Controls on valley spacing in landscapes subject to rapid base-level fall
What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage‐network morphology in transient landscapes are relatively unknown....
Saved in:
Published in | Earth surface processes and landforms Vol. 41; no. 4; pp. 460 - 472 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Blackwell Publishing Ltd
30.03.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage‐network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio‐Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low‐relief surfaces that experience a pulse of rapid base‐level drop followed by relative base‐level stasis. Parallel drainage networks formed on incised alluvial‐fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base‐level drop. Numerical experiments suggest that this observed relationship between the magnitude of base‐level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base‐level drop. We identify a threshold magnitude of base‐level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first‐order valleys to systems of higher‐order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base‐level drop and provide a preliminary basis for understanding how varying amounts of base‐level change influence valley network morphology. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
AbstractList | What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage-network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio-Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low-relief surfaces that experience a pulse of rapid base-level drop followed by relative base-level stasis. Parallel drainage networks formed on incised alluvial-fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base-level drop. Numerical experiments suggest that this observed relationship between the magnitude of base-level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base-level drop. We identify a threshold magnitude of base-level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first-order valleys to systems of higher-order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base-level drop and provide a preliminary basis for understanding how varying amounts of base-level change influence valley network morphology. Copyright © 2015 John Wiley & Sons, Ltd. What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage-network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio-Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low-relief surfaces that experience a pulse of rapid base-level drop followed by relative base-level stasis. Parallel drainage networks formed on incised alluvial-fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base-level drop. Numerical experiments suggest that this observed relationship between the magnitude of base-level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base-level drop. We identify a threshold magnitude of base-level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first-order valleys to systems of higher-order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base-level drop and provide a preliminary basis for understanding how varying amounts of base-level change influence valley network morphology. What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage‐network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio‐Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low‐relief surfaces that experience a pulse of rapid base‐level drop followed by relative base‐level stasis. Parallel drainage networks formed on incised alluvial‐fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base‐level drop. Numerical experiments suggest that this observed relationship between the magnitude of base‐level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base‐level drop. We identify a threshold magnitude of base‐level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first‐order valleys to systems of higher‐order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base‐level drop and provide a preliminary basis for understanding how varying amounts of base‐level change influence valley network morphology. Copyright © 2015 John Wiley & Sons, Ltd. |
