Mechanistic Insight into the Formation of Acetic Acid from the Direct Conversion of Methane and Carbon Dioxide on Zinc-Modified H–ZSM‑5 Zeolite
Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H–ZSM-5 zeolite...
Saved in:
Published in | Journal of the American Chemical Society Vol. 135; no. 36; pp. 13567 - 13573 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H–ZSM-5 zeolite (denoted as Zn/H–ZSM-5) to form acetic acid at a low temperature range of 523–773 K. Solid-state 13C and 1H MAS NMR investigation indicates that the unique nature of the bifunctional Zn/H–ZSM-5 catalyst is responsible for this highly selective transformation. The zinc sites efficiently activate CH4 to form zinc methyl species (−Zn–CH3), the Zn–C bond of which is further subject to the CO2 insertion to produce surface acetate species (−Zn–OOCCH3). Moreover, the Brønsted acid sites play an important role for the final formation of acetic acid by the proton transfer to the surface acetate species. The results disclosed herein may offer the new possibility for the efficient activation and selective transformation of methane at low temperatures through the co-conversion strategy. Also, the mechanistic understanding of this process will help to the rational design of robust catalytic systems for the practical conversion of greenhouse gases into useful chemicals. |
---|---|
AbstractList | Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H-ZSM-5 zeolite (denoted as Zn/H-ZSM-5) to form acetic acid at a low temperature range of 523-773 K. Solid-state (13)C and (1)H MAS NMR investigation indicates that the unique nature of the bifunctional Zn/H-ZSM-5 catalyst is responsible for this highly selective transformation. The zinc sites efficiently activate CH4 to form zinc methyl species (-Zn-CH3), the Zn-C bond of which is further subject to the CO2 insertion to produce surface acetate species (-Zn-OOCCH3). Moreover, the Brønsted acid sites play an important role for the final formation of acetic acid by the proton transfer to the surface acetate species. The results disclosed herein may offer the new possibility for the efficient activation and selective transformation of methane at low temperatures through the co-conversion strategy. Also, the mechanistic understanding of this process will help to the rational design of robust catalytic systems for the practical conversion of greenhouse gases into useful chemicals. Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H–ZSM-5 zeolite (denoted as Zn/H–ZSM-5) to form acetic acid at a low temperature range of 523–773 K. Solid-state 13C and 1H MAS NMR investigation indicates that the unique nature of the bifunctional Zn/H–ZSM-5 catalyst is responsible for this highly selective transformation. The zinc sites efficiently activate CH4 to form zinc methyl species (−Zn–CH3), the Zn–C bond of which is further subject to the CO2 insertion to produce surface acetate species (−Zn–OOCCH3). Moreover, the Brønsted acid sites play an important role for the final formation of acetic acid by the proton transfer to the surface acetate species. The results disclosed herein may offer the new possibility for the efficient activation and selective transformation of methane at low temperatures through the co-conversion strategy. Also, the mechanistic understanding of this process will help to the rational design of robust catalytic systems for the practical conversion of greenhouse gases into useful chemicals. Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C₁-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H–ZSM-5 zeolite (denoted as Zn/H–ZSM-5) to form acetic acid at a low temperature range of 523–773 K. Solid-state ¹³C and ¹H MAS NMR investigation indicates that the unique nature of the bifunctional Zn/H–ZSM-5 catalyst is responsible for this highly selective transformation. The zinc sites efficiently activate CH₄ to form zinc methyl species (−Zn–CH₃), the Zn–C bond of which is further subject to the CO₂ insertion to produce surface acetate species (−Zn–OOCCH₃). Moreover, the Brønsted acid sites play an important role for the final formation of acetic acid by the proton transfer to the surface acetate species. The results disclosed herein may offer the new possibility for the efficient activation and selective transformation of methane at low temperatures through the co-conversion strategy. Also, the mechanistic understanding of this process will help to the rational design of robust catalytic systems for the practical conversion of greenhouse gases into useful chemicals. Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H-ZSM-5 zeolite (denoted as Zn/H-ZSM-5) to form acetic acid at a low temperature range of 523-773 K. Solid-state (13)C and (1)H MAS NMR investigation indicates that the unique nature of the bifunctional Zn/H-ZSM-5 catalyst is responsible for this highly selective transformation. The zinc sites efficiently activate CH4 to form zinc methyl species (-Zn-CH3), the Zn-C bond of which is further subject to the CO2 insertion to produce surface acetate species (-Zn-OOCCH3). Moreover, the Brønsted acid sites play an important role for the final formation of acetic acid by the proton transfer to the surface acetate species. The results disclosed herein may offer the new possibility for the efficient activation and selective transformation of methane at low temperatures through the co-conversion strategy. Also, the mechanistic understanding of this process will help to the rational design of robust catalytic systems for the practical conversion of greenhouse gases into useful chemicals.Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H-ZSM-5 zeolite (denoted as Zn/H-ZSM-5) to form acetic acid at a low temperature range of 523-773 K. Solid-state (13)C and (1)H MAS NMR investigation indicates that the unique nature of the bifunctional Zn/H-ZSM-5 catalyst is responsible for this highly selective transformation. The zinc sites efficiently activate CH4 to form zinc methyl species (-Zn-CH3), the Zn-C bond of which is further subject to the CO2 insertion to produce surface acetate species (-Zn-OOCCH3). Moreover, the Brønsted acid sites play an important role for the final formation of acetic acid by the proton transfer to the surface acetate species. The results disclosed herein may offer the new possibility for the efficient activation and selective transformation of methane at low temperatures through the co-conversion strategy. Also, the mechanistic understanding of this process will help to the rational design of robust catalytic systems for the practical conversion of greenhouse gases into useful chemicals. |
Author | Wu, Jian-Feng Yu, Si-Min Wang, Wei David Bai, Shi Wang, Wei Zhang, Chuan-Wei Fan, Yan-Xin Gao, Qiang Huang, Jun |
AuthorAffiliation | School of Chemical and Biomolecular Engineering State Key Laboratory of Applied Organic Chemistry Lanzhou Institute of Chemical Physics Chinese Academy of Sciences The University of Sydney National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou University Laboratory for Catalysis Engineering College of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: Laboratory for Catalysis Engineering – name: Chinese Academy of Sciences – name: National Engineering Research Center for Fine Petrochemical Intermediates – name: College of Chemistry and Chemical Engineering – name: School of Chemical and Biomolecular Engineering – name: State Key Laboratory of Applied Organic Chemistry – name: Lanzhou University – name: Lanzhou Institute of Chemical Physics – name: The University of Sydney |
Author_xml | – sequence: 1 givenname: Jian-Feng surname: Wu fullname: Wu, Jian-Feng – sequence: 2 givenname: Si-Min surname: Yu fullname: Yu, Si-Min – sequence: 3 givenname: Wei David surname: Wang fullname: Wang, Wei David – sequence: 4 givenname: Yan-Xin surname: Fan fullname: Fan, Yan-Xin – sequence: 5 givenname: Shi surname: Bai fullname: Bai, Shi – sequence: 6 givenname: Chuan-Wei surname: Zhang fullname: Zhang, Chuan-Wei – sequence: 7 givenname: Qiang surname: Gao fullname: Gao, Qiang – sequence: 8 givenname: Jun surname: Huang fullname: Huang, Jun – sequence: 9 givenname: Wei surname: Wang fullname: Wang, Wei email: wang_wei@lzu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23981101$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UFvFCEUB3Biauy2evALGC4mehgLDDMwx83W2ibdeFAve5kw8HDZzEALrNFbv4LpN-wnkXbXHkwTT8DL772Q9z9CBz54QOg1JR8oYfRkozhpOyGvn6EZbRipGsraAzQjhLBKyLY-REcpbcqTM0lfoENWd5JSQmfodgl6rbxL2Wl84ZP7vs7Y-RxwXgM-C3FS2QWPg8VzDfdorp3BNobpQZy6CDrjRfA_IKa9XEIuMwErb_BCxaFUT1346Qzgcl05r6tlMM46MPj87uZ29WV5d_O7wSsIo8vwEj23akzwan8eo29nH78uzqvLz58uFvPLSnFGctVYbjTQznRG8sYMlqlWaVvKHYMGrBRCikEa1tGhs4K3mnHSUa6YsswIUR-jd7u5VzFcbyHlfnJJwziWv4dt6llZWC25ZPy_lPKaESEYawp9s6fbYQLTX0U3qfir_7vzAt7vgI4hpQj2kVDS3-fZP-ZZ7Mk_Vrv8kEiOyo1PdrzddSid-k3YRl9W-IT7A9qrr2c |
