Controls on valley spacing in landscapes subject to rapid base-level fall

What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage‐network morphology in transient landscapes are relatively unknown....

Full description

Saved in:
Bibliographic Details
Published inEarth surface processes and landforms Vol. 41; no. 4; pp. 460 - 472
Main Authors McGuire, Luke A., Pelletier, Jon D.
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 30.03.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage‐network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio‐Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low‐relief surfaces that experience a pulse of rapid base‐level drop followed by relative base‐level stasis. Parallel drainage networks formed on incised alluvial‐fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base‐level drop. Numerical experiments suggest that this observed relationship between the magnitude of base‐level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base‐level drop. We identify a threshold magnitude of base‐level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first‐order valleys to systems of higher‐order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base‐level drop and provide a preliminary basis for understanding how varying amounts of base‐level change influence valley network morphology. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage-network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio-Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low-relief surfaces that experience a pulse of rapid base-level drop followed by relative base-level stasis. Parallel drainage networks formed on incised alluvial-fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base-level drop. Numerical experiments suggest that this observed relationship between the magnitude of base-level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base-level drop. We identify a threshold magnitude of base-level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first-order valleys to systems of higher-order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base-level drop and provide a preliminary basis for understanding how varying amounts of base-level change influence valley network morphology. Copyright © 2015 John Wiley & Sons, Ltd.
What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage-network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio-Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low-relief surfaces that experience a pulse of rapid base-level drop followed by relative base-level stasis. Parallel drainage networks formed on incised alluvial-fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base-level drop. Numerical experiments suggest that this observed relationship between the magnitude of base-level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base-level drop. We identify a threshold magnitude of base-level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first-order valleys to systems of higher-order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base-level drop and provide a preliminary basis for understanding how varying amounts of base-level change influence valley network morphology.
What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage‐network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio‐Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low‐relief surfaces that experience a pulse of rapid base‐level drop followed by relative base‐level stasis. Parallel drainage networks formed on incised alluvial‐fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base‐level drop. Numerical experiments suggest that this observed relationship between the magnitude of base‐level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base‐level drop. We identify a threshold magnitude of base‐level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first‐order valleys to systems of higher‐order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base‐level drop and provide a preliminary basis for understanding how varying amounts of base‐level change influence valley network morphology. Copyright © 2015 John Wiley & Sons, Ltd.
Author Pelletier, Jon D.
McGuire, Luke A.
Author_xml – sequence: 1
  givenname: Luke A.
  surname: McGuire
  fullname: McGuire, Luke A.
  email: lmcguire@usgs.gov
  organization: US Geological Survey, 80225, Denver, CO, USA
– sequence: 2
  givenname: Jon D.