Author | Pelletier, Jon D. McGuire, Luke A. |
Author_xml | – sequence: 1 givenname: Luke A. surname: McGuire fullname: McGuire, Luke A. email: lmcguire@usgs.gov organization: US Geological Survey, 80225, Denver, CO, USA – sequence: 2 givenname: Jon D. surname: Pelletier fullname: Pelletier, Jon D. organization: US Geological Survey, CO, 80225, Denver, USA |
BookMark | eNqFkctO5DAQRS3ESDTMSHyCJTZs0pQTO3aWqMVTPAYxo2FnOU4FuQlxsNM8_h63QCAQaGpTtTj3qurWOlntfY-EbDKYMoB8B-MwLVQhV8iEQVVmVZpXyQRYJbOqKOQaWY9xDsAYV9WEHM18PwbfRep7em-6Dp9oHIx1_TV1Pe1M30RrBow0Luo52pGOngYzuIbWJmLW4T12tE3Cn-RHahF_vfYN8nd_78_sMDs5Pzia7Z5khucgM9WUZS6auhVK1hy4Vdy2TFhW1W2FBpG1bY7M5NJwC8yCaFQtaxCGScUFLzbI9ovvEPzdAuOob1202KVV0S-iZgoUCJVz9X9UJjJPBQnd-oTO_SL06ZBEyRKAc8HeDW3wMQZs9RDcrQlPmoFexq9T_HoZf0Knn1DrRjO6ZdzGdV8JshfBg0tP-NZY713-_si7OOLjG2_CjS5lIYX-d3agT4_ZqRIXhb4qngFz0aV6 |
CitedBy_id | crossref_primary_10_1007_s11430_020_9716_6 crossref_primary_10_1073_pnas_2302401120 crossref_primary_10_5194_esurf_9_317_2021 crossref_primary_10_1016_j_geomorph_2020_107206 crossref_primary_10_3390_rs14205227 |
Cites_doi | 10.1029/WR008i006p01506 10.1017/S0022112095002357 10.3133/ofr95690 10.1038/nature11672 10.1029/90JB02704 10.1029/94WR00757 10.3133/ofr20051305 10.1029/97WR00409 10.1029/2007JF000977 10.1016/0098-3004(91)90048-I 10.1029/2012WR012452 10.1029/2008JF001114 10.2475/ajs.262.3.340 10.1016/j.geomorph.2010.06.001 10.1016/S0168-9274(02)00194-0 10.58799/OFR-406 10.1029/98WR01474 10.1017/S0022112000001427 10.1029/1998WR900090 10.1016/j.quaint.2010.05.022 10.1126/science.1241791 10.1002/esp.3423 10.1038/nature08174 10.3133/ofr00409 10.1029/2002JB002162 10.1130/G24517A.1 10.1002/(SICI)1096-9837(199703)22:3<211::AID-ESP749>3.0.CO;2-E 10.1029/96WR03137 10.58799/OF-GM-141 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Copyright © 2016 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G |
DOI | 10.1002/esp.3837 |
DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1096-9837 |
EndPage | 472 |
ExternalDocumentID | 3999711991 10_1002_esp_3837 ESP3837 ark_67375_WNG_MJ1M85Q3_X |
Genre | article |
GroupedDBID | -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7TG 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KL. KR7 L.G |
ID | FETCH-LOGICAL-a4207-8d6625dbf587b404c84cf15c19bf9eaee1ff2e1a27a4c01c05d8b7b05a1784543 |
IEDL.DBID | DR2 |
ISSN | 0197-9337 |
IngestDate | Fri Jul 11 00:10:57 EDT 2025 Fri Jul 11 10:08:41 EDT 2025 Fri Jul 25 12:16:37 EDT 2025 Thu Apr 24 23:10:10 EDT 2025 Tue Jul 01 02:52:01 EDT 2025 Wed Jan 22 16:30:52 EST 2025 Wed Oct 30 09:50:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4207-8d6625dbf587b404c84cf15c19bf9eaee1ff2e1a27a4c01c05d8b7b05a1784543 |
Notes | ark:/67375/WNG-MJ1M85Q3-X istex:33EEB49A1C4AF479D664E6831131D6E0CEF898BA ArticleID:ESP3837 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1776004451 |
PQPubID | 866381 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1808058248 proquest_miscellaneous_1780522220 proquest_journals_1776004451 crossref_primary_10_1002_esp_3837 crossref_citationtrail_10_1002_esp_3837 wiley_primary_10_1002_esp_3837_ESP3837 istex_primary_ark_67375_WNG_MJ1M85Q3_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 March 2016 |
PublicationDateYYYYMMDD | 2016-03-30 |
