Mechanistic Insight into the Formation of Acetic Acid from the Direct Conversion of Methane and Carbon Dioxide on Zinc-Modified H–ZSM‑5 Zeolite

Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H–ZSM-5 zeolite...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 135; no. 36; pp. 13567 - 13573
Main Authors Wu, Jian-Feng, Yu, Si-Min, Wang, Wei David, Fan, Yan-Xin, Bai, Shi, Zhang, Chuan-Wei, Gao, Qiang, Huang, Jun, Wang, Wei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H–ZSM-5 zeolite (denoted as Zn/H–ZSM-5) to form acetic acid at a low temperature range of 523–773 K. Solid-state 13C and 1H MAS NMR investigation indicates that the unique nature of the bifunctional Zn/H–ZSM-5 catalyst is responsible for this highly selective transformation. The zinc sites efficiently activate CH4 to form zinc methyl species (−Zn–CH3), the Zn–C bond of which is further subject to the CO2 insertion to produce surface acetate species (−Zn–OOCCH3). Moreover, the Brønsted acid sites play an important role for the final formation of acetic acid by the proton transfer to the surface acetate species. The results disclosed herein may offer the new possibility for the efficient activation and selective transformation of methane at low temperatures through the co-conversion strategy. Also, the mechanistic understanding of this process will help to the rational design of robust catalytic systems for the practical conversion of greenhouse gases into useful chemicals.
AbstractList Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H-ZSM-5 zeolite (denoted as Zn/H-ZSM-5) to form acetic acid at a low temperature range of 523-773 K. Solid-state (13)C and (1)H MAS NMR investigation indicates that the unique nature of the bifunctional Zn/H-ZSM-5 catalyst is responsible for this highly selective transformation. The zinc sites efficiently activate CH4 to form zinc methyl species (-Zn-CH3), the Zn-C bond of which is further subject to the CO2 insertion to produce surface acetate species (-Zn-OOCCH3). Moreover, the Brønsted acid sites play an important role for the final formation of acetic acid by the proton transfer to the surface acetate species. The results disclosed herein may offer the new possibility for the efficient activation and selective transformation of methane at low temperatures through the co-conversion strategy. Also, the mechanistic understanding of this process will help to the rational design of robust catalytic systems for the practical conversion of greenhouse gases into useful chemicals.
Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H–ZSM-5 zeolite (denoted as Zn/H–ZSM-5) to form acetic acid at a low temperature range of 523–773 K. Solid-state 13C and 1H MAS NMR investigation indicates that the unique nature of the bifunctional Zn/H–ZSM-5 catalyst is responsible for this highly selective transformation. The zinc sites efficiently activate CH4 to form zinc methyl species (−Zn–CH3), the Zn–C bond of which is further subject to the CO2 insertion to produce surface acetate species (−Zn–OOCCH3). Moreover, the Brønsted acid sites play an important role for the final formation of acetic acid by the proton transfer to the surface acetate species. The results disclosed herein may offer the new possibility for the efficient activation and selective transformation of methane at low temperatures through the co-conversion strategy. Also, the mechanistic understanding of this process will help to the rational design of robust catalytic systems for the practical conversion of greenhouse gases into useful chemicals.
Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C₁-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H–ZSM-5 zeolite (denoted as Zn/H–ZSM-5) to form acetic acid at a low temperature range of 523–773 K. Solid-state ¹³C and ¹H MAS NMR investigation indicates that the unique nature of the bifunctional Zn/H–ZSM-5 catalyst is responsible for this highly selective transformation. The zinc sites efficiently activate CH₄ to form zinc methyl species (−Zn–CH₃), the Zn–C bond of which is further subject to the CO₂ insertion to produce surface acetate species (−Zn–OOCCH₃). Moreover, the Brønsted acid sites play an important role for the final formation of acetic acid by the proton transfer to the surface acetate species. The results disclosed herein may offer the new possibility for the efficient activation and selective transformation of methane at low temperatures through the co-conversion strategy. Also, the mechanistic understanding of this process will help to the rational design of robust catalytic systems for the practical conversion of greenhouse gases into useful chemicals.
Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H-ZSM-5 zeolite (denoted as Zn/H-ZSM-5) to form acetic acid at a low temperature range of 523-773 K. Solid-state (13)C and (1)H MAS NMR investigation indicates that the unique nature of the bifunctional Zn/H-ZSM-5 catalyst is responsible for this highly selective transformation. The zinc sites efficiently activate CH4 to form zinc methyl species (-Zn-CH3), the Zn-C bond of which is further subject to the CO2 insertion to produce surface acetate species (-Zn-OOCCH3). Moreover, the Brønsted acid sites play an important role for the final formation of acetic acid by the proton transfer to the surface acetate species. The results disclosed herein may offer the new possibility for the efficient activation and selective transformation of methane at low temperatures through the co-conversion strategy. Also, the mechanistic understanding of this process will help to the rational design of robust catalytic systems for the practical conversion of greenhouse gases into useful chemicals.Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great importance. By solid-state NMR spectroscopy, we found that methane and carbon dioxide can be co-converted on a zinc-modified H-ZSM-5 zeolite (denoted as Zn/H-ZSM-5) to form acetic acid at a low temperature range of 523-773 K. Solid-state (13)C and (1)H MAS NMR investigation indicates that the unique nature of the bifunctional Zn/H-ZSM-5 catalyst is responsible for this highly selective transformation. The zinc sites efficiently activate CH4 to form zinc methyl species (-Zn-CH3), the Zn-C bond of which is further subject to the CO2 insertion to produce surface acetate species (-Zn-OOCCH3). Moreover, the Brønsted acid sites play an important role for the final formation of acetic acid by the proton transfer to the surface acetate species. The results disclosed herein may offer the new possibility for the efficient activation and selective transformation of methane at low temperatures through the co-conversion strategy. Also, the mechanistic understanding of this process will help to the rational design of robust catalytic systems for the practical conversion of greenhouse gases into useful chemicals.