  surname: Pelletier
  fullname: Pelletier, Jon D.
  organization: US Geological Survey, CO, 80225, Denver, USA
BookMark eNqFkctO5DAQRS3ESDTMSHyCJTZs0pQTO3aWqMVTPAYxo2FnOU4FuQlxsNM8_h63QCAQaGpTtTj3qurWOlntfY-EbDKYMoB8B-MwLVQhV8iEQVVmVZpXyQRYJbOqKOQaWY9xDsAYV9WEHM18PwbfRep7em-6Dp9oHIx1_TV1Pe1M30RrBow0Luo52pGOngYzuIbWJmLW4T12tE3Cn-RHahF_vfYN8nd_78_sMDs5Pzia7Z5khucgM9WUZS6auhVK1hy4Vdy2TFhW1W2FBpG1bY7M5NJwC8yCaFQtaxCGScUFLzbI9ovvEPzdAuOob1202KVV0S-iZgoUCJVz9X9UJjJPBQnd-oTO_SL06ZBEyRKAc8HeDW3wMQZs9RDcrQlPmoFexq9T_HoZf0Knn1DrRjO6ZdzGdV8JshfBg0tP-NZY713-_si7OOLjG2_CjS5lIYX-d3agT4_ZqRIXhb4qngFz0aV6
CitedBy_id crossref_primary_10_1007_s11430_020_9716_6
crossref_primary_10_1073_pnas_2302401120
crossref_primary_10_5194_esurf_9_317_2021
crossref_primary_10_1016_j_geomorph_2020_107206
crossref_primary_10_3390_rs14205227
Cites_doi 10.1029/WR008i006p01506
10.1017/S0022112095002357
10.3133/ofr95690
10.1038/nature11672
10.1029/90JB02704
10.1029/94WR00757
10.3133/ofr20051305
10.1029/97WR00409
10.1029/2007JF000977
10.1016/0098-3004(91)90048-I
10.1029/2012WR012452
10.1029/2008JF001114
10.2475/ajs.262.3.340
10.1016/j.geomorph.2010.06.001
10.1016/S0168-9274(02)00194-0
10.58799/OFR-406
10.1029/98WR01474
10.1017/S0022112000001427
10.1029/1998WR900090
10.1016/j.quaint.2010.05.022
10.1126/science.1241791
10.1002/esp.3423
10.1038/nature08174
10.3133/ofr00409
10.1029/2002JB002162
10.1130/G24517A.1
10.1002/(SICI)1096-9837(199703)22:3<211::AID-ESP749>3.0.CO;2-E
10.1029/96WR03137
10.58799/OF-GM-141
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
DOI 10.1002/esp.3837
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1096-9837
EndPage 472
ExternalDocumentID 3999711991
10_1002_esp_3837
ESP3837
ark_67375_WNG_MJ1M85Q3_X
Genre article
GroupedDBID -DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7TG
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KL.
KR7
L.G
ID FETCH-LOGICAL-a4207-8d6625dbf587b404c84cf15c19bf9eaee1ff2e1a27a4c01c05d8b7b05a1784543
IEDL.DBID DR2
ISSN 0197-9337
IngestDate Fri Jul 11 00:10:57 EDT 2025
Fri Jul 11 10:08:41 EDT 2025
Fri Jul 25 12:16:37 EDT 2025
Thu Apr 24 23:10:10 EDT 2025
Tue Jul 01 02:52:01 EDT 2025
Wed Jan 22 16:30:52 EST 2025
Wed Oct 30 09:50:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4207-8d6625dbf587b404c84cf15c19bf9eaee1ff2e1a27a4c01c05d8b7b05a1784543
Notes ark:/67375/WNG-MJ1M85Q3-X
istex:33EEB49A1C4AF479D664E6831131D6E0CEF898BA
ArticleID:ESP3837
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1776004451
PQPubID 866381
PageCount 13
ParticipantIDs proquest_miscellaneous_1808058248
proquest_miscellaneous_1780522220
proquest_journals_1776004451
crossref_primary_10_1002_esp_3837
crossref_citationtrail_10_1002_esp_3837
wiley_primary_10_1002_esp_3837_ESP3837
istex_primary_ark_67375_WNG_MJ1M85Q3_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 March 2016
PublicationDateYYYYMMDD 2016-03-30
PublicationDate_xml – month: 03
  year: 2016
  text: 30 March 2016
  day: 30
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationSubtitle The Journal of the British Geomorphological Research Group
PublicationTitle Earth surface processes and landforms
PublicationTitleAlternate Earth Surf. Process. Landforms
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Tarboton DG. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33: 309-319.
Smith TR. 2010. A theory for the emergence of channelized drainage. Journal of Geophysical Research 115(F2): F02023, 1-32.
Loewenherz DS. 1991. Stability and the initiation of channelized surface drainage: a reassessment of the short wavelength limit. Journal of Geophysical Research 96: 8453-8464.
de Michieli Vitturi M, Arrowsmith JR. 2013. Two-dimensional nonlinear diffusive numerical simulation of geomorphic modifications to cinder cones. Earth Surface Processes and Landforms 38: 1432-1443.
Howard AD. 1994. A detachment-limited model of drainage basin evolution. Water Resources Research 30: 2261-2285.
Hilley GE, Arrowsmith RJ. 2008. Geomorphic response to uplift along the Dragons Back pressure ridge, Carrizo Plain, California. Geology 36: 367-370.
Tucker GE, Bras RL. 1998. Hillslope processes,drainage density,and landscape morphology. Water Resources Research 34: 2751-2764.
Perron JT, Richardson PW, Ferrier KL, Lapôtre M. 2012. The root of branching river networks. Nature 492: 100-103.
Smith TR, Bretherton FP. 1972. Stability and the conservation of mass in drainage basin evolution. Water Resources Research 8: 1506-1529.