PublicationDate_xml | – month: 03 year: 2016 text: 30 March 2016 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationSubtitle | The Journal of the British Geomorphological Research Group |
PublicationTitle | Earth surface processes and landforms |
PublicationTitleAlternate | Earth Surf. Process. Landforms |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Tarboton DG. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33: 309-319. Smith TR. 2010. A theory for the emergence of channelized drainage. Journal of Geophysical Research 115(F2): F02023, 1-32. Loewenherz DS. 1991. Stability and the initiation of channelized surface drainage: a reassessment of the short wavelength limit. Journal of Geophysical Research 96: 8453-8464. de Michieli Vitturi M, Arrowsmith JR. 2013. Two-dimensional nonlinear diffusive numerical simulation of geomorphic modifications to cinder cones. Earth Surface Processes and Landforms 38: 1432-1443. Howard AD. 1994. A detachment-limited model of drainage basin evolution. Water Resources Research 30: 2261-2285. Hilley GE, Arrowsmith RJ. 2008. Geomorphic response to uplift along the Dragons Back pressure ridge, Carrizo Plain, California. Geology 36: 367-370. Tucker GE, Bras RL. 1998. Hillslope processes,drainage density,and landscape morphology. Water Resources Research 34: 2751-2764. Perron JT, Richardson PW, Ferrier KL, Lapôtre M. 2012. The root of branching river networks. Nature 492: 100-103. Smith TR, Bretherton FP. 1972. Stability and the conservation of mass in drainage basin evolution. Water Resources Research 8: 1506-1529. Morisawa M. 1964. Development of drainage systems on an upraised lake floor. American Journal of Science 262: 340-354. Hurst MD, Mudd SM, Attal M, Hilley G. 2013. Hillslopes record the growth and decay of landscapes. Science 341: 868-871. Pelletier JD. 2010. Minimizing the grid-resolution dependence of flow-routing algorithms for geomorphic applications. Geomorphology 122: 91-98. Roering JJ, Kirchner JW, Dietrich WE. 1999. Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resources Research 35: 853-870. Izumi N, Parker G. 2000. Linear stability analysis of channel inception: downstream-driven theory. Journal of Fluid Mechanics 419: 239-262. Freeman GT. 1991. Calculating catchment area with divergent flow based on a rectangular grid. Computers and Geosciences 17: 413-422. Purtymun WD, Johansen S. 1974. General geohydrology of the Pajarito Plateau. New Mexico Geological Society Guidebook 25: 327-349. Pelletier JD. 2013. A robust two-parameter method for drainage network extraction from high-resolution DEMs: evaluation using synthetic and real-world DEMs. Water Resources Research 49: 1-15. Perron JT, Kirchner JW, Dietrich WE. 2009. Formation of evenly spaced ridges and valleys. Nature 460: 502-505. Perron JT, Dietrich WE, Kirchner JW. 2008. Controls on the spacing of first-order valleys. Journal of Geophysical Research: Earth Surface 113(F4): 1-21. Witelski TP, Bowen M. 2003. ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45: 331-351. Izumi N, Parker G. 1995. Inception of channelization and drainage basin formation: upstream-driven theory. Journal of Fluid Mechanics 283: 341-363. Bowman D, Devora S, Svoray T. 2011. Drainage organization on the newly emerged dead sea bed, Israel. Quaternary International 233: 53-60. Tucker GE, Singerland R. 1997. Drainage basin responses to climate change. Water Resources Research 33: 2031-2047. Simpson G, Schlunegger F. 2003. Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport. Journal of Geophysical Research 108: B6, 2300, 1-16. Howard AD. 1997. Badland morphology and evolution: interpretation using a simulation model. Earth Surface Processes and Landforms 22: 211-227. Leopold LB, Maddock T Jr. 1953. The hydraulic geometry of stream channels and some physiographic implications. US Geological Survey Professional Paper 252: 1-57. 2000; 419 1972; 8 1991; 17 2013; 49 1997; 22 1991; 96 2008; 36 1953 2010; 122 1996 2007 2006 1994 1972 2005 2013; 341 2011; 233 2012; 492 1974; 25 2003; 108 2013; 38 1990 1997; 33 2000 2010; 115 1999; 35 1964; 262 2009; 460 2008; 113 2013 1995; 283 1994; 30 1998; 34 2003; 45 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 Leopold LB (e_1_2_9_18_1) 1953 e_1_2_9_3_1 e_1_2_9_2_1 Purtymun WD (e_1_2_9_28_1) 1974; 25 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 Tarboton DG (e_1_2_9_34_1) 1997; 33 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – reference: Hurst MD, Mudd SM, Attal M, Hilley G. 2013. Hillslopes record the growth and decay of landscapes. Science 341: 868-871. – reference: Izumi N, Parker G. 1995. Inception of channelization and drainage basin formation: upstream-driven theory. Journal of Fluid Mechanics 283: 341-363. – reference: Morisawa M. 1964. Development of drainage systems on an upraised lake floor. American Journal of Science 262: 340-354. – reference: Purtymun WD, Johansen S. 1974. General geohydrology of the Pajarito Plateau. New Mexico Geological Society Guidebook 25: 327-349. – reference: Leopold LB, Maddock T Jr. 1953. The hydraulic geometry of stream channels and some physiographic implications. US Geological Survey Professional Paper 252: 1-57. – reference: Perron JT, Richardson PW, Ferrier KL, Lapôtre M. 2012. The root of branching river networks. Nature 492: 100-103. – reference: de Michieli Vitturi M, Arrowsmith JR. 2013. Two-dimensional nonlinear diffusive numerical simulation of geomorphic modifications to cinder cones. Earth Surface Processes and Landforms 38: 1432-1443. – reference: Freeman GT. 1991. Calculating catchment area with divergent flow based on a rectangular grid. Computers and Geosciences 17: 413-422. – reference: Hilley GE, Arrowsmith RJ. 2008. Geomorphic response to uplift along the Dragons Back pressure ridge, Carrizo Plain, California. Geology 36: 367-370. – reference: Howard AD. 1997. Badland morphology and evolution: interpretation using a simulation model. Earth Surface Processes and Landforms 22: 211-227. – reference: Smith TR. 2010. A theory for the emergence of channelized drainage. Journal of Geophysical Research 115(F2): F02023, 1-32. – reference: Bowman D, Devora S, Svoray T. 2011. Drainage organization on the newly emerged dead sea bed, Israel. Quaternary International 233: 53-60. – reference: Witelski TP, Bowen M. 2003. ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45: 331-351. – reference: Pelletier JD. 2010. Minimizing the grid-resolution dependence of flow-routing algorithms for geomorphic applications. Geomorphology 122: 91-98. – reference: Tucker GE, Bras RL. 1998. Hillslope processes,drainage density,and landscape morphology. Water Resources Research 34: 2751-2764. – reference: Pelletier JD. 2013. A robust two-parameter method for drainage network extraction from high-resolution DEMs: evaluation using synthetic and real-world DEMs. Water Resources Research 49: 1-15. – reference: Roering JJ, Kirchner JW, Dietrich WE. 1999. Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resources Research 35: 853-870. – reference: Perron JT, Dietrich WE, Kirchner JW. 2008. Controls on the spacing of first-order valleys. Journal of Geophysical Research: Earth Surface 113(F4): 1-21. – reference: Howard AD. 1994. A detachment-limited model of drainage basin evolution. Water Resources Research 30: 2261-2285. – reference: Simpson G, Schlunegger F. 2003. Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport. Journal of Geophysical Research 108: B6, 2300, 1-16. – reference: Perron JT, Kirchner JW, Dietrich WE. 2009. Formation of evenly spaced ridges and valleys. Nature 460: 502-505. – reference: Tucker GE, Singerland R. 1997. Drainage basin responses to climate change. Water Resources Research 33: 2031-2047. – reference: Izumi N, Parker G. 2000. Linear stability analysis of channel inception: downstream-driven theory. Journal of Fluid Mechanics 419: 239-262. – reference: Loewenherz DS. 1991. Stability and the initiation of channelized surface drainage: a reassessment of the short wavelength limit. Journal of Geophysical Research 96: 8453-8464. – reference: Tarboton DG. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33: 309-319. – reference: Smith TR, Bretherton FP. 1972. Stability and the conservation of mass in drainage basin evolution. Water Resources Research 8: 1506-1529. – volume: 22 start-page: 211 year: 1997 end-page: 227 article-title: Badland morphology and evolution: interpretation using a simulation model publication-title: Earth Surface Processes and Landforms – volume: 108 start-page: B6, 2300, 1 year: 2003 end-page: 16 article-title: Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport publication-title: Journal of Geophysical Research – year: 2005 – volume: 17 start-page: 413 year: 1991 end-page: 422 article-title: Calculating catchment area with divergent flow based on a rectangular grid publication-title: Computers and Geosciences – year: 2007 – volume: 419 start-page: 239 year: 2000 end-page: 262 article-title: Linear stability analysis of channel inception: downstream‐driven theory publication-title: Journal of Fluid Mechanics – year: 2000 – year: 1996 – volume: 35 start-page: 853 year: 1999 end-page: 870 article-title: Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology publication-title: Water Resources Research – volume: 262 start-page: 340 year: 1964 end-page: 354 article-title: Development of drainage systems on an upraised lake floor publication-title: American Journal of Science – volume: 38 start-page: 1432 year: 2013 end-page: 1443 article-title: Two‐dimensional nonlinear diffusive numerical simulation of geomorphic modifications to cinder cones publication-title: Earth Surface Processes and Landforms – year: 1990 – year: 1994 – volume: 233 start-page: 53 year: 2011 end-page: 60 article-title: Drainage organization on the newly emerged dead sea bed, Israel publication-title: Quaternary International – volume: 36 start-page: 367 year: 2008 end-page: 370 article-title: Geomorphic response to uplift along the Dragons Back pressure ridge, Carrizo Plain, California publication-title: Geology – volume: 96 start-page: 8453 year: 1991 end-page: 8464 article-title: Stability and the initiation of channelized surface drainage: a reassessment of the short wavelength limit publication-title: Journal of Geophysical Research – volume: 460 start-page: 502 year: 2009 end-page: 505 article-title: Formation of evenly spaced ridges and valleys publication-title: Nature – volume: 283 start-page: 341 year: 1995 end-page: 363 article-title: Inception of channelization and drainage basin formation: upstream‐driven theory publication-title: Journal of Fluid Mechanics – volume: 492 start-page: 100 year: 2012 end-page: 103 article-title: The root of branching river networks publication-title: Nature – volume: 113 start-page: 1 issue: F4 year: 2008 end-page: 21 article-title: Controls on the spacing of first‐order valleys publication-title: Journal of Geophysical Research: Earth Surface – volume: 25 start-page: 327 year: 1974 end-page: 349 article-title: General geohydrology of the Pajarito Plateau publication-title: New Mexico Geological Society Guidebook – volume: 8 start-page: 1506 year: 1972 end-page: 1529 article-title: Stability and the conservation of mass in drainage basin evolution publication-title: Water Resources Research – start-page: 1 year: 1953 end-page: 57 article-title: The hydraulic geometry of stream channels and some physiographic implications publication-title: US Geological Survey Professional Paper 252 – year: 2006 – volume: 34 start-page: 2751 year: 1998 end-page: 2764 article-title: Hillslope processes,drainage density,and landscape morphology publication-title: Water Resources Research – volume: 341 start-page: 868 year: 2013 end-page: 871 article-title: Hillslopes record the growth and decay of landscapes publication-title: Science – volume: 33 start-page: 309 year: 1997 end-page: 319 article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models publication-title: Water Resources Research – year: 1972 – volume: 30 start-page: 2261 year: 1994 end-page: 2285 article-title: A detachment‐limited model of drainage basin evolution publication-title: Water Resources Research – volume: 115 start-page: F02023, 1 issue: F2 year: 2010 end-page: 32 article-title: A theory for the emergence of channelized drainage publication-title: Journal of Geophysical Research – volume: 49 start-page: 1 year: 2013 end-page: 15 article-title: A robust two‐parameter method for drainage network extraction from high‐resolution DEMs: evaluation using synthetic and real‐world DEMs publication-title: Water Resources Research – volume: 122 start-page: 91 year: 2010 end-page: 98 article-title: Minimizing the grid‐resolution dependence of flow‐routing algorithms for geomorphic applications publication-title: Geomorphology – volume: 45 start-page: 331 year: 2003 end-page: 351 article-title: ADI schemes for higher‐order nonlinear diffusion equations publication-title: Applied Numerical Mathematics – volume: 33 start-page: 2031 year: 1997 end-page: 2047 article-title: Drainage basin responses to climate change publication-title: Water Resources Research – year: 2013 – ident: e_1_2_9_32_1 doi: 10.1029/WR008i006p01506 – ident: e_1_2_9_14_1 doi: 10.1017/S0022112095002357 – ident: e_1_2_9_16_1 doi: 10.3133/ofr95690 – ident: e_1_2_9_27_1 doi: 10.1038/nature11672 – ident: e_1_2_9_7_1 – ident: e_1_2_9_19_1 doi: 10.1029/90JB02704 – ident: e_1_2_9_11_1 doi: 10.1029/94WR00757 – ident: e_1_2_9_20_1 doi: 10.3133/ofr20051305 – ident: e_1_2_9_36_1 doi: 10.1029/97WR00409 – ident: e_1_2_9_25_1 doi: 10.1029/2007JF000977 – ident: e_1_2_9_6_1 doi: 10.1016/0098-3004(91)90048-I – ident: e_1_2_9_2_1 – ident: e_1_2_9_24_1 doi: 10.1029/2012WR012452 – ident: e_1_2_9_31_1 doi: 10.1029/2008JF001114 – ident: e_1_2_9_21_1 doi: 10.2475/ajs.262.3.340 – ident: e_1_2_9_38_1 – ident: e_1_2_9_23_1 doi: 10.1016/j.geomorph.2010.06.001 – ident: e_1_2_9_37_1 doi: 10.1016/S0168-9274(02)00194-0 – ident: e_1_2_9_4_1 doi: 10.58799/OFR-406 – ident: e_1_2_9_35_1 doi: 10.1029/98WR01474 – ident: e_1_2_9_15_1 doi: 10.1017/S0022112000001427 – ident: e_1_2_9_29_1 doi: 10.1029/1998WR900090 – ident: e_1_2_9_3_1 doi: 10.1016/j.quaint.2010.05.022 – ident: e_1_2_9_13_1 doi: 10.1126/science.1241791 – ident: e_1_2_9_5_1 doi: 10.1002/esp.3423 – ident: e_1_2_9_26_1 doi: 10.1038/nature08174 – ident: e_1_2_9_10_1 doi: 10.3133/ofr00409 – ident: e_1_2_9_30_1 doi: 10.1029/2002JB002162 – ident: e_1_2_9_33_1 – ident: e_1_2_9_8_1 doi: 10.1130/G24517A.1 – volume: 25 start-page: 327 year: 1974 ident: e_1_2_9_28_1 article-title: General geohydrology of the Pajarito Plateau publication-title: New Mexico Geological Society Guidebook – ident: e_1_2_9_12_1 doi: 10.1002/(SICI)1096-9837(199703)22:3<211::AID-ESP749>3.0.CO;2-E – ident: e_1_2_9_22_1 – volume: 33 start-page: 309 year: 1997 ident: e_1_2_9_34_1 article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models publication-title: Water Resources Research doi: 10.1029/96WR03137 – ident: e_1_2_9_9_1 – ident: e_1_2_9_17_1 doi: 10.58799/OF-GM-141 – start-page: 1 year: 1953 ident: e_1_2_9_18_1 article-title: The hydraulic geometry of stream channels and some physiographic implications publication-title: US Geological Survey Professional Paper 252 |
SSID | ssj0011489 |
Score | 2.1842546 |
Snippet | What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 460 |
SubjectTerms | Alluvial fans base level Drainage Drainage control drainage network Drainage patterns Geomorphology Landscapes Mass wasting Morphology Networks numerical model Quaternary Sediment transport Slopes Tributaries valley spacing Valleys |
Title | Controls on valley spacing in landscapes subject to rapid base-level fall |
URI | https://api.istex.fr/ark:/67375/WNG-MJ1M85Q3-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fesp.3837 https://www.proquest.com/docview/1776004451 https://www.proquest.com/docview/1780522220 https://www.proquest.com/docview/1808058248 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQEYILlAJiS6mMhOCUNvbasXNEVR8qasWrYiUOlp9q1SpbNbtVlxM_gd_IL2EmLygChMglh4wTx-PxzNgz3xDy3OfjGIsksiIBG4RnMiuDh7kcuIoqstLbJkD2sNg7EvsTOemiKjEXpsWHGDbcUDKa9RoF3Lp68wdoaKzBYQf3CpZfDNVCe-jdgByFVn7ZZkqrDHx21ePO5nyzb3hNE93EQb26Zmb-bKw22mbnHvnU97MNMjndmM_chv_8C4Tj__3IMrnbGaH0VTtr7pMbsVoht7t66MeLFXJrtyn4u3hAXm-1sew1nVb0EguvLCgsQh40Hj2paJMpjDFUNa3nDvd06GxK4S0ngaKC_Pbl6xmGJdEETR-So53tD1t7WVeAIbOC56C9QgHuUXBJauVELrwWPjHpWelSGW2MLCUemeXKCp8zn8ugnXK5tExpIcX4EVmqplV8TGgU3vIQRdSOi0Jo6wvJA3wgpZC8ZiPysmeG8R06ORbJODMtrjI3MEwGh2lEng2U5y0ix29oXjT8HAjsxSlGsClpPh7umoN9dqDl27GZjMhaz3DTCW9tmMLTSkRug28Nj0Hs8CzFVnE6RxqsBQFX_hcaxOyUmgsN_WlmwB87bLbfv8H76r8SPiF3wHQrmuzIfI0szS7m8SmYRzO33gjCd3frDVQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqhceBQQCwWMhOC0bey1Y0ecUNV2absrHq3YA5LlOLZatcpWzS5iOfET-I38EjzOA4oAIXLJIePE8Xg8M_bMNwBPbTJwLvW8n_rABm6p6GeFDXO5YNJJRzNrYoDsOB0e8b2JmCzBizYXpsaH6DbcUDLieo0CjhvSmz9QQ10VPPbgX12BFSzoHf2ptx12FNr5WZ0rLfvBa5ct8mzCNtuWl3TRCg7rp0uG5s_matQ3OzfgQ9vTOszkdGM-yzfs519AHP_zV27C9cYOJS_riXMLlly5BqtNSfTjxRpc3Y01fxe3YX-rDmevyLQkH7H2yoKEdcgGpUdOShKThTGMqiLVPMdtHTKbkvCWk4Kgjvz25esZRiYRH5regaOd7cOtYb-pwdA3nCVBgRVp8JCK3Aslc55wq7j1VFia5T5zxjnqPXPUMGm4TahNRKFymSfCUKm44IO7sFxOS3cPiOPWsMJxp3LGU66MTQUrwge8L7xVtAfPW25o2wCUY52MM11DKzMdhknjMPXgSUd5XoNy_IbmWWRoR2AuTjGITQr9fryrR3t0pMSbgZ70YL3luG7kt9JU4oElgreFb3WPg-ThcYop3XSONFgOIlzJX2gQtlMoxlXoT5wCf-yw3n73Gu_3_5XwMawOD0cH-uDVeP8BXAuWXBqTJZN1WJ5dzN3DYC3N8kdRKr4DNj8Rbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagFY8LjwJioYCREJzS2l47do6o7ba0dFUeFStxsPwUVats1ewilhM_gd_IL8GTFxQBQuSSQ8aJ45nxzNjjbxB64sgwhDzyLI-JDdxRkRXeJVn2TAYZaOFMnSA7zncO-e5ETNqsSjgL0-BD9AtuoBn1fA0Kfurj-g_Q0FClgD2FVxfRMs-JAonefN1DR4GbXzRHpWWWgnbZAc8Stt61PGeKlmFUP53zM3_2VmtzM7qO3ncdbbJMjtfmM7vmPv-C4fh_f3IDXWu9UPy8EZub6EIoV9CVtiD6h8UKurRdV_xd3EJ7G00ye4WnJf4IlVcWOM1CLpk8fFTi-qgwJFFVuJpbWNTBsylObznyGCzkty9fTyAvCcfU9DY6HG293djJ2goMmeGMJPPl8xQfeRuFkpYT7hR3kQpHCxuLYEKgMbJADZOGO0IdEV5ZaYkwVCou-PAOWiqnZbiLcODOMB94UJbxnCvjcsF8-kCMPjpFB-hZxwztWnhyqJJxohtgZabTMGkYpgF63FOeNpAcv6F5WvOzJzBnx5DCJoV-N97W-7t0X4lXQz0ZoNWO4brV3kpTCduVAN2WvtU_TnoHmymmDNM50EAxiHSRv9AAaKdQjKvUn1oC_thhvfXmAO73_pXwEbp8sDnSL1-M9-6jq8mNy-uTkmQVLc3O5uFBcpVm9mGtE98BGVMQJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controls+on+valley+spacing+in+landscapes+subject+to+rapid+base%E2%80%90level+fall&rft.jtitle=Earth+surface+processes+and+landforms&rft.au=McGuire%2C+Luke+A.&rft.au=Pelletier%2C+Jon+D.&rft.date=2016-03-30&rft.issn=0197-9337&rft.eissn=1096-9837&rft.volume=41&rft.issue=4&rft.spage=460&rft.epage=472&rft_id=info:doi/10.1002%2Fesp.3837&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_esp_3837 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-9337&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-9337&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-9337&client=summon |