Author Wu, Jian-Feng
Yu, Si-Min
Wang, Wei David
Bai, Shi
Wang, Wei
Zhang, Chuan-Wei
Fan, Yan-Xin
Gao, Qiang
Huang, Jun
AuthorAffiliation School of Chemical and Biomolecular Engineering
State Key Laboratory of Applied Organic Chemistry
Lanzhou Institute of Chemical Physics
Chinese Academy of Sciences
The University of Sydney
National Engineering Research Center for Fine Petrochemical Intermediates
Lanzhou University
Laboratory for Catalysis Engineering
College of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: Laboratory for Catalysis Engineering
– name: Chinese Academy of Sciences
– name: National Engineering Research Center for Fine Petrochemical Intermediates
– name: College of Chemistry and Chemical Engineering
– name: School of Chemical and Biomolecular Engineering
– name: State Key Laboratory of Applied Organic Chemistry
– name: Lanzhou University
– name: Lanzhou Institute of Chemical Physics
– name: The University of Sydney
Author_xml – sequence: 1
  givenname: Jian-Feng
  surname: Wu
  fullname: Wu, Jian-Feng
– sequence: 2
  givenname: Si-Min
  surname: Yu
  fullname: Yu, Si-Min
– sequence: 3
  givenname: Wei David
  surname: Wang
  fullname: Wang, Wei David
– sequence: 4
  givenname: Yan-Xin
  surname: Fan
  fullname: Fan, Yan-Xin
– sequence: 5
  givenname: Shi
  surname: Bai
  fullname: Bai, Shi
– sequence: 6
  givenname: Chuan-Wei
  surname: Zhang
  fullname: Zhang, Chuan-Wei
– sequence: 7
  givenname: Qiang
  surname: Gao
  fullname: Gao, Qiang
– sequence: 8
  givenname: Jun
  surname: Huang
  fullname: Huang, Jun
– sequence: 9
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  email: wang_wei@lzu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23981101$$D View this record in MEDLINE/PubMed
BookMark eNqF0UFvFCEUB3Biauy2evALGC4mehgLDDMwx83W2ibdeFAve5kw8HDZzEALrNFbv4LpN-wnkXbXHkwTT8DL772Q9z9CBz54QOg1JR8oYfRkozhpOyGvn6EZbRipGsraAzQjhLBKyLY-REcpbcqTM0lfoENWd5JSQmfodgl6rbxL2Wl84ZP7vs7Y-RxwXgM-C3FS2QWPg8VzDfdorp3BNobpQZy6CDrjRfA_IKa9XEIuMwErb_BCxaFUT1346Qzgcl05r6tlMM46MPj87uZ29WV5d_O7wSsIo8vwEj23akzwan8eo29nH78uzqvLz58uFvPLSnFGctVYbjTQznRG8sYMlqlWaVvKHYMGrBRCikEa1tGhs4K3mnHSUa6YsswIUR-jd7u5VzFcbyHlfnJJwziWv4dt6llZWC25ZPy_lPKaESEYawp9s6fbYQLTX0U3qfir_7vzAt7vgI4hpQj2kVDS3-fZP-ZZ7Mk_Vrv8kEiOyo1PdrzddSid-k3YRl9W-IT7A9qrr2c
CitedBy_id crossref_primary_10_1016_j_apcatb_2018_04_034
crossref_primary_10_1016_j_ccr_2022_214691
crossref_primary_10_1016_j_msec_2021_112053
crossref_primary_10_1021_acscatal_9b02645
crossref_primary_10_3390_ijerph20042841
crossref_primary_10_1021_acscatal_7b00844
crossref_primary_10_1016_j_mcat_2024_113906
crossref_primary_10_1016_j_jechem_2015_08_005
crossref_primary_10_1016_j_apcata_2024_119800
crossref_primary_10_1016_j_cej_2024_150690
crossref_primary_10_1039_C9CY01803D
crossref_primary_10_1002_anie_201808780
crossref_primary_10_1016_j_trechm_2023_09_005
crossref_primary_10_1089_ast_2016_1599
crossref_primary_10_1016_j_apcatb_2023_122549
crossref_primary_10_1038_s41557_019_0313_y
crossref_primary_10_1002_chem_202403167
crossref_primary_10_1016_j_apcatb_2018_01_058
crossref_primary_10_57634_RCR5079
crossref_primary_10_1002_cphc_202200789
crossref_primary_10_1021_acscatal_4c00863
crossref_primary_10_1039_C5CY02184G
crossref_primary_10_1039_D0CY01739F
crossref_primary_10_1021_acscatal_9b02898
crossref_primary_10_1016_j_apcata_2022_119015
crossref_primary_10_1002_anie_201500649
crossref_primary_10_1039_D0CS01459A
crossref_primary_10_1016_j_mcat_2019_110508
crossref_primary_10_1002_adma_202002879
crossref_primary_10_1002_ange_201608322
crossref_primary_10_1134_S0965544122010078
crossref_primary_10_1021_acscatal_1c00747
crossref_primary_10_1039_D2CS00456A
crossref_primary_10_1021_acs_chemrev_9b00238
crossref_primary_10_1021_acsnano_2c02464