CitedBy_id | crossref_primary_10_1016_j_apcatb_2018_04_034 crossref_primary_10_1016_j_ccr_2022_214691 crossref_primary_10_1016_j_msec_2021_112053 crossref_primary_10_1021_acscatal_9b02645 crossref_primary_10_3390_ijerph20042841 crossref_primary_10_1021_acscatal_7b00844 crossref_primary_10_1016_j_mcat_2024_113906 crossref_primary_10_1016_j_jechem_2015_08_005 crossref_primary_10_1016_j_apcata_2024_119800 crossref_primary_10_1016_j_cej_2024_150690 crossref_primary_10_1039_C9CY01803D crossref_primary_10_1002_anie_201808780 crossref_primary_10_1016_j_trechm_2023_09_005 crossref_primary_10_1089_ast_2016_1599 crossref_primary_10_1016_j_apcatb_2023_122549 crossref_primary_10_1038_s41557_019_0313_y crossref_primary_10_1002_chem_202403167 crossref_primary_10_1016_j_apcatb_2018_01_058 crossref_primary_10_57634_RCR5079 crossref_primary_10_1002_cphc_202200789 crossref_primary_10_1021_acscatal_4c00863 crossref_primary_10_1039_C5CY02184G crossref_primary_10_1039_D0CY01739F crossref_primary_10_1021_acscatal_9b02898 crossref_primary_10_1016_j_apcata_2022_119015 crossref_primary_10_1002_anie_201500649 crossref_primary_10_1039_D0CS01459A crossref_primary_10_1016_j_mcat_2019_110508 crossref_primary_10_1002_adma_202002879 crossref_primary_10_1002_ange_201608322 crossref_primary_10_1134_S0965544122010078 crossref_primary_10_1021_acscatal_1c00747 crossref_primary_10_1039_D2CS00456A crossref_primary_10_1021_acs_chemrev_9b00238 crossref_primary_10_1021_acsnano_2c02464 crossref_primary_10_1016_j_jorganchem_2015_02_045 crossref_primary_10_1002_cmtd_202100021 crossref_primary_10_1021_acscatal_0c05492 crossref_primary_10_1021_jacs_0c11112 crossref_primary_10_1038_s41578_021_00347_3 crossref_primary_10_1016_j_cej_2023_145373 crossref_primary_10_1016_j_cej_2024_151528 crossref_primary_10_1002_cssc_201802012 crossref_primary_10_1016_j_cplett_2024_141339 crossref_primary_10_1002_anie_202414823 crossref_primary_10_1002_chem_201500715 crossref_primary_10_1016_j_pecs_2022_101045 crossref_primary_10_1016_j_jmgm_2022_108321 crossref_primary_10_1039_C9CC10055E crossref_primary_10_1134_S0036024423020139 crossref_primary_10_1016_j_chempr_2019_05_008 crossref_primary_10_1021_acs_jpcc_3c04890 crossref_primary_10_1021_acsami_2c16323 crossref_primary_10_1039_D1NJ00794G crossref_primary_10_1016_j_joei_2024_101739 crossref_primary_10_1039_C6CY00878J crossref_primary_10_1016_j_micromeso_2023_112953 crossref_primary_10_1063_1_5135741 crossref_primary_10_1002_ange_201501248 crossref_primary_10_1016_j_micromeso_2022_112239 crossref_primary_10_1016_j_ssnmr_2016_03_002 crossref_primary_10_1246_bcsj_20190282 crossref_primary_10_1016_j_jcou_2021_101877 crossref_primary_10_1039_D5SC00330J crossref_primary_10_1002_cctc_201902123 crossref_primary_10_1126_sciadv_1701184 crossref_primary_10_1021_acsanm_2c02426 crossref_primary_10_1016_j_apcatb_2016_05_081 crossref_primary_10_1039_C9CY01749F crossref_primary_10_1007_s10562_018_2538_6 crossref_primary_10_1038_s41467_025_55854_6 crossref_primary_10_1016_j_jcat_2018_03_032 crossref_primary_10_1021_jp5013413 crossref_primary_10_1016_S1872_2067_23_64416_X crossref_primary_10_1039_D0TA08402F crossref_primary_10_34133_2020_6452123 crossref_primary_10_1002_anie_201608322 crossref_primary_10_1016_j_jechem_2021_10_033 crossref_primary_10_1002_cctc_202400692 crossref_primary_10_1039_D1CP05854A crossref_primary_10_1002_anie_201501248 crossref_primary_10_1002_anie_202203859 crossref_primary_10_1016_j_cej_2021_129416 crossref_primary_10_1016_j_mcat_2017_10_023 crossref_primary_10_1016_j_apcatb_2021_120956 crossref_primary_10_1016_j_mcat_2022_112855 crossref_primary_10_1016_j_cattod_2018_05_051 crossref_primary_10_1039_C7GC01391D crossref_primary_10_1002_ange_202414823 crossref_primary_10_1016_j_jcat_2022_03_004 crossref_primary_10_1002_cctc_201700771 crossref_primary_10_1016_j_chempr_2017_10_009 crossref_primary_10_1039_D1GC02728J crossref_primary_10_1016_j_apcatb_2024_123938 crossref_primary_10_1038_s41467_018_03235_7 crossref_primary_10_1039_C9DT00922A crossref_primary_10_1021_acsapm_4c00534 crossref_primary_10_1021_acs_inorgchem_9b03462 crossref_primary_10_1016_j_fuel_2018_11_079 crossref_primary_10_1016_j_cej_2021_133512 crossref_primary_10_1002_anie_201911195 crossref_primary_10_1039_C7CP02669B crossref_primary_10_1016_j_apcatb_2019_03_011 crossref_primary_10_1021_acscatal_2c06312 crossref_primary_10_1016_j_jtice_2021_04_043 crossref_primary_10_1021_acsomega_3c09039 crossref_primary_10_1016_j_cattod_2019_06_030 crossref_primary_10_1002_cssc_201403355 crossref_primary_10_1002_ange_201808780 crossref_primary_10_1016_j_mcat_2021_111942 crossref_primary_10_1021_acssuschemeng_0c06717 crossref_primary_10_1002_qute_202100049 crossref_primary_10_1021_acscatal_9b00291 crossref_primary_10_1016_j_enchem_2020_100050 crossref_primary_10_1016_j_jece_2021_106152 crossref_primary_10_1016_j_apcatb_2017_05_053 crossref_primary_10_1016_j_cjche_2018_07_008 crossref_primary_10_1039_C4CC04950K crossref_primary_10_1016_j_jcat_2016_11_009 crossref_primary_10_1021_acs_jpcc_5b08759 crossref_primary_10_1002_ange_201911195 crossref_primary_10_1002_adma_201605895 crossref_primary_10_1039_C9CY00237E crossref_primary_10_1002_ange_202203859 crossref_primary_10_1021_jacs_6b04446 crossref_primary_10_1002_ange_201704347 crossref_primary_10_1002_cphc_202200123 crossref_primary_10_1002_cctc_201901637 crossref_primary_10_1016_j_jmgm_2021_107896 crossref_primary_10_1016_j_jcat_2018_06_026 crossref_primary_10_1016_j_mcat_2024_114090 crossref_primary_10_1073_pnas_2209760120 crossref_primary_10_1134_S0965544121040058 crossref_primary_10_2139_ssrn_4159891 crossref_primary_10_1002_ange_201500649 crossref_primary_10_1016_j_apcatb_2022_121583 crossref_primary_10_1021_acs_joc_5b00492 crossref_primary_10_1002_anie_201704347 crossref_primary_10_1039_C6GC03422E crossref_primary_10_1021_acscatal_9b04811 crossref_primary_10_1002_aenm_202302382 crossref_primary_10_1021_acs_jpcc_3c01451 crossref_primary_10_1016_j_molcata_2016_08_020 crossref_primary_10_1038_ncomms11481 crossref_primary_10_1039_C8CC03656J crossref_primary_10_1021_acssuschemeng_6b00767 crossref_primary_10_1016_j_cjche_2021_11_019 crossref_primary_10_1016_j_apcatb_2023_123663 |
Cites_doi | 10.1016/j.jcat.2004.04.029 10.1038/368231a0 10.1002/1521-3773(20000818)39:16<2928::AID-ANIE2928>3.0.CO;2-T 10.1021/jp8058273 10.1021/ja7110916 10.1021/ol800764u 10.1016/j.cattod.2004.09.004 10.1016/j.ssnmr.2009.01.005 10.1002/chem.201202802 10.1039/c0cs00011f 10.1246/cl.2001.1304 10.1021/ja0706302 10.1021/cr000411y 10.1002/anie.200500694 10.1002/anie.200800317 10.1016/S0167-2991(97)80347-3 10.1016/j.pnmrs.2007.08.001 10.1038/417507a 10.1002/anie.201200045 10.1016/S0167-2991(98)80790-8 10.1039/a804699i 10.1002/anie.199522071 10.1016/j.jcat.2006.02.018 10.1021/jp8067766 10.1016/j.cattod.2006.02.029 10.1016/j.cattod.2008.08.043 10.1016/j.jcat.2007.11.002 10.1021/ja309966j 10.1016/S0360-0564(06)50004-5 10.1002/aic.12073 10.1002/anie.201102320 10.1016/j.ccr.2004.05.019 10.1021/cr900122p 10.1016/S0920-5861(00)00456-9 10.1021/jp0728757 10.1021/cr068357u 10.1073/pnas.0910461106 10.1002/anie.201000533 10.1039/c1cs15008a 10.1021/ol0348856 10.1016/S0378-3820(03)00061-4 10.1021/ef0102770 10.1039/C1CS15009J 10.1021/om0510223 10.1039/c2sc20434g 10.1021/ar700210f 10.1021/cr00034a001 10.1002/chem.201002258 10.1002/anie.199516711 10.1016/j.cattod.2003.08.007 10.1016/j.catcom.2007.08.023 10.1002/anie.201104071 10.1002/anie.201108634 10.1002/anie.201000634 10.1006/jcat.2001.3223 10.1039/c2cp42066j 10.1016/j.jcat.2012.12.030 10.1002/1521-3773(20001215)39:24<4414::AID-ANIE4414>3.0.CO;2-C 10.1038/446391a 10.1002/anie.199520331 10.1021/cr00036a005 10.1021/ja00048a030 10.1021/ja047158u 10.1002/anie.201108706 10.1039/c0cs00033g 10.1134/S0023158410060121 10.1021/ja106283u 10.1016/S0009-2614(02)01866-3 10.1021/ol900528h 10.1002/0471433489 10.1021/ie2000192 10.1126/science.275.5304.1286 10.1080/01614949708007100 10.1016/j.fuproc.2004.09.003 10.1016/j.apcata.2012.07.024 10.1039/c2cc16882k 10.1246/cl.1995.244 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/ja406978q |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 13573 |
ExternalDocumentID | 23981101 10_1021_ja406978q g84575300 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 53G 55A 5GY 5RE 5VS 7~N 85S 8W4 AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 EBS ED~ EJD F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XFK XSW YQT YZZ ZCA ~02 AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA AGXLV AHDLI AHGAQ CITATION CUPRZ AAYWT CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a420t-5f4dce19d9d845dbf2a6acf5f492e5ef87787b8d291b9f746c240914a2af2d773 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 05:43:52 EDT 2025 Thu Jul 10 23:40:44 EDT 2025 Mon Jul 21 06:05:35 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 Tue Jul 01 04:32:47 EDT 2025 Mon Feb 06 12:15:01 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a420t-5f4dce19d9d845dbf2a6acf5f492e5ef87787b8d291b9f746c240914a2af2d773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://202.201.7.4:8080/handle/262010/75261 |
PMID | 23981101 |
PQID | 1432077225 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000384824 proquest_miscellaneous_1432077225 pubmed_primary_23981101 crossref_primary_10_1021_ja406978q crossref_citationtrail_10_1021_ja406978q acs_journals_10_1021_ja406978q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-11 |
PublicationDateYYYYMMDD | 2013-09-11 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Fujiwara Y. (ref4/cit4b) 1997; 107 Xu J. (ref8/cit8h) 2012; 3 Li L. (ref8/cit8i) 2011; 50 Stepanov A. G. (ref10/cit10f) 2010; 51 Bergman R. G. (ref2/cit2c) 2007; 446 Luzgin M. V. (ref8/cit8d) 2008; 47 Liu H. M. (ref9/cit9l) 2006; 239 He J. (ref9/cit9e) 2012; 51 Zheng H. (ref9/cit9m) 2008; 130 Jessop P. G. (ref22/cit22) 1994; 368 Luzgin M. V. (ref8/cit8e) 2009; 144 Kolyagin Y. G. (ref8/cit8b) 2008; 112 Sakakura T. (ref1/cit1d) 2007; 107 Huang W. (ref5/cit5h) 2010; 56 Jessop P. G. (ref23/cit23c) 2004; 248 Ma D. (ref9/cit9k) 2000; 39 Shi D. (ref21/cit21) 2004; 98 Ivanova I. I. (ref10/cit10d) 2010; 39 ref5/cit5a Havran V. (ref1/cit1e) 2011; 50 Huang W. (ref5/cit5d) 2004; 13 Ochiai H. (ref16/cit16) 2008; 10 Zhang R. G. (ref3/cit3c) 2012; 443 Zhang Y. P. (ref7/cit7c) 2003; 83 Smeets P. J. (ref9/cit9j) 2010; 132 Hunger M. (ref10/cit10b) 2008; 53 Wang W. (ref10/cit10c) 2008; 41 Nizova G. V. (ref4/cit4d) 1998 Zerella M. (ref4/cit4e) 2003; 5 Wang J. G. (ref3/cit3a) 2003; 368 Hammond C. (ref9/cit9b) 2012; 51 Eberstadt M. (ref14/cit14) 1995; 34 Liu C. J. (ref7/cit7a) 2001 Mulvey R. E. (ref15/cit15c) 2006; 25 Ding Y. H. (ref5/cit5e) 2007; 88 Wang W. (ref23/cit23f) 2011; 40 Wu J. F. (ref8/cit8f) 2010; 16 Sun M. (ref20/cit20) 2013; 135 Leitner W. (ref23/cit23b) 1995; 34 Wang X. M. (ref8/cit8g) 2012; 51 Zhang L. (ref10/cit10h) 2012; 48 Kolyagin Y. G. (ref8/cit8c) 2009; 35 Song C. S. (ref2/cit2b) 2006; 115 Lazo N. D. (ref12/cit12) 1992; 114 Wilcox E. M. (ref5/cit5c) 2003; 88 Panjan W. (ref3/cit3b) 2012; 14 Kobayashi K. (ref17/cit17) 2009; 11 Li Y. (ref7/cit7b) 2002; 16 Lunsford J. H. (ref1/cit1b) 2000; 63 Sellers H. (ref5/cit5g) 2009; 113 Woertink J. S. (ref9/cit9i) 2009; 106 Choudhary V. R. (ref9/cit9f) 1997; 275 Blasco T. (ref10/cit10e) 2010; 39 Copéret C. (ref2/cit2d) 2010; 110 Taniguchi Y. (ref4/cit4c) 1998; 114 Starokon E. V. (ref9/cit9d) 2013; 300 Boudier A. (ref15/cit15a) 2000; 39 Pu L. (ref15/cit15b) 2001; 101 Jessop P. G. (ref23/cit23a) 1995; 95 Yu K. M. K. (ref23/cit23d) 2007; 129 Crabtree R. H. (ref1/cit1a) 1995; 95 Hunger M. (ref10/cit10a) 2006; 50 Olah G. A. (ref1/cit1c) 2003 Zhang W. (ref10/cit10g) 2012; 41 Spivey J. J. (ref5/cit5f) 2008; 9 Metzger A. (ref18/cit18) 2010; 49 Hammond C. (ref9/cit9a) 2012; 18 Choudhary V. R. (ref9/cit9g) 2005; 44 Li L. (ref9/cit9c) 2012; 51 Kurioka M. (ref4/cit4a) 1995 Luzgin M. V. (ref13/cit13) 2007; 111 Labinger J. A. (ref2/cit2a) 2002; 417 Kazansky V. B. (ref8/cit8a) 2004; 225 Wesendrup R. (ref6/cit6) 1995; 34 Hunger M. (ref19/cit19) 1997; 39 Huang W. (ref5/cit5b) 2001; 201 Groothaert M. H. (ref9/cit9h) 2005; 127 Stepanov A. G. (ref11/cit11) 2008; 253 Federsel C. (ref23/cit23e) 2010; 49 |