Morisawa M. 1964. Development of drainage systems on an upraised lake floor. American Journal of Science 262: 340-354.
Hurst MD, Mudd SM, Attal M, Hilley G. 2013. Hillslopes record the growth and decay of landscapes. Science 341: 868-871.
Pelletier JD. 2010. Minimizing the grid-resolution dependence of flow-routing algorithms for geomorphic applications. Geomorphology 122: 91-98.
Roering JJ, Kirchner JW, Dietrich WE. 1999. Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resources Research 35: 853-870.
Izumi N, Parker G. 2000. Linear stability analysis of channel inception: downstream-driven theory. Journal of Fluid Mechanics 419: 239-262.
Freeman GT. 1991. Calculating catchment area with divergent flow based on a rectangular grid. Computers and Geosciences 17: 413-422.
Purtymun WD, Johansen S. 1974. General geohydrology of the Pajarito Plateau. New Mexico Geological Society Guidebook 25: 327-349.
Pelletier JD. 2013. A robust two-parameter method for drainage network extraction from high-resolution DEMs: evaluation using synthetic and real-world DEMs. Water Resources Research 49: 1-15.
Perron JT, Kirchner JW, Dietrich WE. 2009. Formation of evenly spaced ridges and valleys. Nature 460: 502-505.
Perron JT, Dietrich WE, Kirchner JW. 2008. Controls on the spacing of first-order valleys. Journal of Geophysical Research: Earth Surface 113(F4): 1-21.
Witelski TP, Bowen M. 2003. ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45: 331-351.
Izumi N, Parker G. 1995. Inception of channelization and drainage basin formation: upstream-driven theory. Journal of Fluid Mechanics 283: 341-363.
Bowman D, Devora S, Svoray T. 2011. Drainage organization on the newly emerged dead sea bed, Israel. Quaternary International 233: 53-60.
Tucker GE, Singerland R. 1997. Drainage basin responses to climate change. Water Resources Research 33: 2031-2047.
Simpson G, Schlunegger F. 2003. Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport. Journal of Geophysical Research 108: B6, 2300, 1-16.
Howard AD. 1997. Badland morphology and evolution: interpretation using a simulation model. Earth Surface Processes and Landforms 22: 211-227.
Leopold LB, Maddock T Jr. 1953. The hydraulic geometry of stream channels and some physiographic implications. US Geological Survey Professional Paper 252: 1-57.
2000; 419
1972; 8
1991; 17
2013; 49
1997; 22
1991; 96
2008; 36
1953
2010; 122
1996
2007
2006
1994
1972
2005
2013; 341
2011; 233
2012; 492
1974; 25
2003; 108
2013; 38
1990
1997; 33
2000
2010; 115
1999; 35
1964; 262
2009; 460
2008; 113
2013
1995; 283
1994; 30
1998; 34
2003; 45
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
Leopold LB (e_1_2_9_18_1) 1953
e_1_2_9_3_1
e_1_2_9_2_1
Purtymun WD (e_1_2_9_28_1) 1974; 25
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
Tarboton DG (e_1_2_9_34_1) 1997; 33
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – reference: Hurst MD, Mudd SM, Attal M, Hilley G. 2013. Hillslopes record the growth and decay of landscapes. Science 341: 868-871.
– reference: Izumi N, Parker G. 1995. Inception of channelization and drainage basin formation: upstream-driven theory. Journal of Fluid Mechanics 283: 341-363.
– reference: Morisawa M. 1964. Development of drainage systems on an upraised lake floor. American Journal of Science 262: 340-354.
– reference: Purtymun WD, Johansen S. 1974. General geohydrology of the Pajarito Plateau. New Mexico Geological Society Guidebook 25: 327-349.
– reference: Leopold LB, Maddock T Jr. 1953. The hydraulic geometry of stream channels and some physiographic implications. US Geological Survey Professional Paper 252: 1-57.
– reference: Perron JT, Richardson PW, Ferrier KL, Lapôtre M. 2012. The root of branching river networks. Nature 492: 100-103.
– reference: de Michieli Vitturi M, Arrowsmith JR. 2013. Two-dimensional nonlinear diffusive numerical simulation of geomorphic modifications to cinder cones. Earth Surface Processes and Landforms 38: 1432-1443.
– reference: Freeman GT. 1991. Calculating catchment area with divergent flow based on a rectangular grid. Computers and Geosciences 17: 413-422.
– reference: Hilley GE, Arrowsmith RJ. 2008. Geomorphic response to uplift along the Dragons Back pressure ridge, Carrizo Plain, California. Geology 36: 367-370.
– reference: Howard AD. 1997. Badland morphology and evolution: interpretation using a simulation model. Earth Surface Processes and Landforms 22: 211-227.
– reference: Smith TR. 2010. A theory for the emergence of channelized drainage. Journal of Geophysical Research 115(F2): F02023, 1-32.
– reference: Bowman D, Devora S, Svoray T. 2011. Drainage organization on the newly emerged dead sea bed, Israel. Quaternary International 233: 53-60.
– reference: Witelski TP, Bowen M. 2003. ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics 45: 331-351.
– reference: Pelletier JD. 2010. Minimizing the grid-resolution dependence of flow-routing algorithms for geomorphic applications. Geomorphology 122: 91-98.
– reference: Tucker GE, Bras RL. 1998. Hillslope processes,drainage density,and landscape morphology. Water Resources Research 34: 2751-2764.
– reference: Pelletier JD. 2013. A robust two-parameter method for drainage network extraction from high-resolution DEMs: evaluation using synthetic and real-world DEMs. Water Resources Research 49: 1-15.
– reference: Roering JJ, Kirchner JW, Dietrich WE. 1999. Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resources Research 35: 853-870.
– reference: Perron JT, Dietrich WE, Kirchner JW. 2008. Controls on the spacing of first-order valleys. Journal of Geophysical Research: Earth Surface 113(F4): 1-21.
– reference: Howard AD. 1994. A detachment-limited model of drainage basin evolution. Water Resources Research 30: 2261-2285.
– reference: Simpson G, Schlunegger F. 2003. Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport. Journal of Geophysical Research 108: B6, 2300, 1-16.
– reference: Perron JT, Kirchner JW, Dietrich WE. 2009. Formation of evenly spaced ridges and valleys. Nature 460: 502-505.
– reference: Tucker GE, Singerland R. 1997. Drainage basin responses to climate change. Water Resources Research 33: 2031-2047.
– reference: Izumi N, Parker G. 2000. Linear stability analysis of channel inception: downstream-driven theory. Journal of Fluid Mechanics 419: 239-262.
– reference: Loewenherz DS. 1991. Stability and the initiation of channelized surface drainage: a reassessment of the short wavelength limit. Journal of Geophysical Research 96: 8453-8464.
– reference: Tarboton DG. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33: 309-319.
– reference: Smith TR, Bretherton FP. 1972. Stability and the conservation of mass in drainage basin evolution. Water Resources Research 8: 1506-1529.
– volume: 22
  start-page: 211
  year: 1997
  end-page: 227
  article-title: Badland morphology and evolution: interpretation using a simulation model
  publication-title: Earth Surface Processes and Landforms
– volume: 108
  start-page: B6, 2300, 1
  year: 2003
  end-page: 16
  article-title: Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport
  publication-title: Journal of Geophysical Research
– year: 2005
– volume: 17
  start-page: 413
  year: 1991
  end-page: 422
  article-title: Calculating catchment area with divergent flow based on a rectangular grid
  publication-title: Computers and Geosciences