crossref_primary_10_1016_j_jorganchem_2015_02_045
crossref_primary_10_1002_cmtd_202100021
crossref_primary_10_1021_acscatal_0c05492
crossref_primary_10_1021_jacs_0c11112
crossref_primary_10_1038_s41578_021_00347_3
crossref_primary_10_1016_j_cej_2023_145373
crossref_primary_10_1016_j_cej_2024_151528
crossref_primary_10_1002_cssc_201802012
crossref_primary_10_1016_j_cplett_2024_141339
crossref_primary_10_1002_anie_202414823
crossref_primary_10_1002_chem_201500715
crossref_primary_10_1016_j_pecs_2022_101045
crossref_primary_10_1016_j_jmgm_2022_108321
crossref_primary_10_1039_C9CC10055E
crossref_primary_10_1134_S0036024423020139
crossref_primary_10_1016_j_chempr_2019_05_008
crossref_primary_10_1021_acs_jpcc_3c04890
crossref_primary_10_1021_acsami_2c16323
crossref_primary_10_1039_D1NJ00794G
crossref_primary_10_1016_j_joei_2024_101739
crossref_primary_10_1039_C6CY00878J
crossref_primary_10_1016_j_micromeso_2023_112953
crossref_primary_10_1063_1_5135741
crossref_primary_10_1002_ange_201501248
crossref_primary_10_1016_j_micromeso_2022_112239
crossref_primary_10_1016_j_ssnmr_2016_03_002
crossref_primary_10_1246_bcsj_20190282
crossref_primary_10_1016_j_jcou_2021_101877
crossref_primary_10_1039_D5SC00330J
crossref_primary_10_1002_cctc_201902123
crossref_primary_10_1126_sciadv_1701184
crossref_primary_10_1021_acsanm_2c02426
crossref_primary_10_1016_j_apcatb_2016_05_081
crossref_primary_10_1039_C9CY01749F
crossref_primary_10_1007_s10562_018_2538_6
crossref_primary_10_1038_s41467_025_55854_6
crossref_primary_10_1016_j_jcat_2018_03_032
crossref_primary_10_1021_jp5013413
crossref_primary_10_1016_S1872_2067_23_64416_X
crossref_primary_10_1039_D0TA08402F
crossref_primary_10_34133_2020_6452123
crossref_primary_10_1002_anie_201608322
crossref_primary_10_1016_j_jechem_2021_10_033
crossref_primary_10_1002_cctc_202400692
crossref_primary_10_1039_D1CP05854A
crossref_primary_10_1002_anie_201501248
crossref_primary_10_1002_anie_202203859
crossref_primary_10_1016_j_cej_2021_129416
crossref_primary_10_1016_j_mcat_2017_10_023
crossref_primary_10_1016_j_apcatb_2021_120956
crossref_primary_10_1016_j_mcat_2022_112855
crossref_primary_10_1016_j_cattod_2018_05_051
crossref_primary_10_1039_C7GC01391D
crossref_primary_10_1002_ange_202414823
crossref_primary_10_1016_j_jcat_2022_03_004
crossref_primary_10_1002_cctc_201700771
crossref_primary_10_1016_j_chempr_2017_10_009
crossref_primary_10_1039_D1GC02728J
crossref_primary_10_1016_j_apcatb_2024_123938
crossref_primary_10_1038_s41467_018_03235_7
crossref_primary_10_1039_C9DT00922A
crossref_primary_10_1021_acsapm_4c00534
crossref_primary_10_1021_acs_inorgchem_9b03462
crossref_primary_10_1016_j_fuel_2018_11_079
crossref_primary_10_1016_j_cej_2021_133512
crossref_primary_10_1002_anie_201911195
crossref_primary_10_1039_C7CP02669B
crossref_primary_10_1016_j_apcatb_2019_03_011
crossref_primary_10_1021_acscatal_2c06312
crossref_primary_10_1016_j_jtice_2021_04_043
crossref_primary_10_1021_acsomega_3c09039
crossref_primary_10_1016_j_cattod_2019_06_030
crossref_primary_10_1002_cssc_201403355
crossref_primary_10_1002_ange_201808780
crossref_primary_10_1016_j_mcat_2021_111942
crossref_primary_10_1021_acssuschemeng_0c06717
crossref_primary_10_1002_qute_202100049
crossref_primary_10_1021_acscatal_9b00291
crossref_primary_10_1016_j_enchem_2020_100050
crossref_primary_10_1016_j_jece_2021_106152
crossref_primary_10_1016_j_apcatb_2017_05_053
crossref_primary_10_1016_j_cjche_2018_07_008
crossref_primary_10_1039_C4CC04950K
crossref_primary_10_1016_j_jcat_2016_11_009
crossref_primary_10_1021_acs_jpcc_5b08759
crossref_primary_10_1002_ange_201911195
crossref_primary_10_1002_adma_201605895
crossref_primary_10_1039_C9CY00237E
crossref_primary_10_1002_ange_202203859
crossref_primary_10_1021_jacs_6b04446
crossref_primary_10_1002_ange_201704347
crossref_primary_10_1002_cphc_202200123
crossref_primary_10_1002_cctc_201901637
crossref_primary_10_1016_j_jmgm_2021_107896
crossref_primary_10_1016_j_jcat_2018_06_026
crossref_primary_10_1016_j_mcat_2024_114090
crossref_primary_10_1073_pnas_2209760120
crossref_primary_10_1134_S0965544121040058
crossref_primary_10_2139_ssrn_4159891
crossref_primary_10_1002_ange_201500649
crossref_primary_10_1016_j_apcatb_2022_121583
crossref_primary_10_1021_acs_joc_5b00492
crossref_primary_10_1002_anie_201704347
crossref_primary_10_1039_C6GC03422E
crossref_primary_10_1021_acscatal_9b04811
crossref_primary_10_1002_aenm_202302382
crossref_primary_10_1021_acs_jpcc_3c01451
crossref_primary_10_1016_j_molcata_2016_08_020
crossref_primary_10_1038_ncomms11481
crossref_primary_10_1039_C8CC03656J
crossref_primary_10_1021_acssuschemeng_6b00767
crossref_primary_10_1016_j_cjche_2021_11_019
crossref_primary_10_1016_j_apcatb_2023_123663
Cites_doi 10.1016/j.jcat.2004.04.029
10.1038/368231a0
10.1002/1521-3773(20000818)39:16<2928::AID-ANIE2928>3.0.CO;2-T
10.1021/jp8058273
10.1021/ja7110916
10.1021/ol800764u
10.1016/j.cattod.2004.09.004
10.1016/j.ssnmr.2009.01.005
10.1002/chem.201202802
10.1039/c0cs00011f
10.1246/cl.2001.1304
10.1021/ja0706302
10.1021/cr000411y
10.1002/anie.200500694
10.1002/anie.200800317
10.1016/S0167-2991(97)80347-3
10.1016/j.pnmrs.2007.08.001
10.1038/417507a
10.1002/anie.201200045
10.1016/S0167-2991(98)80790-8
10.1039/a804699i
10.1002/anie.199522071
10.1016/j.jcat.2006.02.018
10.1021/jp8067766
10.1016/j.cattod.2006.02.029
10.1016/j.cattod.2008.08.043
10.1016/j.jcat.2007.11.002
10.1021/ja309966j
10.1016/S0360-0564(06)50004-5
10.1002/aic.12073
10.1002/anie.201102320
10.1016/j.ccr.2004.05.019
10.1021/cr900122p
10.1016/S0920-5861(00)00456-9
10.1021/jp0728757
10.1021/cr068357u
10.1073/pnas.0910461106
10.1002/anie.201000533
10.1039/c1cs15008a
10.1021/ol0348856
10.1016/S0378-3820(03)00061-4
10.1021/ef0102770
10.1039/C1CS15009J
10.1021/om0510223
10.1039/c2sc20434g
10.1021/ar700210f
10.1021/cr00034a001
10.1002/chem.201002258
10.1002/anie.199516711
10.1016/j.cattod.2003.08.007
10.1016/j.catcom.2007.08.023
10.1002/anie.201104071
10.1002/anie.201108634
10.1002/anie.201000634
10.1006/jcat.2001.3223
10.1039/c2cp42066j
10.1016/j.jcat.2012.12.030
10.1002/1521-3773(20001215)39:24<4414::AID-ANIE4414>3.0.CO;2-C
10.1038/446391a
10.1002/anie.199520331
10.1021/cr00036a005
10.1021/ja00048a030
10.1021/ja047158u
10.1002/anie.201108706
10.1039/c0cs00033g
10.1134/S0023158410060121
10.1021/ja106283u
10.1016/S0009-2614(02)01866-3
10.1021/ol900528h
10.1002/0471433489
10.1021/ie2000192
10.1126/science.275.5304.1286
10.1080/01614949708007100
10.1016/j.fuproc.2004.09.003
10.1016/j.apcata.2012.07.024
10.1039/c2cc16882k
10.1246/cl.1995.244
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/ja406978q
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 13573
ExternalDocumentID 23981101
10_1021_ja406978q
g84575300
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
8W4
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XFK
XSW
YQT
YZZ
ZCA
~02
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
AAYWT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a420t-5f4dce19d9d845dbf2a6acf5f492e5ef87787b8d291b9f746c240914a2af2d773
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 05:43:52 EDT 2025
Thu Jul 10 23:40:44 EDT 2025
Mon Jul 21 06:05:35 EDT 2025
Thu Apr 24 22:51:23 EDT 2025
Tue Jul 01 04:32:47 EDT 2025
Mon Feb 06 12:15:01 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a420t-5f4dce19d9d845dbf2a6acf5f492e5ef87787b8d291b9f746c240914a2af2d773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://202.201.7.4:8080/handle/262010/75261
PMID 23981101
PQID 1432077225
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2000384824
proquest_miscellaneous_1432077225
pubmed_primary_23981101
crossref_primary_10_1021_ja406978q
crossref_citationtrail_10_1021_ja406978q
acs_journals_10_1021_ja406978q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-11
PublicationDateYYYYMMDD 2013-09-11
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Fujiwara Y. (ref4/cit4b) 1997; 107
Xu J. (ref8/cit8h) 2012; 3
Li L. (ref8/cit8i) 2011; 50
Stepanov A. G. (ref10/cit10f) 2010; 51
Bergman R. G. (ref2/cit2c) 2007; 446
Luzgin M. V. (ref8/cit8d) 2008; 47
Liu H. M. (ref9/cit9l) 2006; 239
He J. (ref9/cit9e) 2012; 51
Zheng H. (ref9/cit9m) 2008; 130
Jessop P. G. (ref22/cit22) 1994; 368
Luzgin M. V. (ref8/cit8e) 2009; 144
Kolyagin Y. G. (ref8/cit8b) 2008; 112
Sakakura T. (ref1/cit1d) 2007; 107
Huang W. (ref5/cit5h) 2010; 56
Jessop P. G. (ref23/cit23c) 2004; 248
Ma D. (ref9/cit9k) 2000; 39
Shi D. (ref21/cit21) 2004; 98
Ivanova I. I. (ref10/cit10d) 2010; 39
ref5/cit5a
Havran V. (ref1/cit1e) 2011; 50
Huang W. (ref5/cit5d) 2004; 13
Ochiai H. (ref16/cit16) 2008; 10
Zhang R. G. (ref3/cit3c) 2012; 443
Zhang Y. P. (ref7/cit7c) 2003; 83
Smeets P. J. (ref9/cit9j) 2010; 132
Hunger M. (ref10/cit10b) 2008; 53
Wang W. (ref10/cit10c) 2008; 41
Nizova G. V. (ref4/cit4d) 1998
Zerella M. (ref4/cit4e) 2003; 5
Wang J. G. (ref3/cit3a) 2003; 368
Hammond C. (ref9/cit9b) 2012; 51
Eberstadt M. (ref14/cit14) 1995; 34
Liu C. J. (ref7/cit7a) 2001
Mulvey R. E. (ref15/cit15c) 2006; 25
Ding Y. H. (ref5/cit5e) 2007; 88
Wang W. (ref23/cit23f) 2011; 40
Wu J. F. (ref8/cit8f) 2010; 16
Sun M. (ref20/cit20) 2013; 135
Leitner W. (ref23/cit23b) 1995; 34
Wang X. M. (ref8/cit8g) 2012; 51
Zhang L. (ref10/cit10h) 2012; 48
Kolyagin Y. G. (ref8/cit8c) 2009; 35
Song C. S. (ref2/cit2b) 2006; 115
Lazo N. D. (ref12/cit12) 1992; 114
Wilcox E. M. (ref5/cit5c) 2003; 88
Panjan W. (ref3/cit3b) 2012; 14
Kobayashi K. (ref17/cit17) 2009; 11
Li Y. (ref7/cit7b) 2002; 16
Lunsford J. H. (ref1/cit1b) 2000; 63
Sellers H. (ref5/cit5g) 2009; 113
Woertink J. S. (ref9/cit9i) 2009; 106
Choudhary V. R. (ref9/cit9f) 1997; 275
Blasco T. (ref10/cit10e) 2010; 39
Copéret C. (ref2/cit2d) 2010; 110
Taniguchi Y. (ref4/cit4c) 1998; 114
Starokon E. V. (ref9/cit9d) 2013; 300
Boudier A. (ref15/cit15a) 2000; 39
Pu L. (ref15/cit15b) 2001; 101
Jessop P. G. (ref23/cit23a) 1995; 95
Yu K. M. K. (ref23/cit23d) 2007; 129
Crabtree R. H. (ref1/cit1a) 1995; 95
Hunger M. (ref10/cit10a) 2006; 50
Olah G. A. (ref1/cit1c) 2003
Zhang W. (ref10/cit10g) 2012; 41
Spivey J. J. (ref5/cit5f) 2008; 9
Metzger A. (ref18/cit18) 2010; 49
Hammond C. (ref9/cit9a) 2012; 18
Choudhary V. R. (ref9/cit9g) 2005; 44
Li L. (ref9/cit9c) 2012; 51
Kurioka M. (ref4/cit4a) 1995
Luzgin M. V. (ref13/cit13) 2007; 111
Labinger J. A. (ref2/cit2a) 2002; 417
Kazansky V. B. (ref8/cit8a) 2004; 225
Wesendrup R. (ref6/cit6) 1995; 34
Hunger M. (ref19/cit19) 1997; 39
Huang W. (ref5/cit5b) 2001; 201
Groothaert M. H. (ref9/cit9h) 2005; 127
Stepanov A. G. (ref11/cit11) 2008; 253
Federsel C. (ref23/cit23e) 2010; 49
References_xml – volume: 225
  start-page: 369
  year: 2004
  ident: ref8/cit8a
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.04.029
– volume: 368
  start-page: 231
  year: 1994
  ident: ref22/cit22
  publication-title: Nature
  doi: 10.1038/368231a0
– volume: 39
  start-page: 2928
  year: 2000
  ident: ref9/cit9k
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20000818)39:16<2928::AID-ANIE2928>3.0.CO;2-T
– volume: 113
  start-page: 2340
  year: 2009
  ident: ref5/cit5g
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8058273
– volume: 130
  start-page: 3722
  year: 2008
  ident: ref9/cit9m
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja7110916
– volume: 10
  start-page: 2681
  year: 2008
  ident: ref16/cit16
  publication-title: Org. Lett.
  doi: 10.1021/ol800764u
– volume: 98
  start-page: 505
  year: 2004
  ident: ref21/cit21
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2004.09.004
– volume: 35
  start-page: 104
  year: 2009
  ident: ref8/cit8c
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/j.ssnmr.2009.01.005
– volume: 18
  start-page: 15735
  year: 2012
  ident: ref9/cit9a
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201202802
– volume: 39
  start-page: 5018
  year: 2010
  ident: ref10/cit10d
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00011f
– start-page: 1304
  year: 2001
  ident: ref7/cit7a
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2001.1304
– volume: 129
  start-page: 6360
  year: 2007
  ident: ref23/cit23d
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0706302
– volume: 101
  start-page: 757
  year: 2001
  ident: ref15/cit15b
  publication-title: Chem. Rev.
  doi: 10.1021/cr000411y
– volume: 44
  start-page: 4381
  year: 2005
  ident: ref9/cit9g
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200500694
– volume: 47
  start-page: 4559
  year: 2008
  ident: ref8/cit8d
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200800317
– volume: 107
  start-page: 275
  year: 1997
  ident: ref4/cit4b
  publication-title: Stud. Surf. Sci. Catal.
  doi: 10.1016/S0167-2991(97)80347-3
– volume: 53
  start-page: 105
  year: 2008
  ident: ref10/cit10b
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
  doi: 10.1016/j.pnmrs.2007.08.001
– volume: 417
  start-page: 507
  year: 2002
  ident: ref2/cit2a
  publication-title: Nature
  doi: 10.1038/417507a
– volume: 51
  start-page: 4702
  year: 2012
  ident: ref9/cit9c
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201200045
– volume: 114
  start-page: 439
  year: 1998
  ident: ref4/cit4c
  publication-title: Stud. Surf. Sci. Catal.
  doi: 10.1016/S0167-2991(98)80790-8
– start-page: 1885
  year: 1998
  ident: ref4/cit4d
  publication-title: Chem. Commun.
  doi: 10.1039/a804699i
– volume: 34
  start-page: 2207
  year: 1995
  ident: ref23/cit23b
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199522071
– volume: 239
  start-page: 441
  year: 2006
  ident: ref9/cit9l
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2006.02.018
– volume: 112
  start-page: 20065
  year: 2008
  ident: ref8/cit8b
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8067766
– volume: 115
  start-page: 2
  year: 2006
  ident: ref2/cit2b
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2006.02.029
– volume: 144
  start-page: 265
  year: 2009
  ident: ref8/cit8e
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2008.08.043
– volume: 253
  start-page: 11
  year: 2008
  ident: ref11/cit11
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2007.11.002
– volume: 135
  start-page: 804
  year: 2013
  ident: ref20/cit20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309966j
– volume: 50
  start-page: 149
  year: 2006
  ident: ref10/cit10a
  publication-title: Adv. Catal.
  doi: 10.1016/S0360-0564(06)50004-5
– volume: 56
  start-page: 1279
  year: 2010
  ident: ref5/cit5h
  publication-title: AlChE J.
  doi: 10.1002/aic.12073
– volume: 50
  start-page: 8299
  year: 2011
  ident: ref8/cit8i
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201102320
– ident: ref5/cit5a
– volume: 248
  start-page: 2425
  year: 2004
  ident: ref23/cit23c
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2004.05.019
– volume: 110
  start-page: 656
  year: 2010
  ident: ref2/cit2d
  publication-title: Chem. Rev.
  doi: 10.1021/cr900122p
– volume: 63
  start-page: 165
  year: 2000
  ident: ref1/cit1b
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(00)00456-9
– volume: 111
  start-page: 10624
  year: 2007
  ident: ref13/cit13
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0728757
– volume: 107
  start-page: 2365
  year: 2007
  ident: ref1/cit1d
  publication-title: Chem. Rev.
  doi: 10.1021/cr068357u
– volume: 106
  start-page: 18908
  year: 2009
  ident: ref9/cit9i
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0910461106
– volume: 49
  start-page: 6254
  year: 2010
  ident: ref23/cit23e
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201000533
– volume: 40
  start-page: 3703
  year: 2011
  ident: ref23/cit23f
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15008a
– volume: 5
  start-page: 3193
  year: 2003
  ident: ref4/cit4e
  publication-title: Org. Lett.
  doi: 10.1021/ol0348856
– volume: 83
  start-page: 101
  year: 2003
  ident: ref7/cit7c
  publication-title: Fuel Process. Technol.
  doi: 10.1016/S0378-3820(03)00061-4
– volume: 16
  start-page: 864
  year: 2002
  ident: ref7/cit7b
  publication-title: Energy Fuels
  doi: 10.1021/ef0102770
– volume: 41
  start-page: 192
  year: 2012
  ident: ref10/cit10g
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15009J
– volume: 25
  start-page: 1060
  year: 2006
  ident: ref15/cit15c
  publication-title: Organometallics
  doi: 10.1021/om0510223
– volume: 3
  start-page: 2932
  year: 2012
  ident: ref8/cit8h
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc20434g
– volume: 41
  start-page: 895
  year: 2008
  ident: ref10/cit10c
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700210f
– volume: 95
  start-page: 259
  year: 1995
  ident: ref23/cit23a
  publication-title: Chem. Rev.
  doi: 10.1021/cr00034a001
– volume: 16
  start-page: 14016
  year: 2010
  ident: ref8/cit8f
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201002258
– volume: 34
  start-page: 1671
  year: 1995
  ident: ref14/cit14
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199516711
– volume: 88
  start-page: 83
  year: 2003
  ident: ref5/cit5c
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2003.08.007
– volume: 9
  start-page: 685
  year: 2008
  ident: ref5/cit5f
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2007.08.023
– volume: 51
  start-page: 2438
  year: 2012
  ident: ref9/cit9e
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201104071
– volume: 51
  start-page: 3850
  year: 2012
  ident: ref8/cit8g
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201108634
– volume: 49
  start-page: 4665
  year: 2010
  ident: ref18/cit18
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201000634
– volume: 201
  start-page: 100
  year: 2001
  ident: ref5/cit5b
  publication-title: J. Catal.
  doi: 10.1006/jcat.2001.3223
– volume: 14
  start-page: 16588
  year: 2012
  ident: ref3/cit3b
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp42066j
– volume: 300
  start-page: 47
  year: 2013
  ident: ref9/cit9d
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.12.030
– volume: 39
  start-page: 4414
  year: 2000
  ident: ref15/cit15a
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20001215)39:24<4414::AID-ANIE4414>3.0.CO;2-C
– volume: 446
  start-page: 391
  year: 2007
  ident: ref2/cit2c
  publication-title: Nature
  doi: 10.1038/446391a
– volume: 34
  start-page: 2033
  year: 1995
  ident: ref6/cit6
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199520331
– volume: 95
  start-page: 987
  year: 1995
  ident: ref1/cit1a
  publication-title: Chem. Rev.
  doi: 10.1021/cr00036a005
– volume: 114
  start-page: 8552
  year: 1992
  ident: ref12/cit12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00048a030
– volume: 127
  start-page: 1394
  year: 2005
  ident: ref9/cit9h
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja047158u
– volume: 51
  start-page: 5129
  year: 2012
  ident: ref9/cit9b
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201108706
– volume: 39
  start-page: 4685
  year: 2010
  ident: ref10/cit10e
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00033g
– volume: 51
  start-page: 854
  year: 2010
  ident: ref10/cit10f
  publication-title: Kinet. Catal.
  doi: 10.1134/S0023158410060121
– volume: 132
  start-page: 14736
  year: 2010
  ident: ref9/cit9j
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106283u
– volume: 368
  start-page: 313
  year: 2003
  ident: ref3/cit3a
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)01866-3
– volume: 11
  start-page: 2035
  year: 2009
  ident: ref17/cit17
  publication-title: Org. Lett.
  doi: 10.1021/ol900528h
– volume-title: Hydrocarbon Chemistry
  year: 2003
  ident: ref1/cit1c
  doi: 10.1002/0471433489
– volume: 50
  start-page: 7089
  year: 2011
  ident: ref1/cit1e
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie2000192
– volume: 13
  start-page: 113
  year: 2004
  ident: ref5/cit5d
  publication-title: J. Nat. Gas Chem.
– volume: 275
  start-page: 1286
  year: 1997
  ident: ref9/cit9f
  publication-title: Science
  doi: 10.1126/science.275.5304.1286
– volume: 39
  start-page: 345
  year: 1997
  ident: ref19/cit19
  publication-title: Catal. Rev.: Sci. Eng.
  doi: 10.1080/01614949708007100
– volume: 88
  start-page: 319
  year: 2007
  ident: ref5/cit5e
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2004.09.003
– volume: 443
  start-page: 50
  year: 2012
  ident: ref3/cit3c
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2012.07.024
– volume: 48
  start-page: 2370
  year: 2012
  ident: ref10/cit10h
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc16882k
– start-page: 244
  year: 1995
  ident: ref4/cit4a
  publication-title: Chem. Lett.
  doi: 10.1246/cl.1995.244
SSID ssj0004281
Score 2.4891515
Snippet Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C1-building blocks into useful fuels and chemicals is a subject of great...
Methane and carbon dioxide are known greenhouse gases, and the conversion of these two C₁-building blocks into useful fuels and chemicals is a subject of great...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13567
SubjectTerms acetates
acetic acid
Acetic Acid - chemical synthesis
Acetic Acid - chemistry
carbon dioxide
Carbon Dioxide - chemistry
catalysts
fuels
gases
greenhouse gases
Magnetic Resonance Spectroscopy
methane
Methane - chemistry
Models, Molecular
Molecular Structure
nuclear magnetic resonance spectroscopy
stable isotopes
temperature
zeolites
Zeolites - chemistry
zinc
Zinc - chemistry
Title Mechanistic Insight into the Formation of Acetic Acid from the Direct Conversion of Methane and Carbon Dioxide on Zinc-Modified H–ZSM‑5 Zeolite
URI http://dx.doi.org/10.1021/ja406978q
https://www.ncbi.nlm.nih.gov/pubmed/23981101
https://www.proquest.com/docview/1432077225
https://www.proquest.com/docview/2000384824
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcoAL78fyqMzjwCXVxnFi-1ilrBakcCmVqr2s_JQiUALdrIQ49S-g_sP-EmaSTQHRhVwSWRMl8czEnz3zjQFeS4OGYKVMeJGJRAidJZpTZo7N05ApYaaGiMLVh2J-LN6f5Cc78GpLBJ9TfSAiZ0r19Rpc5wU6L-Gf8ugX-ZGrdMS4UhXZWD7o91tp6HGrP4eeLXiyH1dmt-FwZOcM6SSf9ted3Xff_y7W-K9XvgO3NriSHQyGcBd2QnMPbpTjdm734bwKRPLt6zKzd82KJuWsbrqWIQRks5HDyNrIDhwxG_FUe0b0k15i-DeykrLU-yU2kqwCrbwHZhrPSnNqsfWwbr_VPjC8XNSNS6rW1xFxLptfnJ0vjqqLsx85WwRKuwsP4Hj29mM5TzY7MiSo0mmX5FF4F1LttVci9zZyUxgXsVnzkIeoJPq_VZ7r1OooReEQMOhUGG4i91JmD2G3aZvwGBhCC8QmRRDaZwIP7aLKjY5FiFai605gD1W23HjUatkHyzlOVsa-ncCbUZtLt6lnTttqfL5K9OWl6JehiMdVQi9Gk1iiaihugh3YrvHRIuNTnIXwfLsM72OsQnExgUeDPV0-ikosIspKn_zvk57CTd7vtqGTNH0Gu93pOjxHzNPZvd7mfwJBIvsi
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaeqCXvh9bWupWPfQStHGc2D6uAqulJVwACe0l8lOKihJKslLVE3-h4h_ySxg7CbQVqM0lkTWJHXtsf7ZnvkHoE5OgCIqxiGQJjSgVSSSIt8xRaWwTTuVUekfhYj9bHNEvx-nxQJPjfWGgEC18qQ2H-DfsAp4myPtoMv79PnoAIIR4bZ7lBzc-kITHI9RlPEtGFqHfX_UzkG7_nIHugJVhepk_7uMUhYIFq5JvW6tObemff3E2_l_Jn6BHA8rEs14tnqJ7tn6G1vMxuNtzdFFY7_IbWJrxbt36JTqu6q7BAAjxfPRoxI3DM-39HOFWGeydUYJEP1Li3Nushw03L1lYvw9vsawNzuWZgtTtqvlRGYvhcVnVOioaUzlAvXhxeX6xPCguz3-leGm9EZ59gY7mO4f5IhriM0TQwNMuSh012sbCCMNpapQjMpPaQbIgNrWOMxgNFDdExEo4RjMN8EHEVBLpiGEseYnW6qa2rxEGoAFIJbNUmITCJbTjqRQus04x6MgTtAlVWw79qy3D0TmBpctYtxP0eWzUUg_s5j7Ixsltoh-vRU97So_bhD6MmlFC0_hTFKjAZgVZ04RMYU1C0rtlSDhxpZzQCXrVq9V1Vp5wETBX_OZfv_QerS8Oi71yb3f_6wZ6SEIcDhHF8Vu01p2t7DtAQ53aDN3gCrhvA5I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSNAL5dWyFIpBHLik2jhOHB9XKastkIJUKlV7iRw_pAiUlCYroZ76F6r-w_4SZrzJ8lAryCWRNYkde8b-xvMwIW-EAkYohQhYEvGAcxkFkqFnThmHNkq5GisMFM4PktkRf38cH_eKIsbCQCNa-FLrjfgo1SfG9RkGMFUQxmmK9PttcgfNdcjRk-zwVxwkS8MB7oo0iYZMQr-_iquQbv9chW6Aln6JmW6QT6vGec-Sr7uLrtzVZ3_lbfz_1j8g93u0SSdL9nhIbtn6EbmXDYe8PSaXucXQX5-tme7XLarqtKq7hgIwpNMhspE2jk40xjvCrTIUg1I8xXLGpBn6rvuNN6TMLe7HW6pqQzN1WkLpXtX8qIyl8Divah3kjakcoF86uzq_nB_mV-cXMZ1bdMazT8jR9N2XbBb05zQEMNDjLogdN9qG0kiT8tiUjqlEaQfFktnYulTArFCmhsmwlE7wRAOMkCFXTDlmhIg2yVrd1PYpoQA4ALEklksTcbikdmmspEusKwUI9IjsQPcWvZy1hTehM1Bhhr4dkbfDwBa6z3KOh218u4709Yr0ZJna4zqiVwN3FDA0aE2BDmwWUDWP2Bh0ExbfTMO85ZWnjI_I1pK1VlVh4kXAXuGzf_3SS3L38960-Lh_8GGbrDN_HIcMwvA5WetOF_YFgKKu3PGS8BMhsAYV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+Insight+into+the+Formation+of+Acetic+Acid+from+the+Direct+Conversion+of+Methane+and+Carbon+Dioxide+on+Zinc-Modified+H%E2%80%93ZSM%E2%80%915+Zeolite&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Wu%2C+Jian-Feng&rft.au=Yu%2C+Si-Min&rft.au=Wang%2C+Wei+David&rft.au=Fan%2C+Yan-Xin&rft.date=2013-09-11&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=135&rft.issue=36&rft.spage=13567&rft.epage=13573&rft_id=info:doi/10.1021%2Fja406978q&rft.externalDocID=g84575300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon