjkAdqb3W5TAGP_11DuGr4bi5tHxWqxWPzLm5jw_g8P4avKW5ONWl6cqSvOLpfy7bla1j8Bu5WrjA
CODEN PEPPED
CitedBy_id crossref_primary_10_1016_j_quaint_2020_04_015
crossref_primary_10_3390_v15020564
crossref_primary_10_1017_qua_2016_15
crossref_primary_10_1002_ppp_2052
crossref_primary_10_1134_S0031030120080110
crossref_primary_10_1080_14702541_2016_1156149
crossref_primary_10_1134_S1064229323602536
crossref_primary_10_5194_bg_14_1261_2017
crossref_primary_10_3934_environsci_2019_1_14
crossref_primary_10_1029_2022EF002779
crossref_primary_10_1111_gcb_70071
crossref_primary_10_3389_feart_2021_704141
crossref_primary_10_1016_j_palaeo_2017_08_006
crossref_primary_10_3389_feart_2021_703339
crossref_primary_10_1016_j_grj_2017_02_004
crossref_primary_10_1134_S1064229322080099
crossref_primary_10_1111_bor_12476
crossref_primary_10_5194_soil_7_347_2021
crossref_primary_10_1002_ppp_1933
crossref_primary_10_1002_ppp_2105
crossref_primary_10_1016_j_geomorph_2016_09_034
crossref_primary_10_1002_ppp_2102
crossref_primary_10_1002_ppp_2185
crossref_primary_10_1080_01431161_2018_1519281
crossref_primary_10_3390_atmos8060105
crossref_primary_10_1371_journal_pgen_1010798
crossref_primary_10_1029_2018JG004735
crossref_primary_10_3389_feart_2021_727315
crossref_primary_10_7256_2453_8922_2023_4_68845
crossref_primary_10_1017_qua_2021_27
crossref_primary_10_1016_j_earscirev_2024_104782
crossref_primary_10_1017_qua_2024_58
crossref_primary_10_3389_feart_2020_528632
crossref_primary_10_1016_j_geoderma_2023_116456
crossref_primary_10_1038_s41467_017_02421_3
crossref_primary_10_1016_j_earscirev_2019_102947
crossref_primary_10_3390_rs13020178
crossref_primary_10_1038_ngeo2795
crossref_primary_10_1016_j_quascirev_2018_01_002
crossref_primary_10_5194_cp_15_1443_2019
crossref_primary_10_5194_gmd_14_521_2021
crossref_primary_10_3389_feart_2022_741932
crossref_primary_10_1002_ppp_1912
crossref_primary_10_1016_j_sedgeo_2016_01_018
crossref_primary_10_1016_j_quaint_2017_11_048
crossref_primary_10_1134_S0869593822050070
crossref_primary_10_3799_dqkx_2024_075
crossref_primary_10_3390_geosciences7020024
crossref_primary_10_1016_j_quascirev_2019_106073
crossref_primary_10_3389_feart_2021_703304
crossref_primary_10_3897_BDJ_8_e51586
crossref_primary_10_1007_s10661_022_10270_x
crossref_primary_10_1080_1088937X_2019_1648581
crossref_primary_10_1111_bor_12431
crossref_primary_10_1111_sed_13037
crossref_primary_10_1016_j_quaint_2021_01_005
crossref_primary_10_1002_ldr_4866
crossref_primary_10_3389_feart_2021_718904
crossref_primary_10_1002_ppp_2096
crossref_primary_10_1134_S1064229323602615
crossref_primary_10_1144_EGSP28_5
crossref_primary_10_1029_2020GL092087
crossref_primary_10_5194_bg_15_953_2018
crossref_primary_10_1016_j_geomorph_2015_10_023
crossref_primary_10_1016_j_pgeola_2018_05_004
crossref_primary_10_1111_ter_12642
crossref_primary_10_1111_bor_12286
crossref_primary_10_7256_2453_8922_2021_2_36145
crossref_primary_10_55959_MSU0137_0944_17_2023_78_4_29_43
crossref_primary_10_1134_S1064229320100087
crossref_primary_10_1016_j_soilbio_2017_10_001
crossref_primary_10_3389_feart_2021_680565
crossref_primary_10_1111_bor_12569
crossref_primary_10_5194_tc_14_4525_2020
crossref_primary_10_1017_qua_2018_3
crossref_primary_10_3389_feart_2021_744775
crossref_primary_10_31857_S2949178924020018
crossref_primary_10_1038_s41598_024_67947_1
crossref_primary_10_1080_14614103_2021_1975252
crossref_primary_10_3103_S0145875218010131
crossref_primary_10_1002_ppp_2233
crossref_primary_10_1002_ppp_2194
crossref_primary_10_1002_ppp_2230
crossref_primary_10_1134_S0869593820030065
crossref_primary_10_1002_ppp_2191
crossref_primary_10_1016_j_micron_2021_103067
crossref_primary_10_1139_as_2021_0049
crossref_primary_10_1016_j_earscirev_2017_07_007
crossref_primary_10_5194_cp_13_795_2017
crossref_primary_10_1038_s41467_024_50346_5
crossref_primary_10_1002_ppp_2128
crossref_primary_10_1016_j_geoderma_2017_01_028
crossref_primary_10_1002_ppp_2243
crossref_primary_10_1186_s40645_020_00345_z
crossref_primary_10_3103_S014768742304004X
crossref_primary_10_1016_j_geomorph_2017_11_003
crossref_primary_10_1016_j_earscirev_2020_103496
crossref_primary_10_1016_j_geomorph_2024_109108
Cites_doi 10.1016/B978-0-444-53643-3.00106-0
10.1191/0309133303pp365ra
10.1130/G21489.1
10.1002/esp.3290060314
10.1111/j.1365-3091.1996.tb02023.x
10.3133/pp1262
10.1016/j.quageo.2009.03.007
10.1016/S0277-3791(00)00102-5
10.1175/2007JHM845.1
10.1306/D4268298-2B26-11D7-8648000102C1865D
10.5194/cp-9-1211-2013
10.1016/S0341-8162(03)00109-7
10.1002/ppp.1782
10.1016/S1350-4487(00)00104-9
10.1017/S0016756800065298
10.1139/e17-106
10.1002/esp.3290090102
10.1111/j.1365-3091.2010.01189.x
10.1139/e17-054
10.1139/e17‐015
10.1016/j.quaint.2006.12.006
10.1016/j.quascirev.2010.11.024
10.1002/(SICI)1099-1417(199609/10)11:5<389::AID-JQS260>3.0.CO;2-K
10.1139/e07-015
10.1016/j.quascirev.2006.07.002
10.1002/jqs.1258
10.1002/esp.3290060312
10.1016/j.quaint.2005.12.003
10.1139/e78-114
10.1126/science.211.4480.381
10.1016/S0033-5894(03)00037-1
10.1111/j.1751-8369.1982.tb00479.x
10.1016/j.sedgeo.2003.12.007
10.2307/2937050
10.1111/j.1365-2486.2006.01259.x
10.4000/quaternaire.171
10.1016/B978-0-444-53447-7.00063-5
10.1130/0016-7606(1988)100<0948:TFPTAL>2.3.CO;2
10.1029/2007GC001938
10.1134/S1064229308060021
10.1016/j.quascirev.2005.07.023
10.1073/pnas.1118386109
10.1016/S0012-8252(01)00045-9
10.1111/bor.12070
10.1017/S0033822200034202
10.1002/gj.1088
10.1111/j.1365-3091.2006.00783.x
10.1016/S0277-3791(00)00129-3
10.1016/B978-0-444-53643-3.00186-2
10.1080/10889379509377563
10.1130/GSATG54A.1
10.1016/j.yqres.2006.02.008
10.1029/2006GL027484
10.1002/ppp.3430010304
10.1016/j.quascirev.2010.04.019
10.1016/j.palaeo.2006.06.005
10.1139/e86‐055
10.1016/j.earscirev.2013.03.001
10.1002/ppp.3430010104
10.4095/226434
10.1002/ppp.3430010207
10.1016/S0921-8181(00)00060-6
10.3133/ofr20131078
10.1002/jqs.750
10.1002/esp.3290060313
10.1029/2010GL046573
10.1016/S1350-4487(03)00053-2
10.1029/2011GB004104
10.5194/cp-3-261-2007
10.1130/GSAB-54-1433
10.1016/j.quaint.2011.07.034
10.1029/2002JD002558
10.1139/cjes-37-6-849
10.1111/j.1502-3885.2009.00116.x
10.1016/B978-0-444-53643-3.00117-5
10.1046/j.1365-246X.2003.01829.x
10.1029/2010JG001634
10.1016/j.quascirev.2006.12.006
10.1016/j.nimb.2004.04.005
10.2136/sssabookser5.1.2ed
10.1002/ppp.3430040105
10.1016/S0341-8162(96)00075-6
10.1038/nature04604
10.1016/j.quascirev.2013.01.014
10.1016/S0277-3791(03)00182-3
10.1002/esp.3290090606
10.1002/jqs.1234
10.1016/j.quaint.2010.11.009
10.1016/j.quaint.2011.01.013
10.1016/j.quascirev.2014.03.009.
10.1029/2011JG001647
10.1016/B0-44-452747-8/00161-7
10.1111/j.1502-3885.2012.00299.x
10.1016/j.quascirev.2010.12.022
10.1016/S0277-3791(00)00127-X
10.1111/j.0435-3676.2000.00138.x
10.1016/S0277-3791(00)00099-8
10.1130/DNAG-GNA-L.459
10.1016/j.quascirev.2009.04.016
10.1016/B978-0-12-355860-2.50009-0
10.1007/s10933-006-9018-5
10.1016/S0277-3791(02)00005-7
10.1130/0016-7606(1966)77[1089:EFAERW]2.0.CO;2
10.1016/j.quascirev.2010.11.010
10.1016/j.quaint.2010.08.002
10.1002/ppp.647
10.1002/ppp.1764
10.2307/1551414
10.1080/10889379009377440
10.1017/S0033822200019755
10.1038/nature12921
10.1002/(SICI)1099-1530(199804/06)9:23.0.CO;2-T
10.1016/B978-0-12-374739-6.00312-2
10.1134/S1064229312010115
10.3133/ofr72326
10.1002/ppp.620
10.1016/1350-4487(94)90086-8
10.1002/ppp.674
10.1016/B978-0-12-374739-6.00206-2
10.1016/j.quascirev.2004.09.007
10.1016/B978-0-12-355860-2.50008-9
10.1016/0033-5894(90)90040-R
10.1016/B978-0-444-53643-3.00097-2
10.1002/ppp.1779
10.1029/2006GC001284
10.3133/pp862
10.1002/ppp.486
10.4095/101584
10.1016/j.yqres.2010.12.003
10.1016/S0277-3791(00)00134-7
10.1016/j.quascirev.2010.12.026
10.1130/G24940A.1
10.1038/231382a0
10.1016/j.aeolia.2013.06.001
10.1002/jqs.3390080302
10.1086/625877
10.1016/0016-7061(96)00007-9
10.1002/ppp.518
10.1134/S0869593806050078
10.1002/jqs.1283
10.1017/S0033822200041199
10.1016/S0277-3791(99)00045-1
10.1016/j.quascirev.2011.07.020
10.1016/1359-0189(90)90035-V
10.1139/e17-116
10.1657/1523-0430(07-022)[MUHS]2.0.CO;2
10.1016/S0277-3791(00)00128-1
10.1016/S0012-821X(97)00218-5
10.1134/S0026261708030156
10.1016/j.geoderma.2007.11.012
10.1002/esp.3315
10.1111/j.1502-3885.1999.tb00241.x
10.1016/j.quaint.2008.12.012
10.1016/j.agrformet.2008.06.018
10.1126/science.1128908
10.1016/j.yqres.2005.01.003
10.1016/j.palaeo.2005.06.004
10.1006/qres.1995.1002
10.1111/j.1365-2699.2004.01203.x
10.1029/2002JD002559
10.1002/(SICI)1099-1417(1998090)13:5<471::AID-JQS401>3.0.CO;2-T
10.1002/esp.3290130206
10.1139/e05-115
10.1002/ppp.558
10.1016/B978-0-444-53643-3.00116-3
10.1016/j.yqres.2004.02.003
10.1002/ppp.3430020304
10.1016/S0277-3791(03)00167-7
10.3133/pp835
10.1006/qres.1999.2097
10.1177/030913338400800202
10.1016/j.geoderma.2012.08.001
10.1016/j.aeolia.2011.08.002
10.1016/j.quaint.2010.04.004
10.1007/978-1-4020-2121-3_19
10.1006/qres.2001.2274
10.4095/127955
10.1002/(SICI)1099-1417(1998090)13:5<391::AID-JQS397>3.0.CO;2-6
10.1016/j.quascirev.2009.08.001
10.1006/qres.1995.1016
10.1016/S0277-3791(02)00038-0
10.1016/j.aeolia.2012.08.001
10.1007/978-90-481-2642-2
10.1016/j.quascirev.2011.01.021
10.1016/B978-0-12-355860-2.50037-5
10.1016/S0037-0738(02)00082-9
10.1139/B06-026
10.1130/0016-7606(1955)66[699:OOTUSN]2.0.CO;2
10.1016/j.earscirev.2009.12.001
10.1007/978-3-540-69371-0_13
10.1016/j.quascirev.2011.02.010
10.1016/j.earscirev.2010.04.002
10.1134/S1064229310110062
10.1046/j.1365-3091.1997.d01-38.x
10.1002/ppp.416.
10.1016/j.geomorph.2010.04.024
10.1086/622281
10.1002/esp.3290020204
10.14430/arctic1191
10.1016/B978-0-444-53643-3.00145-X
10.1007/s00254-006-0432-9
10.1002/esp.3290140406
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7QH
7TG
7UA
C1K
F1W
H96
KL.
L.G
DOI 10.1002/ppp.1843
DatabaseName Istex
CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1099-1530
EndPage 288
ExternalDocumentID 3795385681
10_1002_ppp_1843
PPP1843
ark_67375_WNG_R41QW7BH_W
Genre article
GeographicLocations Asia
Russia, Sakha, Kolyma R
Russia, Yakutia
INW, Russia, Siberia
Beringia
North America
ANE, Europe
INE, USA, Alaska
GeographicLocations_xml – name: Asia
– name: Beringia
– name: Russia, Sakha, Kolyma R
– name: INE, USA, Alaska
– name: Russia, Yakutia
– name: North America
– name: INW, Russia, Siberia
– name: ANE, Europe
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WMRSR
WOHZO
WQJ
WRC
WSUWO
WWD
WXSBR
XG1
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QH
7TG
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-a4213-a2f6736aa2fe876f1065827f42cbc6f80946e0a3f55f1b27f7f2aa7166b7e6ae3
IEDL.DBID DR2
ISSN 1045-6740
IngestDate Thu Jul 10 22:04:49 EDT 2025
Sat Jul 05 06:40:58 EDT 2025
Tue Jul 01 01:50:12 EDT 2025
Thu Apr 24 23:13:06 EDT 2025
Wed Jan 22 17:05:15 EST 2025
Wed Oct 30 09:54:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4213-a2f6736aa2fe876f1065827f42cbc6f80946e0a3f55f1b27f7f2aa7166b7e6ae3
Notes ArticleID:PPP1843
istex:E1EAC3142B5B33B87B95FB9282B373E31D30E6DE
ark:/67375/WNG-R41QW7BH-W
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppp.1843
PQID 1708971799
PQPubID 1036355
PageCount 81
ParticipantIDs proquest_miscellaneous_1717494698
proquest_journals_1708971799
crossref_primary_10_1002_ppp_1843
crossref_citationtrail_10_1002_ppp_1843
wiley_primary_10_1002_ppp_1843_PPP1843
istex_primary_ark_67375_WNG_R41QW7BH_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2015
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Permafrost and periglacial processes
PublicationTitleAlternate Permafrost and Periglac. Process
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Arinushkina EV. 1970. Guidelines for Chemical Analysis of Soils. Moscow State University Press: Moscow.
Huijzer AS, Vandenberghe J. 1998. Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe. Journal of Quaternary Science 13: 391-417. DOI:10.1002/(SICI)1099-1417(1998090)13:5<391::AID-JQS397>3.0.CO;2-6.
Gubin SV, Lupachev AV. 2008. Soil formation and the underlying permafrost. Eurasian Soil Science 41: 574-585. DOI:10.1134/S1064229308060021.
Murton JB, French HM. 1993. Thaw modification of frost-fissure wedges, Richards Island, Pleistocene Mackenzie Delta, western Canadian Arctic. Journal of Quaternary Science 8: 185-196. DOI:10.1002/jqs.3390080302.
Marsh J, Nouvet S, Sanborn P, Coxson D. 2006. Composition and function of biological soil crust communities along topographic gradients in grasslands of central interior British Columbia (Chilcotin) and southwestern Yukon (Kluane). Canadian Journal of Botany 84: 717-736. DOI:10.1139/B06-026.
Sanborn PT, Smith CAS, Froese DG, Zazula GD, Westgate JA. 2006. Full-glacial paleosols in perennially frozen loess sequences, Klondike goldfields, Yukon Territory, Canada. Quaternary Research 66: 147-157. DOI:10.1016/j.yqres.2006.02.008.
Carter LD. 1981. A Pleistocene sand sea on the Alaskan Arctic Coastal Plain. Science 212: 381-383. DOI:10.1126/science.211.4480.381.
Konishchev VN. 2009. Climate warming and permafrost. Moscow State University. Geography-Environment-Sustainability 1: 4-19.
Lozhkin AV, Anderson PM, Matrosova TV, Minyuk PS. 2006. The pollen record from El'gygytgyn Lake: Implications for vegetation and climate histories of northern Chukotka since the late Middle Pleistocene. Journal of Paleolimnology 37: 135-153. DOI:10.1007/s10933-006-9018-5.
Murton JB. 1996a. Thermokarst-lake-basin sediments, Tuktoyaktuk Coastlands, Western Arctic Canada. Sedimentology 43: 737-760. DOI:10.1111/j.1365-3091.1996.tb02023.x.
Meyer H, Dereviagin A, Siegert C, Schirrmeister L, Hubberten HW. 2002b. Palaeoclimate reconstruction on Big Lyakhovsky Island, North Siberia-hydrogen and oxygen isotopes in ice wedges. Permafrost and Periglacial Processes 13: 91-105. DOI:10.1002/ppp.416.
Péwé TL. 1951. An observation of wind-blown silt. Journal of Geology 59: 399-401.
Konert M, Vandenberghe J. 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44: 523-535. DOI:10.1046/j.1365-3091.1997.d01-38.x.
Lopatina DA, Zanina OG. 2006. Paleobotanical analysis of materials from fossil gopher burrows and Upper Pleistocene host deposits, the Kolyma Lowland lower reaches. Stratigraphy and Geological Correlation 14: 549-560. DOI:10.1134/S0869593806050078.
Zech M, Zech R, Zech W, Glaser B, Brodowski S, Amelung W. 2008. Characterisation and palaeoclimate of a loess-like permafrost palaeosol sequence in NE Siberia. Geoderma 143: 281-295. DOI:10.1016/j.geoderma.2007.11.012.
Laxton NF, Burn CR, Smith CAS. 1996. Productivity of loessal grasslands in the Kluane Lake region, Yukon Territory, and the Beringian "production paradox. Arctic 49: 129-140. DOI: 10.14430/arctic1191
McCulloch DS, Hopkins DM. 1966. Evidence for an early recent warm interval in northwestern Alaska. Geological Society of America Bulletin 77: 1089-1108. DOI:10.1130/0016-7606(1966)77[1089:EFAERW]2.0.CO;2.
Velichko AA, Timireva SN, Kremenetski KV, MacDonald GM, Smith LC. 2011. West Siberian Plain as a late glacial desert. Quaternary International 237: 45-53. DOI:10.1016/j.quaint.2011.01.013.
Majhi I, Yang D. 2008. Streamflow characteristics and changes in Kolyma Basin in Siberia. Journal of Hydrometeorology 9: 267-279. DOI:10.1175/2007JHM845.1.
Popov AI. 1953. Lithogenesis of alluvial lowlands in the cold climatic conditions. Izvestiya (Transactions) of the USSR Academy of Sciences, Geography 2: 29-41 (in Russian).
Shur Y, French HM, Bray MT, Anderson DA. 2004. Syngenetic permafrost growth: cryostratigraphic observations from the CRREL Tunnel near Fairbanks, Alaska. Permafrost and Periglacial Processes 15: 339-347. DOI:10.1002/ppp.486.
Zanina OG, Gubin SV, Kuzmina SA, Maximovich SV, Lopatina DA. 2011. Late-Pleistocene (MIS 3-2) palaeoenvironments as recorded by sediments, palaeosols, and ground-squirrel nests at Duvanny Yar, Kolyma lowland, northeast Siberia. Quaternary Science Reviews 30: 2107-2123. DOI:10.1016/j.quascirev.2011.01.021.
Hao Q, Oldfield F, Bloemendal J, Guo Z. 2008. Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the past 22 m.y. Geology 36: 727-730. DOI:10.1130/G24940A.1.
Bateman MD, Murton JB, Boulter CB. 2010. The source of De variability in periglacial sand wedges: Depositional processes versus measurement issues. Quaternary Geochronology 5: 250-256. DOI:10.1016/j.quageo.2009.03.007.
van Everdingen RO (ed). 1998, revised May 2005. Multi-language Glossary of Permafrost and Related Ground-ice Terms. National Snow and Ice Data Center/World Data Center for Glaciology: Boulder, Colorado.
Frechen M, Kehl M, Rolf C, Sarvati R, Skowronek A. 2009. Loess chronology of the Caspian Lowland in northern Iran. Quaternary International 198: 220-233. DOI:10.1016/j.quaint.2008.12.012.
Lupachev AV, Gubin SV. 2012. Suprapermafrost organic-accumulative horizons in the tundra cryozems of northern Yakutia. Eurasian Soil Science 45: 45-55. DOI:10.1134/S1064229312010115.
Mücher HJ, De Ploey J. 1984. Formation of afterflow silt loam deposits and structural modification due to drying under warm conditions: an experimental and micromorphological approach. Earth Surface Processes and Landforms 9: 523-531. DOI:10.1002/esp.3290090606.
Vasil'chuk YK. 1992. Oxygen isotope composition of ground ice (application to paleogeocryological reconstructions). Theoretical Problems Department, Russian Academy of Sciences and Geological Faculty of Moscow University, Research Institute of Engineering Site Investigations: Moscow, Vol. 2: 93-96 (in Russian with English contents section).
Vasil'chuk YK. 2005. Heterochroneity and heterogeneity of the Duvanny Yar Edoma. Doklady Earth Sciences 402: 568-573.
Gallet S, Jahn B, Van Vliet-Lanoë B, Dia A, Rossello EA. 1998. Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth and Planetary Science Letters 156: 157-172. DOI:10.1016/S0012-821X(97)00218-5.
Romanovskii NN. 1993. Fundamentals of Cryogenesis of Lithosphere. Moscow University Press: Moscow (in Russian).
Wang T, Ta WQ, Liu LC. 2007. Dust emission from desertified lands in the Heihe River Basin, Northwest China. Environmental Geology 51: 1341-1347. DOI:10.1007/s00254-006-0432-9.
Vasil'chuk AC, Kim J-C, Vasil'chuk YK. 2005. AMS 14C dating of pollen concentrate from Late Pleistocene ice wedges from the Bison and Seyaha sites in Siberia. Radiocarbon 47: 243-256.
Gale SJ, Hoare PG. 1991. Quaternary Sediments. Belhaven: New York.
Muhs DR, Budahn JR, McGeehin JP, Bettis EA III, Skipp G, Paces JB, Wheeler EA. 2013. Loess origin, transport, and deposition over the past 10,000 years, Wrangell-St. Elias National Park, Alaska. Aeolian Research 11: 85-99. DOI:10.1016/j.aeolia.2013.06.001.
Rybakova NO. 1990. Changes in the vegetation cover and climate in the Kolyma lowlands in late-Quaternary time. Polar Geography 14: 279-286. DOI:10.1080/10889379009377440.
Stakhov VL, Gubin SV, Maksimovich SV, Rebrikov DV, Savilova AM, Kochkina GA, Ozerskaya SM, Ivanushkina NE, Vorobyova EA. 2008. Microbial communities of ancient seeds derived from permanently frozen Pleistocene deposits. Microbiology 77: 348-355. DOI:10.1134/S0026261708030156.
Bateman MD, Catt JA. 1996. An absolute chronology for the raised beach deposits at Sewerby, E. Yorkshire, UK. Journal of Quaternary Science 11: 389-395. DOI:10.1002/(SICI)1099-1417(199609/10)11:5<389::AID-JQS260>3.0.CO;2-K.
Kaplina TN, Giterman RYe, Lakhtina OV, Abrashov BA, Sher AV. 1978. Duvanny Yar, a key section of upper Pleistocene sediments of the Kolyma lowland. Bulletin of the Commission of the USSR Academy of Sciences for Studying the Quaternary 48: 49-65 (in Russian). Translation 1863194. Geological Survey of Canada: Ottawa.
Gubin SV, Veremeeva AA. 2010. Parent materials enriched in organic matter in the northeast of Russia. Eurasian Soil Science 43: 1238-1243. DOI:10.1134/S1064229310110062.
Kasse K, Bohncke S, Vandenberghe J. 1995. Fluvial periglacial environments, climate and vegetation during the Middle Weichselian in the northern Netherlands with special reference to the Hengelo Interstadial. Mededelingen Rijks Geologische Dienst 52: 387-414.
Zhou Y, Lu H, Zhang J, Mason JA, Zhou L. 2009. Luminescence dating of sand-loess sequences and response of Mu Us and Otindag sand fields (north China) to climatic changes. Journal of Quaternary Science 24: 336-344. DOI:10.1002/jqs.1234.
Alfimov AV, Berman DI, Sher AV. 2003. Tundra-steppe insect assemblages and reconstructions of late Pleistocene climate in the lower reaches of the Kolyma River. Zoologicheskiy Zhurnal 82: 281-300 (in Russian).
Briant RM, Bateman MD. 2009. Luminescence dating indicates radiocarbon age underestimation in late Pleistocene fluvial deposits from eastern England. Journal of Quaternary Science 24: 916-927. DOI:10.1002/jqs.1258.
Garrels RM, MacKenzie FT. 1971. Evolution of Sedimentary Rocks. Norton: New York.
Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, Lorenzen ED, Vestergård M, Gussarova G, Haile J, Craine J, Bergmann G, Gielly L, Boessenkool S, Epp LS, Pearman PB, Cheddadi R, Murray D, Bråthen KA, Yoccoz N, Binney H, Cruaud C, Wincker P, Goslar T, Alsos IG, Bellemain E, Brysting AK, Elven R, Sønstebø JH, Murton J, Sher A, Rasmussen M, Rønn R, Mourier T, Cooper A, Austin J, Möller P, Froese D, Zazula G, Pompanon F, Rioux D, Niderkorn V, Tikhonov A, Savvinov G, Roberts RG, MacPhee RDE, Gilbert MPT, Kjær K, Orlando L, Brochmann C, Taberle P. 2014. Fifty thousand years of arctic vegetation and megafauna diet. Nature 506: 47-51. DOI:10.1038/nature12921.
Muhs DR, McGeeh
2011; 116
2011; 237
2010; 99
2011; 234
2013; 67
2009; 198
2008; 36
2003; 393
1996; 71
2005; 63
2013; 121
1998; 156
2003; 152
1984; 53
2000; 19
2011; 240
2001; 56
2010; 5
1992; 2
2006; 441
1998; 13
2001; 54
1995; 52
1999; 28
2007; 166
1981; 6
2005; 85
2001; 28
2006a; 33
2001; 20
2004; 55
1981; 212
1986; 23
2005; 402
1995; 43
2008; 41
2008; 40
2012; 45
2002a; 70
1998; 9
2004; 61
1990; 14
1990; 17
2013; 24
2008; 9
1915; 23
2008; 77
2008; 1
2008; 2
1954; 91
2013; 11
2000
2006b; 312
2006; 242
2014; XVIII
2003; 1
2003; 82
2004; 223‐224
2009b; 20
2007; 26
2012a; 26
1991; 2
2014; 92
2006; 12
2012
2011
1943; 54
2010
2006; 17
2013; 42
2006; 14
2010; 121
1954
2009
2008
1975b
2007
1952
2006
2009a; 16
2004
1978; 15
2003
1975a
1995; 19
2001a; 43
2007; 51
2002
2000; 82A
1955
1991; 25
2013; 38
2014; 506
2002; 21
1963
1988a
2014
2013
2007; 42
2009; 1
1996; 49
2007; 44
1989; 14
1969
2004; 166
2013; 2
1997; 44
2006; 152–153
2002; 152
2010; 101
2006; 37
1976
1975
1974
2003; 59
1973
1988; 100
1972
1971
1970
2011; 58
1957; 19
1979
2010; 23
1996b; 66
1990
2006; 25
2005; 228
1987
1986
1985
1984
1983
1982
1981
2007; 2
2007; 3
1980
2013; 192
2009; 19
1988b; 1
1989
1990; 34
2006; 53
1973; III
2010; 39
2002; 6
2001b; 379
1983; XI
2011; 75
1998
1997
1997; 29
2003; 37
1996
1988; 13
1994
1993
2013a
1992
1991
1996a; 43
2002b; 13
1966; 77
1955; 66
2014; 43
2012; 109
1996; 11
1999
1953; 2
1990; 1
2010; 43
2011a; 116
2011b; 30
2003; 108
2006; 43
1984; 8
2013b; 9
1991; 61
1997; 34
1984; 9
2013b; 3
2003; 27
2013b; 2
1978; 48
2005; 16
2003; 22
1993; 8
1994; 23
2011a
2003; 18
2008; 148
1977; VI
2008; 143
1993; 4
2005; 24
2009; 51
1982; 2
2006; 66
2000; 53
2005; 32
2012b
2005; 33
2012; 260
2009; 24
2009; 20
2008; 19
2013a; 9
2013a; 4
2006; 7
1952; IX
2011; 30
2011; 38
1987; 19
2009; 28
2005; 47
1988; 1
1994; 8
2012; 2
2012; 3
2006; 84
2011b; 241
2000; 37
1979; VIII
2000; 32
2004; 15
1977; 2
1985; 39‐1
1951; 59
2013; XVII
e_1_2_9_79_1
e_1_2_9_254_1
e_1_2_9_94_1
e_1_2_9_10_1
Vasil'chuk AC (e_1_2_9_276_1) 2005; 47
e_1_2_9_216_1
Kasse K (e_1_2_9_117_1) 1995; 52
Gubin SV (e_1_2_9_80_1) 1984; 53
e_1_2_9_231_1
Davydov SP (e_1_2_9_46_1) 2008
Zhestkova TN (e_1_2_9_320_1) 1986
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
Arnalds O (e_1_2_9_15_1) 2010; 23
e_1_2_9_314_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
Vadyunina AF (e_1_2_9_265_1) 1986
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_204_1
e_1_2_9_227_1
e_1_2_9_288_1
Begét JE (e_1_2_9_21_1) 1988
Liu T (e_1_2_9_142_1) 1985
Tomirdiaro SV (e_1_2_9_264_1) 1987
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_280_1
Vasil'chuk YK (e_1_2_9_278_1) 2005; 402
Gubin SV (e_1_2_9_88_1) 2014
e_1_2_9_111_1
Gale SJ (e_1_2_9_68_1) 1991
Kaplina TN (e_1_2_9_114_1) 1981
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_302_1
Ryabchun VK (e_1_2_9_226_1) 1973
e_1_2_9_172_1
e_1_2_9_232_1
e_1_2_9_255_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
Popov AI (e_1_2_9_211_1) 1952
e_1_2_9_95_1
e_1_2_9_217_1
Jorgenson MT (e_1_2_9_108_1) 2008
CAVM Team (e_1_2_9_41_1) 2003
e_1_2_9_270_1
e_1_2_9_293_1
Lozhkin AV (e_1_2_9_144_1) 1976
Velichko A (e_1_2_9_285_1) 2002
e_1_2_9_167_1
e_1_2_9_106_1
Vtyurin BI (e_1_2_9_296_1) 1975
Popov AI (e_1_2_9_214_1) 1973
e_1_2_9_315_1
Kanevskiy M (e_1_2_9_110_1) 2008
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
Rosenbaum GE (e_1_2_9_223_1) 1973
e_1_2_9_61_1
e_1_2_9_243_1
e_1_2_9_84_1
e_1_2_9_228_1
e_1_2_9_266_1
e_1_2_9_23_1
Fortier D (e_1_2_9_56_1) 2008
e_1_2_9_205_1
e_1_2_9_220_1
e_1_2_9_281_1
Mücher HJ (e_1_2_9_170_1) 1974
Black RF (e_1_2_9_25_1) 1974
Hopkins DM (e_1_2_9_100_1) 1988
e_1_2_9_118_1
e_1_2_9_156_1
e_1_2_9_179_1
Veremeeva AA (e_1_2_9_289_1) 2008
e_1_2_9_303_1
e_1_2_9_69_1
e_1_2_9_171_1
e_1_2_9_194_1
Tomirdiaro SV (e_1_2_9_261_1) 1980
Murzaev EM (e_1_2_9_196_1) 1984
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_256_1
e_1_2_9_233_1
Konishchev VN (e_1_2_9_130_1) 1983
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_294_1
e_1_2_9_92_1
Arkhangelov AA (e_1_2_9_12_1) 1977
e_1_2_9_271_1
Velichko AA (e_1_2_9_286_1) 1984
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_316_1
e_1_2_9_162_1
e_1_2_9_218_1
e_1_2_9_16_1
e_1_2_9_185_1
Kanevskiy M (e_1_2_9_109_1) 2003
e_1_2_9_20_1
e_1_2_9_221_1
Rousseau D‐D (e_1_2_9_225_1) 2007
e_1_2_9_244_1
e_1_2_9_43_1
Kaplina TN (e_1_2_9_116_1) 1978; 48
e_1_2_9_206_1
e_1_2_9_8_1
Konishchev VN (e_1_2_9_131_1) 2009; 1
e_1_2_9_282_1
e_1_2_9_113_1
e_1_2_9_159_1
Schweger CE (e_1_2_9_236_1) 1997
Kanevskiy M (e_1_2_9_112_1) 2012
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_304_1
e_1_2_9_28_1
e_1_2_9_229_1
e_1_2_9_174_1
Popov AI (e_1_2_9_213_1) 1955
e_1_2_9_234_1
e_1_2_9_257_1
Gubin SV (e_1_2_9_83_1) 2002; 6
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
Vasil'chuk YK (e_1_2_9_279_1) 2006
e_1_2_9_317_1
e_1_2_9_272_1
e_1_2_9_295_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_123_1
e_1_2_9_146_1
e_1_2_9_219_1
e_1_2_9_17_1
Konishchev VN (e_1_2_9_129_1) 1981
e_1_2_9_184_1
Sher AV (e_1_2_9_240_1) 1979
Gravis GF (e_1_2_9_76_1) 1969
e_1_2_9_161_1
Everdingen RO (e_1_2_9_273_1) 1998
Gullentops F (e_1_2_9_90_1) 1957; 19
e_1_2_9_67_1
e_1_2_9_44_1
Dinter DA (e_1_2_9_49_1) 1990
e_1_2_9_268_1
Meyer H (e_1_2_9_165_1) 2002; 70
e_1_2_9_7_1
e_1_2_9_82_1
Shur YL (e_1_2_9_247_1) 1988
Gasanov SH (e_1_2_9_71_1) 1981
Kolpakov VV (e_1_2_9_126_1) 1982
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_305_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_29_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_235_1
Romanovskii NN (e_1_2_9_222_1) 1993
e_1_2_9_318_1
e_1_2_9_258_1
Gubin SV (e_1_2_9_85_1) 2012; 2
Hopkins DM (e_1_2_9_101_1) 1982
e_1_2_9_250_1
e_1_2_9_103_1
e_1_2_9_149_1
Black RF (e_1_2_9_26_1) 1983
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_310_1
Tomirdiaro SV (e_1_2_9_260_1) 1973
e_1_2_9_64_1
e_1_2_9_200_1
e_1_2_9_246_1
Dijkmans JWA (e_1_2_9_48_1) 1991; 25
Brigham‐Grette J (e_1_2_9_33_1) 2004
e_1_2_9_306_1
Vorobyov LA (e_1_2_9_292_1) 1998
e_1_2_9_2_1
Vasil'chuk AC (e_1_2_9_275_1) 2008
e_1_2_9_138_1
e_1_2_9_321_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_208_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
Shur YL (e_1_2_9_242_1) 1998
e_1_2_9_99_1
Vasil'chuk YK (e_1_2_9_277_1) 1992
e_1_2_9_319_1
e_1_2_9_259_1
e_1_2_9_91_1
e_1_2_9_274_1
e_1_2_9_297_1
Vandenberghe J (e_1_2_9_269_1) 1985; 39
e_1_2_9_251_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
Sher AV (e_1_2_9_239_1) 1997
e_1_2_9_42_1
e_1_2_9_201_1
e_1_2_9_307_1
e_1_2_9_65_1
e_1_2_9_262_1
e_1_2_9_137_1
e_1_2_9_322_1
Gubin SV (e_1_2_9_81_1) 1994; 8
Gubin SV (e_1_2_9_87_1) 2013
Vasil'chuk YK (e_1_2_9_284_1) 2003; 393
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
Koronovsky N (e_1_2_9_133_1) 2002
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_298_1
e_1_2_9_96_1
e_1_2_9_237_1
Vandenberghe J (e_1_2_9_267_1) 1993
Fyodorov‐Davydov DG (e_1_2_9_66_1) 2003
e_1_2_9_252_1
e_1_2_9_290_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
Anderson PM (e_1_2_9_5_1) 2002
e_1_2_9_62_1
e_1_2_9_202_1
Edwards ME (e_1_2_9_52_1) 1997
e_1_2_9_308_1
e_1_2_9_24_1
Arinushkina EV (e_1_2_9_14_1) 1970
e_1_2_9_4_1
Shur Y (e_1_2_9_245_1) 2008
Yurtsev BA (e_1_2_9_311_1) 1981
Alfimov AV (e_1_2_9_3_1) 2003; 82
e_1_2_9_323_1
Konishchev VN (e_1_2_9_128_1) 1973
e_1_2_9_155_1
Shur YL (e_1_2_9_248_1) 1988
e_1_2_9_178_1
e_1_2_9_47_1
Mücher HJ (e_1_2_9_169_1) 1990
e_1_2_9_132_1
Lupachev AV (e_1_2_9_150_1) 2008
e_1_2_9_193_1
e_1_2_9_300_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_299_1
e_1_2_9_97_1
Arkhangelov AA (e_1_2_9_13_1) 1979
Popov AI (e_1_2_9_212_1) 1953; 2
Vasil'chuk YK (e_1_2_9_283_1) 2001; 379
e_1_2_9_230_1
e_1_2_9_253_1
e_1_2_9_291_1
e_1_2_9_127_1
Jahn A (e_1_2_9_107_1) 1975
Carter LD (e_1_2_9_40_1) 1988
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
Zanina OG (e_1_2_9_312_1) 2005; 85
e_1_2_9_313_1
e_1_2_9_180_1
e_1_2_9_63_1
Shahgedanova M (e_1_2_9_238_1) 2002
e_1_2_9_287_1
e_1_2_9_309_1
e_1_2_9_203_1
e_1_2_9_249_1
e_1_2_9_86_1
e_1_2_9_241_1
Tomirdiaro SV (e_1_2_9_263_1) 1986
Carter LD (e_1_2_9_39_1) 1983
e_1_2_9_139_1
e_1_2_9_324_1
e_1_2_9_177_1
e_1_2_9_154_1
Rosenbaum GE (e_1_2_9_224_1) 1983
Gubin SV (e_1_2_9_89_1) 2011
e_1_2_9_301_1
e_1_2_9_192_1
References_xml – reference: Murton JB, Frechen M, Maddy D. 2007. Luminescence dating of Mid- to Late Wisconsinan aeolian sand as a constraint on the last advance of the Laurentide Ice Sheet across the Tuktoyaktuk Coastlands, western Arctic Canada. Canadian Journal of Earth Sciences 44: 857-869. DOI:10.1139/e07-015.
– reference: Tomirdiaro SV. 1980. Loess-ice Formation of East Siberia in Late Pleistocene and Holocene. Nauka: Moscow.
– reference: Murton JB. 2009b. Stratigraphy and paleoenvironments of Richards Island and the eastern Beaufort Continental Shelf during the last glacial-interglacial cycle. Permafrost and Periglacial Processes 20: 107-125. DOI:10.1002/ppp.647.
– reference: Vandenberghe J, Mücher H, Roebroeks W, Gemke D. 1985. Lithostratigraphy and palaeoenvironment of the Pleistocene deposits at Maastricht-Belvédère. Mededelingen Rijks Geologische Dienst 39-1: 7-18. hdl: handle.net/1887/28104
– reference: Guthrie RD. 2006. New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature 441: 207-209. DOI:10.1038/nature04604.
– reference: Murton JB, Worsley P, Gozdzik J. 2000. Sand veins and wedges in cold aeolian environments. Quaternary Science Reviews 19: 899-922. DOI:10.1016/S0277-3791(99)00045-1.
– reference: Ballantyne CK. 2002. Paraglacial geomorphology. Quaternary Science Reviews 21: 1935-2017. DOI:10.1016/S0277-3791(02)00005-7.
– reference: Briant RM, Bateman MD. 2009. Luminescence dating indicates radiocarbon age underestimation in late Pleistocene fluvial deposits from eastern England. Journal of Quaternary Science 24: 916-927. DOI:10.1002/jqs.1258.
– reference: Gubin SV, Veremeeva AA. 2010. Parent materials enriched in organic matter in the northeast of Russia. Eurasian Soil Science 43: 1238-1243. DOI:10.1134/S1064229310110062.
– reference: van Everdingen RO (ed). 1998, revised May 2005. Multi-language Glossary of Permafrost and Related Ground-ice Terms. National Snow and Ice Data Center/World Data Center for Glaciology: Boulder, Colorado.
– reference: Frechen M, Zander A, Zykina V, Boenigk W. 2005. The loess record from the section at Kurtak in Middle Siberia. Palaeogeography, Palaeoclimatology, Palaeocology 228: 228-244. DOI:10.1016/j.palaeo.2005.06.004.
– reference: Roberts RG, Galbraith RF, Yoshidaa H, Laslett GM, Olley JM. 2000. Distinguishing dose populations in sediment mixtures: a test of single-grain optical dating procedures using mixtures of laboratory-dosed quartz. Radiation Measurements 32: 459-465. DOI:10.1016/S1350-4487(00)00104-9.
– reference: Wang T, Ta WQ, Liu LC. 2007. Dust emission from desertified lands in the Heihe River Basin, Northwest China. Environmental Geology 51: 1341-1347. DOI:10.1007/s00254-006-0432-9.
– reference: Strauss J, Schirrmeister L, Wetterich S, Borchers A, Davydov SP. 2012a. Grain-size properties and organic-carbon stock of Yedoma Ice Complex permafrost from the Kolyma lowland, northeastern Siberia. Global Biogeochemical Cycles 26: GB3003. DOI:10.1029/2011GB004104.
– reference: Mücher HJ, De Ploey J. 1984. Formation of afterflow silt loam deposits and structural modification due to drying under warm conditions: an experimental and micromorphological approach. Earth Surface Processes and Landforms 9: 523-531. DOI:10.1002/esp.3290090606.
– reference: Chlachula J, Rutter NW, Evans ME. 1997. A late Quaternary loess-paleosol record at Kurtak, southern Siberia. Canadian Journal of Earth Sciences 34: 679-686. DOI:10.1139/e17-054.
– reference: Muhs DR, Ager TA, Skipp G, Beann J, Budahn J, McGeehin JP. 2008. Paleoclimatic significance of chemical weathering in loess-derived paleosols of subarctic central Alaska. Arctic, Antarctic and Alpine Research 40: 396-411. DOI:10.1657/1523-0430(07-022)[MUHS]2.0.CO;2.
– reference: Kemp RA. 2001. Pedogenic modification of loess: significance for palaeoclimatic reconstructions. Earth-Science Reviews 54: 145-156. DOI:10.1016/S0012-8252(01)00045-9.
– reference: Dutta K, Schuur EAG, Neff JC, Zimov SA. 2006. Potential carbon release from permafrost soils of Northeastern Siberia. Global Change Biology 12: 2336-2351. DOI:10.1111/j.1365-2486.2006.01259.x.
– reference: Chlachula J. 2003. The Siberian loess record and its significance for reconstruction of Pleistocene climate change in north-central Asia. Quaternary Science Reviews 22: 1879-1906. DOI:10.1016/S0277-3791(03)00182-3.
– reference: Vtyurin BI. 1975. Ground Ice in the USSR. Nauka: Moscow (in Russian).
– reference: Zazula GD, Froese DG, Elias SA, Kuzmina S, La Farge C, Reyes AV, Sanborn PT, Schweger CE, Smith CAS, Mathewes RW. 2006. Vegetation buried under Dawson tephra (25,300 14C years BP) and locally diverse late Pleistocene paleoenvironments of Goldbottom Creek, Yukon, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 242: 253-286. DOI:10.1016/j.palaeo.2006.06.005.
– reference: Murton JB, French HM, Lamothe M. 1997. Late Wisconsinan erosion and aeolian deposition, Summer and Hadwen Islands, Mackenzie Delta area, western Canadian Arctic: optical dating and implications for glacial chronology. Canadian Journal of Earth Sciences 34: 190-199. DOI:10.1139/e17-015.
– reference: Westgate JA, Preece SJ, Froese DG, Walter RC, Sandhu AS, Schweger CE. 2001. Dating Early and Middle (Reid) Pleistocene glaciations in Central Yukon by tephrochronology. Quaternary Research 56: 335-348. DOI:10.1006/qres.2001.2274.
– reference: Bateman MD, Murton JB, Boulter CB. 2010. The source of De variability in periglacial sand wedges: Depositional processes versus measurement issues. Quaternary Geochronology 5: 250-256. DOI:10.1016/j.quageo.2009.03.007.
– reference: Matsuoka N, Murton J. 2008. Frost weathering: recent advances and future directions. Permafrost and Periglacial Processes 19: 195-210. DOI:10.1002/ppp.620.
– reference: Hao Q, Oldfield F, Bloemendal J, Guo Z. 2008. Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the past 22 m.y. Geology 36: 727-730. DOI:10.1130/G24940A.1.
– reference: Vandenberghe J. 2013. Grain size of fine-grained windblown sediment: a powerful proxy for process identification. Earth-Science Reviews 121: 18-30. DOI:10.1016/j.earscirev.2013.03.001.
– reference: Kienast F, Wetterich S, Kuzmina S, Schirrmeister L, Andreev AA, Tarasov P, Nazarova L, Kossler A, Frolova A, Kunitsky VK. 2011. Paleontological records indicate the occurrence of open woodlands in a dry inland climate at the present-day Arctic coast in western Beringia during the Last Interglacial. Quaternary Science Reviews 30: 2134-2159. DOI:10.1016/j.quascirev.2010.11.024.
– reference: Huijzer AS, Vandenberghe J. 1998. Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe. Journal of Quaternary Science 13: 391-417. DOI:10.1002/(SICI)1099-1417(1998090)13:5<391::AID-JQS397>3.0.CO;2-6.
– reference: Vasil'chuk AC, Kim J-C, Vasil'chuk YK. 2005. AMS 14C dating of pollen concentrate from Late Pleistocene ice wedges from the Bison and Seyaha sites in Siberia. Radiocarbon 47: 243-256.
– reference: Dijkmans JWA, Mücher HJ. 1989. Niveo-aeolian sedimentation of loess and sand: an experimental and micromorphological approach. Earth Surface Processes and Landforms 14: 303-315. DOI:10.1002/esp.3290140406.
– reference: Walker DA, Everett KR. 1991. Loess ecosystems of northern Alaska: regional gradient and toposequence at Prudhoe Bay. Ecological Monographs 61: 437-464. DOI:10.2307/2937050.
– reference: Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D. 2012. Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proceedings of the National Academy of Sciences 109: 4008-4013. DOI:10.1073/pnas.1118386109.
– reference: Lewkowicz AG, Young KL. 1991. Observations of aeolian transport and niveo-aeolian deposition at three lowland sites, Canadian Arctic Archipelago. Permafrost and Periglacial Processes 2: 197-210. DOI:10.1002/ppp.3430020304.
– reference: Dallimore SR, Wolfe SA, Matthews JV Jr, Vincent J-S. 1997. Mid-Wisconsinan eolian deposits of the Kittigazuit Formation, Tuktoyaktuk Coastlands, Northwest Territories, Canada. Canadian Journal of Earth Sciences 34: 1421-1441. DOI:10.1139/e17-116.
– reference: Velichko AA, Timireva SN, Kremenetski KV, MacDonald GM, Smith LC. 2011. West Siberian Plain as a late glacial desert. Quaternary International 237: 45-53. DOI:10.1016/j.quaint.2011.01.013.
– reference: Vasil'chuk YK, Vasil'chuk AC, Rank D, Kutschera W, Kim J-C. 2001a. Radiocarbon dating of δ18O - δD plots in Late Pleistocene ice-wedges of the Duvanny Yar (Lower Kolyma River, Northern Yakutia). In Proceedings of the 17th International 14C Conference, Carmi I, Boaretto E (eds). Radiocarbon 43(2B): 541-553.
– reference: Gubin SV. 1994. Late Pleistocene soil formation in coastal lowlands of northern Yakutia. Soil Science 8: 5-14 (in Russian).
– reference: Zanina OG, Gubin SV, Kuzmina SA, Maximovich SV, Lopatina DA. 2011. Late-Pleistocene (MIS 3-2) palaeoenvironments as recorded by sediments, palaeosols, and ground-squirrel nests at Duvanny Yar, Kolyma lowland, northeast Siberia. Quaternary Science Reviews 30: 2107-2123. DOI:10.1016/j.quascirev.2011.01.021.
– reference: Fuchs M, Kreutzer S, Rousseau DD, Antoine P, Hatté C, Lagroix F, Moine O, Gauthier C, Svoboda J, Lisá L. 2013. The loess sequence of Dolní Vestonice, Czech Republic: A new OSL-based chronology of the Last Climatic Cycle. Boreas 42: 664-677. DOI:10.1111/j.1502-3885.2012.00299.x.
– reference: Höfle C, Ping CL. 1996. Properties and soil development of late-Pleistocene paleosols from Seward Peninsula, northwest Alaska. Geoderma 71: 219-243. DOI:10.1016/0016-7061(96)00007-9.
– reference: Gubin SV, Zanina OG. 2014. Variation of soil cover during the Ice Complex deposit formation, Kolyma Lowland (Part 2). Earth Cryosphere XVIII(1): 77-82.
– reference: Popp S, Belolyubsky I, Lehmkuhl F, Prokopiev A, Siegert C, Spektor V, Stauch G, Diekmann B. 2007. Sediment provenance of late Quaternary morainic, fluvial and loess-like deposits in the southwestern Verkhoyansk Mountains (eastern Siberia) and implications for regional palaeoenvironmental reconstructions. Geological Journal 42: 477-497. DOI:10.1002/gj.1088.
– reference: Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt, J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet Th, Hewitt CD, Kageyama M, Kitoh A, Lâıné A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Y. Yu Y, Zhao Y. 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features. Climate of the Past 3: 261-277. DOI: 10.5194/cp-3-261-2007
– reference: Meyer H, Dereviagrin A, Seigert C, Hubberten H-W. 2002a. Paleoclimate studies on Bykovsky Peninsula, North Siberia-hydrogen and oxygen isotopes in ground ice. Polarforschung 70: 37-51.
– reference: Pye K. 1984. Loess. Progress in Physical Geography 8: 176-217.
– reference: Haesaerts P, Chekha VP, Damblon F, Drozdov NI, Orlova LA, Van der Plicht J. 2005. The loess-palaeosol succession of Kurtak (Yenisei basin, Siberia): a reference record from the Karga Stage (MIS 3). Quaternaire 16: 3-24.
– reference: Pigati JS, Quade J, Wilson J, Jull AJT, Lifton NA. 2007. Development of low-background vacuum extraction and graphitization systems for 14C dating of old (40-60 ka) samples. Quaternary International 166: 4-14. DOI:10.1016/j.quaint.2006.12.006.
– reference: Meyer H, Dereviagin A, Siegert C, Schirrmeister L, Hubberten HW. 2002b. Palaeoclimate reconstruction on Big Lyakhovsky Island, North Siberia-hydrogen and oxygen isotopes in ice wedges. Permafrost and Periglacial Processes 13: 91-105. DOI:10.1002/ppp.416.
– reference: Majhi I, Yang D. 2008. Streamflow characteristics and changes in Kolyma Basin in Siberia. Journal of Hydrometeorology 9: 267-279. DOI:10.1175/2007JHM845.1.
– reference: Willemse NW, Koster EA, Hoogakker B, van Tatenhove FGM. 2003. A continuous record of Holocene eolian activity in West Greenland. Quaternary Research 59: 322-334. DOI:10.1016/S0033-5894(03)00037-1.
– reference: Bateman MD, Catt JA. 1996. An absolute chronology for the raised beach deposits at Sewerby, E. Yorkshire, UK. Journal of Quaternary Science 11: 389-395. DOI:10.1002/(SICI)1099-1417(199609/10)11:5<389::AID-JQS260>3.0.CO;2-K.
– reference: Gallet S, Jahn B, Van Vliet-Lanoë B, Dia A, Rossello EA. 1998. Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth and Planetary Science Letters 156: 157-172. DOI:10.1016/S0012-821X(97)00218-5.
– reference: Popov AI. 1953. Lithogenesis of alluvial lowlands in the cold climatic conditions. Izvestiya (Transactions) of the USSR Academy of Sciences, Geography 2: 29-41 (in Russian).
– reference: Mountney NP, Russell AJ. 2004. Sedimentology of cold-climate aeolian sandsheet deposits in the Askja region of northeast Iceland. Sedimentary Geology 166: 223-244. DOI:10.1016/j.sedgeo.2003.12.007.
– reference: Shur Y, French HM, Bray MT, Anderson DA. 2004. Syngenetic permafrost growth: cryostratigraphic observations from the CRREL Tunnel near Fairbanks, Alaska. Permafrost and Periglacial Processes 15: 339-347. DOI:10.1002/ppp.486.
– reference: Vasil'chuk YK. 1992. Oxygen isotope composition of ground ice (application to paleogeocryological reconstructions). Theoretical Problems Department, Russian Academy of Sciences and Geological Faculty of Moscow University, Research Institute of Engineering Site Investigations: Moscow, Vol. 2: 93-96 (in Russian with English contents section).
– reference: Froese DG, Westgate JA, Sanborn PT, Reyes AV, Pearce NJG. 2009. The Klondike goldfields and Pleistocene environments of Beringia. GSA Today 19: 4-10. DOI:10.1130/GSATG54A.1.
– reference: Bateman MD, Murton JB. 2006. Late Pleistocene glacial and periglacial aeolian activity in the Tuktoyaktuk Coastlands, NWT, Canada. Quaternary Science Reviews 25: 2552-2568. DOI:10.1016/j.quascirev.2005.07.023.
– reference: Hamilton TD, Craig JL, Sellmann PV. 1988. The Fox permafrost tunnel: A late Quaternary geologic record in central Alaska. Geological Society of American Bulletin 100: 948-969. DOI:10.1130/0016-7606(1988)100<0948:TFPTAL>2.3.CO;2.
– reference: Lopatina DA, Zanina OG. 2006. Paleobotanical analysis of materials from fossil gopher burrows and Upper Pleistocene host deposits, the Kolyma Lowland lower reaches. Stratigraphy and Geological Correlation 14: 549-560. DOI:10.1134/S0869593806050078.
– reference: Vandenberghe J, Nugteren G. 2001. Rapid climatic changes recorded in loess succcessions. Global and Planetary Change 28: 1-9. DOI:10.1016/S0921-8181(00)00060-6.
– reference: Gubin SV, Lupachev AV. 2008. Soil formation and the underlying permafrost. Eurasian Soil Science 41: 574-585. DOI:10.1134/S1064229308060021.
– reference: Goslar T, van der Knaap WO, van Leeuwen J, Kamenik C. 2009. Free-shape 14C age-depth modelling of an intensively dated modern peat profile. Journal of Quaternary Science 24: 481-499. DOI:10.1002/jqs.1283.
– reference: Lozhkin AV, Anderson PM. 2013b. Vegetation responses to interglacial warming in the Arctic, examples from Lake El'gygytgyn, northeast Siberia. Climate of the Past 9: 1211-1219. DOI:10.5194/cp-9-1211-2013.
– reference: Vriend M, Prins MA, Buylaert JP, Vandenberghe J, Lu H. 2011. Contrasting dust supply patterns across the north-western Chinese Loess Plateau during the last glacial-interglacial cycle. Quaternary International 240: 167-180. DOI:10.1016/j.quaint.2010.11.009.
– reference: Jackson MG, Oskarsson N, Trønnes RG, McManus JF, Oppo DW, Grönvold K, Hart SR, Sachs JP. 2005. Holocene loess deposition in Iceland: evidence for millennial-scale atmosphere-ocean coupling in the North Atlantic. Geology 33: 509-512. DOI:10.1130/G21489.1.
– reference: Gasanov SH. 1981. Cryolithological Analysis. Nauka: Moscow (in Russian).
– reference: Veremeeva AA, Gubin SV. 2009. Modern tundra landscapes of the Kolyma Lowland and their evolution in the Holocene. Permafrost and Periglacial Processes 20: 399-406. DOI:10.1002/ppp.674.
– reference: Vandenberghe J, French HM, Gorbunov A, Marchenko S, Velichko AA, Jin H, Cui Z, Zhang T, Wan X. 2014. The Last Permafrost Maximum (LPM) map of the northern hemisphere: permafrost extent and mean annual air temperatures, 25-17 ka BP. Boreas 43: 652-666. DOI:10.1111/bor.12070.
– reference: Zanina OG. 2005. Fossil rodent burrows in frozen Late Pleistocene beds of the Kolyma lowland. Entomological Review 85(Supplement 1): 133-140.
– reference: Schaetzl RJ, Luehmann MD. 2013. Coarse-textured basal zones in thin loess deposits: products of sediment mixing and/or paleoenvironmental change. Geoderma 192: 277-285. DOI:10.1016/j.geoderma.2012.08.001.
– reference: Bigelow NH, Brubaker LB, Edwards ME, Harrison SP, Prentice IC, Anderson PM, Andreev AA, Bartlein PJ, Christiansen TR, Cramer W, Kaplan JO, Lozhkin AV, Matveyeva NV, Murray DF, McGuire AD, Razzhivin VY, Ritchie JC, Smith B, Walker DA, Gajewski K, Wolf V, Holmqvist BH, Igarashi Y, Kremenetskii K, Paus A, Pisaric MFJ, Volkova VS. 2003. Climate change and arctic ecosystems: 1. Vegetation changes north of 55 N between the last glacial maximum, mid-Holocene, and present. Journal of Geophysical Research 108: D19, 8170. DOI: 10.1029/2002JD002558
– reference: Vasil'chuk YK. 2006. Ice Wedge: Heterocyclity, Heterogeneity, Heterochroneity. Moscow University Press: Moscow (in Russian).
– reference: Zazula GD, Froese DG, Elias SA, Kuzmina S, Mathewes RW. 2007. Arctic ground squirrels of the mammoth-steppe: paleoecology of middens from the last glaciation, Yukon Territory, Canada. Quaternary Science Reviews 26: 979-1003. DOI:10.1016/j.quascirev.2006.12.006.
– reference: Gubin SV. 2002. Pedogenesis-the main component of the Late Pleistocene Ice Complex forming. Earth Cryosphere 6: 82-91 (in Russian).
– reference: Lupachev AV, Gubin SV. 2012. Suprapermafrost organic-accumulative horizons in the tundra cryozems of northern Yakutia. Eurasian Soil Science 45: 45-55. DOI:10.1134/S1064229312010115.
– reference: Sun D, Su R, Li Z, Lu H. 2011. The ultrafine component in Chinese loess and its variation over the past 7.6 Ma: implications for the history of pedogenesis. Sedimentology 58: 916-935. DOI:10.1111/j.1365-3091.2010.01189.x.
– reference: Vasil'chuk YK. 2013. Syngenetic ice wedges: cyclical formation, radiocarbon age and stable-isotope records. Permafrost and Periglacial Processes 24: 82-93. DOI:10.1002/ppp.1764.
– reference: Gale SJ, Hoare PG. 1991. Quaternary Sediments. Belhaven: New York.
– reference: Pitcher WS, Shearman DJ, Pugh DC. 1954. The loess of Pegwell Bay, Kent, and its associated frost soils. Geological Magazine 91: 308-314.
– reference: Bryant ID. 1982. Loess deposits in Lower Adventdalen, Spitsbergen. Polar Research 2: 93-103.
– reference: Shur Y, Hinkel KM, Nelson FE. 2005. The transient layer: implications for geocryology and climate-change science. Permafrost and Periglacial Processes 16: 5-17. DOI:10.1002/ppp.518.
– reference: Murton JB. 1996a. Thermokarst-lake-basin sediments, Tuktoyaktuk Coastlands, Western Arctic Canada. Sedimentology 43: 737-760. DOI:10.1111/j.1365-3091.1996.tb02023.x.
– reference: Vasil'chuk YK, Vasil'chuk AC. 1998. Oxgyen-isotope and C14 data associated with Late Pleistocene syngenetic ice-wedges in mountains of Magadan region, Siberia. Permafrost and Periglacial Processes 9: 177-183. DOI:10.1002/(SICI)1099-1530(199804/06)9:23.0.CO;2-T.
– reference: McCulloch DS, Hopkins DM. 1966. Evidence for an early recent warm interval in northwestern Alaska. Geological Society of America Bulletin 77: 1089-1108. DOI:10.1130/0016-7606(1966)77[1089:EFAERW]2.0.CO;2.
– reference: Muhs DR, Budahn JR. 2006. Geochemical evidence for the origin of late Quaternary loess in central Alaska. Canadian Journal of Earth Sciences 43: 323-337. DOI:10.1139/e05-115.
– reference: Antoine P, Rousseau D-D, Degeai J-P, Moine O, Lagroix F, Kreutzer S, Fuchs M, Hatté C, Gauthier C, Svoboda J, Lisá L. 2013. High-resolution record of the environmental response to climatic variations during the Last Interglacial-Glacial cycle in Central Europe: the loess-palaeosol sequence of Dolní Vestonice (Czech Republic). Quaternary Science Reviews 67: 17-38. DOI:10.1016/j.quascirev.2013.01.014.
– reference: Hugenholtz CH, Wolfe SA. 2010. Rates and environmental controls on aeolian dust accumulation, Athabasca Valley, Canadian Rocky Mountains. Geomorphology 121: 274-282. DOI:10.1016/j.geomorph.2010.04.024.
– reference: Mackay JR. 1990. Some observations on the growth and deformation of epigenetic, syngenetic and anti-syngenetic ice wedges. Permafrost and Periglacial Processes 1: 15-29. DOI:10.1002/ppp.3430010104.
– reference: McCave IN, Hall IR, Bianchi GG. 2006. Laser vs. settling velocity differences in silt grainsize measurements: estimation of palaeocurrent vigour. Sedimentology 53: 919-928. DOI:10.1111/j.1365-3091.2006.00783.x.
– reference: Hopkins DM, Matthews JV, Jr, Schweger CE, Young SB (eds). 1982. Paleoecology of Beringia. Academic Press: New York.
– reference: Crusius J, Schroth AW, Gassó S, Moy CM, Levy RC, Gatica M. 2011. Glacial flour dust storms in the Gulf of Alaska: Hydrologic and meteorological controls and their importance as a source of bioavailable iron. Geophysical Research Letters 38: L06602. DOI:10.1029/2010GL046573.
– reference: Sanborn PT, Smith CAS, Froese DG, Zazula GD, Westgate JA. 2006. Full-glacial paleosols in perennially frozen loess sequences, Klondike goldfields, Yukon Territory, Canada. Quaternary Research 66: 147-157. DOI:10.1016/j.yqres.2006.02.008.
– reference: Anderson PM, Lozhkin AV (eds). 2002. Late Quaternary Vegetation and Climate of Siberia and the Russian Far East. National Oceanic and Atmospheric Administration and Russian Academy of Sciences: Magadan, Russia.
– reference: Muhs DR, Budahn JR, McGeehin JP, Bettis EA III, Skipp G, Paces JB, Wheeler EA. 2013. Loess origin, transport, and deposition over the past 10,000 years, Wrangell-St. Elias National Park, Alaska. Aeolian Research 11: 85-99. DOI:10.1016/j.aeolia.2013.06.001.
– reference: Vorobyov LA. 1998. Chemical Analysis of Soil. Moscow State University Press: Moscow.
– reference: Garrels RM, MacKenzie FT. 1971. Evolution of Sedimentary Rocks. Norton: New York.
– reference: Konishchev VN. 2009. Climate warming and permafrost. Moscow State University. Geography-Environment-Sustainability 1: 4-19.
– reference: Kuhry P, Grosse G, Harden JW, Hugelius G, Koven CD, Ping C-L, Schirrmeister L, Tarnocai C. 2013. Characterisation of the permafrost carbon pool. Permafrost and Periglacial Processes 24: 146-155. DOI:10.1002/ppp.1782.
– reference: Marsh J, Nouvet S, Sanborn P, Coxson D. 2006. Composition and function of biological soil crust communities along topographic gradients in grasslands of central interior British Columbia (Chilcotin) and southwestern Yukon (Kluane). Canadian Journal of Botany 84: 717-736. DOI:10.1139/B06-026.
– reference: Vasil'chuk YK, Vasil'chuk AC, van der Plicht J, Kucschera V, Rank D. 2001b. Radiocarbon dating of the Late Pleistocene ice wedges in the Bizon Section in the lower reaches of the Kolyma River. Doklady Earth Sciences 379: 589-593.
– reference: Kienast F, Schirrmeister L, Siegert C. 2005. Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage. Quaternary Research 63: 283-300. DOI:10.1016/j.yqres.2005.01.003.
– reference: French HM, Pollard WH. 1986. Ground-ice investigations, Klondike District, Yukon Territory. Canadian Journal of Earth Sciences 23: 550-560. DOI:10.1139/e86-055
– reference: Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV. 2003. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research 108: D19, 8171. DOI:10.1029/2002JD002559.
– reference: Murton DK, Murton JB. 2012. Middle and Late Pleistocene glacial lakes of lowland Britain and the southern North Sea Basin. Quaternary International 260: 115-142. DOI:10.1016/j.quaint.2011.07.034.
– reference: Yurtsev BA. 1981. Relic Steppe Complexes of North-East Asia. Nauka: Novosibirsk (in Russian).
– reference: Binney HA, Willis KJ, Edwards ME, Bhagwat SA, Anderson PM, Andreev AA, Blaauw M, Damblon F, Haesaerts P, Kienast F, Kremenetski KV, Krivonogov SK, Lozhkin AV, MacDonald GM, Novenko PO, Sapelko T, Väliranta M, Vazhenina L. 2009. The distribution of late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database. Quaternary Science Reviews 28: 2445-2464. DOI:10.1016/j.quascirev.2009.04.016.
– reference: McTainsh GH, Nickling WG, Lynch AW. 1997. Dust deposition and particle size in Mali, West Africa. Catena 29: 307-322. DOI:10.1016/S0341-8162(96)00075-6.
– reference: Vreeken WJ, Mücher HJ. 1981. (Re)deposition of loess in southern Limbourg, The Netherlands: 1. Field evidence for conditions of deposition of the Lower Silt Loam complex. Earth Surface Processes and Landforms 6: 337-354. DOI:10.1002/esp.3290060313.
– reference: Alfimov AV, Berman DI, Sher AV. 2003. Tundra-steppe insect assemblages and reconstructions of late Pleistocene climate in the lower reaches of the Kolyma River. Zoologicheskiy Zhurnal 82: 281-300 (in Russian).
– reference: Gullentops F. 1957. Stratigraphie du Pleistocène supérieur en Belgique. Geologie en Mijnbouw 19: 305.
– reference: Smith CAS, Swanson DK, Moore JP, Ahrens JP, Bockheim JG, Kimble JM, Mazhitova GG, Ping CL, Tarnocai C. 1995. A description and classification of soils and landscapes of the lower Kolyma River, northeastern Russia. Polar Geography and Geology 19: 107-126. DOI:10.1080/10889379509377563.
– reference: Liu T. 1985. Loess in China, Second edition. Beijing/Berlin: China Ocean Press/Springer-Verlag.
– reference: Muhs DR. 2013a. The geologic records of dust in the Quaternary. Aeolian Research 9: 3-48. DOI:10.1016/j.aeolia.2012.08.001.
– reference: Carter LD. 1981. A Pleistocene sand sea on the Alaskan Arctic Coastal Plain. Science 212: 381-383. DOI:10.1126/science.211.4480.381.
– reference: Murzaev EM. 1984. Dictionary of Folk Geographical Terms. Mysl: Moscow (in Russian).
– reference: de Leffingwell EK. 1915. Ground-ice wedges-the dominant form of ground-ice on the north coast of Alaska. Journal of Geology 23: 635-654.
– reference: Goslar T, Czernik J, Goslar E. 2004. Low-energy 14C AMS in Poznan radiocarbon Laboratory, Poland. Nuclear Instruments and Methods in Physics Research B 223-224: 5-11.
– reference: Konishchev VN, Rogov VV. 1993. Investigations of cryogenic weathering in Europe and Northern Asia. Permafrost and Periglacial Processes 4: 49-64. DOI:10.1002/ppp.3430040105.
– reference: Zech M, Zech R, Zech W, Glaser B, Brodowski S, Amelung W. 2008. Characterisation and palaeoclimate of a loess-like permafrost palaeosol sequence in NE Siberia. Geoderma 143: 281-295. DOI:10.1016/j.geoderma.2007.11.012.
– reference: Begét JE. 2001. Continuous Late Quaternary proxy climate records from loess in Beringia. Quaternary Science Reviews 20: 499-507. DOI:10.1016/S0277-3791(00)00102-5.
– reference: Wetterich S, Rudaya N, Tumskoy V, Andreev AA, Opel T, Schirrmeister L, Meyer L. 2011b. Last Glacial Maximum records in permafrost of the East Siberian Arctic. Quaternary Science Reviews 30: 3139-3151. DOI:10.1016/j.quascirev.2011.07.020.
– reference: Antoine P, Catt J, Lautridou J-P, Sommé J. 2003. The loess and coversands of northern France and southern England. Journal of Quaternary Science 18: 309-318. DOI:10.1002/jqs.750.
– reference: Kaplina TN, Giterman RYe, Lakhtina OV, Abrashov BA, Sher AV. 1978. Duvanny Yar, a key section of upper Pleistocene sediments of the Kolyma lowland. Bulletin of the Commission of the USSR Academy of Sciences for Studying the Quaternary 48: 49-65 (in Russian). Translation 1863194. Geological Survey of Canada: Ottawa.
– reference: Dijkmans JWA, Törnqvist TE. 1991. Modern periglacial eolian deposits and landforms in the Søndre Strømfjord area, West Greenland and their palaeoenvironmental implications. Meddelelser om Grønland Geoscience 25: 1-39.
– reference: McKenna Neuman C. 1990. Observations of winter aeolian transport and niveo-aeolian deposition at Crater Lake, Pangnirtung Pass, N.W.T., Canada. Permafrost and Periglacial Processes 1: 235-247. DOI:10.1002/ppp.3430010304.
– reference: Prins MA, Vriend M, Nugteren G, Vandenberghe J, Lu HY, Zheng HB, Weltje GJ. 2007. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain-size records. Quaternary Science Reviews 26: 230-242. DOI:10.1016/j.quascirev.2006.07.002.
– reference: Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS III. 2006a. Permafrost carbon: Stock and decomposability of a globally significant carbon pool. Geophysical Research Letters 33: L20502. DOI:10.1029/2006GL027484.
– reference: Wolfe SA, Bond J, Lamothe M. 2011. Dune stabilization in central and southern Yukon in relation to early Holocene environmental changes, northwestern North America. Quaternary Science Reviews 30: 324-334. DOI:10.1016/j.quascirev.2010.11.010.
– reference: Lea PD, Waythomas CF. 1990. Late-Pleistocene eolian sand sheets in Alaska. Quaternary Research 34: 269-281. DOI:10.1016/0033-5894(90)90040-R.
– reference: Sun D, Bloemendal J, Rea DK, An Z, Vandenberghe J, Lu H, Su R, Liu T. 2004. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications. Catena 55: 325-340. DOI:10.1016/S0341-8162(03)00109-7.
– reference: Astakhov V. 2014. The postglacial Pleistocene of the northern Russian mainland. Quaternary Science Reviews 92: 388-408. DOI:10.1016/j.quascirev.2014.03.009.
– reference: Nickling WG. 1978. Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory. Canadian Journal of Earth Sciences 15: 1069-1084. DOI:10.1139/e78-114.
– reference: Bray MT, French HM, Shur Y. 2006. Further cryostratigraphic observations in the CRREL permafrost tunnel, Fox, Alaska. Permafrost and Periglacial Processes 17: 233-243. DOI:10.1002/ppp.558.
– reference: Brigham-Grette J. 2001. New perspectives on Beringian Quaternary paleogeography, stratigraphy, and glacial history. Quaternary Science Reviews 20: 15-24. DOI:10.1016/S0277-3791(00)00134-7.
– reference: Muhs DR, McGeehin JP, Beann J, Fisher E. 2004. Holocene loess deposition and soil formation as competing processes, Matanuska Valley, southern Alaska. Quaternary Research 61: 265-276. DOI:10.1016/j.yqres.2004.02.003.
– reference: Kotler E, Burn CR. 2000. Cryostratigraphy of the Klondike "muck" deposits west-central Yukon Territory. Canadian Journal of Earth Sciences 37: 849-861. DOI:10.1139/cjes-37-6-849.
– reference: Konert M, Vandenberghe J. 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44: 523-535. DOI:10.1046/j.1365-3091.1997.d01-38.x.
– reference: Froese DG, Westgate JA, Preece S, Storer J. 2002. Age and significance of the late Pleistocene Dawson tephra in eastern Beringia. Quaternary Science Reviews 21: 2137-2142. DOI:10.1016/S0277-3791(02)00038-0.
– reference: Mücher HJ, De Ploey J, Savat J. 1981. Response of loess materials to simulated translocation by water: micromorphological observations. Earth Surface Processes and Landforms 6: 331-336. DOI:10.1002/esp.3290060312.
– reference: Machalett B, Oches EA, Frechen M, Zoller L, Hambach U, Mavlyanova NG, Markovic SB, Endlicher W. 2008. Aeolian dust dynamics in central Asia during the Pleistocene: Driven by the long-term migration, seasonality, and permanency of the Asiatic polar front. Geochemistry Geophysics Geosystems 9: Q08Q09. DOI:10.1029/2007GC001938.
– reference: Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, Lorenzen ED, Vestergård M, Gussarova G, Haile J, Craine J, Bergmann G, Gielly L, Boessenkool S, Epp LS, Pearman PB, Cheddadi R, Murray D, Bråthen KA, Yoccoz N, Binney H, Cruaud C, Wincker P, Goslar T, Alsos IG, Bellemain E, Brysting AK, Elven R, Sønstebø JH, Murton J, Sher A, Rasmussen M, Rønn R, Mourier T, Cooper A, Austin J, Möller P, Froese D, Zazula G, Pompanon F, Rioux D, Niderkorn V, Tikhonov A, Savvinov G, Roberts RG, MacPhee RDE, Gilbert MPT, Kjær K, Orlando L, Brochmann C, Taberle P. 2014. Fifty thousand years of arctic vegetation and megafauna diet. Nature 506: 47-51. DOI:10.1038/nature12921.
– reference: Maher BA, Prospero JM, Mackie D, Gaiero D, Hesse PP, Balkanski Y. 2010. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews 99: 61-97. DOI:10.1016/j.earscirev.2009.12.001.
– reference: Andreev AA, Schirrmeister L, Tarasov PE, Ganopolski A, Brovkin V, Siegert C, Wetterich S, Hubberten H-W. 2011. Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from pollen records. Quaternary Science Reviews 30: 2182-2199. DOI:10.1016/j.quascirev.2010.12.026.
– reference: Lozhkin AV, Anderson PM. 2011. Forest or no forest: implications of the vegetation record for climatic stability in Western Beringia during Oxygen Isotope Stage 3. Quaternary Science Reviews 30: 2160-2181. DOI:10.1016/j.quascirev.2010.12.022.
– reference: Tomirdiaro SV, Chyornen'kiy BI. 1987. Cryogenic Eolian Deposits of the Eastern Arctic and Subarctic. Nauka: Moscow (in Russian).
– reference: Rybakova NO. 1990. Changes in the vegetation cover and climate in the Kolyma lowlands in late-Quaternary time. Polar Geography 14: 279-286. DOI:10.1080/10889379009377440.
– reference: Lozhkin AV, Anderson PM. 1995. The last interglaciation in northeast Siberia. Quaternary Research 43: 147-158. DOI:10.1006/qres.1995.1016.
– reference: Galbraith RF, Green PF. 1990. Estimating the component ages in a finite mixture. Radiation Measurements 17: 197-206. DOI:10.1016/1359-0189(90)90035-V.
– reference: Zimov SA, Schuur EAG, Chapin FS III. 2006b. Permafrost and the global carbon budget. Science 312: 1612-1613. DOI:10.1126/science.1128908.
– reference: Antoine P, Rousseau D-D, Lautridou JP, Hatté C. 1999. Last interglacial-glacial climatic cycle in loess-palaeosol successions of north-western France. Boreas 28: 551-563.
– reference: Fraser TA, Burn CR. 1997. On the nature and origin of "muck" deposits in the Klondike area, Yukon Territory. Canadian Journal of Earth Sciences 34: 1333-1344. DOI:10.1139/e17-106.
– reference: Griffin CG, Frey KE, Rogan J, Holmes RM. 2011. Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery. Journal of Geophysical Research 116: G03018. DOI:10.1029/2010JG001634.
– reference: Höfle C, Edwards ME, Hopkins DM, Mann DH, Ping CL. 2000. The full-glacial environment of the northern Seward Peninsula, Alaska, reconstructed from the 21,500-Year-Old Kitluk Paleosol. Quaternary Research 53: 143-153. DOI:10.1006/qres.1999.2097.
– reference: Vreeken WJ. 1984. (Re)deposition of loess in southern Limbourg, The Netherlands. 3. Field evidence for conditions of deposition of the middle and upper silt loam complexes, and landscape evolution at Nagelbeek. Earth Surface Processes and Landforms 9: 1-18. DOI:10.1002/esp.3290090102.
– reference: Vasil'chuk YK, Vasil'chuk AC, Kim J-C. 2003. The AMS radiocarbon dating of pollen concentrate from the Late Pleistocene ice wedge of the Bison Section, Kolyma region. Doklady Earth Sciences 393: 1141-1145.
– reference: McCave IN, Hall IR. 2006. Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow-speed proxies. Geochemistry, Geophysics, Geosystems 7: Q10N05. DOI:10.1029/2006GC001284.
– reference: Velichko AA, Morozova TD, Nechaev VP, Rutter NW, Dlusskii KG, Little EC, Catto NR, Semenov VV, Evans ME. 2006. Loess/paleosol/cryogenic formation and structure near the northern limit of loess deposition, East European Plain, Russia. Quaternary International 152-153: 14-30. DOI:10.1016/j.quaint.2005.12.003.
– reference: CAVM Team. 2003. Circumpolar Arctic Vegetation Map (1:7,500,000 scale). Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. US Fish and Wildlife Service: Anchorage, Alaska.
– reference: Park H, Yamazaki T, Yamamoto K, Ohta T. 2008. Tempo-spatial characteristics of energy budget and evapotranspiration in the eastern Siberia. Agricultural and Forest Meteorology 148: 1990-2005. DOI:10.1016/j.agrformet.2008.06.018.
– reference: Koster EA, Dijkmans JWA. 1988. Niveo-aeolian deposits and denivation forms, with special reference to the Great Kobuk Sand Dunes, Northwestern Alaska. Earth Surface Processes and Landforms 13: 153-170. DOI:10.1002/esp.3290130206.
– reference: Werner K, Tarasov PE, Andreev AA, Müller S, Kienast F, Zech M, Zech W, Diekmann B. 2010. A 12.5-ka history of vegetation dynamics and mire development with evidence of the Younger Dryas larch presence in the Verkhoyansk Mountains, East Siberia, Russia. Boreas 39: 56-68. DOI:10.1111/j.1502-3885.2009.00116.x.
– reference: Muhs DR, Ager TA, Bettis EA III, McGeehin J, Been JM, Begét JE, Pavich MJ, Stafford TW Jr, Stevens De ASP. 2003. Stratigraphy and paleoclimatic significance of late Quaternary loess-paleosol sequences of the last interglacial-glacial cycle in central Alaska. Quaternary Science Reviews 22: 1947-1986. DOI:10.1016/S0277-3791(03)00167-7.
– reference: French HM, Shur Y. 2010. The principles of cryostratigraphy. Earth-Science Reviews 101: 190-206. DOI:10.1016/j.earscirev.2010.04.002.
– reference: Murton JB, Kolstrup E. 2003. Ice-wedge casts as indicators of palaeotemperatures: precise proxy or wishful thinking? Progress in Physical Geography 27: 155-170. DOI:10.1191/0309133303pp365ra.
– reference: Laxton NF, Burn CR, Smith CAS. 1996. Productivity of loessal grasslands in the Kluane Lake region, Yukon Territory, and the Beringian "production paradox. Arctic 49: 129-140. DOI: 10.14430/arctic1191
– reference: Anderson PM, Lozhkin AV. 2001. The Stage 3 interstadial complex (Karginskii/middle Wisconsinan interval) of Beringia: variations in paleoenvironments and implications for paleoclimatic interpretations. Quaternary Science Reviews 20: 93-125. DOI:10.1016/S0277-3791(00)00129-3.
– reference: Vadyunina AF, Korchagina ZA. 1986. Methods of Investigation of Physical Properties of Soils, Third edition. Agropromizdat: Moscow.
– reference: Kanevskiy M, Shur Y, Fortier D, Jorgenson MT, Stephani E. 2011. Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure. Quaternary Research 75: 584-596. DOI:10.1016/j.yqres.2010.12.003.
– reference: Taber S. 1943. Perennially frozen ground in Alaska: its origin and history. Bulletin of the Geological Society of America 54: 1433-1548. DOI:10.1130/GSAB-54-1433.
– reference: Schirrmeister L, Grosse G, Wetterich S, Overduin PP, Strauss J, Schuur EAG, Hubberten H-W. 2011a. Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. Journal of Geophysical Research 116: G00M02. DOI:10.1029/2011JG001647.
– reference: Sher AV, Kaplina TN, Giterman RE, Lozhkin AV, Arkhangelov AA, Kiselyov SV, Kouznetsov Yu V, Virina EI, Zazhigin VS. 1979. Late Cenozoic of the Kolyma Lowland: XIV Pacific Science Congress, Khabarovsk August 1979, Tour Guide XI. USSR Academy of Sciences: Moscow.
– reference: Frechen M, Kehl M, Rolf C, Sarvati R, Skowronek A. 2009. Loess chronology of the Caspian Lowland in northern Iran. Quaternary International 198: 220-233. DOI:10.1016/j.quaint.2008.12.012.
– reference: Gubin SV. 1984. Palaeopedological analysis of Late Pleistocene (Yedoma) deposits of the Duvanny Yar exposure. Bulletin of Quaternary Commission 53: 125-128 (in Russian).
– reference: Mücher HJ, De Ploey J. 1977. Experimental and micromorphological investigation of erosion and redeposition of loess by water. Earth Surface Processes and Landforms 2: 117-124. DOI:10.1002/esp.3290020204.
– reference: Alfimov AV, Berman DI. 2001. Beringian climate during the late Pleistocene and Holocene. Quaternary Science Reviews 20: 127-134. DOI:10.1016/S0277-3791(00)00128-1.
– reference: Nikolayev VI, Mikhalev DV. 1995. An oxygen-isotope paleothermometer from ice in Siberian permafrost. Quaternary Research 43: 14-21. DOI:10.1006/qres.1995.1002.
– reference: Péwé TL. 1955. Origin of the upland silt near Fairbanks, Alaska. Geological Society of America Bulletin 66: 699-724.
– reference: Shur YL. 1988a. Upper horizon of permafrost and thermokarst. Nauka: Novosibirsk (in Russian).
– reference: Klute A (ed). 1986. Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, Second Edition. Soil Science Society of America Book Series No. 5 and American Society of Agronomy. Agronomy Monographs 9(1): Madison, Wisconsin.
– reference: French HM, Guglielmin M. 2000. Frozen ground phenomena in the vicinity of Terra Nova Bay, Northern Victoria Land, Antarctica: a preliminary report. Geografiska Annaler 82A: 513-526. DOI:10.1111/j.0435-3676.2000.00138.x.
– reference: Stakhov VL, Gubin SV, Maksimovich SV, Rebrikov DV, Savilova AM, Kochkina GA, Ozerskaya SM, Ivanushkina NE, Vorobyova EA. 2008. Microbial communities of ancient seeds derived from permanently frozen Pleistocene deposits. Microbiology 77: 348-355. DOI:10.1134/S0026261708030156.
– reference: Gubin SV, Zanina OG. 2013. Variation of soil cover during the Ice Complex deposit formation, Kolyma Lowland (Part 1). Earth Cryosphere XVII(4): 48-56.
– reference: Murton JB, French HM. 1993. Thaw modification of frost-fissure wedges, Richards Island, Pleistocene Mackenzie Delta, western Canadian Arctic. Journal of Quaternary Science 8: 185-196. DOI:10.1002/jqs.3390080302.
– reference: Gravis GF. 1969. Slope Deposits in Yakutia. Nauka: Moscow, (in Russian).
– reference: Murton JB. 1996b. Morphology and paleoenvironmental significance of Quaternary sand veins, sand wedges, and composite wedges, Tuktoyaktuk Coastlands, Western Arctic Canada. Journal of Sedimentary Research 66: 17-25. DOI:10.1306/D4268298-2B26-11D7-8648000102C1865D.
– reference: Péwé TL. 1951. An observation of wind-blown silt. Journal of Geology 59: 399-401.
– reference: Schirrmeister L, Kunitsky V, Grosse G, Wetterich S, Meyer H, Schwamborn G, Babiy O, Derevyagin A, Siegert C. 2011b. Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on North-East Siberian Arctic coastal lowlands and islands - A review. Quaternary International 241: 3-25. DOI:10.1016/j.quaint.2010.04.004.
– reference: Sun D, Bloemendal J, Rea DK, Vandenberghe J, Jiang F, An Z, Su R. 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology 152: 263-277. DOI:10.1016/S0037-0738(02)00082-9.
– reference: Arinushkina EV. 1970. Guidelines for Chemical Analysis of Soils. Moscow State University Press: Moscow.
– reference: Gubin SV, Lupachev AV. 2012. Approaches to the distinguishing and investigation of buried soils in frozen deposits of Ice Complex. Earth Cryosphere 2: 79-84 (in Russian).
– reference: Jahn A. 1975. Problems of the Periglacial Zone (Zagadnienia strefy peryglacjalnef). Panstwowe wydawnictwo Naukowe: Warsaw.
– reference: Konishchev VN. 1981. Formirovanie sostava dispersnykh porod v kriolitosfere. [Formation of Soil Composition in Permafrost Regions.] Nauka: Novosibirsk (in Russian).
– reference: Vandenberghe J, Huijzer BS, Mücher H, Laan W. 1998. Short climatic oscillations in a western European loess sequence (Kesselt, Belgium). Journal of Quaternary Science 13: 471-485. DOI:10.1002/(SICI)1099-1417(1998090)13:5<471::AID-JQS401>3.0.CO;2-T.
– reference: Walker DA, Everett KR. 1987. Road dust and its environmental impact on Alaskan taiga and tundra. Arctic and Alpine Research 19: 479-489. DOI:10.2307/1551414.
– reference: Brubaker LB, Anderson PM, Edwards ME, Lozhkin AV. 2005. Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data. Journal of Biogeography 32: 833-848. DOI:10.1111/j.1365-2699.2004.01203.x.
– reference: Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51: 1111-1150.
– reference: Mücher HJ, Vreeken WJ. 1981. (Re)deposition of loess in southern Limbourg, The Netherlands: 2. Micromorphology of the Lower Silt Loam complex and comparison with deposits produced under laboratory conditions. Earth Surface Processes and Landforms 6: 355-363. DOI:10.1002/esp.3290060314.
– reference: Burn CR, Smith MW. 1990. Development of thermokarst lakes during the Holocene at sites near Mayo, Yukon Territory. Permafrost and Periglacial Processes 1: 161-176. DOI:10.1002/ppp.3430010207.
– reference: Sher AV, Kuzmina SA, Kuznetsova TV, Sulerzhitsky LD. 2005. New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals. Quaternary Science Reviews 24: 533-569. DOI:10.1016/j.quascirev.2004.09.007.
– reference: Bullard JE. 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes and Landforms 38: 71-89. DOI:10.1002/esp.3315.
– reference: Romanovskii NN. 1993. Fundamentals of Cryogenesis of Lithosphere. Moscow University Press: Moscow (in Russian).
– reference: Zhu R, Matasova G, Kazansky A, Zykina V, Sun JM. 2003. Rock magnetic record of the last glacial-interglacial cycle from the Kurtak loess section, southern Siberia. Geophysical Journal International 152: 335-343. DOI:10.1046/j.1365-246X.2003.01829.x.
– reference: Vasil'chuk YK. 2005. Heterochroneity and heterogeneity of the Duvanny Yar Edoma. Doklady Earth Sciences 402: 568-573.
– reference: Goetcheus VG, Birks HH. 2001. Full-glacial upland tundra vegetation preserved under tephra in Beringia National Park, Seward Peninsula, Alaska. Quaternary Science Reviews 20: 135-147. DOI:10.1016/S0277-3791(00)00127-X.
– reference: Kasse K, Bohncke S, Vandenberghe J. 1995. Fluvial periglacial environments, climate and vegetation during the Middle Weichselian in the northern Netherlands with special reference to the Hengelo Interstadial. Mededelingen Rijks Geologische Dienst 52: 387-414.
– reference: Kokelj S, Jorgenson MT. 2013. Advances in thermokarst research. Permafrost and Periglacial Processes 24: 108-119. DOI:10.1002/ppp.1779.
– reference: Zárate MA, Tripaldi A. 2012. The aeolian system of central Argentina. Aeolian Research 3: 401-417. DOI:10.1016/j.aeolia.2011.08.002.
– reference: Murray AS, Wintle AG. 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37: 377-381. DOI:10.1016/S1350-4487(03)00053-2.
– reference: Zazula GD, Froese DG, Elias SA, Kuzmina S, Mathewes RW. 2011. Early Wisconsinan (MIS 4) Arctic ground squirrel middens and a squirrel-eye-view of the mammoth-steppe. Quaternary Science Reviews 30: 2220-2237. DOI:10.1016/j.quascirev.2010.04.019.
– reference: Antoine P, Rousseau D-D, Moine O, Kunesch S, Hatté C, Lang A, Tissoux H, Zöller L. 2009. Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quaternary Science Reviews 28: 2955-2973. DOI:10.1016/j.quascirev.2009.08.001.
– reference: Novothny A, Frechen M, Horváth E, Wacha L, Rolf C. 2011. Investigating the penultimate and last glacial cycles of the Süttö loess section (Hungary) using luminescence dating, high-resolution grain size, and magnetic susceptibility data. Quaternary International 234: 75-85. DOI:10.1016/j.quaint.2010.08.002.
– reference: Guthrie RD. 2001. Origin and causes of the mammoth steppe: A story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quaternary Science Reviews 20: 549-574. DOI:10.1016/S0277-3791(00)00099-8.
– reference: Lozhkin AV, Anderson PM, Matrosova TV, Minyuk PS. 2006. The pollen record from El'gygytgyn Lake: Implications for vegetation and climate histories of northern Chukotka since the late Middle Pleistocene. Journal of Paleolimnology 37: 135-153. DOI:10.1007/s10933-006-9018-5.
– reference: Boeskorov GG, Lazarev PA, Sher AV, Davydov SP, Bakulina NT, Shchelchkova MV, Binladen J, Willerslev E, Buigues B, Tikhonov AN. 2011. Woolly rhino discovery in the lower Kolyma River. Quaternary Science Reviews 30: 2262-2272. DOI:10.1016/j.quascirev.2011.02.010.
– reference: Arnalds O. 2010. Dust sources and deposition of aeolian materials in Iceland. Icelandic Agricultural Sciences 23: 3-21.
– reference: Zhou Y, Lu H, Zhang J, Mason JA, Zhou L. 2009. Luminescence dating of sand-loess sequences and response of Mu Us and Otindag sand fields (north China) to climatic changes. Journal of Quaternary Science 24: 336-344. DOI:10.1002/jqs.1234.
– reference: Prescott JR, Hutton JT. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term variations. Radiation Measurements 23: 497-500. DOI:10.1016/1350-4487(94)90086-8.
– start-page: 22
  year: 1982
  end-page: 29
– start-page: 817
  year: 1973
  end-page: 818
– volume: 32
  start-page: 833
  year: 2005
  end-page: 848
  article-title: Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data
  publication-title: Journal of Biogeography
– volume: XVII
  start-page: 48
  issue: 4
  year: 2013
  end-page: 56
  article-title: Variation of soil cover during the Ice Complex deposit formation, Kolyma Lowland (Part 1)
  publication-title: Earth Cryosphere
– volume: 75
  start-page: 584
  year: 2011
  end-page: 596
  article-title: Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure
  publication-title: Quaternary Research
– year: 1989
– volume: 92
  start-page: 388
  year: 2014
  end-page: 408
  article-title: The postglacial Pleistocene of the northern Russian mainland
  publication-title: Quaternary Science Reviews
– start-page: 72
  year: 1976
  end-page: 77
– volume: 1
  start-page: 15
  year: 1990
  end-page: 29
  article-title: Some observations on the growth and deformation of epigenetic, syngenetic and anti‐syngenetic ice wedges
  publication-title: Permafrost and Periglacial Processes
– year: 1990
– volume: 2
  start-page: 93
  year: 1982
  end-page: 103
  article-title: Loess deposits in Lower Adventdalen, Spitsbergen
  publication-title: Polar Research
– year: 2014
– volume: 51
  start-page: 1111
  year: 2009
  end-page: 1150
  article-title: IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP
  publication-title: Radiocarbon
– volume: 260
  start-page: 115
  year: 2012
  end-page: 142
  article-title: Middle and Late Pleistocene glacial lakes of lowland Britain and the southern North Sea Basin
  publication-title: Quaternary International
– start-page: 173
  year: 2013a
  end-page: 201
– volume: 2
  start-page: 606
  year: 2007
  end-page: 619
– start-page: 643
  year: 1993
  end-page: 647
– volume: 28
  start-page: 2445
  year: 2009
  end-page: 2464
  article-title: The distribution of late‐Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database
  publication-title: Quaternary Science Reviews
– volume: 1
  start-page: 889
  year: 2008
  end-page: 894
– volume: 85
  start-page: 133
  issue: Supplement 1
  year: 2005
  end-page: 140
  article-title: Fossil rodent burrows in frozen Late Pleistocene beds of the Kolyma lowland
  publication-title: Entomological Review
– volume: 43
  start-page: 652
  year: 2014
  end-page: 666
  article-title: The Last Permafrost Maximum (LPM) map of the northern hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP
  publication-title: Boreas
– volume: 41
  start-page: 574
  year: 2008
  end-page: 585
  article-title: Soil formation and the underlying permafrost
  publication-title: Eurasian Soil Science
– year: 1972
– volume: 9
  start-page: 1
  year: 1984
  end-page: 18
  article-title: (Re)deposition of loess in southern Limbourg, The Netherlands. 3. Field evidence for conditions of deposition of the middle and upper silt loam complexes, and landscape evolution at Nagelbeek
  publication-title: Earth Surface Processes and Landforms
– volume: 26
  start-page: 979
  year: 2007
  end-page: 1003
  article-title: Arctic ground squirrels of the mammoth‐steppe: paleoecology of middens from the last glaciation, Yukon Territory, Canada
  publication-title: Quaternary Science Reviews
– volume: 393
  start-page: 1141
  year: 2003
  end-page: 1145
  article-title: The AMS radiocarbon dating of pollen concentrate from the Late Pleistocene ice wedge of the Bison Section, Kolyma region
  publication-title: Doklady Earth Sciences
– volume: 1
  start-page: 706
  year: 1988
  end-page: 711
– volume: 66
  start-page: 699
  year: 1955
  end-page: 724
  article-title: Origin of the upland silt near Fairbanks, Alaska
  publication-title: Geological Society of America Bulletin
– volume: 53
  start-page: 143
  year: 2000
  end-page: 153
  article-title: The full‐glacial environment of the northern Seward Peninsula, Alaska, reconstructed from the 21,500‐Year‐Old Kitluk Paleosol
  publication-title: Quaternary Research
– volume: 108
  start-page: 8171
  year: 2003
  article-title: Climate change and Arctic ecosystems: 2. Modeling, paleodata‐model comparisons, and future projections
  publication-title: Journal of Geophysical Research
– volume: 15
  start-page: 1069
  year: 1978
  end-page: 1084
  article-title: Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory
  publication-title: Canadian Journal of Earth Sciences
– volume: 23
  start-page: 497
  year: 1994
  end-page: 500
  article-title: Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long‐term variations
  publication-title: Radiation Measurements
– year: 1975b
– volume: 19
  start-page: 107
  year: 1995
  end-page: 126
  article-title: A description and classification of soils and landscapes of the lower Kolyma River, northeastern Russia
  publication-title: Polar Geography and Geology
– volume: 36
  start-page: 727
  year: 2008
  end-page: 730
  article-title: Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the past 22 m.y
  publication-title: Geology
– volume: 143
  start-page: 281
  year: 2008
  end-page: 295
  article-title: Characterisation and palaeoclimate of a loess‐like permafrost palaeosol sequence in NE Siberia
  publication-title: Geoderma
– volume: 28
  start-page: 551
  year: 1999
  end-page: 563
  article-title: Last interglacial–glacial climatic cycle in loess‐palaeosol successions of north‐western France
  publication-title: Boreas
– year: 2007
– volume: 16
  start-page: 5
  year: 2005
  end-page: 17
  article-title: The transient layer: implications for geocryology and climate‐change science
  publication-title: Permafrost and Periglacial Processes
– year: 2012b
– volume: 2
  start-page: 1803
  year: 2008
  end-page: 1808
– year: 1973
– volume: 47
  start-page: 243
  year: 2005
  end-page: 256
  article-title: AMS C dating of pollen concentrate from Late Pleistocene ice wedges from the Bison and Seyaha sites in Siberia
  publication-title: Radiocarbon
– start-page: 459
  year: 1990
  end-page: 490
– volume: 25
  start-page: 1
  year: 1991
  end-page: 39
  article-title: Modern periglacial eolian deposits and landforms in the Søndre Strømfjord area, West Greenland and their palaeoenvironmental implications
  publication-title: Meddelelser om Grønland Geoscience
– volume: 2
  start-page: 79
  year: 2012
  end-page: 84
  article-title: Approaches to the distinguishing and investigation of buried soils in frozen deposits of Ice Complex
  publication-title: Earth Cryosphere
– volume: 11
  start-page: 85
  year: 2013
  end-page: 99
  article-title: Loess origin, transport, and deposition over the past 10,000 years, Wrangell‐St. Elias National Park, Alaska
  publication-title: Aeolian Research
– volume: XI
  start-page: 65
  year: 1983
  end-page: 80
– year: 2011a
– volume: 30
  start-page: 3139
  year: 2011b
  end-page: 3151
  article-title: Last Glacial Maximum records in permafrost of the East Siberian Arctic
  publication-title: Quaternary Science Reviews
– year: 1984
– volume: 20
  start-page: 15
  year: 2001
  end-page: 24
  article-title: New perspectives on Beringian Quaternary paleogeography, stratigraphy, and glacial history
  publication-title: Quaternary Science Reviews
– volume: 8
  start-page: 5
  year: 1994
  end-page: 14
  article-title: Late Pleistocene soil formation in coastal lowlands of northern Yakutia
  publication-title: Soil Science
– volume: 30
  start-page: 2220
  year: 2011
  end-page: 2237
  article-title: Early Wisconsinan (MIS 4) Arctic ground squirrel middens and a squirrel‐eye‐view of the mammoth‐steppe
  publication-title: Quaternary Science Reviews
– volume: 312
  start-page: 1612
  year: 2006b
  end-page: 1613
  article-title: Permafrost and the global carbon budget
  publication-title: Science
– volume: 26
  year: 2012a
  article-title: Grain‐size properties and organic‐carbon stock of Yedoma Ice Complex permafrost from the Kolyma lowland, northeastern Siberia
  publication-title: Global Biogeochemical Cycles
– year: 2002
– start-page: 425
  year: 1982
  end-page: 444
– volume: 34
  start-page: 1421
  year: 1997
  end-page: 1441
  article-title: Mid‐Wisconsinan eolian deposits of the Kittigazuit Formation, Tuktoyaktuk Coastlands, Northwest Territories, Canada
  publication-title: Canadian Journal of Earth Sciences
– volume: 1
  start-page: 4
  year: 2009
  end-page: 19
  article-title: Climate warming and permafrost. Moscow State University
  publication-title: Geography‐Environment‐Sustainability
– start-page: 59
  year: 1997
  end-page: 72
– volume: 506
  start-page: 47
  year: 2014
  end-page: 51
  article-title: Fifty thousand years of arctic vegetation and megafauna diet
  publication-title: Nature
– volume: 4
  start-page: 27
  year: 2013a
  end-page: 38
– start-page: 816
  year: 1973
  end-page: 817
– volume: 28
  start-page: 2955
  year: 2009
  end-page: 2973
  article-title: Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high‐resolution record from Nussloch, Germany
  publication-title: Quaternary Science Reviews
– volume: 14
  start-page: 279
  year: 1990
  end-page: 286
  article-title: Changes in the vegetation cover and climate in the Kolyma lowlands in late‐Quaternary time
  publication-title: Polar Geography
– year: 2013
– volume: 99
  start-page: 61
  year: 2010
  end-page: 97
  article-title: Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum
  publication-title: Earth‐Science Reviews
– volume: 53
  start-page: 125
  year: 1984
  end-page: 128
  article-title: Palaeopedological analysis of Late Pleistocene (Yedoma) deposits of the Duvanny Yar exposure
  publication-title: Bulletin of Quaternary Commission
– year: 1985
– volume: 91
  start-page: 308
  year: 1954
  end-page: 314
  article-title: The loess of Pegwell Bay, Kent, and its associated frost soils
  publication-title: Geological Magazine
– year: 2009
– volume: 43
  start-page: 737
  year: 1996a
  end-page: 760
  article-title: Thermokarst‐lake‐basin sediments, Tuktoyaktuk Coastlands, Western Arctic Canada
  publication-title: Sedimentology
– start-page: 284
  year: 2002
  end-page: 313
– volume: 109
  start-page: 4008
  year: 2012
  end-page: 4013
  article-title: Regeneration of whole fertile plants from 30,000‐y‐old fruit tissue buried in Siberian permafrost
  publication-title: Proceedings of the National Academy of Sciences
– volume: 2
  start-page: 117
  year: 1977
  end-page: 124
  article-title: Experimental and micromorphological investigation of erosion and redeposition of loess by water
  publication-title: Earth Surface Processes and Landforms
– volume: 24
  start-page: 82
  year: 2013
  end-page: 93
  article-title: Syngenetic ice wedges: cyclical formation, radiocarbon age and stable‐isotope records
  publication-title: Permafrost and Periglacial Processes
– volume: 19
  start-page: 479
  year: 1987
  end-page: 489
  article-title: Road dust and its environmental impact on Alaskan taiga and tundra
  publication-title: Arctic and Alpine Research
– volume: 9
  start-page: 3
  year: 2013a
  end-page: 48
  article-title: The geologic records of dust in the Quaternary
  publication-title: Aeolian Research
– volume: 32
  start-page: 459
  year: 2000
  end-page: 465
  article-title: Distinguishing dose populations in sediment mixtures: a test of single‐grain optical dating procedures using mixtures of laboratory‐dosed quartz
  publication-title: Radiation Measurements
– volume: 19
  start-page: 195
  year: 2008
  end-page: 210
  article-title: Frost weathering: recent advances and future directions
  publication-title: Permafrost and Periglacial Processes
– volume: 43
  start-page: 541
  issue: 2B
  year: 2001a
  end-page: 553
  article-title: Radiocarbon dating of δ O ‐ δD plots in Late Pleistocene ice‐wedges of the Duvanny Yar (Lower Kolyma River, Northern Yakutia). In , Carmi I, Boaretto E (eds)
  publication-title: Radiocarbon
– volume: 116
  start-page: G03018
  year: 2011
  article-title: Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery
  publication-title: Journal of Geophysical Research
– volume: 2
  start-page: 191
  year: 2013
  end-page: 201
– start-page: 41
  year: 2003
  end-page: 42
– volume: XVIII
  start-page: 77
  issue: 1
  year: 2014
  end-page: 82
  article-title: Variation of soil cover during the Ice Complex deposit formation, Kolyma Lowland (Part 2)
  publication-title: Earth Cryosphere
– year: 1979
– start-page: 1418
  year: 2007
  end-page: 1429
– volume: 20
  start-page: 399
  year: 2009
  end-page: 406
  article-title: Modern tundra landscapes of the Kolyma Lowland and their evolution in the Holocene
  publication-title: Permafrost and Periglacial Processes
– start-page: 287
  year: 2008
  end-page: 288
– year: 1988a
– year: 2004
– volume: 156
  start-page: 157
  year: 1998
  end-page: 172
  article-title: Loess geochemistry and its implications for particle origin and composition of the upper continental crust
  publication-title: Earth and Planetary Science Letters
– start-page: 865
  year: 2011
  end-page: 875
– volume: 82A
  start-page: 513
  year: 2000
  end-page: 526
  article-title: Frozen ground phenomena in the vicinity of Terra Nova Bay, Northern Victoria Land, Antarctica: a preliminary report
  publication-title: Geografiska Annaler
– volume: 30
  start-page: 2160
  year: 2011
  end-page: 2181
  article-title: Forest or no forest: implications of the vegetation record for climatic stability in Western Beringia during Oxygen Isotope Stage 3
  publication-title: Quaternary Science Reviews
– volume: 16
  start-page: 3
  year: 2005
  end-page: 24
  article-title: The loess‐palaeosol succession of Kurtak (Yenisei basin, Siberia): a reference record from the Karga Stage (MIS 3)
  publication-title: Quaternaire
– start-page: 96
  year: 1986
  end-page: 110
– volume: 1
  start-page: 672
  year: 1988
  end-page: 677
– volume: 44
  start-page: 523
  year: 1997
  end-page: 535
  article-title: Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction
  publication-title: Sedimentology
– volume: 30
  start-page: 2262
  year: 2011
  end-page: 2272
  article-title: Woolly rhino discovery in the lower Kolyma River
  publication-title: Quaternary Science Reviews
– volume: 2
  start-page: 29
  year: 1953
  end-page: 41
  article-title: Lithogenesis of alluvial lowlands in the cold climatic conditions. ( )
  publication-title: Geography
– volume: 26
  start-page: 230
  year: 2007
  end-page: 242
  article-title: Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain‐size records
  publication-title: Quaternary Science Reviews
– volume: 20
  start-page: 107
  year: 2009b
  end-page: 125
  article-title: Stratigraphy and paleoenvironments of Richards Island and the eastern Beaufort Continental Shelf during the last glacial‐interglacial cycle
  publication-title: Permafrost and Periglacial Processes
– volume: 13
  start-page: 471
  year: 1998
  end-page: 485
  article-title: Short climatic oscillations in a western European loess sequence (Kesselt, Belgium)
  publication-title: Journal of Quaternary Science
– volume: 16
  start-page: 185
  year: 2009a
  end-page: 203
– volume: 13
  start-page: 91
  year: 2002b
  end-page: 105
  article-title: Palaeoclimate reconstruction on Big Lyakhovsky Island, North Siberia—hydrogen and oxygen isotopes in ice wedges
  publication-title: Permafrost and Periglacial Processes
– volume: 17
  start-page: 233
  year: 2006
  end-page: 243
  article-title: Further cryostratigraphic observations in the CRREL permafrost tunnel, Fox, Alaska
  publication-title: Permafrost and Periglacial Processes
– start-page: 375
  year: 2013
  end-page: 394
– volume: 24
  start-page: 146
  year: 2013
  end-page: 155
  article-title: Characterisation of the permafrost carbon pool
  publication-title: Permafrost and Periglacial Processes
– volume: 100
  start-page: 948
  year: 1988
  end-page: 969
  article-title: The Fox permafrost tunnel: A late Quaternary geologic record in central Alaska
  publication-title: Geological Society of American Bulletin
– volume: 24
  start-page: 533
  year: 2005
  end-page: 569
  article-title: New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals
  publication-title: Quaternary Science Reviews
– volume: 152
  start-page: 263
  year: 2002
  end-page: 277
  article-title: Grain‐size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components
  publication-title: Sedimentary Geology
– volume: 402
  start-page: 568
  year: 2005
  end-page: 573
  article-title: Heterochroneity and heterogeneity of the Duvanny Yar Edoma
  publication-title: Doklady Earth Sciences
– volume: 52
  start-page: 387
  year: 1995
  end-page: 414
  article-title: Fluvial periglacial environments, climate and vegetation during the Middle Weichselian in the northern Netherlands with special reference to the Hengelo Interstadial
  publication-title: Mededelingen Rijks Geologische Dienst
– year: 2003
– volume: 1
  start-page: 333
  year: 2008
  end-page: 336
– volume: 49
  start-page: 129
  year: 1996
  end-page: 140
  article-title: Productivity of loessal grasslands in the Kluane Lake region, Yukon Territory, and the Beringian “production paradox
  publication-title: Arctic
– volume: 24
  start-page: 336
  year: 2009
  end-page: 344
  article-title: Luminescence dating of sand–loess sequences and response of Mu Us and Otindag sand fields (north China) to climatic changes
  publication-title: Journal of Quaternary Science
– volume: 30
  start-page: 2182
  year: 2011
  end-page: 2199
  article-title: Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from pollen records
  publication-title: Quaternary Science Reviews
– volume: 3
  start-page: 401
  year: 2012
  end-page: 417
  article-title: The aeolian system of central Argentina
  publication-title: Aeolian Research
– volume: 2
  start-page: 224
  year: 2013
  end-page: 235
– volume: 166
  start-page: 223
  year: 2004
  end-page: 244
  article-title: Sedimentology of cold‐climate aeolian sandsheet deposits in the Askja region of northeast Iceland
  publication-title: Sedimentary Geology
– volume: 34
  start-page: 190
  year: 1997
  end-page: 199
  article-title: Late Wisconsinan erosion and aeolian deposition, Summer and Hadwen Islands, Mackenzie Delta area, western Canadian Arctic: optical dating and implications for glacial chronology
  publication-title: Canadian Journal of Earth Sciences
– volume: 5
  start-page: 250
  year: 2010
  end-page: 256
  article-title: The source of De variability in periglacial sand wedges: Depositional processes versus measurement issues
  publication-title: Quaternary Geochronology
– volume: 9
  start-page: 523
  year: 1984
  end-page: 531
  article-title: Formation of afterflow silt loam deposits and structural modification due to drying under warm conditions: an experimental and micromorphological approach
  publication-title: Earth Surface Processes and Landforms
– volume: 108
  year: 2003
  article-title: Climate change and arctic ecosystems: 1. Vegetation changes north of 55 N between the last glacial maximum, mid‐Holocene, and present
  publication-title: Journal of Geophysical Research
– volume: 101
  start-page: 190
  year: 2010
  end-page: 206
  article-title: The principles of cryostratigraphy
  publication-title: Earth‐Science Reviews
– volume: 6
  start-page: 331
  year: 1981
  end-page: 336
  article-title: Response of loess materials to simulated translocation by water: micromorphological observations
  publication-title: Earth Surface Processes and Landforms
– volume: 51
  start-page: 1341
  year: 2007
  end-page: 1347
  article-title: Dust emission from desertified lands in the Heihe River Basin, Northwest China
  publication-title: Environmental Geology
– volume: 42
  start-page: 664
  year: 2013
  end-page: 677
  article-title: The loess sequence of Dolní Vestonice, Czech Republic: A new OSL‐based chronology of the Last Climatic Cycle
  publication-title: Boreas
– volume: 234
  start-page: 75
  year: 2011
  end-page: 85
  article-title: Investigating the penultimate and last glacial cycles of the Süttö loess section (Hungary) using luminescence dating, high‐resolution grain size, and magnetic susceptibility data
  publication-title: Quaternary International
– volume: 19
  start-page: 305
  year: 1957
  article-title: Stratigraphie du Pleistocène supérieur en Belgique
  publication-title: Geologie en Mijnbouw
– volume: 121
  start-page: 18
  year: 2013
  end-page: 30
  article-title: Grain size of fine‐grained windblown sediment: a powerful proxy for process identification
  publication-title: Earth‐Science Reviews
– volume: 21
  start-page: 1935
  year: 2002
  end-page: 2017
  article-title: Paraglacial geomorphology
  publication-title: Quaternary Science Reviews
– year: 1963
– volume: 2
  start-page: 1083
  year: 2008
  end-page: 1085
– year: 1980
– volume: 17
  start-page: 197
  year: 1990
  end-page: 206
  article-title: Estimating the component ages in a finite mixture
  publication-title: Radiation Measurements
– volume: 25
  start-page: 2552
  year: 2006
  end-page: 2568
  article-title: Late Pleistocene glacial and periglacial aeolian activity in the Tuktoyaktuk Coastlands, NWT, Canada
  publication-title: Quaternary Science Reviews
– volume: 6
  start-page: 355
  year: 1981
  end-page: 363
  article-title: (Re)deposition of loess in southern Limbourg, The Netherlands: 2. Micromorphology of the Lower Silt Loam complex and comparison with deposits produced under laboratory conditions
  publication-title: Earth Surface Processes and Landforms
– volume: 40
  start-page: 396
  year: 2008
  end-page: 411
  article-title: Paleoclimatic significance of chemical weathering in loess‐derived paleosols of subarctic central Alaska
  publication-title: Arctic, Antarctic and Alpine Research
– volume: 70
  start-page: 37
  year: 2002a
  end-page: 51
  article-title: Paleoclimate studies on Bykovsky Peninsula, North Siberia—hydrogen and oxygen isotopes in ground ice
  publication-title: Polarforschung
– start-page: 68
  year: 1983
  end-page: 73
– volume: 3
  start-page: 261
  year: 2007
  end-page: 277
  article-title: Results of PMIP2 coupled simulations of the Mid‐Holocene and Last Glacial Maximum – Part 1: experiments and large‐scale features
  publication-title: Climate of the Past
– volume: 237
  start-page: 45
  year: 2011
  end-page: 53
  article-title: West Siberian Plain as a late glacial desert
  publication-title: Quaternary International
– volume: 59
  start-page: 322
  year: 2003
  end-page: 334
  article-title: A continuous record of Holocene eolian activity in West Greenland
  publication-title: Quaternary Research
– volume: 9
  start-page: 267
  year: 2008
  end-page: 279
  article-title: Streamflow characteristics and changes in Kolyma Basin in Siberia
  publication-title: Journal of Hydrometeorology
– volume: 20
  start-page: 127
  year: 2001
  end-page: 134
  article-title: Beringian climate during the late Pleistocene and Holocene
  publication-title: Quaternary Science Reviews
– start-page: 461
  year: 1996
  end-page: 468
– volume: 13
  start-page: 153
  year: 1988
  end-page: 170
  article-title: Niveo‐aeolian deposits and denivation forms, with special reference to the Great Kobuk Sand Dunes, Northwestern Alaska
  publication-title: Earth Surface Processes and Landforms
– volume: 192
  start-page: 277
  year: 2013
  end-page: 285
  article-title: Coarse‐textured basal zones in thin loess deposits: products of sediment mixing and/or paleoenvironmental change
  publication-title: Geoderma
– year: 1991
– volume: 53
  start-page: 919
  year: 2006
  end-page: 928
  article-title: Laser vs. settling velocity differences in silt grainsize measurements: estimation of palaeocurrent vigour
  publication-title: Sedimentology
– year: 2011
– start-page: 100
  year: 1989
  end-page: 137
– volume: 19
  start-page: 899
  year: 2000
  end-page: 922
  article-title: Sand veins and wedges in cold aeolian environments
  publication-title: Quaternary Science Reviews
– year: 1981
– volume: 71
  start-page: 219
  year: 1996
  end-page: 243
  article-title: Properties and soil development of late‐Pleistocene paleosols from Seward Peninsula, northwest Alaska
  publication-title: Geoderma
– volume: 39
  start-page: 56
  year: 2010
  end-page: 68
  article-title: A 12.5‐ka history of vegetation dynamics and mire development with evidence of the Younger Dryas larch presence in the Verkhoyansk Mountains, East Siberia, Russia
  publication-title: Boreas
– volume: VIII
  start-page: 145
  year: 1979
  end-page: 156
– volume: 77
  start-page: 1089
  year: 1966
  end-page: 1108
  article-title: Evidence for an early recent warm interval in northwestern Alaska
  publication-title: Geological Society of America Bulletin
– volume: 242
  start-page: 253
  year: 2006
  end-page: 286
  article-title: Vegetation buried under Dawson tephra (25,300 C years BP) and locally diverse late Pleistocene paleoenvironments of Goldbottom Creek, Yukon, Canada
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
– start-page: 1
  year: 2002
  end-page: 35
– start-page: 247
  year: 1974
  end-page: 275
– volume: 66
  start-page: 17
  year: 1996b
  end-page: 25
  article-title: Morphology and paleoenvironmental significance of Quaternary sand veins, sand wedges, and composite wedges, Tuktoyaktuk Coastlands, Western Arctic Canada
  publication-title: Journal of Sedimentary Research
– volume: 27
  start-page: 155
  year: 2003
  end-page: 170
  article-title: Ice‐wedge casts as indicators of palaeotemperatures: precise proxy or wishful thinking?
  publication-title: Progress in Physical Geography
– year: 1975
– volume: 2
  start-page: 573
  year: 2013b
  end-page: 584
– start-page: 108
  year: 1986
  end-page: 113
– volume: 84
  start-page: 717
  year: 2006
  end-page: 736
  article-title: Composition and function of biological soil crust communities along topographic gradients in grasslands of central interior British Columbia (Chilcotin) and southwestern Yukon (Kluane)
  publication-title: Canadian Journal of Botany
– year: 1952
– volume: 43
  start-page: 147
  year: 1995
  end-page: 158
  article-title: The last interglaciation in northeast Siberia
  publication-title: Quaternary Research
– volume: 1
  start-page: 867
  year: 1988b
  end-page: 871
– year: 1998
– volume: 82
  start-page: 281
  year: 2003
  end-page: 300
  article-title: Tundra‐steppe insect assemblages and reconstructions of late Pleistocene climate in the lower reaches of the Kolyma River
  publication-title: Zoologicheskiy Zhurnal
– volume: 61
  start-page: 437
  year: 1991
  end-page: 464
  article-title: Loess ecosystems of northern Alaska: regional gradient and toposequence at Prudhoe Bay
  publication-title: Ecological Monographs
– year: 1986
– volume: 20
  start-page: 499
  year: 2001
  end-page: 507
  article-title: Continuous Late Quaternary proxy climate records from loess in Beringia
  publication-title: Quaternary Science Reviews
– volume: 34
  start-page: 269
  year: 1990
  end-page: 281
  article-title: Late‐Pleistocene eolian sand sheets in Alaska
  publication-title: Quaternary Research
– volume: 8
  start-page: 185
  year: 1993
  end-page: 196
  article-title: Thaw modification of frost‐fissure wedges, Richards Island, Pleistocene Mackenzie Delta, western Canadian Arctic
  publication-title: Journal of Quaternary Science
– volume: 14
  start-page: 549
  year: 2006
  end-page: 560
  article-title: Paleobotanical analysis of materials from fossil gopher burrows and Upper Pleistocene host deposits, the Kolyma Lowland lower reaches
  publication-title: Stratigraphy and Geological Correlation
– volume: 8
  start-page: 176
  year: 1984
  end-page: 217
  article-title: Loess
  publication-title: Progress in Physical Geography
– year: 1969
– start-page: 121
  year: 2008
  end-page: 122
– volume: 223‐224
  start-page: 5
  year: 2004
  end-page: 11
  article-title: Low‐energy 14C AMS in Poznan radiocarbon Laboratory, Poland
  publication-title: Nuclear Instruments and Methods in Physics Research B
– start-page: 191
  year: 2012
  end-page: 196
– volume: 1
  start-page: 235
  year: 1990
  end-page: 247
  article-title: Observations of winter aeolian transport and niveo‐aeolian deposition at Crater Lake, Pangnirtung Pass, N.W.T., Canada
  publication-title: Permafrost and Periglacial Processes
– volume: 6
  start-page: 82
  year: 2002
  end-page: 91
  article-title: Pedogenesis—the main component of the Late Pleistocene Ice Complex forming
  publication-title: Earth Cryosphere
– volume: 54
  start-page: 1433
  year: 1943
  end-page: 1548
  article-title: Perennially frozen ground in Alaska: its origin and history
  publication-title: Bulletin of the Geological Society of America
– start-page: 109
  year: 1983
  end-page: 114
– volume: 37
  start-page: 135
  year: 2006
  end-page: 153
  article-title: The pollen record from El'gygytgyn Lake: Implications for vegetation and climate histories of northern Chukotka since the late Middle Pleistocene
  publication-title: Journal of Paleolimnology
– volume: 37
  start-page: 377
  year: 2003
  end-page: 381
  article-title: The single aliquot regenerative dose protocol: potential for improvements in reliability
  publication-title: Radiation Measurements
– start-page: 29
  year: 2004
  end-page: 61
– volume: 1
  start-page: 513
  year: 2003
  end-page: 518
– start-page: 92
  year: 1997
  end-page: 94
– volume: 23
  start-page: 550
  year: 1986
  end-page: 560
  article-title: Ground‐ice investigations, Klondike District, Yukon Territory
  publication-title: Canadian Journal of Earth Sciences
– year: 1993
– volume: 240
  start-page: 167
  year: 2011
  end-page: 180
  article-title: Contrasting dust supply patterns across the north‐western Chinese Loess Plateau during the last glacial–interglacial cycle
  publication-title: Quaternary International
– volume: 1
  start-page: 790
  year: 1988
  end-page: 795
– volume: 28
  start-page: 1
  year: 2001
  end-page: 9
  article-title: Rapid climatic changes recorded in loess succcessions
  publication-title: Global and Planetary Change
– volume: VI
  start-page: 26
  year: 1977
  end-page: 57
– volume: 121
  start-page: 274
  year: 2010
  end-page: 282
  article-title: Rates and environmental controls on aeolian dust accumulation, Athabasca Valley, Canadian Rocky Mountains
  publication-title: Geomorphology
– volume: 67
  start-page: 17
  year: 2013
  end-page: 38
  article-title: High‐resolution record of the environmental response to climatic variations during the Last Interglacial–Glacial cycle in Central Europe: the loess‐palaeosol sequence of Dolní Vestonice (Czech Republic)
  publication-title: Quaternary Science Reviews
– volume: III
  start-page: 7
  year: 1973
  end-page: 62
– start-page: 73
  year: 1997
  end-page: 78
– volume: 166
  start-page: 4
  year: 2007
  end-page: 14
  article-title: Development of low‐background vacuum extraction and graphitization systems for 14C dating of old (40–60 ka) samples
  publication-title: Quaternary International
– year: 1987
– volume: 6
  start-page: 337
  year: 1981
  end-page: 354
  article-title: (Re)deposition of loess in southern Limbourg, The Netherlands: 1. Field evidence for conditions of deposition of the Lower Silt Loam complex
  publication-title: Earth Surface Processes and Landforms
– volume: 2
  start-page: 1827
  year: 2008
  end-page: 1832
– volume: 1
  start-page: 161
  year: 1990
  end-page: 176
  article-title: Development of thermokarst lakes during the Holocene at sites near Mayo, Yukon Territory
  publication-title: Permafrost and Periglacial Processes
– volume: 20
  start-page: 135
  year: 2001
  end-page: 147
  article-title: Full‐glacial upland tundra vegetation preserved under tephra in Beringia National Park, Seward Peninsula, Alaska
  publication-title: Quaternary Science Reviews
– volume: 44
  start-page: 857
  year: 2007
  end-page: 869
  article-title: Luminescence dating of Mid‐ to Late Wisconsinan aeolian sand as a constraint on the last advance of the Laurentide Ice Sheet across the Tuktoyaktuk Coastlands, western Arctic Canada
  publication-title: Canadian Journal of Earth Sciences
– volume: 2
  start-page: 197
  year: 1991
  end-page: 210
  article-title: Observations of aeolian transport and niveo‐aeolian deposition at three lowland sites, Canadian Arctic Archipelago
  publication-title: Permafrost and Periglacial Processes
– volume: 58
  start-page: 916
  year: 2011
  end-page: 935
  article-title: The ultrafine component in Chinese loess and its variation over the past 7.6 Ma: implications for the history of pedogenesis
  publication-title: Sedimentology
– volume: 1
  start-page: 451
  year: 2008
  end-page: 456
– year: 1992
– year: 2010
– start-page: 153
  year: 1981
  end-page: 180
– volume: 11
  start-page: 389
  year: 1996
  end-page: 395
  article-title: An absolute chronology for the raised beach deposits at Sewerby, E. Yorkshire, UK
  publication-title: Journal of Quaternary Science
– volume: 61
  start-page: 265
  year: 2004
  end-page: 276
  article-title: Holocene loess deposition and soil formation as competing processes, Matanuska Valley, southern Alaska
  publication-title: Quaternary Research
– volume: 2
  start-page: 542
  year: 2013
  end-page: 552
– volume: 55
  start-page: 325
  year: 2004
  end-page: 340
  article-title: Bimodal grain‐size distribution of Chinese loess, and its palaeoclimatic implications
  publication-title: Catena
– volume: 7
  start-page: Q10N05
  year: 2006
  article-title: Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow‐speed proxies
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 152
  start-page: 335
  year: 2003
  end-page: 343
  article-title: Rock magnetic record of the last glacial‐interglacial cycle from the Kurtak loess section, southern Siberia
  publication-title: Geophysical Journal International
– volume: 24
  start-page: 916
  year: 2009
  end-page: 927
  article-title: Luminescence dating indicates radiocarbon age underestimation in late Pleistocene fluvial deposits from eastern England
  publication-title: Journal of Quaternary Science
– volume: 441
  start-page: 207
  year: 2006
  end-page: 209
  article-title: New carbon dates link climatic change with human colonization and Pleistocene extinctions
  publication-title: Nature
– volume: 2
  start-page: 93
  year: 1992
  end-page: 96
– volume: 20
  start-page: 93
  year: 2001
  end-page: 125
  article-title: The Stage 3 interstadial complex (Karginskii/middle Wisconsinan interval) of Beringia: variations in paleoenvironments and implications for paleoclimatic interpretations
  publication-title: Quaternary Science Reviews
– volume: 152–153
  start-page: 14
  year: 2006
  end-page: 30
  article-title: Loess/paleosol/cryogenic formation and structure near the northern limit of loess deposition, East European Plain, Russia
  publication-title: Quaternary International
– year: 1970
– volume: 34
  start-page: 1333
  year: 1997
  end-page: 1344
  article-title: On the nature and origin of “muck” deposits in the Klondike area, Yukon Territory
  publication-title: Canadian Journal of Earth Sciences
– volume: IX
  start-page: 3
  year: 1952
  end-page: 18
– start-page: 824
  year: 1973
  end-page: 825
– start-page: 11
  year: 2011
  end-page: 21
– volume: 66
  start-page: 147
  year: 2006
  end-page: 157
  article-title: Full‐glacial paleosols in perennially frozen loess sequences, Klondike goldfields, Yukon Territory, Canada
  publication-title: Quaternary Research
– volume: 20
  start-page: 549
  year: 2001
  end-page: 574
  article-title: Origin and causes of the mammoth steppe: A story of cloud cover, woolly mammal tooth pits, buckles, and inside‐out Beringia
  publication-title: Quaternary Science Reviews
– volume: 23
  start-page: 635
  year: 1915
  end-page: 654
  article-title: Ground‐ice wedges—the dominant form of ground‐ice on the north coast of Alaska
  publication-title: Journal of Geology
– volume: 3
  start-page: 436
  year: 2013b
  end-page: 451
– volume: 18
  start-page: 309
  year: 2003
  end-page: 318
  article-title: The loess and coversands of northern France and southern England
  publication-title: Journal of Quaternary Science
– volume: 148
  start-page: 1990
  year: 2008
  end-page: 2005
  article-title: Tempo‐spatial characteristics of energy budget and evapotranspiration in the eastern Siberia
  publication-title: Agricultural and Forest Meteorology
– volume: 23
  start-page: 3
  year: 2010
  end-page: 21
  article-title: Dust sources and deposition of aeolian materials in Iceland
  publication-title: Icelandic Agricultural Sciences
– volume: 228
  start-page: 228
  year: 2005
  end-page: 244
  article-title: The loess record from the section at Kurtak in Middle Siberia
  publication-title: Palaeogeography, Palaeoclimatology, Palaeocology
– volume: 9
  start-page: Q08Q09
  year: 2008
  article-title: Aeolian dust dynamics in central Asia during the Pleistocene: Driven by the long‐term migration, seasonality, and permanency of the Asiatic polar front
  publication-title: Geochemistry Geophysics Geosystems
– volume: 33
  start-page: L20502
  year: 2006a
  article-title: Permafrost carbon: Stock and decomposability of a globally significant carbon pool
  publication-title: Geophysical Research Letters
– volume: 38
  start-page: 71
  year: 2013
  end-page: 89
  article-title: Contemporary glacigenic inputs to the dust cycle
  publication-title: Earth Surface Processes and Landforms
– volume: 43
  start-page: 323
  year: 2006
  end-page: 337
  article-title: Geochemical evidence for the origin of late Quaternary loess in central Alaska
  publication-title: Canadian Journal of Earth Sciences
– volume: 77
  start-page: 348
  year: 2008
  end-page: 355
  article-title: Microbial communities of ancient seeds derived from permanently frozen Pleistocene deposits
  publication-title: Microbiology
– volume: 42
  start-page: 477
  year: 2007
  end-page: 497
  article-title: Sediment provenance of late Quaternary morainic, fluvial and loess‐like deposits in the southwestern Verkhoyansk Mountains (eastern Siberia) and implications for regional palaeoenvironmental reconstructions
  publication-title: Geological Journal
– volume: 198
  start-page: 220
  year: 2009
  end-page: 233
  article-title: Loess chronology of the Caspian Lowland in northern Iran
  publication-title: Quaternary International
– volume: 48
  start-page: 49
  year: 1978
  end-page: 65
  article-title: Duvanny Yar, a key section of upper Pleistocene sediments of the Kolyma lowland
  publication-title: Bulletin of the Commission of the USSR Academy of Sciences for Studying the Quaternary
– volume: 241
  start-page: 3
  year: 2011b
  end-page: 25
  article-title: Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on North‐East Siberian Arctic coastal lowlands and islands – A review
  publication-title: Quaternary International
– start-page: 36
  year: 2002
  end-page: 69
– year: 1971
– volume: 29
  start-page: 307
  year: 1997
  end-page: 322
  article-title: Dust deposition and particle size in Mali, West Africa
  publication-title: Catena
– volume: 212
  start-page: 381
  year: 1981
  end-page: 383
  article-title: A Pleistocene sand sea on the Alaskan Arctic Coastal Plain
  publication-title: Science
– volume: 15
  start-page: 339
  year: 2004
  end-page: 347
  article-title: Syngenetic permafrost growth: cryostratigraphic observations from the CRREL Tunnel near Fairbanks, Alaska
  publication-title: Permafrost and Periglacial Processes
– year: 1994
– volume: 38
  start-page: L06602
  year: 2011
  article-title: Glacial flour dust storms in the Gulf of Alaska: Hydrologic and meteorological controls and their importance as a source of bioavailable iron
  publication-title: Geophysical Research Letters
– volume: 22
  start-page: 1879
  year: 2003
  end-page: 1906
  article-title: The Siberian loess record and its significance for reconstruction of Pleistocene climate change in north‐central Asia
  publication-title: Quaternary Science Reviews
– volume: 63
  start-page: 283
  year: 2005
  end-page: 300
  article-title: Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage
  publication-title: Quaternary Research
– year: 1982
– volume: 116
  start-page: G00M02
  year: 2011a
  article-title: Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic
  publication-title: Journal of Geophysical Research
– year: 1975a
– start-page: 94
  year: 1984
  end-page: 118
– start-page: 823
  year: 1973
  end-page: 824
– volume: 24
  start-page: 108
  year: 2013
  end-page: 119
  article-title: Advances in thermokarst research
  publication-title: Permafrost and Periglacial Processes
– volume: 22
  start-page: 1947
  year: 2003
  end-page: 1986
  article-title: Stratigraphy and paleoclimatic significance of late Quaternary loess‐paleosol sequences of the last interglacial‐glacial cycle in central Alaska
  publication-title: Quaternary Science Reviews
– start-page: 993
  year: 1998
  end-page: 999
– start-page: 393
  year: 2004
  end-page: 416
– volume: 59
  start-page: 399
  year: 1951
  end-page: 401
  article-title: An observation of wind‐blown silt
  publication-title: Journal of Geology
– volume: 37
  start-page: 849
  year: 2000
  end-page: 861
  article-title: Cryostratigraphy of the Klondike “muck” deposits west‐central Yukon Territory
  publication-title: Canadian Journal of Earth Sciences
– volume: 30
  start-page: 2134
  year: 2011
  end-page: 2159
  article-title: Paleontological records indicate the occurrence of open woodlands in a dry inland climate at the present‐day Arctic coast in western Beringia during the Last Interglacial
  publication-title: Quaternary Science Reviews
– volume: 24
  start-page: 481
  year: 2009
  end-page: 499
  article-title: Free‐shape C age‐depth modelling of an intensively dated modern peat profile
  publication-title: Journal of Quaternary Science
– volume: 19
  start-page: 4
  year: 2009
  end-page: 10
  article-title: The Klondike goldfields and Pleistocene environments of Beringia
  publication-title: GSA Today
– volume: 14
  start-page: 303
  year: 1989
  end-page: 315
  article-title: Niveo‐aeolian sedimentation of loess and sand: an experimental and micromorphological approach
  publication-title: Earth Surface Processes and Landforms
– start-page: 5
  issue: 2
  year: 1955
  end-page: 25
– start-page: 553
  year: 1974
  end-page: 566
– year: 1983
– start-page: 841
  year: 2011
  end-page: 848
– volume: 21
  start-page: 2137
  year: 2002
  end-page: 2142
  article-title: Age and significance of the late Pleistocene Dawson tephra in eastern Beringia
  publication-title: Quaternary Science Reviews
– volume: 54
  start-page: 145
  year: 2001
  end-page: 156
  article-title: Pedogenic modification of loess: significance for palaeoclimatic reconstructions
  publication-title: Earth‐Science Reviews
– year: 2000
– volume: 43
  start-page: 1238
  year: 2010
  end-page: 1243
  article-title: Parent materials enriched in organic matter in the northeast of Russia
  publication-title: Eurasian Soil Science
– volume: 56
  start-page: 335
  year: 2001
  end-page: 348
  article-title: Dating Early and Middle (Reid) Pleistocene glaciations in Central Yukon by tephrochronology
  publication-title: Quaternary Research
– volume: 12
  start-page: 2336
  year: 2006
  end-page: 2351
  article-title: Potential carbon release from permafrost soils of Northeastern Siberia
  publication-title: Global Change Biology
– year: 1954
– volume: 39‐1
  start-page: 7
  year: 1985
  end-page: 18
  article-title: Lithostratigraphy and palaeoenvironment of the Pleistocene deposits at Maastricht–Belvédère
  publication-title: Mededelingen Rijks Geologische Dienst
– volume: 34
  start-page: 679
  year: 1997
  end-page: 686
  article-title: A late Quaternary loess‐paleosol record at Kurtak, southern Siberia
  publication-title: Canadian Journal of Earth Sciences
– volume: 45
  start-page: 45
  year: 2012
  end-page: 55
  article-title: Suprapermafrost organic‐accumulative horizons in the tundra cryozems of northern Yakutia
  publication-title: Eurasian Soil Science
– volume: 9
  start-page: 177
  year: 1998
  end-page: 183
  article-title: Oxgyen‐isotope and C data associated with Late Pleistocene syngenetic ice‐wedges in mountains of Magadan region, Siberia
  publication-title: Permafrost and Periglacial Processes
– volume: 379
  start-page: 589
  year: 2001b
  end-page: 593
  article-title: Radiocarbon dating of the Late Pleistocene ice wedges in the Bizon Section in the lower reaches of the Kolyma River
  publication-title: Doklady Earth Sciences
– volume: 30
  start-page: 2107
  year: 2011
  end-page: 2123
  article-title: Late‐Pleistocene (MIS 3–2) palaeoenvironments as recorded by sediments, palaeosols, and ground‐squirrel nests at Duvanny Yar, Kolyma lowland, northeast Siberia
  publication-title: Quaternary Science Reviews
– year: 2006
– start-page: 29
  year: 1982
  end-page: 37
– volume: 33
  start-page: 509
  year: 2005
  end-page: 512
  article-title: Holocene loess deposition in Iceland: evidence for millennial‐scale atmosphere‐ocean coupling in the North Atlantic
  publication-title: Geology
– volume: 13
  start-page: 391
  year: 1998
  end-page: 417
  article-title: Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe
  publication-title: Journal of Quaternary Science
– volume: XI
  start-page: 56
  year: 1983
  end-page: 64
– volume: 4
  start-page: 49
  year: 1993
  end-page: 64
  article-title: Investigations of cryogenic weathering in Europe and Northern Asia
  publication-title: Permafrost and Periglacial Processes
– volume: 30
  start-page: 324
  year: 2011
  end-page: 334
  article-title: Dune stabilization in central and southern Yukon in relation to early Holocene environmental changes, northwestern North America
  publication-title: Quaternary Science Reviews
– volume: 9
  start-page: 1211
  year: 2013b
  end-page: 1219
  article-title: Vegetation responses to interglacial warming in the Arctic, examples from Lake El'gygytgyn, northeast Siberia
  publication-title: Climate of the Past
– volume: 43
  start-page: 14
  year: 1995
  end-page: 21
  article-title: An oxygen‐isotope paleothermometer from ice in Siberian permafrost
  publication-title: Quaternary Research
– year: 1999
– start-page: 3
  year: 1982
  end-page: 28
– ident: e_1_2_9_234_1
  doi: 10.1016/B978-0-444-53643-3.00106-0
– ident: e_1_2_9_190_1
  doi: 10.1191/0309133303pp365ra
– ident: e_1_2_9_106_1
  doi: 10.1130/G21489.1
– ident: e_1_2_9_172_1
  doi: 10.1002/esp.3290060314
– ident: e_1_2_9_254_1
– ident: e_1_2_9_299_1
– ident: e_1_2_9_183_1
  doi: 10.1111/j.1365-3091.1996.tb02023.x
– ident: e_1_2_9_208_1
  doi: 10.3133/pp1262
– ident: e_1_2_9_20_1
  doi: 10.1016/j.quageo.2009.03.007
– ident: e_1_2_9_78_1
– volume: 8
  start-page: 5
  year: 1994
  ident: e_1_2_9_81_1
  article-title: Late Pleistocene soil formation in coastal lowlands of northern Yakutia
  publication-title: Soil Science
– ident: e_1_2_9_22_1
  doi: 10.1016/S0277-3791(00)00102-5
– start-page: 22
  volume-title: Permafrost and Geologic Processes and Paleogeography of the Lowlands of North‐East Asia
  year: 1982
  ident: e_1_2_9_126_1
– ident: e_1_2_9_156_1
  doi: 10.1175/2007JHM845.1
– ident: e_1_2_9_153_1
– start-page: 68
  volume-title: Permafrost
  year: 1983
  ident: e_1_2_9_26_1
– ident: e_1_2_9_184_1
  doi: 10.1306/D4268298-2B26-11D7-8648000102C1865D
– start-page: 59
  volume-title: Insects of the Yukon
  year: 1997
  ident: e_1_2_9_236_1
– ident: e_1_2_9_148_1
  doi: 10.5194/cp-9-1211-2013
– ident: e_1_2_9_256_1
  doi: 10.1016/S0341-8162(03)00109-7
– ident: e_1_2_9_136_1
  doi: 10.1002/ppp.1782
– ident: e_1_2_9_221_1
  doi: 10.1016/S1350-4487(00)00104-9
– ident: e_1_2_9_210_1
  doi: 10.1017/S0016756800065298
– ident: e_1_2_9_57_1
  doi: 10.1139/e17-106
– ident: e_1_2_9_293_1
  doi: 10.1002/esp.3290090102
– ident: e_1_2_9_257_1
  doi: 10.1111/j.1365-3091.2010.01189.x
– ident: e_1_2_9_43_1
  doi: 10.1139/e17-054
– start-page: 48
  issue: 4
  year: 2013
  ident: e_1_2_9_87_1
  article-title: Variation of soil cover during the Ice Complex deposit formation, Kolyma Lowland (Part 1)
  publication-title: Earth Cryosphere
– ident: e_1_2_9_191_1
  doi: 10.1139/e17‐015
– ident: e_1_2_9_209_1
  doi: 10.1016/j.quaint.2006.12.006
– ident: e_1_2_9_122_1
  doi: 10.1016/j.quascirev.2010.11.024
– ident: e_1_2_9_18_1
  doi: 10.1002/(SICI)1099-1417(199609/10)11:5<389::AID-JQS260>3.0.CO;2-K
– volume-title: Chemical Analysis of Soil
  year: 1998
  ident: e_1_2_9_292_1
– ident: e_1_2_9_235_1
– ident: e_1_2_9_28_1
– volume: 1
  start-page: 4
  year: 2009
  ident: e_1_2_9_131_1
  article-title: Climate warming and permafrost. Moscow State University
  publication-title: Geography‐Environment‐Sustainability
– ident: e_1_2_9_193_1
  doi: 10.1139/e07-015
– ident: e_1_2_9_218_1
  doi: 10.1016/j.quascirev.2006.07.002
– ident: e_1_2_9_31_1
  doi: 10.1002/jqs.1258
– ident: e_1_2_9_173_1
  doi: 10.1002/esp.3290060312
– start-page: 3
  volume-title: Permafrost of different regions of USSR
  year: 1952
  ident: e_1_2_9_211_1
– ident: e_1_2_9_258_1
– ident: e_1_2_9_287_1
  doi: 10.1016/j.quaint.2005.12.003
– ident: e_1_2_9_199_1
  doi: 10.1139/e78-114
– ident: e_1_2_9_252_1
– ident: e_1_2_9_119_1
– volume-title: Formirovanie sostava dispersnykh porod v kriolitosfere
  year: 1981
  ident: e_1_2_9_129_1
– ident: e_1_2_9_38_1
  doi: 10.1126/science.211.4480.381
– ident: e_1_2_9_305_1
  doi: 10.1016/S0033-5894(03)00037-1
– ident: e_1_2_9_35_1
  doi: 10.1111/j.1751-8369.1982.tb00479.x
– ident: e_1_2_9_167_1
  doi: 10.1016/j.sedgeo.2003.12.007
– ident: e_1_2_9_298_1
  doi: 10.2307/2937050
– ident: e_1_2_9_51_1
  doi: 10.1111/j.1365-2486.2006.01259.x
– ident: e_1_2_9_93_1
  doi: 10.4000/quaternaire.171
– ident: e_1_2_9_72_1
  doi: 10.1016/B978-0-444-53447-7.00063-5
– ident: e_1_2_9_94_1
  doi: 10.1130/0016-7606(1988)100<0948:TFPTAL>2.3.CO;2
– ident: e_1_2_9_152_1
  doi: 10.1029/2007GC001938
– volume: 70
  start-page: 37
  year: 2002
  ident: e_1_2_9_165_1
  article-title: Paleoclimate studies on Bykovsky Peninsula, North Siberia—hydrogen and oxygen isotopes in ground ice
  publication-title: Polarforschung
– start-page: 153
  volume-title: History of Development of Permafrost in Eurasia
  year: 1981
  ident: e_1_2_9_114_1
– ident: e_1_2_9_84_1
  doi: 10.1134/S1064229308060021
– ident: e_1_2_9_19_1
  doi: 10.1016/j.quascirev.2005.07.023
– ident: e_1_2_9_310_1
  doi: 10.1073/pnas.1118386109
– ident: e_1_2_9_120_1
  doi: 10.1016/S0012-8252(01)00045-9
– ident: e_1_2_9_272_1
  doi: 10.1111/bor.12070
– ident: e_1_2_9_220_1
  doi: 10.1017/S0033822200034202
– start-page: 5
  volume-title: The Materials for the Fundamentals of the Study on Frozen Zones of the Earth's Crust
  year: 1955
  ident: e_1_2_9_213_1
– ident: e_1_2_9_216_1
  doi: 10.1002/gj.1088
– ident: e_1_2_9_160_1
  doi: 10.1111/j.1365-3091.2006.00783.x
– ident: e_1_2_9_103_1
– volume: 402
  start-page: 568
  year: 2005
  ident: e_1_2_9_278_1
  article-title: Heterochroneity and heterogeneity of the Duvanny Yar Edoma
  publication-title: Doklady Earth Sciences
– start-page: 1
  volume-title: The Physical Geography of Northern Eurasia
  year: 2002
  ident: e_1_2_9_133_1
– start-page: 65
  volume-title: Problems of Cryolithology
  year: 1983
  ident: e_1_2_9_224_1
– ident: e_1_2_9_198_1
– ident: e_1_2_9_4_1
  doi: 10.1016/S0277-3791(00)00129-3
– volume-title: Cryolithological Analysis
  year: 1981
  ident: e_1_2_9_71_1
– ident: e_1_2_9_147_1
  doi: 10.1016/B978-0-444-53643-3.00186-2
– volume-title: Multi‐language Glossary of Permafrost and Related Ground‐ice Terms
  year: 1998
  ident: e_1_2_9_273_1
– ident: e_1_2_9_249_1
  doi: 10.1080/10889379509377563
– ident: e_1_2_9_64_1
  doi: 10.1130/GSATG54A.1
– ident: e_1_2_9_229_1
  doi: 10.1016/j.yqres.2006.02.008
– ident: e_1_2_9_215_1
– volume-title: Relic Steppe Complexes of North‐East Asia
  year: 1981
  ident: e_1_2_9_311_1
– volume: 2
  start-page: 29
  year: 1953
  ident: e_1_2_9_212_1
  article-title: Lithogenesis of alluvial lowlands in the cold climatic conditions. Izvestiya (Transactions) of the USSR Academy of Sciences
  publication-title: Geography
– start-page: 41
  volume-title: Permafrost, Extended Abstracts Reporting Current Research and New Information, Eighth International Conference on Permafrost
  year: 2003
  ident: e_1_2_9_66_1
– start-page: 867
  volume-title: Permafrost, Fifth International Conference, August 2–5, 1988
  year: 1988
  ident: e_1_2_9_248_1
– ident: e_1_2_9_323_1
  doi: 10.1029/2006GL027484
– ident: e_1_2_9_194_1
– ident: e_1_2_9_163_1
  doi: 10.1002/ppp.3430010304
– start-page: 72
  volume-title: The Bering Land Bridge and its role for the History of Holarctic floras and faunas in the Late Cenozoic
  year: 1976
  ident: e_1_2_9_144_1
– ident: e_1_2_9_317_1
  doi: 10.1016/j.quascirev.2010.04.019
– start-page: 93
  volume-title: Oxygen isotope composition of ground ice (application to paleogeocryological reconstructions)
  year: 1992
  ident: e_1_2_9_277_1
– ident: e_1_2_9_315_1
  doi: 10.1016/j.palaeo.2006.06.005
– start-page: 77
  issue: 1
  year: 2014
  ident: e_1_2_9_88_1
  article-title: Variation of soil cover during the Ice Complex deposit formation, Kolyma Lowland (Part 2)
  publication-title: Earth Cryosphere
– ident: e_1_2_9_61_1
  doi: 10.1139/e86‐055
– ident: e_1_2_9_266_1
  doi: 10.1016/j.earscirev.2013.03.001
– ident: e_1_2_9_154_1
  doi: 10.1002/ppp.3430010104
– ident: e_1_2_9_308_1
  doi: 10.4095/226434
– ident: e_1_2_9_37_1
  doi: 10.1002/ppp.3430010207
– volume: 6
  start-page: 82
  year: 2002
  ident: e_1_2_9_83_1
  article-title: Pedogenesis—the main component of the Late Pleistocene Ice Complex forming
  publication-title: Earth Cryosphere
– ident: e_1_2_9_268_1
  doi: 10.1016/S0921-8181(00)00060-6
– ident: e_1_2_9_79_1
  doi: 10.3133/ofr20131078
– volume-title: Soil Micro‐Morphology: a Basic and Applied Science. Proceedings of the Eighth International Working Meeting of Soil Micromorphology
  year: 1990
  ident: e_1_2_9_169_1
– ident: e_1_2_9_8_1
  doi: 10.1002/jqs.750
– start-page: 121
  volume-title: Extended Abstracts of the Ninth International Conference on Permafrost
  year: 2008
  ident: e_1_2_9_108_1
– ident: e_1_2_9_294_1
  doi: 10.1002/esp.3290060313
– ident: e_1_2_9_44_1
  doi: 10.1029/2010GL046573
– start-page: 993
  volume-title: Permafrost Seventh International Conference, June 23–27, 1998, Proceedings
  year: 1998
  ident: e_1_2_9_242_1
– ident: e_1_2_9_181_1
  doi: 10.1016/S1350-4487(03)00053-2
– ident: e_1_2_9_253_1
  doi: 10.1029/2011GB004104
– ident: e_1_2_9_118_1
– start-page: 94
  volume-title: Late Quaternary Environments of the Soviet Union
  year: 1984
  ident: e_1_2_9_286_1
– ident: e_1_2_9_29_1
  doi: 10.5194/cp-3-261-2007
– ident: e_1_2_9_259_1
  doi: 10.1130/GSAB-54-1433
– volume: 379
  start-page: 589
  year: 2001
  ident: e_1_2_9_283_1
  article-title: Radiocarbon dating of the Late Pleistocene ice wedges in the Bizon Section in the lower reaches of the Kolyma River
  publication-title: Doklady Earth Sciences
– ident: e_1_2_9_182_1
  doi: 10.1016/j.quaint.2011.07.034
– ident: e_1_2_9_23_1
  doi: 10.1029/2002JD002558
– start-page: 36
  volume-title: The Physical Geography of Northern Eurasia
  year: 2002
  ident: e_1_2_9_285_1
– start-page: 145
  volume-title: Problems of Cryolithology
  year: 1979
  ident: e_1_2_9_13_1
– volume-title: Late Quaternary Vegetation and Climate of Siberia and the Russian Far East
  year: 2002
  ident: e_1_2_9_5_1
– ident: e_1_2_9_135_1
  doi: 10.1139/cjes-37-6-849
– ident: e_1_2_9_301_1
  doi: 10.1111/j.1502-3885.2009.00116.x
– ident: e_1_2_9_53_1
  doi: 10.1016/B978-0-444-53643-3.00117-5
– ident: e_1_2_9_322_1
  doi: 10.1046/j.1365-246X.2003.01829.x
– ident: e_1_2_9_77_1
  doi: 10.1029/2010JG001634
– ident: e_1_2_9_316_1
  doi: 10.1016/j.quascirev.2006.12.006
– start-page: 26
  volume-title: Problems of Cryolithology
  year: 1977
  ident: e_1_2_9_12_1
– ident: e_1_2_9_74_1
  doi: 10.1016/j.nimb.2004.04.005
– ident: e_1_2_9_124_1
  doi: 10.2136/sssabookser5.1.2ed
– ident: e_1_2_9_132_1
  doi: 10.1002/ppp.3430040105
– ident: e_1_2_9_319_1
– ident: e_1_2_9_164_1
  doi: 10.1016/S0341-8162(96)00075-6
– ident: e_1_2_9_92_1
  doi: 10.1038/nature04604
– ident: e_1_2_9_10_1
  doi: 10.1016/j.quascirev.2013.01.014
– ident: e_1_2_9_42_1
  doi: 10.1016/S0277-3791(03)00182-3
– ident: e_1_2_9_168_1
  doi: 10.1002/esp.3290090606
– ident: e_1_2_9_321_1
  doi: 10.1002/jqs.1234
– ident: e_1_2_9_295_1
  doi: 10.1016/j.quaint.2010.11.009
– volume-title: Fundamentals of Cryogenesis of Lithosphere
  year: 1993
  ident: e_1_2_9_222_1
– ident: e_1_2_9_288_1
  doi: 10.1016/j.quaint.2011.01.013
– ident: e_1_2_9_16_1
  doi: 10.1016/j.quascirev.2014.03.009.
– start-page: 451
  volume-title: Proceedings of the Ninth International Conference on Permafrost
  year: 2008
  ident: e_1_2_9_56_1
– ident: e_1_2_9_232_1
  doi: 10.1029/2011JG001647
– ident: e_1_2_9_50_1
  doi: 10.1016/B0-44-452747-8/00161-7
– ident: e_1_2_9_65_1
  doi: 10.1111/j.1502-3885.2012.00299.x
– ident: e_1_2_9_146_1
  doi: 10.1016/j.quascirev.2010.12.022
– ident: e_1_2_9_73_1
  doi: 10.1016/S0277-3791(00)00127-X
– ident: e_1_2_9_60_1
  doi: 10.1111/j.0435-3676.2000.00138.x
– ident: e_1_2_9_303_1
– ident: e_1_2_9_91_1
  doi: 10.1016/S0277-3791(00)00099-8
– start-page: 247
  volume-title: Glacial geomorphology
  year: 1974
  ident: e_1_2_9_25_1
– start-page: 459
  volume-title: The Arctic Ocean Region. The Geology of North America, Vol. L
  year: 1990
  ident: e_1_2_9_49_1
  doi: 10.1130/DNAG-GNA-L.459
– ident: e_1_2_9_24_1
  doi: 10.1016/j.quascirev.2009.04.016
– volume: 39
  start-page: 7
  year: 1985
  ident: e_1_2_9_269_1
  article-title: Lithostratigraphy and palaeoenvironment of the Pleistocene deposits at Maastricht–Belvédère
  publication-title: Mededelingen Rijks Geologische Dienst
– start-page: 606
  volume-title: Encyclopedia of Quaternary Science
  year: 2007
  ident: e_1_2_9_225_1
– ident: e_1_2_9_262_1
  doi: 10.1016/B978-0-12-355860-2.50009-0
– ident: e_1_2_9_149_1
  doi: 10.1007/s10933-006-9018-5
– ident: e_1_2_9_17_1
  doi: 10.1016/S0277-3791(02)00005-7
– start-page: 816
  volume-title: USSR Contribution, Permafrost Second International Conference, 13–28 July 1973, Yakutsk, USSR
  year: 1973
  ident: e_1_2_9_226_1
– ident: e_1_2_9_161_1
  doi: 10.1130/0016-7606(1966)77[1089:EFAERW]2.0.CO;2
– volume-title: Dictionary of Folk Geographical Terms
  year: 1984
  ident: e_1_2_9_196_1
– ident: e_1_2_9_309_1
  doi: 10.1016/j.quascirev.2010.11.010
– ident: e_1_2_9_201_1
  doi: 10.1016/j.quaint.2010.08.002
– ident: e_1_2_9_186_1
  doi: 10.1002/ppp.647
– ident: e_1_2_9_280_1
  doi: 10.1002/ppp.1764
– ident: e_1_2_9_297_1
  doi: 10.2307/1551414
– ident: e_1_2_9_227_1
  doi: 10.1080/10889379009377440
– volume: 47
  start-page: 243
  year: 2005
  ident: e_1_2_9_276_1
  article-title: AMS 14C dating of pollen concentrate from Late Pleistocene ice wedges from the Bison and Seyaha sites in Siberia
  publication-title: Radiocarbon
  doi: 10.1017/S0033822200019755
– start-page: 1083
  volume-title: Proceedings of the Ninth International Conference on Permafrost, June 29–July 3, 2008
  year: 2008
  ident: e_1_2_9_150_1
– ident: e_1_2_9_306_1
  doi: 10.1038/nature12921
– ident: e_1_2_9_82_1
– volume-title: Loess‐ice Formation of East Siberia in Late Pleistocene and Holocene
  year: 1980
  ident: e_1_2_9_261_1
– ident: e_1_2_9_281_1
  doi: 10.1002/(SICI)1099-1530(199804/06)9:23.0.CO;2-T
– ident: e_1_2_9_307_1
  doi: 10.1016/B978-0-12-374739-6.00312-2
– ident: e_1_2_9_151_1
  doi: 10.1134/S1064229312010115
– ident: e_1_2_9_228_1
  doi: 10.3133/ofr72326
– ident: e_1_2_9_158_1
  doi: 10.1002/ppp.620
– ident: e_1_2_9_217_1
  doi: 10.1016/1350-4487(94)90086-8
– ident: e_1_2_9_290_1
  doi: 10.1002/ppp.674
– ident: e_1_2_9_187_1
  doi: 10.1016/B978-0-12-374739-6.00206-2
– ident: e_1_2_9_241_1
  doi: 10.1016/j.quascirev.2004.09.007
– ident: e_1_2_9_99_1
  doi: 10.1016/B978-0-12-355860-2.50008-9
– ident: e_1_2_9_139_1
  doi: 10.1016/0033-5894(90)90040-R
– ident: e_1_2_9_188_1
  doi: 10.1016/B978-0-444-53643-3.00097-2
– volume: 82
  start-page: 281
  year: 2003
  ident: e_1_2_9_3_1
  article-title: Tundra‐steppe insect assemblages and reconstructions of late Pleistocene climate in the lower reaches of the Kolyma River
  publication-title: Zoologicheskiy Zhurnal
– ident: e_1_2_9_125_1
  doi: 10.1002/ppp.1779
– ident: e_1_2_9_159_1
  doi: 10.1029/2006GC001284
– ident: e_1_2_9_207_1
  doi: 10.3133/pp862
– ident: e_1_2_9_243_1
  doi: 10.1002/ppp.486
– start-page: 284
  volume-title: The Physical Geography of Northern Eurasia
  year: 2002
  ident: e_1_2_9_238_1
– start-page: 790
  volume-title: Permafrost
  year: 1988
  ident: e_1_2_9_100_1
– ident: e_1_2_9_123_1
  doi: 10.4095/101584
– ident: e_1_2_9_111_1
  doi: 10.1016/j.yqres.2010.12.003
– ident: e_1_2_9_32_1
  doi: 10.1016/S0277-3791(00)00134-7
– ident: e_1_2_9_6_1
  doi: 10.1016/j.quascirev.2010.12.026
– volume-title: Paleoecology of Beringia
  year: 1982
  ident: e_1_2_9_101_1
– volume-title: Late Cenozoic of the Kolyma Lowland: XIV Pacific Science Congress, Khabarovsk August 1979, Tour Guide XI
  year: 1979
  ident: e_1_2_9_240_1
– ident: e_1_2_9_95_1
  doi: 10.1130/G24940A.1
– volume-title: Cryogenic Eolian Deposits of the Eastern Arctic and Subarctic
  year: 1987
  ident: e_1_2_9_264_1
– ident: e_1_2_9_98_1
– ident: e_1_2_9_137_1
– ident: e_1_2_9_70_1
  doi: 10.1038/231382a0
– ident: e_1_2_9_180_1
  doi: 10.1016/j.aeolia.2013.06.001
– ident: e_1_2_9_189_1
  doi: 10.1002/jqs.3390080302
– ident: e_1_2_9_204_1
  doi: 10.1086/625877
– ident: e_1_2_9_96_1
  doi: 10.1016/0016-7061(96)00007-9
– start-page: 824
  volume-title: USSR Contribution, Permafrost Second International Conference, 13–28 July 1973, Yakutsk, USSR
  year: 1973
  ident: e_1_2_9_214_1
– ident: e_1_2_9_244_1
  doi: 10.1002/ppp.518
– volume: 48
  start-page: 49
  year: 1978
  ident: e_1_2_9_116_1
  article-title: Duvanny Yar, a key section of upper Pleistocene sediments of the Kolyma lowland
  publication-title: Bulletin of the Commission of the USSR Academy of Sciences for Studying the Quaternary
– ident: e_1_2_9_143_1
  doi: 10.1134/S0869593806050078
– ident: e_1_2_9_75_1
  doi: 10.1002/jqs.1283
– volume: 2
  start-page: 79
  year: 2012
  ident: e_1_2_9_85_1
  article-title: Approaches to the distinguishing and investigation of buried soils in frozen deposits of Ice Complex
  publication-title: Earth Cryosphere
– volume-title: Circumpolar Arctic Vegetation Map
  year: 2003
  ident: e_1_2_9_41_1
– start-page: 672
  volume-title: Permafrost
  year: 1988
  ident: e_1_2_9_21_1
– ident: e_1_2_9_282_1
  doi: 10.1017/S0033822200041199
– ident: e_1_2_9_192_1
  doi: 10.1016/S0277-3791(99)00045-1
– start-page: 823
  volume-title: USSR Contribution, Permafrost Second International Conference, 13–28 July 1973, Yakutsk, USSR
  year: 1973
  ident: e_1_2_9_128_1
– ident: e_1_2_9_304_1
  doi: 10.1016/j.quascirev.2011.07.020
– volume-title: Guidelines for Chemical Analysis of Soils
  year: 1970
  ident: e_1_2_9_14_1
– start-page: 706
  volume-title: Permafrost
  year: 1988
  ident: e_1_2_9_40_1
– start-page: 7
  volume-title: Problems of Cryolithology
  year: 1973
  ident: e_1_2_9_223_1
– ident: e_1_2_9_67_1
  doi: 10.1016/1359-0189(90)90035-V
– ident: e_1_2_9_45_1
  doi: 10.1139/e17-116
– ident: e_1_2_9_274_1
– ident: e_1_2_9_179_1
  doi: 10.1657/1523-0430(07-022)[MUHS]2.0.CO;2
– start-page: 11
  volume-title: Plant Archaeogenetics
  year: 2011
  ident: e_1_2_9_89_1
– start-page: 29
  volume-title: Entering America. Northeast Asia and Beringia before the Last Glacial Maximum
  year: 2004
  ident: e_1_2_9_33_1
– ident: e_1_2_9_195_1
– volume-title: Ground Ice in the USSR
  year: 1975
  ident: e_1_2_9_296_1
– start-page: 287
  volume-title: Proceedings of the Ninth International Conference on Permafrost, June 29–July 3, 2008
  year: 2008
  ident: e_1_2_9_245_1
– ident: e_1_2_9_2_1
  doi: 10.1016/S0277-3791(00)00128-1
– volume-title: Upper horizon of permafrost and thermokarst
  year: 1988
  ident: e_1_2_9_247_1
– ident: e_1_2_9_69_1
  doi: 10.1016/S0012-821X(97)00218-5
– start-page: 333
  volume-title: Proceedings of the Ninth International Conference on Permafrost
  year: 2008
  ident: e_1_2_9_46_1
– ident: e_1_2_9_251_1
  doi: 10.1134/S0026261708030156
– ident: e_1_2_9_318_1
  doi: 10.1016/j.geoderma.2007.11.012
– ident: e_1_2_9_36_1
  doi: 10.1002/esp.3315
– ident: e_1_2_9_7_1
  doi: 10.1111/j.1502-3885.1999.tb00241.x
– ident: e_1_2_9_59_1
  doi: 10.1016/j.quaint.2008.12.012
– volume: 85
  start-page: 133
  issue: 1
  year: 2005
  ident: e_1_2_9_312_1
  article-title: Fossil rodent burrows in frozen Late Pleistocene beds of the Kolyma lowland
  publication-title: Entomological Review
– volume-title: Ice Wedge: Heterocyclity, Heterogeneity, Heterochroneity
  year: 2006
  ident: e_1_2_9_279_1
– ident: e_1_2_9_203_1
  doi: 10.1016/j.agrformet.2008.06.018
– ident: e_1_2_9_324_1
  doi: 10.1126/science.1128908
– ident: e_1_2_9_121_1
  doi: 10.1016/j.yqres.2005.01.003
– ident: e_1_2_9_58_1
  doi: 10.1016/j.palaeo.2005.06.004
– ident: e_1_2_9_200_1
  doi: 10.1006/qres.1995.1002
– ident: e_1_2_9_34_1
  doi: 10.1111/j.1365-2699.2004.01203.x
– ident: e_1_2_9_113_1
  doi: 10.1029/2002JD002559
– start-page: 96
  volume-title: Beringia in the Cenozoic Era
  year: 1986
  ident: e_1_2_9_263_1
– ident: e_1_2_9_270_1
  doi: 10.1002/(SICI)1099-1417(1998090)13:5<471::AID-JQS401>3.0.CO;2-T
– volume: 25
  start-page: 1
  year: 1991
  ident: e_1_2_9_48_1
  article-title: Modern periglacial eolian deposits and landforms in the Søndre Strømfjord area, West Greenland and their palaeoenvironmental implications
  publication-title: Meddelelser om Grønland Geoscience
– ident: e_1_2_9_115_1
– start-page: 889
  volume-title: Proceedings of the Ninth International Conference on Permafrost
  year: 2008
  ident: e_1_2_9_110_1
– ident: e_1_2_9_134_1
  doi: 10.1002/esp.3290130206
– ident: e_1_2_9_176_1
  doi: 10.1139/e05-115
– start-page: 1803
  volume-title: Proceedings of the Ninth International Conference on Permafrost, June 29–July 3, 2008
  year: 2008
  ident: e_1_2_9_275_1
– ident: e_1_2_9_162_1
– ident: e_1_2_9_30_1
  doi: 10.1002/ppp.558
– ident: e_1_2_9_202_1
– start-page: 553
  volume-title: Soil Microscopy: Proceedings of the Fourth International Working‐Meeting on Soil Micromorphology, Department of Geography, Queen's University, Kingston, Ontario, Canada, 27th–31st August, 1973
  year: 1974
  ident: e_1_2_9_170_1
– ident: e_1_2_9_54_1
  doi: 10.1016/B978-0-444-53643-3.00116-3
– ident: e_1_2_9_178_1
  doi: 10.1016/j.yqres.2004.02.003
– ident: e_1_2_9_141_1
  doi: 10.1002/ppp.3430020304
– ident: e_1_2_9_177_1
  doi: 10.1016/S0277-3791(03)00167-7
– ident: e_1_2_9_206_1
  doi: 10.3133/pp835
– ident: e_1_2_9_97_1
  doi: 10.1006/qres.1999.2097
– ident: e_1_2_9_55_1
– ident: e_1_2_9_219_1
  doi: 10.1177/030913338400800202
– ident: e_1_2_9_231_1
  doi: 10.1016/j.geoderma.2012.08.001
– start-page: 817
  volume-title: USSR Contribution, Permafrost Second International Conference, 13–28 July 1973, Yakutsk, USSR
  year: 1973
  ident: e_1_2_9_260_1
– ident: e_1_2_9_230_1
– start-page: 92
  volume-title: Beringia Paleoenvironmental Workshop September 1997
  year: 1997
  ident: e_1_2_9_239_1
– volume: 393
  start-page: 1141
  year: 2003
  ident: e_1_2_9_284_1
  article-title: The AMS radiocarbon dating of pollen concentrate from the Late Pleistocene ice wedge of the Bison Section, Kolyma region
  publication-title: Doklady Earth Sciences
– start-page: 56
  volume-title: Problems of Cryolithology
  year: 1983
  ident: e_1_2_9_130_1
– ident: e_1_2_9_314_1
  doi: 10.1016/j.aeolia.2011.08.002
– start-page: 108
  volume-title: Geocryology Studies
  year: 1986
  ident: e_1_2_9_320_1
– volume: 23
  start-page: 3
  year: 2010
  ident: e_1_2_9_15_1
  article-title: Dust sources and deposition of aeolian materials in Iceland
  publication-title: Icelandic Agricultural Sciences
– volume: 53
  start-page: 125
  year: 1984
  ident: e_1_2_9_80_1
  article-title: Palaeopedological analysis of Late Pleistocene (Yedoma) deposits of the Duvanny Yar exposure
  publication-title: Bulletin of Quaternary Commission
– ident: e_1_2_9_11_1
– ident: e_1_2_9_233_1
  doi: 10.1016/j.quaint.2010.04.004
– volume-title: Loess in China
  year: 1985
  ident: e_1_2_9_142_1
– ident: e_1_2_9_271_1
  doi: 10.1007/978-1-4020-2121-3_19
– volume: 52
  start-page: 387
  year: 1995
  ident: e_1_2_9_117_1
  article-title: Fluvial periglacial environments, climate and vegetation during the Middle Weichselian in the northern Netherlands with special reference to the Hengelo Interstadial
  publication-title: Mededelingen Rijks Geologische Dienst
– ident: e_1_2_9_302_1
  doi: 10.1006/qres.2001.2274
– ident: e_1_2_9_291_1
  doi: 10.4095/127955
– ident: e_1_2_9_104_1
  doi: 10.1002/(SICI)1099-1417(1998090)13:5<391::AID-JQS397>3.0.CO;2-6
– ident: e_1_2_9_9_1
  doi: 10.1016/j.quascirev.2009.08.001
– ident: e_1_2_9_105_1
– volume-title: Quaternary Sediments
  year: 1991
  ident: e_1_2_9_68_1
– ident: e_1_2_9_145_1
  doi: 10.1006/qres.1995.1016
– ident: e_1_2_9_197_1
– ident: e_1_2_9_63_1
  doi: 10.1016/S0277-3791(02)00038-0
– ident: e_1_2_9_174_1
  doi: 10.1016/j.aeolia.2012.08.001
– ident: e_1_2_9_246_1
  doi: 10.1007/978-90-481-2642-2
– ident: e_1_2_9_313_1
  doi: 10.1016/j.quascirev.2011.01.021
– ident: e_1_2_9_237_1
  doi: 10.1016/B978-0-12-355860-2.50037-5
– volume-title: Slope Deposits in Yakutia
  year: 1969
  ident: e_1_2_9_76_1
– volume-title: Problems of the Periglacial Zone (Zagadnienia strefy peryglacjalnef)
  year: 1975
  ident: e_1_2_9_107_1
– start-page: 643
  volume-title: Proceedings of the Sixth International Conference on Permafrost
  year: 1993
  ident: e_1_2_9_267_1
– ident: e_1_2_9_255_1
  doi: 10.1016/S0037-0738(02)00082-9
– ident: e_1_2_9_157_1
  doi: 10.1139/B06-026
– ident: e_1_2_9_250_1
– ident: e_1_2_9_205_1
  doi: 10.1130/0016-7606(1955)66[699:OOTUSN]2.0.CO;2
– ident: e_1_2_9_155_1
  doi: 10.1016/j.earscirev.2009.12.001
– ident: e_1_2_9_185_1
  doi: 10.1007/978-3-540-69371-0_13
– volume-title: Methods of Investigation of Physical Properties of Soils
  year: 1986
  ident: e_1_2_9_265_1
– ident: e_1_2_9_27_1
  doi: 10.1016/j.quascirev.2011.02.010
– volume: 19
  start-page: 305
  year: 1957
  ident: e_1_2_9_90_1
  article-title: Stratigraphie du Pleistocène supérieur en Belgique
  publication-title: Geologie en Mijnbouw
– start-page: 109
  volume-title: Permafrost
  year: 1983
  ident: e_1_2_9_39_1
– start-page: 1827
  volume-title: Proceedings of the Ninth International Conference on Permafrost, June 29–July 3, 2008
  year: 2008
  ident: e_1_2_9_289_1
– ident: e_1_2_9_62_1
  doi: 10.1016/j.earscirev.2010.04.002
– start-page: 191
  volume-title: Tenth International Conference on Permafrost, June 25–29, 2012, Salekhard, Russia, Vol. 1, International Contributions
  year: 2012
  ident: e_1_2_9_112_1
– start-page: 73
  volume-title: Terrestrial Paleoenvironmental Studies in Beringia: Proceedings of a Joint Russian‐American Workshop, Fairbanks, Alaska, 1991
  year: 1997
  ident: e_1_2_9_52_1
– ident: e_1_2_9_86_1
  doi: 10.1134/S1064229310110062
– ident: e_1_2_9_127_1
  doi: 10.1046/j.1365-3091.1997.d01-38.x
– ident: e_1_2_9_166_1
  doi: 10.1002/ppp.416.
– ident: e_1_2_9_102_1
  doi: 10.1016/j.geomorph.2010.04.024
– ident: e_1_2_9_140_1
  doi: 10.1086/622281
– ident: e_1_2_9_171_1
  doi: 10.1002/esp.3290020204
– start-page: 513
  volume-title: Permafrost, Proceedings of the Eighth International Conference on Permafrost
  year: 2003
  ident: e_1_2_9_109_1
– ident: e_1_2_9_138_1
  doi: 10.14430/arctic1191
– ident: e_1_2_9_175_1
  doi: 10.1016/B978-0-444-53643-3.00145-X
– ident: e_1_2_9_300_1
  doi: 10.1007/s00254-006-0432-9
– ident: e_1_2_9_47_1
  doi: 10.1002/esp.3290140406
SSID ssj0008314
Score 2.4307811
Snippet Uncertainty about the geological processes that deposited syngenetically frozen ice‐rich silt (yedoma) across hundreds of thousands of square kilometres in...
Uncertainty about the geological processes that deposited syngenetically frozen ice‐rich silt ( yedoma ) across hundreds of thousands of square kilometres in...
Uncertainty about the geological processes that deposited syngenetically frozen ice-rich silt (yedoma) across hundreds of thousands of square kilometres in...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 208
SubjectTerms Accretion
aeolian
Alluvium
Archipelagoes
Beringia
Clay
Coastal plains
cryostructures
depositional processes
Dunes
Dust storms
Ground ice
Holocene
Humid climates
ice wedges
Kolyma
loess
Mass spectrometry
Mountains
palaeosols
permafrost
Pleistocene
Pollen
radiocarbon dating
River valleys
Rivers
Sand
Sediments
Silt
Snow
Stratigraphy
Summer
Tundra
Water analysis
Winter
yedoma
Title Palaeoenvironmental Interpretation of Yedoma Silt (Ice Complex) Deposition as Cold-Climate Loess, Duvanny Yar, Northeast Siberia
URI https://api.istex.fr/ark:/67375/WNG-R41QW7BH-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fppp.1843
https://www.proquest.com/docview/1708971799
https://www.proquest.com/docview/1717494698
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2hIgQvUAoVKW21SBUXqU7s9S1-hIY0RVCFXpRWfVjtOrNqVGNHuUgNT4gv4Bv7Jcz4kjaolSqeLNmztrOeGZ-Jz55hbAsTY-z7bt-KhG0sD1zbinztWBC4xgcMzSCm9c7f9oPOsfflxD8pWZW0FqbQh5j_4UaRkedrCnClx41r0dDhcFinZiWYfomqRXjo4Fo5qunmst5YbBC33rMr3VlbNKqBC2-ihzSplwsw8yZYzd827WfsrLrPgmRyUZ9OdD3--Y-E4__9kGX2tASh_GPhNc_ZA0hX2OOyH_r5bIU92s0b_s5esN9dlSjIbqyHw4GLTEWeGX4K_eyH4oeDZMLf78XAKc8kcPmBt6DihXE1xt1J_-rXn51kgEgZ-NcME-02b00Rz6czfqpG2zz_kkQdhfBsmuLjJTtufz7a6Vhl3wZLecJxLSUMscUUbgGTrXEI5ojQeCLWcWCaWFEGYCt0Bt84Gg-ERiiFhVugQwgUuKtsKc1SeMU47lWuxipa4KA-rSN2tBc5sY11qdCuV2Pvqmco41LUnHprJLKQYxYSZ1fS7NbYm7nlsBDyuMXmbe4GcwM1uiDiW-jL3v6uPPCc773wU0f2amy98hNZxvxYOqHdjEJS2MNrzQ9jtNInGJVCNiUbrAAj6tqJ18qd4s6bkd1ul7Zr9zV8zZ4gmvMLLvE6W5qMprCBiGmiN_PY-AvhOxLL
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED6NTWj7wssAURhgJMSLtHSJ89aIT7CxddBVZWzqJiFZdmpr00JSda208gnxC_iN_BLunKRbEUiIT5Hsc-w4d-c7-_wcwDNUjGkY-gMn4a5xAu27ThIqz9GRb0KNohmldN95rxu1D4P3R-HRAryu78KU-BCzDTeSDKuvScBpQ3rjEjV0OBw2KVvJNViihN7Wn9q_xI5q-RbYG90Niq4P3Bp51uUbdcu5tWiJpvViztC8aq7a9Wb7JnyuR1qGmZw1J2PVTL_-BuL4n59yC25Udih7UzLObVjQ-SosVynRT6arcH3H5vyd3oHvPZlJXVy5EocN54MVWWHYsR4UXyT7dJqN2cvdVDNSNZm-eMW2dB0axuQ5FmeDn99-bGanaCxr1ilQ166zrQma9PmUHcvROrOHSZRUCN-mSETuwuH2u4PNtlOlbnBkwD3fkdxQwJjEp0Z9azyydHhsAp6qNDItdCoj7Urkh9B4Citiw6VE3y1SsY6k9u_BYl7k-j4wLJW-QkeaY6MBXSX2VJB4qYuuKVd-0IAX9U8UaYVrTuk1MlEiMnOBsytodhvwdEY5LLE8_kDz3PLBjECOzij2LQ5Fv7sj9gPvYz9-2xb9BqzVjCIqsT8XXuy2kphA9rCvWTUKLJ3CyFwXE6JBJzChxJ3Yl-WKvw5G9Ho9ej74V8InsNw-2OuIzm73w0NYQeMuLEOL12BxPJroR2hAjdVjKyi_APW4FuY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJj5eBgwQZQOMhPiQli5xvtpHWOk6GFUYTN3Eg2UntpgWkqhrpZUntL9gfyN_CXf56FYEEuLJkn2OHefufBeffwfwDBVj7PtuYnW5bSxPu7bV9ZVj6cA1vkbRDGK67_xhGAz2vXcH_kEdVUl3YSp8iPkPN5KMUl-TgBeJ2bwADS2Kok3JSq7CshfYHeLo3t4FdFTHLXG90dug4HrPboBnbb7Z9FzYipZpVU8X7MzL1mq53fRvwZdmolWUyXF7OlHt-PtvGI7_9ya3YaW2Qtnrim3uwBWdrcKNOiH619kqXNsuM_7O7sJZJFOp80sX4rDjYqgiyw071En-TbJPR-mEvdyJNSNFk-rTV6ynm8AwJk-wOk1-_jjfSo_QVNZsN0dNu8F6UzTosxk7lOMNVh4lUUohfJoiAbkH-_23n7cGVp24wZIed1xLckPhYhJLjdrWOGTn8NB4PFZxYDroUgbalsgNvnEUNoSGS4meW6BCHUjt3oelLM_0A2BYK12FbjTHTgldJHaU13ViGx1TrlyvBS-abyjiGtWckmukosJj5gJXV9DqtuDpnLKokDz-QPO8ZIM5gRwfU-Rb6IvRcFvsec7HUfhmIEYtWG_4RNRCfyKcENkwJIg9HGvejOJKZzAy0_mUaNAF7FLaThyrZIq_TkZEUUTlw38lfALXo15f7O4M36_BTbTs_CqueB2WJuOpfoTW00Q9LsXkF8MvFZ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Palaeoenvironmental+Interpretation+of+Yedoma+Silt+%28Ice+Complex%29+Deposition+as+Cold%E2%80%90Climate+Loess%2C+Duvanny+Yar%2C+Northeast+Siberia&rft.jtitle=Permafrost+and+periglacial+processes&rft.au=Murton%2C+Julian+B.&rft.au=Goslar%2C+Tomasz&rft.au=Edwards%2C+Mary+E.&rft.au=Bateman%2C+Mark+D.&rft.date=2015-07-01&rft.issn=1045-6740&rft.eissn=1099-1530&rft.volume=26&rft.issue=3&rft.spage=208&rft.epage=288&rft_id=info:doi/10.1002%2Fppp.1843&rft.externalDBID=10.1002%252Fppp.1843&rft.externalDocID=PPP1843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-6740&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-6740&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-6740&client=summon