– year: 2007
– volume: 419
  start-page: 239
  year: 2000
  end-page: 262
  article-title: Linear stability analysis of channel inception: downstream‐driven theory
  publication-title: Journal of Fluid Mechanics
– year: 2000
– year: 1996
– volume: 35
  start-page: 853
  year: 1999
  end-page: 870
  article-title: Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology
  publication-title: Water Resources Research
– volume: 262
  start-page: 340
  year: 1964
  end-page: 354
  article-title: Development of drainage systems on an upraised lake floor
  publication-title: American Journal of Science
– volume: 38
  start-page: 1432
  year: 2013
  end-page: 1443
  article-title: Two‐dimensional nonlinear diffusive numerical simulation of geomorphic modifications to cinder cones
  publication-title: Earth Surface Processes and Landforms
– year: 1990
– year: 1994
– volume: 233
  start-page: 53
  year: 2011
  end-page: 60
  article-title: Drainage organization on the newly emerged dead sea bed, Israel
  publication-title: Quaternary International
– volume: 36
  start-page: 367
  year: 2008
  end-page: 370
  article-title: Geomorphic response to uplift along the Dragons Back pressure ridge, Carrizo Plain, California
  publication-title: Geology
– volume: 96
  start-page: 8453
  year: 1991
  end-page: 8464
  article-title: Stability and the initiation of channelized surface drainage: a reassessment of the short wavelength limit
  publication-title: Journal of Geophysical Research
– volume: 460
  start-page: 502
  year: 2009
  end-page: 505
  article-title: Formation of evenly spaced ridges and valleys
  publication-title: Nature
– volume: 283
  start-page: 341
  year: 1995
  end-page: 363
  article-title: Inception of channelization and drainage basin formation: upstream‐driven theory
  publication-title: Journal of Fluid Mechanics
– volume: 492
  start-page: 100
  year: 2012
  end-page: 103
  article-title: The root of branching river networks
  publication-title: Nature
– volume: 113
  start-page: 1
  issue: F4
  year: 2008
  end-page: 21
  article-title: Controls on the spacing of first‐order valleys
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 25
  start-page: 327
  year: 1974
  end-page: 349
  article-title: General geohydrology of the Pajarito Plateau
  publication-title: New Mexico Geological Society Guidebook
– volume: 8
  start-page: 1506
  year: 1972
  end-page: 1529
  article-title: Stability and the conservation of mass in drainage basin evolution
  publication-title: Water Resources Research
– start-page: 1
  year: 1953
  end-page: 57
  article-title: The hydraulic geometry of stream channels and some physiographic implications
  publication-title: US Geological Survey Professional Paper 252
– year: 2006
– volume: 34
  start-page: 2751
  year: 1998
  end-page: 2764
  article-title: Hillslope processes,drainage density,and landscape morphology
  publication-title: Water Resources Research
– volume: 341
  start-page: 868
  year: 2013
  end-page: 871
  article-title: Hillslopes record the growth and decay of landscapes
  publication-title: Science
– volume: 33
  start-page: 309
  year: 1997
  end-page: 319
  article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models
  publication-title: Water Resources Research
– year: 1972
– volume: 30
  start-page: 2261
  year: 1994
  end-page: 2285
  article-title: A detachment‐limited model of drainage basin evolution
  publication-title: Water Resources Research
– volume: 115
  start-page: F02023, 1
  issue: F2
  year: 2010
  end-page: 32
  article-title: A theory for the emergence of channelized drainage
  publication-title: Journal of Geophysical Research
– volume: 49
  start-page: 1
  year: 2013
  end-page: 15
  article-title: A robust two‐parameter method for drainage network extraction from high‐resolution DEMs: evaluation using synthetic and real‐world DEMs
  publication-title: Water Resources Research
– volume: 122
  start-page: 91
  year: 2010
  end-page: 98
  article-title: Minimizing the grid‐resolution dependence of flow‐routing algorithms for geomorphic applications
  publication-title: Geomorphology
– volume: 45
  start-page: 331
  year: 2003
  end-page: 351
  article-title: ADI schemes for higher‐order nonlinear diffusion equations
  publication-title: Applied Numerical Mathematics
– volume: 33
  start-page: 2031
  year: 1997
  end-page: 2047
  article-title: Drainage basin responses to climate change
  publication-title: Water Resources Research
– year: 2013
– ident: e_1_2_9_32_1
  doi: 10.1029/WR008i006p01506
– ident: e_1_2_9_14_1
  doi: 10.1017/S0022112095002357
– ident: e_1_2_9_16_1
  doi: 10.3133/ofr95690
– ident: e_1_2_9_27_1
  doi: 10.1038/nature11672
– ident: e_1_2_9_7_1
– ident: e_1_2_9_19_1
  doi: 10.1029/90JB02704
– ident: e_1_2_9_11_1
  doi: 10.1029/94WR00757
– ident: e_1_2_9_20_1
  doi: 10.3133/ofr20051305
– ident: e_1_2_9_36_1
  doi: 10.1029/97WR00409
– ident: e_1_2_9_25_1
  doi: 10.1029/2007JF000977
– ident: e_1_2_9_6_1
  doi: 10.1016/0098-3004(91)90048-I
– ident: e_1_2_9_2_1
– ident: e_1_2_9_24_1
  doi: 10.1029/2012WR012452
– ident: e_1_2_9_31_1
  doi: 10.1029/2008JF001114
– ident: e_1_2_9_21_1
  doi: 10.2475/ajs.262.3.340
– ident: e_1_2_9_38_1
– ident: e_1_2_9_23_1
  doi: 10.1016/j.geomorph.2010.06.001
– ident: e_1_2_9_37_1
  doi: 10.1016/S0168-9274(02)00194-0
– ident: e_1_2_9_4_1
  doi: 10.58799/OFR-406
– ident: e_1_2_9_35_1
  doi: 10.1029/98WR01474
– ident: e_1_2_9_15_1
  doi: 10.1017/S0022112000001427
– ident: e_1_2_9_29_1
  doi: 10.1029/1998WR900090
– ident: e_1_2_9_3_1
  doi: 10.1016/j.quaint.2010.05.022
– ident: e_1_2_9_13_1
  doi: 10.1126/science.1241791
– ident: e_1_2_9_5_1
  doi: 10.1002/esp.3423
– ident: e_1_2_9_26_1
  doi: 10.1038/nature08174
– ident: e_1_2_9_10_1
  doi: 10.3133/ofr00409
– ident: e_1_2_9_30_1
  doi: 10.1029/2002JB002162
– ident: e_1_2_9_33_1
– ident: e_1_2_9_8_1
  doi: 10.1130/G24517A.1
– volume: 25
  start-page: 327
  year: 1974
  ident: e_1_2_9_28_1
  article-title: General geohydrology of the Pajarito Plateau
  publication-title: New Mexico Geological Society Guidebook
– ident: e_1_2_9_12_1
  doi: 10.1002/(SICI)1096-9837(199703)22:3<211::AID-ESP749>3.0.CO;2-E
– ident: e_1_2_9_22_1
– volume: 33
  start-page: 309
  year: 1997
  ident: e_1_2_9_34_1
  article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models
  publication-title: Water Resources Research
  doi: 10.1029/96WR03137
– ident: e_1_2_9_9_1
– ident: e_1_2_9_17_1
  doi: 10.58799/OF-GM-141
– start-page: 1
  year: 1953
  ident: e_1_2_9_18_1
  article-title: The hydraulic geometry of stream channels and some physiographic implications
  publication-title: US Geological Survey Professional Paper 252
SSID ssj0011489
Score 2.1842546
Snippet What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 460
SubjectTerms Alluvial fans
base level
Drainage
Drainage control
drainage network
Drainage patterns
Geomorphology
Landscapes
Mass wasting
Morphology
Networks
numerical model
Quaternary
Sediment transport
Slopes
Tributaries
valley spacing
Valleys
Title Controls on valley spacing in landscapes subject to rapid base-level fall
URI https://api.istex.fr/ark:/67375/WNG-MJ1M85Q3-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fesp.3837
https://www.proquest.com/docview/1776004451
https://www.proquest.com/docview/1780522220
https://www.proquest.com/docview/1808058248
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQEYILlAJiS6mMhOCUNvbasXNEVR8qasWrYiUOlp9q1SpbNbtVlxM_gd_IL2EmLygChMglh4wTx-PxzNgz3xDy3OfjGIsksiIBG4RnMiuDh7kcuIoqstLbJkD2sNg7EvsTOemiKjEXpsWHGDbcUDKa9RoF3Lp68wdoaKzBYQf3CpZfDNVCe-jdgByFVn7ZZkqrDHx21ePO5nyzb3hNE93EQb26Zmb-bKw22mbnHvnU97MNMjndmM_chv_8C4Tj__3IMrnbGaH0VTtr7pMbsVoht7t66MeLFXJrtyn4u3hAXm-1sew1nVb0EguvLCgsQh40Hj2paJMpjDFUNa3nDvd06GxK4S0ngaKC_Pbl6xmGJdEETR-So53tD1t7WVeAIbOC56C9QgHuUXBJauVELrwWPjHpWelSGW2MLCUemeXKCp8zn8ugnXK5tExpIcX4EVmqplV8TGgU3vIQRdSOi0Jo6wvJA3wgpZC8ZiPysmeG8R06ORbJODMtrjI3MEwGh2lEng2U5y0ix29oXjT8HAjsxSlGsClpPh7umoN9dqDl27GZjMhaz3DTCW9tmMLTSkRug28Nj0Hs8CzFVnE6RxqsBQFX_hcaxOyUmgsN_WlmwB87bLbfv8H76r8SPiF3wHQrmuzIfI0szS7m8SmYRzO33gjCd3frDVQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqhceBQQCwWMhOC0bey1Y0ecUNV2absrHq3YA5LlOLZatcpWzS5iOfET-I38EjzOA4oAIXLJIePE8Xg8M_bMNwBPbTJwLvW8n_rABm6p6GeFDXO5YNJJRzNrYoDsOB0e8b2JmCzBizYXpsaH6DbcUDLieo0CjhvSmz9QQ10VPPbgX12BFSzoHf2ptx12FNr5WZ0rLfvBa5ct8mzCNtuWl3TRCg7rp0uG5s_matQ3OzfgQ9vTOszkdGM-yzfs519AHP_zV27C9cYOJS_riXMLlly5BqtNSfTjxRpc3Y01fxe3YX-rDmevyLQkH7H2yoKEdcgGpUdOShKThTGMqiLVPMdtHTKbkvCWk4Kgjvz25esZRiYRH5regaOd7cOtYb-pwdA3nCVBgRVp8JCK3Aslc55wq7j1VFia5T5zxjnqPXPUMGm4TahNRKFymSfCUKm44IO7sFxOS3cPiOPWsMJxp3LGU66MTQUrwge8L7xVtAfPW25o2wCUY52MM11DKzMdhknjMPXgSUd5XoNy_IbmWWRoR2AuTjGITQr9fryrR3t0pMSbgZ70YL3luG7kt9JU4oElgreFb3WPg-ThcYop3XSONFgOIlzJX2gQtlMoxlXoT5wCf-yw3n73Gu_3_5XwMawOD0cH-uDVeP8BXAuWXBqTJZN1WJ5dzN3DYC3N8kdRKr4DNj8Rbw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagFY8LjwJioYCREJzS2l47do6o7ba0dFUeFStxsPwUVats1ewilhM_gd_IL8GTFxQBQuSSQ8aJ45nxzNjjbxB64sgwhDzyLI-JDdxRkRXeJVn2TAYZaOFMnSA7zncO-e5ETNqsSjgL0-BD9AtuoBn1fA0Kfurj-g_Q0FClgD2FVxfRMs-JAonefN1DR4GbXzRHpWWWgnbZAc8Stt61PGeKlmFUP53zM3_2VmtzM7qO3ncdbbJMjtfmM7vmPv-C4fh_f3IDXWu9UPy8EZub6EIoV9CVtiD6h8UKurRdV_xd3EJ7G00ye4WnJf4IlVcWOM1CLpk8fFTi-qgwJFFVuJpbWNTBsylObznyGCzkty9fTyAvCcfU9DY6HG293djJ2goMmeGMJPPl8xQfeRuFkpYT7hR3kQpHCxuLYEKgMbJADZOGO0IdEV5ZaYkwVCou-PAOWiqnZbiLcODOMB94UJbxnCvjcsF8-kCMPjpFB-hZxwztWnhyqJJxohtgZabTMGkYpgF63FOeNpAcv6F5WvOzJzBnx5DCJoV-N97W-7t0X4lXQz0ZoNWO4brV3kpTCduVAN2WvtU_TnoHmymmDNM50EAxiHSRv9AAaKdQjKvUn1oC_thhvfXmAO73_pXwEbp8sDnSL1-M9-6jq8mNy-uTkmQVLc3O5uFBcpVm9mGtE98BGVMQJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controls+on+valley+spacing+in+landscapes+subject+to+rapid+base%E2%80%90level+fall&rft.jtitle=Earth+surface+processes+and+landforms&rft.au=McGuire%2C+Luke+A.&rft.au=Pelletier%2C+Jon+D.&rft.date=2016-03-30&rft.issn=0197-9337&rft.eissn=1096-9837&rft.volume=41&rft.issue=4&rft.spage=460&rft.epage=472&rft_id=info:doi/10.1002%2Fesp.3837&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_esp_3837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-9337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-9337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-9337&client=summon