References_xml | – volume: 225 start-page: 369 year: 2004 ident: ref8/cit8a publication-title: J. Catal. doi: 10.1016/j.jcat.2004.04.029 – volume: 368 start-page: 231 year: 1994 ident: ref22/cit22 publication-title: Nature doi: 10.1038/368231a0 – volume: 39 start-page: 2928 year: 2000 ident: ref9/cit9k publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20000818)39:16<2928::AID-ANIE2928>3.0.CO;2-T – volume: 113 start-page: 2340 year: 2009 ident: ref5/cit5g publication-title: J. Phys. Chem. C doi: 10.1021/jp8058273 – volume: 130 start-page: 3722 year: 2008 ident: ref9/cit9m publication-title: J. Am. Chem. Soc. doi: 10.1021/ja7110916 – volume: 10 start-page: 2681 year: 2008 ident: ref16/cit16 publication-title: Org. Lett. doi: 10.1021/ol800764u – volume: 98 start-page: 505 year: 2004 ident: ref21/cit21 publication-title: Catal. Today doi: 10.1016/j.cattod.2004.09.004 – volume: 35 start-page: 104 year: 2009 ident: ref8/cit8c publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2009.01.005 – volume: 18 start-page: 15735 year: 2012 ident: ref9/cit9a publication-title: Chem.—Eur. J. doi: 10.1002/chem.201202802 – volume: 39 start-page: 5018 year: 2010 ident: ref10/cit10d publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00011f – start-page: 1304 year: 2001 ident: ref7/cit7a publication-title: Chem. Lett. doi: 10.1246/cl.2001.1304 – volume: 129 start-page: 6360 year: 2007 ident: ref23/cit23d publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0706302 – volume: 101 start-page: 757 year: 2001 ident: ref15/cit15b publication-title: Chem. Rev. doi: 10.1021/cr000411y – volume: 44 start-page: 4381 year: 2005 ident: ref9/cit9g publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200500694 – volume: 47 start-page: 4559 year: 2008 ident: ref8/cit8d publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200800317 – volume: 107 start-page: 275 year: 1997 ident: ref4/cit4b publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(97)80347-3 – volume: 53 start-page: 105 year: 2008 ident: ref10/cit10b publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2007.08.001 – volume: 417 start-page: 507 year: 2002 ident: ref2/cit2a publication-title: Nature doi: 10.1038/417507a – volume: 51 start-page: 4702 year: 2012 ident: ref9/cit9c publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201200045 – volume: 114 start-page: 439 year: 1998 ident: ref4/cit4c publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(98)80790-8 – start-page: 1885 year: 1998 ident: ref4/cit4d publication-title: Chem. Commun. doi: 10.1039/a804699i – volume: 34 start-page: 2207 year: 1995 ident: ref23/cit23b publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199522071 – volume: 239 start-page: 441 year: 2006 ident: ref9/cit9l publication-title: J. Catal. doi: 10.1016/j.jcat.2006.02.018 – volume: 112 start-page: 20065 year: 2008 ident: ref8/cit8b publication-title: J. Phys. Chem. C doi: 10.1021/jp8067766 – volume: 115 start-page: 2 year: 2006 ident: ref2/cit2b publication-title: Catal. Today doi: 10.1016/j.cattod.2006.02.029 – volume: 144 start-page: 265 year: 2009 ident: ref8/cit8e publication-title: Catal. Today doi: 10.1016/j.cattod.2008.08.043 – volume: 253 start-page: 11 year: 2008 ident: ref11/cit11 publication-title: J. Catal. doi: 10.1016/j.jcat.2007.11.002 – volume: 135 start-page: 804 year: 2013 ident: ref20/cit20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309966j – volume: 50 start-page: 149 year: 2006 ident: ref10/cit10a publication-title: Adv. Catal. doi: 10.1016/S0360-0564(06)50004-5 – volume: 56 start-page: 1279 year: 2010 ident: ref5/cit5h publication-title: AlChE J. doi: 10.1002/aic.12073 – volume: 50 start-page: 8299 year: 2011 ident: ref8/cit8i publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201102320 – ident: ref5/cit5a – volume: 248 start-page: 2425 year: 2004 ident: ref23/cit23c publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2004.05.019 – volume: 110 start-page: 656 year: 2010 ident: ref2/cit2d publication-title: Chem. Rev. doi: 10.1021/cr900122p – volume: 63 start-page: 165 year: 2000 ident: ref1/cit1b publication-title: Catal. Today doi: 10.1016/S0920-5861(00)00456-9 – volume: 111 start-page: 10624 year: 2007 ident: ref13/cit13 publication-title: J. Phys. Chem. C doi: 10.1021/jp0728757 – volume: 107 start-page: 2365 year: 2007 ident: ref1/cit1d publication-title: Chem. Rev. doi: 10.1021/cr068357u – volume: 106 start-page: 18908 year: 2009 ident: ref9/cit9i publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0910461106 – volume: 49 start-page: 6254 year: 2010 ident: ref23/cit23e publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201000533 – volume: 40 start-page: 3703 year: 2011 ident: ref23/cit23f publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15008a – volume: 5 start-page: 3193 year: 2003 ident: ref4/cit4e publication-title: Org. Lett. doi: 10.1021/ol0348856 – volume: 83 start-page: 101 year: 2003 ident: ref7/cit7c publication-title: Fuel Process. Technol. doi: 10.1016/S0378-3820(03)00061-4 – volume: 16 start-page: 864 year: 2002 ident: ref7/cit7b publication-title: Energy Fuels doi: 10.1021/ef0102770 – volume: 41 start-page: 192 year: 2012 ident: ref10/cit10g publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15009J – volume: 25 start-page: 1060 year: 2006 ident: ref15/cit15c publication-title: Organometallics doi: 10.1021/om0510223 – volume: 3 start-page: 2932 year: 2012 ident: ref8/cit8h publication-title: Chem. Sci. doi: 10.1039/c2sc20434g – volume: 41 start-page: 895 year: 2008 ident: ref10/cit10c publication-title: Acc. Chem. Res. doi: 10.1021/ar700210f – volume: 95 start-page: 259 year: 1995 ident: ref23/cit23a publication-title: Chem. Rev. doi: 10.1021/cr00034a001 – volume: 16 start-page: 14016 year: 2010 ident: ref8/cit8f publication-title: Chem.—Eur. J. doi: 10.1002/chem.201002258 – volume: 34 start-page: 1671 year: 1995 ident: ref14/cit14 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199516711 – volume: 88 start-page: 83 year: 2003 ident: ref5/cit5c publication-title: Catal. Today doi: 10.1016/j.cattod.2003.08.007 – volume: 9 start-page: 685 year: 2008 ident: ref5/cit5f publication-title: Catal. Commun. doi: 10.1016/j.catcom.2007.08.023 – volume: 51 start-page: 2438 year: 2012 ident: ref9/cit9e publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201104071 – volume: 51 start-page: 3850 year: 2012 ident: ref8/cit8g publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201108634 – volume: 49 start-page: 4665 year: 2010 ident: ref18/cit18 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201000634 – volume: 201 start-page: 100 year: 2001 ident: ref5/cit5b publication-title: J. Catal. doi: 10.1006/jcat.2001.3223 – volume: 14 start-page: 16588 year: 2012 ident: ref3/cit3b publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp42066j – volume: 300 start-page: 47 year: 2013 ident: ref9/cit9d publication-title: J. Catal. doi: 10.1016/j.jcat.2012.12.030 – volume: 39 start-page: 4414 year: 2000 ident: ref15/cit15a publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20001215)39:24<4414::AID-ANIE4414>3.0.CO;2-C – volume: 446 start-page: 391 year: 2007 ident: ref2/cit2c publication-title: Nature doi: 10.1038/446391a – volume: 34 start-page: 2033 year: 1995 ident: ref6/cit6 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199520331 – volume: 95 start-page: 987 year: 1995 ident: ref1/cit1a publication-title: Chem. Rev. doi: 10.1021/cr00036a005 – volume: 114 start-page: 8552 year: 1992 ident: ref12/cit12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00048a030 – volume: 127 start-page: 1394 year: 2005 ident: ref9/cit9h publication-title: J. Am. Chem. Soc. doi: 10.1021/ja047158u – volume: 51 start-page: 5129 year: 2012 ident: ref9/cit9b publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201108706 – volume: 39 start-page: 4685 year: 2010 ident: ref10/cit10e publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00033g – volume: 51 start-page: 854 year: 2010 ident: ref10/cit10f publication-title: Kinet. Catal. doi: 10.1134/S0023158410060121 – volume: 132 start-page: 14736 year: 2010 ident: ref9/cit9j publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106283u – volume: 368 start-page: 313 year: 2003 ident: ref3/cit3a publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)01866-3 – volume: 11 start-page: 2035 year: 2009 ident: ref17/cit17 publication-title: Org. Lett. doi: 10.1021/ol900528h – volume-title: Hydrocarbon Chemistry year: 2003 ident: ref1/cit1c doi: 10.1002/0471433489 – volume: 50 start-page: 7089 year: 2011 ident: ref1/cit1e publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie2000192 – volume: 13 start-page: 113 year: 2004 ident: ref5/cit5d publication-title: J. Nat. Gas Chem. – volume: 275 start-page: 1286 year: 1997 ident: ref9/cit9f publication-title: Science doi: 10.1126/science.275.5304.1286 – volume: 39 start-page: 345 year: 1997 ident: ref19/cit19 publication-title: Catal. Rev.: Sci. Eng. doi: 10.1080/01614949708007100 – volume: 88 start-page: 319 year: 2007 ident: ref5/cit5e publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2004.09.003 – volume: 443 start-page: 50 year: 2012 ident: ref3/cit3c publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2012.07.024 – volume: 48 start-page: 2370 year: 2012 ident: ref10/cit10h publication-title: Chem. Commun. doi: 10.1039/c2cc16882k – start-page: 244 year: 1995 ident: ref4/cit4a publication-title: Chem. Lett. doi: 10.1246/cl.1995.244 |
SSID | ssj0004281 |
Score | 2.4891515 |
Snippet | Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great... Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C₁-building blocks into useful fuels and chemicals is a subject of great... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13567 |
SubjectTerms | acetates acetic acid Acetic Acid - chemical synthesis Acetic Acid - chemistry carbon dioxide Carbon Dioxide - chemistry catalysts fuels gases greenhouse gases Magnetic Resonance Spectroscopy methane Methane - chemistry Models, Molecular Molecular Structure nuclear magnetic resonance spectroscopy stable isotopes temperature zeolites Zeolites - chemistry zinc Zinc - chemistry |
Title | Mechanistic Insight into the Formation of Acetic Acid from the Direct Conversion of Methane and Carbon Dioxide on Zinc-Modified H–ZSM‑5 Zeolite |
URI | http://dx.doi.org/10.1021/ja406978q https://www.ncbi.nlm.nih.gov/pubmed/23981101 https://www.proquest.com/docview/1432077225 https://www.proquest.com/docview/2000384824 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcoAL78fyqMzjwCXVxnFi-1ilrBakcCmVqr2s_JQiUALdrIQ49S-g_sP-EmaSTQHRhVwSWRMl8czEnz3zjQFeS4OGYKVMeJGJRAidJZpTZo7N05ApYaaGiMLVh2J-LN6f5Cc78GpLBJ9TfSAiZ0r19Rpc5wU6L-Gf8ugX-ZGrdMS4UhXZWD7o91tp6HGrP4eeLXiyH1dmt-FwZOcM6SSf9ted3Xff_y7W-K9XvgO3NriSHQyGcBd2QnMPbpTjdm734bwKRPLt6zKzd82KJuWsbrqWIQRks5HDyNrIDhwxG_FUe0b0k15i-DeykrLU-yU2kqwCrbwHZhrPSnNqsfWwbr_VPjC8XNSNS6rW1xFxLptfnJ0vjqqLsx85WwRKuwsP4Hj29mM5TzY7MiSo0mmX5FF4F1LttVci9zZyUxgXsVnzkIeoJPq_VZ7r1OooReEQMOhUGG4i91JmD2G3aZvwGBhCC8QmRRDaZwIP7aLKjY5FiFai605gD1W23HjUatkHyzlOVsa-ncCbUZtLt6lnTttqfL5K9OWl6JehiMdVQi9Gk1iiaihugh3YrvHRIuNTnIXwfLsM72OsQnExgUeDPV0-ikosIspKn_zvk57CTd7vtqGTNH0Gu93pOjxHzNPZvd7mfwJBIvsi |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaeqCXvh9bWupWPfQStHGc2D6uAqulJVwACe0l8lOKihJKslLVE3-h4h_ySxg7CbQVqM0lkTWJHXtsf7ZnvkHoE5OgCIqxiGQJjSgVSSSIt8xRaWwTTuVUekfhYj9bHNEvx-nxQJPjfWGgEC18qQ2H-DfsAp4myPtoMv79PnoAIIR4bZ7lBzc-kITHI9RlPEtGFqHfX_UzkG7_nIHugJVhepk_7uMUhYIFq5JvW6tObemff3E2_l_Jn6BHA8rEs14tnqJ7tn6G1vMxuNtzdFFY7_IbWJrxbt36JTqu6q7BAAjxfPRoxI3DM-39HOFWGeydUYJEP1Li3Nushw03L1lYvw9vsawNzuWZgtTtqvlRGYvhcVnVOioaUzlAvXhxeX6xPCguz3-leGm9EZ59gY7mO4f5IhriM0TQwNMuSh012sbCCMNpapQjMpPaQbIgNrWOMxgNFDdExEo4RjMN8EHEVBLpiGEseYnW6qa2rxEGoAFIJbNUmITCJbTjqRQus04x6MgTtAlVWw79qy3D0TmBpctYtxP0eWzUUg_s5j7Ixsltoh-vRU97So_bhD6MmlFC0_hTFKjAZgVZ04RMYU1C0rtlSDhxpZzQCXrVq9V1Vp5wETBX_OZfv_QerS8Oi71yb3f_6wZ6SEIcDhHF8Vu01p2t7DtAQ53aDN3gCrhvA5I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSNAL5dWyFIpBHLik2jhOHB9XKastkIJUKlV7iRw_pAiUlCYroZ76F6r-w_4SZrzJ8lAryCWRNYkde8b-xvMwIW-EAkYohQhYEvGAcxkFkqFnThmHNkq5GisMFM4PktkRf38cH_eKIsbCQCNa-FLrjfgo1SfG9RkGMFUQxmmK9PttcgfNdcjRk-zwVxwkS8MB7oo0iYZMQr-_iquQbv9chW6Aln6JmW6QT6vGec-Sr7uLrtzVZ3_lbfz_1j8g93u0SSdL9nhIbtn6EbmXDYe8PSaXucXQX5-tme7XLarqtKq7hgIwpNMhspE2jk40xjvCrTIUg1I8xXLGpBn6rvuNN6TMLe7HW6pqQzN1WkLpXtX8qIyl8Divah3kjakcoF86uzq_nB_mV-cXMZ1bdMazT8jR9N2XbBb05zQEMNDjLogdN9qG0kiT8tiUjqlEaQfFktnYulTArFCmhsmwlE7wRAOMkCFXTDlmhIg2yVrd1PYpoQA4ALEklksTcbikdmmspEusKwUI9IjsQPcWvZy1hTehM1Bhhr4dkbfDwBa6z3KOh218u4709Yr0ZJna4zqiVwN3FDA0aE2BDmwWUDWP2Bh0ExbfTMO85ZWnjI_I1pK1VlVh4kXAXuGzf_3SS3L38960-Lh_8GGbrDN_HIcMwvA5WetOF_YFgKKu3PGS8BMhsAYV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+Insight+into+the+Formation+of+Acetic+Acid+from+the+Direct+Conversion+of+Methane+and+Carbon+Dioxide+on+Zinc-Modified+H%E2%80%93ZSM%E2%80%915+Zeolite&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Wu%2C+Jian-Feng&rft.au=Yu%2C+Si-Min&rft.au=Wang%2C+Wei+David&rft.au=Fan%2C+Yan-Xin&rft.date=2013-09-11&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=135&rft.issue=36&rft.spage=13567&rft.epage=13573&rft_id=info:doi/10.1021%2Fja406978q&rft.externalDocID=g84575300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |