SOIL EROSION, CONSERVATION, AND ECO-ENVIRONMENT CHANGES IN THE LOESS PLATEAU OF CHINA
ABSTRACT As one of the best‐known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical variation of climate, vegetation cover, and environment changes in order to understand the causes of severe soil erosion. Documentary...
Saved in:
Published in | Land degradation & development Vol. 24; no. 5; pp. 499 - 510 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Blackwell Publishing Ltd
01.09.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1085-3278 1099-145X |
DOI | 10.1002/ldr.2246 |
Cover
Loading…
Abstract | ABSTRACT
As one of the best‐known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical variation of climate, vegetation cover, and environment changes in order to understand the causes of severe soil erosion. Documentary evidence indicated that climate changes and vegetation cover were the dominant natural factors influencing the soil erosion rates during the Holocene. Intensive human activities consisting of warfare, population growth, deforestation, and soil and water conservation measures were responsible for the changes of soil erosion during the anthropogenic period. Spatial and temporal changes of specific sediment yields presented significant decrease within the last several decades, which resulted from decreasing rainfall, large scale soil and water conservation measures, agricultural irrigation, and reservoir construction. Different phase of soil conservation measures demonstrated the development of policies and techniques on soil erosion control. Effective strategies of soil and water conservation, consisting of terracing, afforestation, natural rehabilitation, and check‐dams construction, were carried out on the Loess Plateau during the past six decades. The progress of soil conservation measures confirmed that the check‐dams systems might be suitable for Loess hilly Plateau, and natural vegetation rehabilitation is the best way for soil erosion control and should be implemented in other regions with emphasis of improving the quality of conservation measures based on natural rehabilitation. Copyright © 2013 John Wiley & Sons, Ltd. |
---|---|
AbstractList | As one of the best-known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical variation of climate, vegetation cover, and environment changes in order to understand the causes of severe soil erosion. Documentary evidence indicated that climate changes and vegetation cover were the dominant natural factors influencing the soil erosion rates during the Holocene. Intensive human activities consisting of warfare, population growth, deforestation, and soil and water conservation measures were responsible for the changes of soil erosion during the anthropogenic period. Spatial and temporal changes of specific sediment yields presented significant decrease within the last several decades, which resulted from decreasing rainfall, large scale soil and water conservation measures, agricultural irrigation, and reservoir construction. Different phase of soil conservation measures demonstrated the development of policies and techniques on soil erosion control. Effective strategies of soil and water conservation, consisting of terracing, afforestation, natural rehabilitation, and check-dams construction, were carried out on the Loess Plateau during the past six decades. The progress of soil conservation measures confirmed that the check-dams systems might be suitable for Loess hilly Plateau, and natural vegetation rehabilitation is the best way for soil erosion control and should be implemented in other regions with emphasis of improving the quality of conservation measures based on natural rehabilitation. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT] As one of the best‐known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical variation of climate, vegetation cover, and environment changes in order to understand the causes of severe soil erosion. Documentary evidence indicated that climate changes and vegetation cover were the dominant natural factors influencing the soil erosion rates during the Holocene. Intensive human activities consisting of warfare, population growth, deforestation, and soil and water conservation measures were responsible for the changes of soil erosion during the anthropogenic period. Spatial and temporal changes of specific sediment yields presented significant decrease within the last several decades, which resulted from decreasing rainfall, large scale soil and water conservation measures, agricultural irrigation, and reservoir construction. Different phase of soil conservation measures demonstrated the development of policies and techniques on soil erosion control. Effective strategies of soil and water conservation, consisting of terracing, afforestation, natural rehabilitation, and check‐dams construction, were carried out on the Loess Plateau during the past six decades. The progress of soil conservation measures confirmed that the check‐dams systems might be suitable for Loess hilly Plateau, and natural vegetation rehabilitation is the best way for soil erosion control and should be implemented in other regions with emphasis of improving the quality of conservation measures based on natural rehabilitation. Copyright © 2013 John Wiley & Sons, Ltd. ABSTRACT As one of the best‐known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical variation of climate, vegetation cover, and environment changes in order to understand the causes of severe soil erosion. Documentary evidence indicated that climate changes and vegetation cover were the dominant natural factors influencing the soil erosion rates during the Holocene. Intensive human activities consisting of warfare, population growth, deforestation, and soil and water conservation measures were responsible for the changes of soil erosion during the anthropogenic period. Spatial and temporal changes of specific sediment yields presented significant decrease within the last several decades, which resulted from decreasing rainfall, large scale soil and water conservation measures, agricultural irrigation, and reservoir construction. Different phase of soil conservation measures demonstrated the development of policies and techniques on soil erosion control. Effective strategies of soil and water conservation, consisting of terracing, afforestation, natural rehabilitation, and check‐dams construction, were carried out on the Loess Plateau during the past six decades. The progress of soil conservation measures confirmed that the check‐dams systems might be suitable for Loess hilly Plateau, and natural vegetation rehabilitation is the best way for soil erosion control and should be implemented in other regions with emphasis of improving the quality of conservation measures based on natural rehabilitation. Copyright © 2013 John Wiley & Sons, Ltd. |
Author | Mu, X. Wang, F. Wen, Z. Gao, P. Zhao, G. |
Author_xml | – sequence: 1 givenname: G. surname: Zhao fullname: Zhao, G. organization: Institute of Soil and Water Conservation, Northwest A&F University, 26 Xinong Road, 712100, Yangling, Shaanxi Province, China – sequence: 2 givenname: X. surname: Mu fullname: Mu, X. email: Correspondence to: X. Mu, Institute of Soil and Water Conservation, Northwest A&F University, 26 Xinong Road, Yangling, 712100, Shaanxi Province, China., xmmu@ms.iswc.ac.cn organization: Institute of Soil and Water Conservation, Northwest A&F University, 26 Xinong Road, 712100, Yangling, Shaanxi Province, China – sequence: 3 givenname: Z. surname: Wen fullname: Wen, Z. organization: Institute of Soil and Water Conservation, Northwest A&F University, 26 Xinong Road, 712100, Yangling, Shaanxi Province, China – sequence: 4 givenname: F. surname: Wang fullname: Wang, F. organization: Institute of Soil and Water Conservation, Northwest A&F University, 26 Xinong Road, 712100, Yangling, Shaanxi Province, China – sequence: 5 givenname: P. surname: Gao fullname: Gao, P. organization: Institute of Soil and Water Conservation, Northwest A&F University, 26 Xinong Road, 712100, Yangling, Shaanxi Province, China |
BookMark | eNp1kE1P4zAQhq0VSMvHSvsTLHHhQLp27PjjGAXTBqU2NCnszUpTRwqUpjhBwL8n3aKVQHCaGc3zzkjPIdhbt2sHwG-MRhih8M9q6UdhSNkPcICRlAGm0d-9bS-igIRc_ASHXXeHEMKc8gMwz02aQTUzeWr0GUyMztXsJi7-TbE-hyoxgdI36czoqdIFTCaxHqscphoWEwUzo_IcXmVxoeI5NBfDPtXxMdivy1Xnfr3XI1BcqCKZBJkZp0mcBSUNEQuEqziRyDGO8YJK4mq2rAVZ0CqqXRU6GQnMyrqqwqVk5cIx4iRCnBLORSQrcgROdmc3vn18cl1v79onvx4-WkwpEoIgwQZqtKMq33add7Wtmr7sm3bd-7JZWYzs1pwdzNmtuSFw-imw8c1D6V-_QoMd-tys3Ou3nM3OZx_5puvdy3--9PeWccIje6vH9vI6k1OKbm1C3gArUoUn |
CODEN | LDDEF6 |
CitedBy_id | crossref_primary_10_1080_03650340_2019_1578345 crossref_primary_10_1016_j_iswcr_2023_06_006 crossref_primary_10_1016_j_jhydrol_2016_09_010 crossref_primary_10_1002_joc_6798 crossref_primary_10_1007_s10113_016_0975_6 crossref_primary_10_1371_journal_pone_0168890 crossref_primary_10_1016_j_quaint_2016_12_005 crossref_primary_10_1016_j_catena_2022_106327 crossref_primary_10_1016_j_exis_2016_04_002 crossref_primary_10_1007_s11368_015_1072_z crossref_primary_10_1016_j_still_2020_104605 crossref_primary_10_1111_gcb_14875 crossref_primary_10_1016_j_still_2020_104600 crossref_primary_10_1016_S2095_3119_19_62719_X crossref_primary_10_5194_se_7_1577_2016 crossref_primary_10_1016_j_geomorph_2024_109243 crossref_primary_10_2139_ssrn_4056868 crossref_primary_10_1016_j_ecoleng_2017_03_013 crossref_primary_10_1039_C3EM00521F crossref_primary_10_3390_land13050709 crossref_primary_10_1111_jse_12156 crossref_primary_10_1016_j_scitotenv_2018_05_194 crossref_primary_10_1016_j_ecolind_2021_108332 crossref_primary_10_1016_j_ejrh_2022_101277 crossref_primary_10_3390_f14081620 crossref_primary_10_2166_ws_2020_361 crossref_primary_10_1007_s40333_020_0091_9 crossref_primary_10_1038_srep44496 crossref_primary_10_1016_j_ecofro_2024_05_003 crossref_primary_10_3390_rs14030737 crossref_primary_10_1016_j_iswcr_2021_03_002 crossref_primary_10_1016_j_jenvman_2023_119589 crossref_primary_10_1002_esp_6059 crossref_primary_10_1016_j_catena_2019_02_002 crossref_primary_10_1002_rse2_271 crossref_primary_10_1016_j_ecoinf_2022_101887 crossref_primary_10_5194_se_6_1087_2015 crossref_primary_10_1016_j_geoderma_2021_115319 crossref_primary_10_1007_s11368_017_1888_9 crossref_primary_10_1016_j_jhydrol_2025_133046 crossref_primary_10_1016_j_catena_2024_108075 crossref_primary_10_1016_j_palaeo_2024_112184 crossref_primary_10_1016_j_geomorph_2019_106878 crossref_primary_10_1111_ejss_13412 crossref_primary_10_1002_ldr_2294 crossref_primary_10_3390_w14050772 crossref_primary_10_3390_su14116600 crossref_primary_10_1002_ldr_4229 crossref_primary_10_1016_j_catena_2018_07_031 crossref_primary_10_1016_j_scitotenv_2019_134164 crossref_primary_10_3390_w15101870 crossref_primary_10_1016_j_still_2023_105992 crossref_primary_10_3390_land12061157 crossref_primary_10_1002_ldr_3135 crossref_primary_10_1002_ldr_2289 crossref_primary_10_3390_su16020799 crossref_primary_10_1080_10106049_2022_2071473 crossref_primary_10_1002_hyp_15271 crossref_primary_10_1002_ldr_2281 crossref_primary_10_1002_ldr_5550 crossref_primary_10_1002_ldr_2283 crossref_primary_10_1007_s00382_020_05178_6 crossref_primary_10_1016_j_geomorph_2025_109708 crossref_primary_10_1016_j_still_2020_104800 crossref_primary_10_3390_su16020795 crossref_primary_10_1016_j_catena_2019_104170 crossref_primary_10_1016_j_scitotenv_2020_143715 crossref_primary_10_3390_atmos15091050 crossref_primary_10_1007_s40333_019_0107_5 crossref_primary_10_1016_j_gecco_2024_e03083 crossref_primary_10_1002_ldr_3124 crossref_primary_10_1002_ldr_2278 crossref_primary_10_1002_hyp_15283 crossref_primary_10_1109_ACCESS_2020_3018730 crossref_primary_10_1016_j_geoderma_2019_05_030 crossref_primary_10_1016_j_jenvman_2024_120880 crossref_primary_10_5194_se_6_595_2015 crossref_primary_10_1016_j_geomorph_2019_106896 crossref_primary_10_3390_su11030761 crossref_primary_10_1002_gch2_202000109 crossref_primary_10_1016_j_ecolind_2023_111060 crossref_primary_10_1016_j_scitotenv_2020_142419 crossref_primary_10_1016_j_scitotenv_2020_142418 crossref_primary_10_1016_j_agee_2019_05_005 crossref_primary_10_1016_j_catena_2018_06_008 crossref_primary_10_3390_rs11141732 crossref_primary_10_1016_j_jhydrol_2023_129470 crossref_primary_10_1029_2023JF007246 crossref_primary_10_1016_j_jenvman_2022_115701 crossref_primary_10_1016_j_agee_2021_107743 crossref_primary_10_1007_s11368_021_03054_2 crossref_primary_10_3390_geosciences9040147 crossref_primary_10_1016_j_catena_2022_106108 crossref_primary_10_1016_j_envres_2019_03_057 crossref_primary_10_1016_j_scitotenv_2018_04_104 crossref_primary_10_1016_j_catena_2014_10_022 crossref_primary_10_1002_jpln_201400231 crossref_primary_10_1016_j_ecolind_2021_107670 crossref_primary_10_5194_se_6_115_2015 crossref_primary_10_1016_j_palaeo_2023_111439 crossref_primary_10_1002_ldr_2494 crossref_primary_10_1016_j_catena_2021_105181 crossref_primary_10_1002_ldr_2253 crossref_primary_10_1080_20964471_2021_2018789 crossref_primary_10_3390_land13060725 crossref_primary_10_1021_acs_est_2c09870 crossref_primary_10_1002_ldr_2499 crossref_primary_10_1002_ldr_4436 crossref_primary_10_1002_ldr_4678 crossref_primary_10_1007_s11368_021_03089_5 crossref_primary_10_1155_2016_9732864 crossref_primary_10_1016_j_catena_2022_106332 crossref_primary_10_1371_journal_pone_0261842 crossref_primary_10_1029_2024JG008143 crossref_primary_10_1155_2014_654796 crossref_primary_10_1002_esp_5839 crossref_primary_10_1002_ldr_2249 crossref_primary_10_1016_j_foreco_2019_117767 crossref_primary_10_1016_j_jhydrol_2023_129298 crossref_primary_10_1111_tgis_12607 crossref_primary_10_5194_hess_28_87_2024 crossref_primary_10_1007_s12665_017_6506_z crossref_primary_10_1007_s12594_023_2324_y crossref_primary_10_1016_j_catena_2025_108740 crossref_primary_10_1016_j_catena_2024_108466 crossref_primary_10_1002_ldr_3570 crossref_primary_10_5327_Z2176_94781557 crossref_primary_10_3390_land13101563 crossref_primary_10_3390_land13122002 crossref_primary_10_1016_j_margeo_2020_106188 crossref_primary_10_1007_s11368_018_2042_z crossref_primary_10_1007_s11356_022_24923_4 crossref_primary_10_1016_j_catena_2024_108215 crossref_primary_10_1016_j_earscirev_2024_104718 crossref_primary_10_1002_ldr_2475 crossref_primary_10_1002_ldr_2476 crossref_primary_10_1016_j_scitotenv_2018_10_172 crossref_primary_10_3390_w14121875 crossref_primary_10_1007_s40333_016_0088_6 crossref_primary_10_1080_17538947_2024_2369632 crossref_primary_10_1520_JTE20150048 crossref_primary_10_1007_s11368_020_02568_5 crossref_primary_10_1038_s43017_021_00226_z crossref_primary_10_1016_j_catena_2024_108480 crossref_primary_10_1007_s12665_024_11424_5 crossref_primary_10_1002_ldr_2460 crossref_primary_10_1016_j_still_2018_08_012 crossref_primary_10_1016_j_catena_2024_108484 crossref_primary_10_3390_su15129160 crossref_primary_10_1080_15481603_2020_1751406 crossref_primary_10_1016_j_jhydrol_2021_126235 crossref_primary_10_1002_ldr_3304 crossref_primary_10_1002_ldr_2459 crossref_primary_10_1016_j_catena_2023_107081 crossref_primary_10_1016_j_agee_2021_107320 crossref_primary_10_1016_j_eng_2019_07_014 crossref_primary_10_1016_j_quascirev_2022_107796 crossref_primary_10_1016_j_jhydrol_2024_130799 crossref_primary_10_5194_se_6_633_2015 crossref_primary_10_24017_science_2019_2_18 crossref_primary_10_1002_ldr_2451 crossref_primary_10_1002_ldr_3300 crossref_primary_10_1002_ldr_2454 crossref_primary_10_1002_ldr_2456 crossref_primary_10_1016_j_catena_2016_10_016 crossref_primary_10_1088_2515_7620_ad3369 crossref_primary_10_1177_0959683620961486 crossref_primary_10_1016_j_catena_2021_105148 crossref_primary_10_1016_j_geoderma_2019_07_003 crossref_primary_10_1002_ldr_2447 crossref_primary_10_1002_ldr_2449 crossref_primary_10_3390_su11247084 crossref_primary_10_1016_j_jhydrol_2018_02_076 crossref_primary_10_1016_j_ecoleng_2017_01_036 crossref_primary_10_1007_s10064_024_03787_7 crossref_primary_10_1016_j_jaridenv_2016_12_014 crossref_primary_10_3390_rs15030743 crossref_primary_10_3390_agronomy10060774 crossref_primary_10_1016_j_catena_2021_105551 crossref_primary_10_1016_j_catena_2025_108783 crossref_primary_10_17221_42_2023_SWR crossref_primary_10_1016_j_scitotenv_2023_163182 crossref_primary_10_1016_j_hydroa_2018_100009 crossref_primary_10_1016_j_ecolind_2022_109734 crossref_primary_10_1002_ldr_2679 crossref_primary_10_1016_j_geomorph_2018_04_011 crossref_primary_10_1016_j_still_2024_106299 crossref_primary_10_1360_TB_2022_0295 crossref_primary_10_3390_su12052126 crossref_primary_10_1080_07038992_2019_1608518 crossref_primary_10_1002_eco_2465 crossref_primary_10_1016_j_scitotenv_2020_139627 crossref_primary_10_1080_17538947_2023_2207840 crossref_primary_10_1007_s10933_020_00167_5 crossref_primary_10_1007_s10661_017_5792_y crossref_primary_10_1002_ldr_2429 crossref_primary_10_1016_j_still_2023_105935 crossref_primary_10_31497_zrzyxb_20190605 crossref_primary_10_3390_w10111631 crossref_primary_10_1007_s00382_024_07401_0 crossref_primary_10_3390_rs12030453 crossref_primary_10_1016_j_quaint_2024_03_007 crossref_primary_10_1016_j_catena_2018_08_001 crossref_primary_10_1016_j_scitotenv_2021_146474 crossref_primary_10_1002_ldr_2655 crossref_primary_10_1016_j_scitotenv_2020_141715 crossref_primary_10_3390_su8050488 crossref_primary_10_5194_soil_2_49_2016 crossref_primary_10_1002_ldr_2414 crossref_primary_10_1007_s00704_024_05023_4 crossref_primary_10_1016_j_ecolind_2022_108667 crossref_primary_10_1002_ldr_2416 crossref_primary_10_3390_f14010044 crossref_primary_10_1002_ldr_2411 crossref_primary_10_1007_s12033_018_0144_x crossref_primary_10_1007_s11368_021_03070_2 crossref_primary_10_1002_esp_5313 crossref_primary_10_1016_j_envdev_2024_100991 crossref_primary_10_1002_ldr_2402 crossref_primary_10_3389_fenvs_2021_791801 crossref_primary_10_5194_se_5_1071_2014 crossref_primary_10_1002_ldr_4825 crossref_primary_10_1007_s13762_024_05697_3 crossref_primary_10_3390_rs14133043 crossref_primary_10_1016_S1002_0160_15_30030_8 crossref_primary_10_1002_ldr_2401 crossref_primary_10_1016_j_ecolind_2023_110512 crossref_primary_10_5194_se_6_1237_2015 crossref_primary_10_1002_esp_4694 crossref_primary_10_1002_ldr_2875 crossref_primary_10_1016_j_scitotenv_2023_162559 crossref_primary_10_3390_w16192868 crossref_primary_10_5194_se_6_1103_2015 crossref_primary_10_1016_j_ecoleng_2019_105611 crossref_primary_10_1016_j_catena_2018_12_024 crossref_primary_10_1016_j_jclepro_2018_04_004 crossref_primary_10_1002_ldr_4809 crossref_primary_10_1108_MEQ_07_2015_0140 crossref_primary_10_3390_su12062457 crossref_primary_10_3390_app14135945 crossref_primary_10_1029_2023WR036307 crossref_primary_10_3390_rs12183103 crossref_primary_10_1002_ldr_2628 crossref_primary_10_1016_j_ecoleng_2016_06_069 crossref_primary_10_1002_pa_2374 crossref_primary_10_3390_ani15050730 crossref_primary_10_3390_su15065484 crossref_primary_10_5194_esurf_12_163_2024 crossref_primary_10_1017_sus_2018_9 crossref_primary_10_3390_su14127169 crossref_primary_10_1016_j_ancene_2020_100251 crossref_primary_10_3390_su162310781 crossref_primary_10_3390_w12102786 crossref_primary_10_3390_en16145282 crossref_primary_10_3390_su13031293 crossref_primary_10_1016_j_scitotenv_2024_175912 crossref_primary_10_1016_j_catena_2018_11_003 crossref_primary_10_3390_su12208376 crossref_primary_10_1038_s41598_022_17975_6 crossref_primary_10_3390_app122412662 crossref_primary_10_1016_j_oneear_2021_01_009 crossref_primary_10_1007_s12665_017_6778_3 crossref_primary_10_1016_j_iswcr_2023_02_005 crossref_primary_10_1016_j_scitotenv_2020_137305 crossref_primary_10_3390_land10090901 crossref_primary_10_1038_s41598_017_08477_x crossref_primary_10_1016_j_geoderma_2024_116906 crossref_primary_10_1016_j_gloplacha_2017_03_003 crossref_primary_10_24180_ijaws_778880 crossref_primary_10_5194_se_6_197_2015 crossref_primary_10_5194_se_6_383_2015 crossref_primary_10_1002_esp_5752 crossref_primary_10_1016_j_catena_2016_07_030 crossref_primary_10_2139_ssrn_4178984 crossref_primary_10_1371_journal_pone_0148445 crossref_primary_10_3390_f7110258 crossref_primary_10_5194_se_5_1045_2014 crossref_primary_10_5194_se_6_1_2015 crossref_primary_10_5194_se_6_997_2015 crossref_primary_10_3390_ijerph19148446 crossref_primary_10_1002_esp_5980 crossref_primary_10_1016_j_earscirev_2023_104655 crossref_primary_10_1016_j_landusepol_2019_104163 crossref_primary_10_7717_peerj_11226 crossref_primary_10_1002_ldr_3923 crossref_primary_10_1016_j_ecoser_2018_03_013 crossref_primary_10_1016_j_ecoinf_2024_102626 crossref_primary_10_3989_estgeogr_201610 crossref_primary_10_1016_j_still_2019_04_004 crossref_primary_10_1371_journal_pone_0288848 crossref_primary_10_1088_1748_9326_acb9a8 crossref_primary_10_1007_s12665_018_7992_3 crossref_primary_10_1088_1755_1315_675_1_012043 crossref_primary_10_1016_j_jenvman_2020_110214 crossref_primary_10_1002_hyp_11377 crossref_primary_10_3390_atmos14010116 crossref_primary_10_1007_s12665_024_11713_z crossref_primary_10_3390_land13040442 crossref_primary_10_3390_su152115200 crossref_primary_10_1007_s11356_018_1480_x crossref_primary_10_1002_esp_3549 crossref_primary_10_1016_j_scitotenv_2023_162346 crossref_primary_10_1016_j_rse_2024_114022 crossref_primary_10_2478_euco_2018_0001 crossref_primary_10_1016_j_geoderma_2014_09_015 crossref_primary_10_1007_s12665_023_11388_y crossref_primary_10_1371_journal_pone_0091048 crossref_primary_10_1007_s10661_022_09937_2 crossref_primary_10_1016_j_ecolind_2019_01_020 crossref_primary_10_5194_piahs_375_23_2017 crossref_primary_10_1007_s12665_021_09443_7 crossref_primary_10_3389_feart_2022_812609 crossref_primary_10_1029_2018JF004918 crossref_primary_10_1016_j_ecolind_2023_111449 crossref_primary_10_1016_j_eng_2021_12_015 crossref_primary_10_1002_jpln_202200293 crossref_primary_10_1021_acs_est_2c01855 crossref_primary_10_1007_s12665_016_6102_7 crossref_primary_10_3390_su12083317 crossref_primary_10_1002_hyp_13985 crossref_primary_10_1038_s41598_024_82469_6 crossref_primary_10_1111_rec_13494 crossref_primary_10_1016_j_flora_2018_03_012 crossref_primary_10_7717_peerj_14766 crossref_primary_10_1002_jsfa_12468 crossref_primary_10_1016_j_gloplacha_2018_11_002 crossref_primary_10_1016_j_still_2014_05_007 crossref_primary_10_1016_j_catena_2022_106141 crossref_primary_10_1002_hyp_10486 crossref_primary_10_1016_j_still_2024_106308 crossref_primary_10_1080_00103624_2017_1406099 crossref_primary_10_3389_fpls_2020_573126 crossref_primary_10_1016_j_agwat_2021_106800 crossref_primary_10_1016_j_catena_2022_106149 crossref_primary_10_1080_24749508_2018_1525669 crossref_primary_10_1016_j_catena_2023_107511 crossref_primary_10_1371_journal_pone_0134244 crossref_primary_10_3390_land13050687 crossref_primary_10_3390_f12020218 crossref_primary_10_1016_j_jenvman_2024_122517 crossref_primary_10_1002_ldr_5288 crossref_primary_10_3390_w13243647 crossref_primary_10_1093_jpe_rtaa032 crossref_primary_10_1002_ldr_5282 crossref_primary_10_1002_ldr_5283 crossref_primary_10_3389_fenvs_2021_649346 crossref_primary_10_1186_s12889_021_10407_6 crossref_primary_10_1016_j_scitotenv_2022_155952 crossref_primary_10_1016_j_jenvman_2024_123633 crossref_primary_10_3390_rs13091674 crossref_primary_10_1016_j_palaeo_2016_12_030 crossref_primary_10_1007_s12517_018_3805_y crossref_primary_10_1007_s11430_020_9757_1 crossref_primary_10_1177_03091333231189350 crossref_primary_10_1002_ldr_5031 crossref_primary_10_1016_j_ese_2024_100496 crossref_primary_10_3390_su8010009 crossref_primary_10_1016_j_iswcr_2020_03_001 crossref_primary_10_3390_atmos14020323 crossref_primary_10_3390_w12041119 crossref_primary_10_1016_j_ejsobi_2024_103660 crossref_primary_10_2139_ssrn_4153297 crossref_primary_10_1002_hyp_13702 crossref_primary_10_5194_se_6_765_2015 crossref_primary_10_1016_j_catena_2024_107848 crossref_primary_10_1016_j_geoderma_2019_113937 crossref_primary_10_1016_j_scitotenv_2018_07_161 crossref_primary_10_1061__ASCE_HE_1943_5584_0001077 crossref_primary_10_1016_j_geomorph_2020_107559 crossref_primary_10_3390_w12113201 crossref_primary_10_1016_j_agee_2015_05_002 crossref_primary_10_1016_j_geoderma_2021_115120 crossref_primary_10_1002_ldr_4167 crossref_primary_10_1007_s10967_019_06744_x crossref_primary_10_1016_j_socscimed_2023_116186 crossref_primary_10_7717_peerj_1220 crossref_primary_10_1016_j_catena_2018_10_023 crossref_primary_10_5194_se_6_323_2015 crossref_primary_10_1016_j_envsci_2018_09_021 crossref_primary_10_1016_j_ecolind_2019_04_082 crossref_primary_10_1155_2020_8850681 crossref_primary_10_3390_rs13173345 crossref_primary_10_3390_ijerph13080835 crossref_primary_10_1080_20964129_2019_1709560 crossref_primary_10_1007_s00382_023_06999_x crossref_primary_10_1016_j_foreco_2018_01_041 crossref_primary_10_1016_j_geomorph_2015_10_010 crossref_primary_10_3390_w8100458 crossref_primary_10_5194_se_6_1025_2015 crossref_primary_10_1002_ldr_3061 crossref_primary_10_1016_j_envdev_2019_100493 crossref_primary_10_3390_rs16040714 crossref_primary_10_1007_s00704_016_1763_4 crossref_primary_10_1016_j_still_2015_01_007 crossref_primary_10_21523_gcj3_17010103 crossref_primary_10_1016_j_geosus_2024_01_006 crossref_primary_10_1016_j_jenvman_2025_124371 crossref_primary_10_1071_SR15068 crossref_primary_10_1111_sum_12307 crossref_primary_10_2166_wst_2020_004 crossref_primary_10_1016_j_envres_2023_116744 crossref_primary_10_1016_j_scitotenv_2018_10_206 crossref_primary_10_1016_j_scitotenv_2019_135102 crossref_primary_10_1016_j_geoderma_2022_115717 crossref_primary_10_1016_j_jhydrol_2018_05_006 crossref_primary_10_1016_j_scitotenv_2014_03_105 crossref_primary_10_1002_ldr_3049 crossref_primary_10_3390_f14091753 crossref_primary_10_1016_j_catena_2022_106431 crossref_primary_10_1016_j_ijsrc_2018_03_003 crossref_primary_10_1007_s11769_025_1487_4 crossref_primary_10_1007_s10661_020_08670_y crossref_primary_10_1016_j_catena_2022_106659 crossref_primary_10_1007_s11368_018_2032_1 crossref_primary_10_1016_j_rse_2019_111290 crossref_primary_10_1002_ldr_3274 crossref_primary_10_1016_j_scitotenv_2020_143676 crossref_primary_10_1007_s00267_016_0818_8 crossref_primary_10_1016_j_catena_2019_104220 crossref_primary_10_1016_j_catena_2022_106666 crossref_primary_10_1016_j_catena_2023_106944 crossref_primary_10_1016_j_ecolind_2024_112519 crossref_primary_10_3390_rs15020424 crossref_primary_10_1016_j_agwat_2025_109373 crossref_primary_10_3390_biology10121261 crossref_primary_10_1016_j_catena_2022_106406 crossref_primary_10_5194_soil_1_603_2015 crossref_primary_10_1016_j_apsoil_2024_105356 crossref_primary_10_1016_j_jhydrol_2021_126751 crossref_primary_10_1109_ACCESS_2020_3007786 crossref_primary_10_1177_0959683618788682 crossref_primary_10_1002_hyp_11629 crossref_primary_10_3390_rs16050785 crossref_primary_10_1016_j_still_2017_12_005 crossref_primary_10_1002_vzj2_20217 crossref_primary_10_1016_j_scitotenv_2022_159354 crossref_primary_10_1002_ldr_3028 crossref_primary_10_5194_se_6_945_2015 crossref_primary_10_1016_j_jenvman_2023_120004 crossref_primary_10_3389_feart_2021_806921 crossref_primary_10_3390_w17010088 crossref_primary_10_1016_j_jclepro_2019_117606 crossref_primary_10_1029_2022JD036738 crossref_primary_10_3389_fenvs_2024_1410918 crossref_primary_10_1016_j_still_2022_105597 crossref_primary_10_51699_ijbea_v3i3_74 crossref_primary_10_1016_j_geoderma_2017_09_024 crossref_primary_10_1016_j_envdev_2024_101099 crossref_primary_10_1007_s13762_023_05387_6 crossref_primary_10_1016_j_catena_2022_106246 crossref_primary_10_1186_s40068_020_00177_2 crossref_primary_10_1016_j_geomorph_2016_04_017 crossref_primary_10_3389_fenvs_2023_1134917 crossref_primary_10_3390_ijgi10100693 crossref_primary_10_1016_j_jclepro_2020_125534 crossref_primary_10_3390_rs14092282 crossref_primary_10_1016_j_enggeo_2020_105516 crossref_primary_10_1016_j_catena_2019_104293 crossref_primary_10_7717_peerj_18411 crossref_primary_10_1002_ldr_2394 crossref_primary_10_1146_annurev_earth_063016_020552 crossref_primary_10_1002_ldr_2397 crossref_primary_10_1002_ldr_2398 crossref_primary_10_1002_ldr_2399 crossref_primary_10_1007_s11356_023_31204_1 crossref_primary_10_1007_s00477_017_1478_9 crossref_primary_10_1016_j_regsus_2022_11_005 crossref_primary_10_1002_ldr_2390 crossref_primary_10_3390_hydrology2040176 crossref_primary_10_3389_feart_2021_771316 crossref_primary_10_1016_j_catena_2015_01_020 crossref_primary_10_1016_j_landusepol_2017_03_003 crossref_primary_10_1071_SR15092 crossref_primary_10_3390_land11050712 crossref_primary_10_1016_j_agee_2020_107112 crossref_primary_10_3389_fpls_2021_580825 crossref_primary_10_1016_j_scitotenv_2019_134261 crossref_primary_10_1002_ldr_2384 crossref_primary_10_3390_ijerph19042372 crossref_primary_10_1002_ldr_2387 crossref_primary_10_1002_ldr_2388 crossref_primary_10_1002_ldr_2389 crossref_primary_10_3390_w11010020 crossref_primary_10_15302_J_FASE_2023502 crossref_primary_10_1016_j_geoderma_2018_03_037 crossref_primary_10_1016_j_earscirev_2024_104852 crossref_primary_10_1016_j_still_2019_104492 crossref_primary_10_1016_j_catena_2017_04_008 crossref_primary_10_1016_j_ecolind_2023_111172 crossref_primary_10_1007_s11053_021_09841_5 crossref_primary_10_1016_j_scitotenv_2018_06_061 crossref_primary_10_5194_soil_6_337_2020 crossref_primary_10_1002_ldr_2373 crossref_primary_10_1002_ldr_2375 crossref_primary_10_1002_ldr_4552 crossref_primary_10_1002_ldr_3223 crossref_primary_10_1002_ldr_4313 crossref_primary_10_1002_ldr_2378 crossref_primary_10_1007_s11676_019_00879_z crossref_primary_10_1007_s11707_018_0732_x crossref_primary_10_1016_j_geomorph_2020_107043 crossref_primary_10_1016_j_jhydrol_2021_126714 crossref_primary_10_1002_ldr_2371 crossref_primary_10_1016_j_still_2025_106481 crossref_primary_10_1007_s11368_019_02437_w crossref_primary_10_1016_j_still_2015_03_010 crossref_primary_10_1016_j_geoderma_2020_114695 crossref_primary_10_3390_rs15030657 crossref_primary_10_1016_j_jhydrol_2017_09_010 crossref_primary_10_5194_se_6_857_2015 crossref_primary_10_1002_ldr_2361 crossref_primary_10_3390_ijerph20042839 crossref_primary_10_4000_geomorphologie_11865 crossref_primary_10_1002_ldr_3451 crossref_primary_10_1002_ldr_2363 crossref_primary_10_1016_j_fcr_2022_108558 crossref_primary_10_1007_s11053_019_09566_6 crossref_primary_10_1002_hyp_14261 crossref_primary_10_1016_j_catena_2022_106602 crossref_primary_10_3390_su10124589 crossref_primary_10_1016_j_catena_2025_108864 crossref_primary_10_1002_ldr_2360 crossref_primary_10_1016_j_catena_2021_105235 crossref_primary_10_1016_j_iswcr_2016_08_004 crossref_primary_10_1016_j_jhydrol_2022_128804 crossref_primary_10_1007_s12524_024_02007_9 crossref_primary_10_3390_w11122435 crossref_primary_10_1002_ldr_2359 crossref_primary_10_1007_s10661_018_6580_z crossref_primary_10_1016_j_agee_2020_107168 crossref_primary_10_1002_ldr_2350 crossref_primary_10_1002_ldr_2351 crossref_primary_10_1007_s10342_019_01177_3 crossref_primary_10_3389_fpls_2017_01465 crossref_primary_10_1002_ldr_2355 crossref_primary_10_1016_j_still_2022_105328 crossref_primary_10_1002_ldr_2356 crossref_primary_10_1002_ldr_2357 crossref_primary_10_1016_j_earscirev_2017_05_005 crossref_primary_10_3390_w14091344 crossref_primary_10_1002_ldr_3680 crossref_primary_10_5194_se_6_445_2015 crossref_primary_10_1002_ldr_2347 crossref_primary_10_1002_ldr_2348 crossref_primary_10_1002_ldr_2349 crossref_primary_10_1016_j_scitotenv_2022_154483 crossref_primary_10_1016_j_jhydrol_2025_132923 crossref_primary_10_1016_j_agwat_2021_107451 crossref_primary_10_1155_2020_1868792 crossref_primary_10_3390_su15031939 crossref_primary_10_1016_j_catena_2024_108365 crossref_primary_10_3390_rs15194704 crossref_primary_10_1007_s11676_020_01273_w crossref_primary_10_1016_j_iswcr_2021_08_001 crossref_primary_10_3390_su11102870 crossref_primary_10_1007_s12583_024_1970_3 crossref_primary_10_1016_j_ecolind_2024_112362 crossref_primary_10_3389_fpls_2017_00103 crossref_primary_10_2136_sssaj2015_05_0171 crossref_primary_10_1002_esp_5924 crossref_primary_10_1515_geo_2022_0505 crossref_primary_10_1002_ldr_2331 crossref_primary_10_1002_ldr_2332 crossref_primary_10_1002_ldr_2334 crossref_primary_10_1002_ldr_4513 crossref_primary_10_1016_j_ecoser_2021_101348 crossref_primary_10_1016_j_jhydrol_2024_130671 crossref_primary_10_1016_j_agrformet_2017_08_005 crossref_primary_10_5194_se_6_929_2015 crossref_primary_10_1016_j_landusepol_2020_105038 crossref_primary_10_1016_j_ecoleng_2025_107513 crossref_primary_10_1002_ldr_2326 crossref_primary_10_1002_ldr_3657 crossref_primary_10_5194_se_5_585_2014 crossref_primary_10_1002_ldr_2328 crossref_primary_10_1029_2023WR036888 crossref_primary_10_3390_f15111918 crossref_primary_10_3390_land13030344 crossref_primary_10_1002_ldr_2324 crossref_primary_10_1016_j_catena_2024_108146 crossref_primary_10_1016_j_fecs_2025_100321 crossref_primary_10_1017_qua_2017_10 crossref_primary_10_1016_j_ecolind_2021_107375 crossref_primary_10_1002_ldr_3404 crossref_primary_10_1002_ldr_2316 crossref_primary_10_1016_j_agee_2014_09_013 crossref_primary_10_1016_j_scitotenv_2020_140726 crossref_primary_10_1002_ldr_2319 crossref_primary_10_3390_land13030360 crossref_primary_10_1016_j_ecolind_2022_109619 crossref_primary_10_1016_j_jaridenv_2017_12_002 crossref_primary_10_1002_aocs_12482 crossref_primary_10_1016_j_jhydrol_2021_126535 crossref_primary_10_1016_j_ecolind_2021_108493 crossref_primary_10_1016_j_scitotenv_2021_145010 crossref_primary_10_3390_rs13214380 crossref_primary_10_3390_w12010082 crossref_primary_10_1002_ldr_2306 crossref_primary_10_1002_ldr_2548 crossref_primary_10_5194_se_6_799_2015 crossref_primary_10_1002_ldr_2307 crossref_primary_10_1007_s11368_014_0956_7 crossref_primary_10_1002_ldr_2308 crossref_primary_10_5194_se_6_1195_2015 crossref_primary_10_5194_se_5_851_2014 crossref_primary_10_1016_j_geoderma_2020_114634 crossref_primary_10_1016_j_habitatint_2018_01_002 crossref_primary_10_1007_s12145_018_0338_6 crossref_primary_10_5194_se_6_985_2015 crossref_primary_10_5194_se_7_167_2016 crossref_primary_10_1016_j_landusepol_2018_08_015 crossref_primary_10_1016_j_catena_2022_106846 crossref_primary_10_3390_land8120180 crossref_primary_10_1002_ldr_2534 crossref_primary_10_1016_j_palaeo_2023_111958 crossref_primary_10_3390_polym14224837 crossref_primary_10_1088_1755_1315_1171_1_012067 crossref_primary_10_3390_app14167421 crossref_primary_10_5194_hess_21_6485_2017 crossref_primary_10_3390_rs13122358 crossref_primary_10_5194_se_6_515_2015 crossref_primary_10_1016_j_landusepol_2023_106810 crossref_primary_10_1007_s11200_018_0803_1 crossref_primary_10_1016_j_envres_2017_11_009 crossref_primary_10_1016_j_iswcr_2021_06_008 crossref_primary_10_1029_2022EF003472 crossref_primary_10_17475_kastorman_1394951 crossref_primary_10_1016_j_geoderma_2019_02_003 crossref_primary_10_3389_fenvs_2023_1136989 crossref_primary_10_3390_land11122228 crossref_primary_10_1016_j_jhydrol_2019_04_040 crossref_primary_10_1016_j_catena_2023_107498 crossref_primary_10_1016_j_jhydrol_2017_07_006 crossref_primary_10_3390_land12081485 crossref_primary_10_1007_s11442_022_1948_y crossref_primary_10_1016_j_ecolind_2025_113221 crossref_primary_10_1038_s41598_022_12006_w crossref_primary_10_1016_j_chemosphere_2023_139464 crossref_primary_10_1016_j_scitotenv_2022_155625 crossref_primary_10_1126_sciadv_abc0276 crossref_primary_10_1007_s11368_021_03018_6 crossref_primary_10_3390_rs11202429 crossref_primary_10_2134_agronj2018_06_0405 crossref_primary_10_1002_hyp_70009 crossref_primary_10_1016_j_jhydrol_2017_07_017 crossref_primary_10_1016_j_jhydrol_2018_10_047 crossref_primary_10_1016_j_geoderma_2019_03_042 crossref_primary_10_1002_ece3_6271 crossref_primary_10_1016_j_still_2015_05_004 crossref_primary_10_1017_S1755691018000531 crossref_primary_10_1016_j_scitotenv_2022_153674 crossref_primary_10_1002_ldr_2503 crossref_primary_10_1002_ldr_3836 crossref_primary_10_1029_2018JB016117 crossref_primary_10_5194_soil_8_349_2022 crossref_primary_10_1016_j_catena_2023_107473 crossref_primary_10_1007_s42729_021_00744_1 crossref_primary_10_1016_j_still_2018_03_001 crossref_primary_10_1071_SR21183 crossref_primary_10_1016_j_scitotenv_2020_139852 crossref_primary_10_1002_hyp_13478 crossref_primary_10_1016_j_jclepro_2020_123091 crossref_primary_10_1016_j_jngse_2017_07_003 crossref_primary_10_1016_j_iswcr_2020_12_002 crossref_primary_10_1016_j_scitotenv_2019_01_022 crossref_primary_10_1016_j_ecoinf_2020_101204 crossref_primary_10_1016_j_palaeo_2024_112626 crossref_primary_10_1016_j_ejrh_2022_100992 crossref_primary_10_1016_j_scitotenv_2019_01_028 crossref_primary_10_2134_agronj2016_10_0579 crossref_primary_10_1088_1755_1315_476_1_012111 crossref_primary_10_1016_j_catena_2021_105302 crossref_primary_10_3390_ijerph14101285 crossref_primary_10_32604_jrm_2023_025436 crossref_primary_10_1016_j_geomorph_2021_107935 crossref_primary_10_3390_ijerph192417059 crossref_primary_10_1002_ldr_3814 crossref_primary_10_1007_s11629_018_5305_7 crossref_primary_10_1016_j_scitotenv_2021_145514 crossref_primary_10_1002_ldr_2969 crossref_primary_10_3390_w15112081 crossref_primary_10_1016_j_geoderma_2024_116837 crossref_primary_10_1016_j_landusepol_2022_106369 crossref_primary_10_3390_su151712992 crossref_primary_10_1002_hyp_10382 crossref_primary_10_1016_j_jhydrol_2023_129936 crossref_primary_10_1016_j_ecolind_2021_108188 crossref_primary_10_1002_esp_4531 crossref_primary_10_1080_03650340_2021_1994952 crossref_primary_10_1139_cjss_2022_0061 crossref_primary_10_3390_w13040538 crossref_primary_10_1016_j_scitotenv_2019_02_246 crossref_primary_10_1080_17480930_2016_1188253 crossref_primary_10_1007_s11368_019_02353_z crossref_primary_10_1007_s40333_020_0009_6 crossref_primary_10_1016_j_ecolind_2024_111817 crossref_primary_10_3390_f12040510 crossref_primary_10_1016_j_agwat_2021_107404 crossref_primary_10_1016_j_ecolind_2024_111814 crossref_primary_10_3390_w6103012 crossref_primary_10_1016_j_scitotenv_2019_02_009 crossref_primary_10_3390_rs14215521 crossref_primary_10_1016_j_ecolind_2020_106985 crossref_primary_10_3390_f13030396 crossref_primary_10_1007_s42729_019_00046_7 crossref_primary_10_1007_s11069_024_06540_1 crossref_primary_10_1016_j_catena_2021_105734 crossref_primary_10_1016_j_scitotenv_2015_12_076 crossref_primary_10_3390_rs16234478 crossref_primary_10_3390_rs15030803 crossref_primary_10_1016_j_jrmge_2024_05_012 crossref_primary_10_1016_j_landusepol_2025_107541 crossref_primary_10_3390_w15112058 crossref_primary_10_2166_nh_2020_069 crossref_primary_10_1016_j_catena_2018_02_011 crossref_primary_10_1016_j_scitotenv_2023_169008 crossref_primary_10_1016_S2095_3119_16_61587_3 crossref_primary_10_1002_hyp_11432 crossref_primary_10_1016_j_jhydrol_2024_131099 crossref_primary_10_1016_j_habitatint_2024_103018 crossref_primary_10_1016_j_jhydrol_2020_125535 crossref_primary_10_1016_j_jhydrol_2023_129978 crossref_primary_10_5194_bg_13_4735_2016 crossref_primary_10_1175_JHM_D_21_0158_1 crossref_primary_10_1016_j_jenvman_2024_123940 crossref_primary_10_1002_hyp_14714 crossref_primary_10_1080_03650340_2020_1800641 crossref_primary_10_1016_j_ijsrc_2020_06_005 crossref_primary_10_54691_fsd_v3i11_5725 crossref_primary_10_1016_j_catena_2018_02_008 crossref_primary_10_3389_fevo_2023_1157981 crossref_primary_10_1016_j_catena_2016_02_010 crossref_primary_10_1016_j_scitotenv_2022_161015 crossref_primary_10_5194_se_6_311_2015 crossref_primary_10_1016_j_jhydrol_2020_125786 crossref_primary_10_1007_s00477_015_1058_9 crossref_primary_10_1016_j_scitotenv_2024_170515 crossref_primary_10_1016_j_catena_2020_104798 crossref_primary_10_1016_j_ecoleng_2018_11_018 crossref_primary_10_1016_j_ecoleng_2018_11_014 crossref_primary_10_1016_j_catena_2021_105925 crossref_primary_10_1016_j_still_2015_07_015 crossref_primary_10_3390_su12030934 crossref_primary_10_3390_w12051237 crossref_primary_10_1002_hyp_13634 crossref_primary_10_1007_s11707_019_0782_8 crossref_primary_10_3390_w13030303 crossref_primary_10_1016_j_catena_2018_05_009 crossref_primary_10_1007_s12665_018_7593_1 crossref_primary_10_1016_j_jhydrol_2014_07_014 crossref_primary_10_3390_rs15020380 crossref_primary_10_1002_joc_5416 crossref_primary_10_1016_j_palaeo_2025_112768 crossref_primary_10_3389_feart_2022_922013 crossref_primary_10_1016_j_scitotenv_2019_07_362 crossref_primary_10_1007_s11442_015_1179_6 crossref_primary_10_1007_s12517_021_06580_y crossref_primary_10_1016_j_actao_2021_103744 crossref_primary_10_1016_j_geomorph_2015_04_020 crossref_primary_10_1016_j_ecolind_2021_107940 crossref_primary_10_1016_j_soildyn_2024_109205 crossref_primary_10_3390_ijerph16030491 crossref_primary_10_1016_j_geogeo_2021_100021 crossref_primary_10_1111_rec_13169 crossref_primary_10_3390_rs16183491 crossref_primary_10_1007_s11356_017_8371_4 crossref_primary_10_3390_su8070609 crossref_primary_10_1029_2019JG005198 crossref_primary_10_1016_j_scitotenv_2016_10_124 crossref_primary_10_1080_11263504_2017_1376721 crossref_primary_10_1016_j_envres_2023_118040 crossref_primary_10_1016_j_ecolind_2020_106558 crossref_primary_10_2478_johh_2020_0042 crossref_primary_10_1016_j_ejrh_2023_101485 crossref_primary_10_1007_s40333_016_0048_1 crossref_primary_10_1016_j_catena_2016_01_011 crossref_primary_10_1016_j_ijsrc_2020_07_008 crossref_primary_10_13047_KJEE_2020_34_5_413 crossref_primary_10_1016_j_landusepol_2019_05_014 crossref_primary_10_1016_j_jaridenv_2019_05_002 crossref_primary_10_1002_hyp_13834 crossref_primary_10_3390_su141912902 crossref_primary_10_5194_esd_13_795_2022 crossref_primary_10_1007_s40333_019_0031_8 crossref_primary_10_1016_j_ecolecon_2023_108103 crossref_primary_10_3390_w11051054 crossref_primary_10_1007_s11442_024_2233_z crossref_primary_10_1016_j_gecco_2021_e01989 crossref_primary_10_1007_s10967_022_08675_6 crossref_primary_10_1038_s41598_017_02565_8 crossref_primary_10_1007_s11270_018_4052_2 crossref_primary_10_1016_j_jhydrol_2020_125727 crossref_primary_10_1029_2018JD029036 crossref_primary_10_3390_w15030574 crossref_primary_10_1002_esp_4361 crossref_primary_10_1016_j_agwat_2020_106434 crossref_primary_10_1016_j_ijsrc_2018_10_013 crossref_primary_10_1002_ldr_4031 |
Cites_doi | 10.1016/S0169-555X(01)00118-0 10.1002/hyp.9504 10.1002/clen.201000319 10.1007/s11430-007-0137-2 10.1016/j.catena.2005.03.007 10.1002/ldr.1128 10.1029/2003WR002763 10.1016/j.catena.2010.07.006 10.1016/j.envsci.2006.08.003 10.1177/0309133307081290 10.1002/ldr.1156 10.1016/S0306-9192(97)00011-0 10.1016/S0921-8181(03)00020-1 10.1016/j.actao.2005.07.003 10.1002/ldr.2216 10.1016/j.catena.2009.05.001 10.1016/j.margeo.2004.06.009 10.1016/j.envsci.2003.12.002 10.1016/j.agrformet.2005.05.005 10.1371/journal.pone.0031782 10.1002/ldr.2183 10.1111/j.1526-100X.2007.00235.x 10.1016/S0160-4120(02)00192-7 10.1007/s12665-012-1766-0 10.1086/629175 10.1126/science.1111773 10.1016/j.gloplacha.2007.01.003 10.1007/s10668-005-1262-8 10.1016/j.catena.2010.08.006 10.1002/ldr.2199 10.1177/095968369400400311 10.1659/0276-4741(2004)024[0342:SEDOTC]2.0.CO;2 10.1007/s10113-010-0127-3 10.1111/j.1365-2664.2008.01605.x 10.1007/BF02837376 10.1029/98WR01659 10.1023/A:1022902914221 10.1016/S0921-8181(00)00037-0 10.1016/j.geomorph.2011.07.032 10.1002/ldr.1071 10.1002/ldr.2164 10.4141/S97-060 10.1029/2007WR006711 10.1016/j.palaeo.2006.04.009 10.1890/09-0229.1 10.1073/pnas.0611508104 10.1002/ldr.663 10.1002/(SICI)1099-145X(199703)8:1<1::AID-LDR240>3.0.CO;2-X 10.1016/j.catena.2005.06.001 10.1007/s10113-005-0004-7 10.1016/j.ecocom.2011.07.003 10.1007/s00267-004-3094-y 10.1002/ldr.1050 |
ContentType | Journal Article |
Copyright | Copyright © 2013 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
DOI | 10.1002/ldr.2246 |
DatabaseName | Istex CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1099-145X |
EndPage | 510 |
ExternalDocumentID | 3095056621 10_1002_ldr_2246 LDR2246 ark_67375_WNG_JQL9M40W_C |
Genre | article |
GrantInformation_xml | – fundername: Key Project of the National Science and Technology Ministry funderid: No. 2012BAB02B05 – fundername: Key Research Program of the Chinese Academy of Sciences funderid: No. KZZD‐EW‐04 – fundername: National Natural Sciences Foundation of China funderid: Nos.: 41201266, 41271295 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABOGM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AGHSJ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS ECGQY EDH EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XPP XV2 Y6R ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 KR7 SOI |
ID | FETCH-LOGICAL-a4206-8ec7390e6711b493ef6df83b4c5fec2e95816afcc2d96abe63e90074377859c3 |
IEDL.DBID | DR2 |
ISSN | 1085-3278 |
IngestDate | Fri Jul 25 12:24:59 EDT 2025 Tue Jul 01 00:36:40 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Wed Jan 22 16:34:37 EST 2025 Wed Oct 30 09:56:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4206-8ec7390e6711b493ef6df83b4c5fec2e95816afcc2d96abe63e90074377859c3 |
Notes | istex:B6E61F83A83E99EA94052C143CA40EF8070918B3 ArticleID:LDR2246 Key Research Program of the Chinese Academy of Sciences - No. KZZD-EW-04 National Natural Sciences Foundation of China - No. Nos.: 41201266, 41271295 Key Project of the National Science and Technology Ministry - No. 2012BAB02B05 ark:/67375/WNG-JQL9M40W-C ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1440883086 |
PQPubID | 1016359 |
PageCount | 12 |
ParticipantIDs | proquest_journals_1440883086 crossref_citationtrail_10_1002_ldr_2246 crossref_primary_10_1002_ldr_2246 wiley_primary_10_1002_ldr_2246_LDR2246 istex_primary_ark_67375_WNG_JQL9M40W_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09 September/October 2013 2013-09-00 20130901 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Land degradation & development |
PublicationTitleAlternate | Land Degrad. Develop |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Cao WH, Hu HH, Ji ZW. 2007. Study on relative stability of check dam system. Journal of Hydraulic Engineering 38: 606-610 (In Chinese with English abstract). He XB, Tang KL, Zhang XB. 2004. Soil erosion dynamics on the Chinese Loess Plateau in the last 10,000 years. Mountain Research and Development 24: 342-347. Zhang XB, Walling DE, Quine TA, Wen AB. 1997. Use of reservoir deposits and caesium-137 measurements to investigate the erosional response of a small drainage basin in the rolling Loess Plateau Region of China. Land Degradation & Development 8: 1-16. Ren ME, Zhu XM. 1994. Anthropogenic influences on changes in the sediment load of the Yellow River, China, during the Holocene. The Holocene 4: 314-320. Tang KL, Zhang P, Wang B. 1991. Soil erosion and eco-environment changes in Quaternary. Quaternary Research 4: 49-56 (In Chinese with English abstract). Liu DS. 1985. Loess and the environmental. Science Press: Beijing. 64-80 (In Chinese). Zhang XB, Walling DE, He XB, Long Y. 2009. Use of landslide-dammed lake deposits and pollen tracing techniques to investigate the erosional response of a small drainage basin in the Loess Plateau, China, to land use change during the late 16th century. Catena 79: 205-213. Wang D. 1991. History of climatic change and its predicting in middle of China. Meteorology Press: Beijing (In Chinese). Vanacker V, Govers G, Barros S, Poesen J, Deckers J. 2003. The effect of short-term socio-economic and demographic change on land use dynamics and its corresponding geomorphic response with relation to water erosion in a tropical mountainous catchment, Ecuador. Landscape Ecology 18: 1-15. Milliman JD, Qin YS, Ren ME, Saito Y. 1987. Man's influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example. Journal of Geology 95: 751-762. Wang HJ, Yang ZS, Saito Y, Liu JP, Sun XX, Wang Y. 2007. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): impacts of climate change and human activities. Global and Planetary Change 57: 331-354. Mu XM, Zhang XQ, Shao HB, Gao P, Wang F, Jiao JY, Zhu JL. 2012. Dynamic changes of sediment discharge and the influencing factors in the Yellow River, China, for the recent 90 years. Clean-Soil Air Water 40: 303-309. Pan XD, Li Y, Zhang XH, Shen GQ, Yue DJ. 2006. The fluvial process in the lower Yellow River after completion of Sanmenxia Reservoir. Yellow River Water Resources Press: Zhengzhou; 458 (In Chinese). Zhao GJ, Mu XM, Tian P, Wang F, Gao P. 2012. The variation trend of streamflow and sediment flux in the middle reaches of Yellow River over the past 60 years and the influencing factors. Resources Science 34: 1070-1078 (In Chinese). Yao WY, Xu JH, Ran DC. 2011. Assessment of changing trends in streamflow and sediment fluxes in the Yellow River basin. Yellow River Conservancy Press: Zhengzhou (In Chinese). He XB, Zhou J, Zhang XB, Tang KL. 2006. Soil erosion response to climatic change and human activity during the Quaternary on the Loess Plateau, China. Regional Environmental Change 6: 62-70. Liu DS, Ding ML. 2004. The Loess Plateau, origin of agriculture and water and soil conservation. Earthquake Press: Beijing, China (In Chinese). Cerdà A. 1999. Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions. Water Resources Research 35(1): 319-328. Zhou P, Wen AB, Zhang XB, He XB. 2013. Soil conservation and sustainable eco-environment in the Loess Plateau of China. Environmental Earth Sciences 68: 633-639. Zhao W. 1996. The Yellow River's sediment. Huanghe Water Conservancy Press: Zhengzhou (in Chinese). Lal R. 2003. Soil erosion and the global carbon budget. Environment International 29: 437-450. Lamb D, Erskine PD, Parrotta JA. 2005. Restoration of degraded tropical forest landscapes. Sciece 310: 1628-1632. Chen LD, Wei W, Fu BJ, Lu YH. 2007. Soil and water conservation on the Loess Plateau in China: review and perspective. Progress in Physical Geography 31: 389-403. König HJ, Zhen L, Helming K, Uthes S, Yang L, Cao X, Wiggering H. 2013. Assessing the impact of the sloping land conservation programme on rural sustainability in Guyuan, western China. Land Degradation & Development. DOI: 10.1002/ldr.2164 (In Press) Feng ZD, Tang LY, Wang HB, Ma YZ, Liu KB. 2006. Holocene vegetation variations and the associated environmental changes in the western part of the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 241: 440-456. Pimentel D. 2006. Soil erosion: a food and environmental threat. Environment, Development and Sustatinability 8: 119-137. Xu XZ, Zhang HW, Zhang OY. 2004. Development of check-dam systems in gullies on the Loess Plateau, China. Environmental Science & Policy 7: 79-86. Peng J, Chen SL, Dong P. 2010. Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta. Catena 83: 135-147. Gao XD, Wu PT, Zhao XN, Wang J, Shi Y. 2013. Effects of land use on soil moisture variation in a semi-arid catchment: implications for land and agricultural water management. Land Degradation & Development. DOI: 10.1002/ldr.1156 Wang L, Shao MA, Wang QJ, Gale WJ. 2006. Historical changes in the environment of the Chinese Loess Plateau. Environmental Science & Policy 9: 675-684. Ma YX, Huang HQ, Nanson GC, Li Y, Yao WY. 2012. Channel adjustments in response to the operation of large dams: the upper reach of the lower Yellow River. Geomorphology 147: 35-48. Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols MH, Nunes JP, Renschler CS, Souchere V, van Oost K. 2005. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61: 131-154. Tang KL. 2004. Soil and water conservation in China. Science Press: Beijing (In Chinese). Xu JH, Li XM, Zhang PD, Lin YP. 1998. Delimitation of coarse sediment and study on overlap of coarse sediment and sediment abundant areas in the middle Yellow River basin. Journal of Sediment Research 4: 36-46 (In Chinese). Zhao XN, Wu PT, Gao XD. 2013b. Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China. Land Degradation & Development. DOI: 10.1002/ldr.2199 Liu JP, Milliman JD, Gao S, Cheng P. 2004. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Marine Geology 209: 182-191. Wang TM, Wu JG, Kou XJ, Oliver C, Mou P, Ge JP. 2010. Ecologically asynchronous agricultural practice erodes sustainability of the Loess Plateau of China. Ecological Applications 20: 1126-1135. Walling DE, Fang D. 2003. Recent trends in the suspended sediment loads of the world's rivers. Global and Planetary Change 39: 111-126. Yang DW, Li C, Hu HP, Lei ZD, Yang SX, Kusuda T, Koike T, Musiake K. 2004. Analysis of water resources variability in the Yellow River of China during the last half century using historical data. Water Resources Research 40: w06502. DOI: 10.1029/2003WR002763 Cao SX, Chen L, Yu XX. 2009. Impact of China's grain for green project on the landscape of vulnerable arid and semi-arid agricultural regions: a case study in northern Shaanxi Province. Journal of Applied Ecology 46: 536-543. Montgomery DR. 2007. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America 104: 13268-13272. Valentin C, Poesen J, Li Y. 2005. Gully erosion: Impacts, factors and control. Catena 63: 132-153. Saito Y, Yang ZS, Hori K. 2001. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology 41: 219-231. NDRC, MWR, MA and SFA. National Development and Reform Commission, Ministry of Water Resources, Ministry of Agriculture and State Forestry Administration, People's Republic of China. 2010. Programming for Comprehensive Management of the Loess Plateau (2010-2030) 69: 8-10. Cerdà A. 1998. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science 78: 321-330. Fu BJ, Liu Y, Lu YH, He CS, Zeng Y, Wu BF. 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity 8: 284-293. Jiao JY, Tzanopoulos J, Xofis P, Bai WJ, Ma XH, Mitchley J. 2007. Can the study of natural vegetation succession assist in the control of soil erosion on abandoned croplands on the Loess Plateau, China? Restoration Ecology 15: 391-399. Wang YQ, Shao MA. 2013. Spatial variability of soil physical properties in a region of the Loess Plateau of PR China subject to wind and water erosion. Land Degradation & Development 24(3): 296-304. DOI: 10.1002/ldr.1128 Wang X, Chen FH, Dong Z, Xia D. 2005. Evolution of the southern Mu US desert in north China over the past 50 years: an analysis using proxies of human activity and climate parameters. Land Degradation & Development 16(4): 351-366. DOI: 10.1002/ldr.663 Fan X, Pedroli B, Liu G, Liu Q, Liu H, Shu L. 2012. Soil salinity development in the yellow river delta in relation to groundwater dynamics. Land Degradation & Development 23(2): 175-189. DOI: 10.1002/ldr.1071 Miao CY, Yang L, Chen XH, Gao Y. 2012. The vegetation cover dynamics (1982-2006) in different erosion regions of the Yellow River basin, China. Land Degradation & Development 23(1): 62-71. DOI: 10.1002/ldr.1050 Rozelle S, Huang JK, Zhang LX. 1997. Poverty, population and environmental degradation in China. Food Policy 22: 229-251. Cai QG. 2001. Soil erosion and management on the Loess Plateau. Journal of Geographical Sciences 11: 53-70. Kimura R, Fan J, Zhang XC, Takayama N, Kamichika M, Matsuoka N. 2006. Evapotranspiration over the grassland field in the Liudaogou Basin of the Loess Plateau, China. Acta Oecologica-International Journal of Ecology 29: 45-53. Zhu XM. 1989. Soil and agircuture on the Loess Plateau. Agricultural Press: Beijing, China (In Chinese). Zhang X 2007; 104 2009; 46 2005; 131 2013; 24 2013; 68 2004; 7 2004; 24 2005; 63 2011; 11 2003; 18 2005; 61 2007; 31 2001; 41 2007; 38 2004; 209 1997; 8 2010; 20 2010; 69 2000 2006; 29 1985 2006; 241 2001; 11 2012; 23 2005; 35 1989 1991; 4 2004; 40 1987; 95 2009; 64 1997; 22 2000; 26 2011 2005; 310 2006; 9 2006; 8 1996 2006; 6 2006 2003; 39 2004 2013b 2013a 1991 2012; 147 2008; 51 2012; 34 2011; 8 2007; 57 2007; 15 2010; 83 2009; 79 1999; 35 2009; 7 2003; 29 2008; 44 2013 2012; 7 2005; 16 1998; 4 1998; 78 1994; 4 2012; 40 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 Xu JH (e_1_2_7_57_1) 1998; 4 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 Cao WH (e_1_2_7_3_1) 2007; 38 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_28_1 Tang KL (e_1_2_7_39_1) 2004 Liu DS (e_1_2_7_22_1) 2004 NDRC (e_1_2_7_31_1) 2010; 69 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_6_1 e_1_2_7_4_1 Yao WY (e_1_2_7_60_1) 2011 Zhu XM (e_1_2_7_70_1) 1989 e_1_2_7_8_1 Wang F (e_1_2_7_49_1) 2009; 7 Liu DS (e_1_2_7_21_1) 1985 e_1_2_7_18_1 Zhao W (e_1_2_7_65_1) 1996 e_1_2_7_16_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 Wang D (e_1_2_7_44_1) 1991 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Tang KL (e_1_2_7_40_1) 1991; 4 Xu JX (e_1_2_7_56_1) 2009; 64 Pan XD (e_1_2_7_33_1) 2006 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 Xin ZB (e_1_2_7_53_1) 2008; 51 e_1_2_7_59_1 e_1_2_7_38_1 Lu ZD (e_1_2_7_24_1) 2000 Zhao GJ (e_1_2_7_66_1) 2012; 34 |
References_xml | – reference: Cao SX, Chen L, Yu XX. 2009. Impact of China's grain for green project on the landscape of vulnerable arid and semi-arid agricultural regions: a case study in northern Shaanxi Province. Journal of Applied Ecology 46: 536-543. – reference: Peng J, Chen SL, Dong P. 2010. Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta. Catena 83: 135-147. – reference: Xu JX. 2009. A study of sediment sink between Longmen and Sanmenxia on the Yellow River. Acta Geographica sinica 64(5): 515-530. – reference: Miao CY, Yang L, Chen XH, Gao Y. 2012. The vegetation cover dynamics (1982-2006) in different erosion regions of the Yellow River basin, China. Land Degradation & Development 23(1): 62-71. DOI: 10.1002/ldr.1050 – reference: Feng ZD, Tang LY, Wang HB, Ma YZ, Liu KB. 2006. Holocene vegetation variations and the associated environmental changes in the western part of the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 241: 440-456. – reference: Wang YQ, Shao MA. 2013. Spatial variability of soil physical properties in a region of the Loess Plateau of PR China subject to wind and water erosion. Land Degradation & Development 24(3): 296-304. DOI: 10.1002/ldr.1128 – reference: Wang N, Jiao JY, Lei D, Chen Y, Wang DL. 2013. Effect of rainfall erosion: seeding damage and establishment problems. Land Degradation & Development. DOI: 10.1002/ldr.2183 (In Press) – reference: Lamb D, Erskine PD, Parrotta JA. 2005. Restoration of degraded tropical forest landscapes. Sciece 310: 1628-1632. – reference: Wen ZM, Lees BG, Jiao F, Lei WN, Shi HJ. 2010. Stratified vegetation cover index: a new way to assess vegetation impact on soil erosion. Catena 83: 87-93. – reference: Xu JX. 2005. The water fluxes of the Yellow River to the sea in the past 50 years, in response to climate change and human activities. Environmental Management 35: 620-631. – reference: Lu ZD. 2000 Guild of western development of China. China Society Press: Beijing (in Chinese). – reference: Guo ZT, Petit-Maire N, Kropelin S. 2000. Holocene non-orbital climatic events in present-day arid areas of Northern Africa and China. Global and Planetary Change 26: 97-103. – reference: Xu XZ, Zhang HW, Zhang OY. 2004. Development of check-dam systems in gullies on the Loess Plateau, China. Environmental Science & Policy 7: 79-86. – reference: Kiernan K. 2013. Nature, severity and persistence of geomorphological damage caused by armed conflict. Land Degradation & Development. DOI: 10.1002/ldr.2216 – reference: Zhao W. 1996. The Yellow River's sediment. Huanghe Water Conservancy Press: Zhengzhou (in Chinese). – reference: Pimentel D. 2006. Soil erosion: a food and environmental threat. Environment, Development and Sustatinability 8: 119-137. – reference: Ma YX, Huang HQ, Nanson GC, Li Y, Yao WY. 2012. Channel adjustments in response to the operation of large dams: the upper reach of the lower Yellow River. Geomorphology 147: 35-48. – reference: Ren ME, Zhu XM. 1994. Anthropogenic influences on changes in the sediment load of the Yellow River, China, during the Holocene. The Holocene 4: 314-320. – reference: Lal R. 2003. Soil erosion and the global carbon budget. Environment International 29: 437-450. – reference: NDRC, MWR, MA and SFA. National Development and Reform Commission, Ministry of Water Resources, Ministry of Agriculture and State Forestry Administration, People's Republic of China. 2010. Programming for Comprehensive Management of the Loess Plateau (2010-2030) 69: 8-10. – reference: Jiao JY, Tzanopoulos J, Xofis P, Bai WJ, Ma XH, Mitchley J. 2007. Can the study of natural vegetation succession assist in the control of soil erosion on abandoned croplands on the Loess Plateau, China? Restoration Ecology 15: 391-399. – reference: Yang DW, Li C, Hu HP, Lei ZD, Yang SX, Kusuda T, Koike T, Musiake K. 2004. Analysis of water resources variability in the Yellow River of China during the last half century using historical data. Water Resources Research 40: w06502. DOI: 10.1029/2003WR002763 – reference: Tang KL. 2004. Soil and water conservation in China. Science Press: Beijing (In Chinese). – reference: Xin ZB, Xu JX, Zheng W. 2008. Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981-2006): Impacts of climate changes and human activities. Science in China Series D-Earth Sciences 51: 67-78. – reference: Lü YH, Fu BJ, Feng XM, Zeng Y, Liu Y, Chang RY, Sun G, Wu BF. 2012. A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China. Plos One 7(2): e31782. DOI: 10.1371/journal.pone.0031782 – reference: Zhou P, Wen AB, Zhang XB, He XB. 2013. Soil conservation and sustainable eco-environment in the Loess Plateau of China. Environmental Earth Sciences 68: 633-639. – reference: Wang F, Li R, Yang QK, Jiao JY. 2009. Policy development of soil and water conservation in the Loess Plateau. Science of Soil and Water Conservation 7: 103-107 (In Chinese with English abstract). – reference: Zhao XN, Wu PT, Gao XD. 2013b. Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China. Land Degradation & Development. DOI: 10.1002/ldr.2199 – reference: Gao XD, Wu PT, Zhao XN, Wang J, Shi Y. 2013. Effects of land use on soil moisture variation in a semi-arid catchment: implications for land and agricultural water management. Land Degradation & Development. DOI: 10.1002/ldr.1156 – reference: Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols MH, Nunes JP, Renschler CS, Souchere V, van Oost K. 2005. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61: 131-154. – reference: Zhang XP, Zhang L, Zhao J, Rustomji P, Hairsine P. 2008. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resources Research 44: W00A07. DOI: 10.1029/2007WR006711 – reference: Pan XD, Li Y, Zhang XH, Shen GQ, Yue DJ. 2006. The fluvial process in the lower Yellow River after completion of Sanmenxia Reservoir. Yellow River Water Resources Press: Zhengzhou; 458 (In Chinese). – reference: Valentin C, Poesen J, Li Y. 2005. Gully erosion: Impacts, factors and control. Catena 63: 132-153. – reference: Vanacker V, Govers G, Barros S, Poesen J, Deckers J. 2003. The effect of short-term socio-economic and demographic change on land use dynamics and its corresponding geomorphic response with relation to water erosion in a tropical mountainous catchment, Ecuador. Landscape Ecology 18: 1-15. – reference: König HJ, Zhen L, Helming K, Uthes S, Yang L, Cao X, Wiggering H. 2013. Assessing the impact of the sloping land conservation programme on rural sustainability in Guyuan, western China. Land Degradation & Development. DOI: 10.1002/ldr.2164 (In Press) – reference: Montgomery DR. 2007. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America 104: 13268-13272. – reference: Kimura R, Fan J, Zhang XC, Takayama N, Kamichika M, Matsuoka N. 2006. Evapotranspiration over the grassland field in the Liudaogou Basin of the Loess Plateau, China. Acta Oecologica-International Journal of Ecology 29: 45-53. – reference: Mu XM, Zhang XQ, Shao HB, Gao P, Wang F, Jiao JY, Zhu JL. 2012. Dynamic changes of sediment discharge and the influencing factors in the Yellow River, China, for the recent 90 years. Clean-Soil Air Water 40: 303-309. – reference: Cerdà A. 1998. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science 78: 321-330. – reference: Wang HJ, Yang ZS, Saito Y, Liu JP, Sun XX, Wang Y. 2007. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): impacts of climate change and human activities. Global and Planetary Change 57: 331-354. – reference: Wang D. 1991. History of climatic change and its predicting in middle of China. Meteorology Press: Beijing (In Chinese). – reference: Milliman JD, Qin YS, Ren ME, Saito Y. 1987. Man's influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example. Journal of Geology 95: 751-762. – reference: Zhao GJ, Mu XM, Tian P, Wang F, Gao P. 2012. The variation trend of streamflow and sediment flux in the middle reaches of Yellow River over the past 60 years and the influencing factors. Resources Science 34: 1070-1078 (In Chinese). – reference: Xu JH, Li XM, Zhang PD, Lin YP. 1998. Delimitation of coarse sediment and study on overlap of coarse sediment and sediment abundant areas in the middle Yellow River basin. Journal of Sediment Research 4: 36-46 (In Chinese). – reference: Zhang XB, Walling DE, Quine TA, Wen AB. 1997. Use of reservoir deposits and caesium-137 measurements to investigate the erosional response of a small drainage basin in the rolling Loess Plateau Region of China. Land Degradation & Development 8: 1-16. – reference: Fu BJ, Liu Y, Lu YH, He CS, Zeng Y, Wu BF. 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity 8: 284-293. – reference: Tang KL, Zhang P, Wang B. 1991. Soil erosion and eco-environment changes in Quaternary. Quaternary Research 4: 49-56 (In Chinese with English abstract). – reference: He XB, Zhou J, Zhang XB, Tang KL. 2006. Soil erosion response to climatic change and human activity during the Quaternary on the Loess Plateau, China. Regional Environmental Change 6: 62-70. – reference: Cerdà A. 1999. Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions. Water Resources Research 35(1): 319-328. – reference: Xin ZB, Yu XX, Li QY, Lu XX. 2011. Spatiotemporal variation in rainfall erosivity on the Chinese Loess Plateau during the period 1956-2008. Regional Environmental Change 11: 149-159. – reference: Cao WH, Hu HH, Ji ZW. 2007. Study on relative stability of check dam system. Journal of Hydraulic Engineering 38: 606-610 (In Chinese with English abstract). – reference: Fan X, Pedroli B, Liu G, Liu Q, Liu H, Shu L. 2012. Soil salinity development in the yellow river delta in relation to groundwater dynamics. Land Degradation & Development 23(2): 175-189. DOI: 10.1002/ldr.1071 – reference: Liu DS, Ding ML. 2004. The Loess Plateau, origin of agriculture and water and soil conservation. Earthquake Press: Beijing, China (In Chinese). – reference: Chen LD, Wei W, Fu BJ, Lu YH. 2007. Soil and water conservation on the Loess Plateau in China: review and perspective. Progress in Physical Geography 31: 389-403. – reference: Liu JP, Milliman JD, Gao S, Cheng P. 2004. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Marine Geology 209: 182-191. – reference: Saito Y, Yang ZS, Hori K. 2001. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology 41: 219-231. – reference: Cai QG. 2001. Soil erosion and management on the Loess Plateau. Journal of Geographical Sciences 11: 53-70. – reference: Walling DE, Fang D. 2003. Recent trends in the suspended sediment loads of the world's rivers. Global and Planetary Change 39: 111-126. – reference: Wang TM, Wu JG, Kou XJ, Oliver C, Mou P, Ge JP. 2010. Ecologically asynchronous agricultural practice erodes sustainability of the Loess Plateau of China. Ecological Applications 20: 1126-1135. – reference: Yao WY, Xu JH, Ran DC. 2011. Assessment of changing trends in streamflow and sediment fluxes in the Yellow River basin. Yellow River Conservancy Press: Zhengzhou (In Chinese). – reference: He XB, Tang KL, Zhang XB. 2004. Soil erosion dynamics on the Chinese Loess Plateau in the last 10,000 years. Mountain Research and Development 24: 342-347. – reference: Rozelle S, Huang JK, Zhang LX. 1997. Poverty, population and environmental degradation in China. Food Policy 22: 229-251. – reference: Wang L, Shao MA, Wang QJ, Gale WJ. 2006. Historical changes in the environment of the Chinese Loess Plateau. Environmental Science & Policy 9: 675-684. – reference: Zhang XB, Walling DE, He XB, Long Y. 2009. Use of landslide-dammed lake deposits and pollen tracing techniques to investigate the erosional response of a small drainage basin in the Loess Plateau, China, to land use change during the late 16th century. Catena 79: 205-213. – reference: Wang X, Chen FH, Dong Z, Xia D. 2005. Evolution of the southern Mu US desert in north China over the past 50 years: an analysis using proxies of human activity and climate parameters. Land Degradation & Development 16(4): 351-366. DOI: 10.1002/ldr.663 – reference: Zhao GJ, Mu XM, Tian P, Wang F, Gao P. 2013a. Climate changes and their impacts on water resources in semiarid regions: a case study of the Wei River basin, China. Hydrological Processes. DOI: 10.1002/hyp.9504 – reference: Liu DS. 1985. Loess and the environmental. Science Press: Beijing. 64-80 (In Chinese). – reference: Zhang XC, Liu WZ. 2005. Simulating potential response of hydrology, soil erosion, and crop productivity to climate change in Changwu tableland region on the Loess Plateau of China. Agricultural and Forest Meteorology 131: 127-142. – reference: Zhu XM. 1989. Soil and agircuture on the Loess Plateau. Agricultural Press: Beijing, China (In Chinese). – year: 2011 – volume: 209 start-page: 182 year: 2004 end-page: 191 article-title: Holocene development of the Yellow River's subaqueous delta, North Yellow Sea publication-title: Marine Geology – volume: 4 start-page: 314 year: 1994 end-page: 320 article-title: Anthropogenic influences on changes in the sediment load of the Yellow River, China, during the Holocene publication-title: The Holocene – volume: 68 start-page: 633 year: 2013 end-page: 639 article-title: Soil conservation and sustainable eco‐environment in the Loess Plateau of China publication-title: Environmental Earth Sciences – volume: 241 start-page: 440 year: 2006 end-page: 456 article-title: Holocene vegetation variations and the associated environmental changes in the western part of the Chinese Loess Plateau publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology – volume: 40 year: 2004 article-title: Analysis of water resources variability in the Yellow River of China during the last half century using historical data publication-title: Water Resources Research – volume: 23 start-page: 62 issue: 1 year: 2012 end-page: 71 article-title: The vegetation cover dynamics (1982–2006) in different erosion regions of the Yellow River basin, China publication-title: Land Degradation & Development – volume: 69 start-page: 8 year: 2010 end-page: 10 article-title: National Development and Reform Commission, Ministry of Water Resources, Ministry of Agriculture and State Forestry Administration, People's Republic of China publication-title: Programming for Comprehensive Management of the Loess Plateau (2010–2030) – volume: 4 start-page: 49 year: 1991 end-page: 56 article-title: Soil erosion and eco‐environment changes in Quaternary publication-title: Quaternary Research – year: 2013 article-title: Effect of rainfall erosion: seeding damage and establishment problems publication-title: Land Degradation & Development – year: 1989 – volume: 29 start-page: 45 year: 2006 end-page: 53 article-title: Evapotranspiration over the grassland field in the Liudaogou Basin of the Loess Plateau, China publication-title: Acta Oecologica‐International Journal of Ecology – volume: 26 start-page: 97 year: 2000 end-page: 103 article-title: Holocene non‐orbital climatic events in present‐day arid areas of Northern Africa and China publication-title: Global and Planetary Change – volume: 39 start-page: 111 year: 2003 end-page: 126 article-title: Recent trends in the suspended sediment loads of the world's rivers publication-title: Global and Planetary Change – volume: 9 start-page: 675 year: 2006 end-page: 684 article-title: Historical changes in the environment of the Chinese Loess Plateau publication-title: Environmental Science & Policy – volume: 16 start-page: 351 issue: 4 year: 2005 end-page: 366 article-title: Evolution of the southern Mu US desert in north China over the past 50 years: an analysis using proxies of human activity and climate parameters publication-title: Land Degradation & Development – volume: 83 start-page: 87 year: 2010 end-page: 93 article-title: Stratified vegetation cover index: a new way to assess vegetation impact on soil erosion publication-title: Catena – volume: 104 start-page: 13268 year: 2007 end-page: 13272 article-title: Soil erosion and agricultural sustainability publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 83 start-page: 135 year: 2010 end-page: 147 article-title: Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta publication-title: Catena – volume: 8 start-page: 284 year: 2011 end-page: 293 article-title: Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China publication-title: Ecological Complexity – volume: 7 start-page: 103 year: 2009 end-page: 107 article-title: Policy development of soil and water conservation in the Loess Plateau publication-title: Science of Soil and Water Conservation – volume: 20 start-page: 1126 year: 2010 end-page: 1135 article-title: Ecologically asynchronous agricultural practice erodes sustainability of the Loess Plateau of China publication-title: Ecological Applications – volume: 310 start-page: 1628 year: 2005 end-page: 1632 article-title: Restoration of degraded tropical forest landscapes publication-title: Sciece – volume: 57 start-page: 331 year: 2007 end-page: 354 article-title: Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): impacts of climate change and human activities publication-title: Global and Planetary Change – volume: 46 start-page: 536 year: 2009 end-page: 543 article-title: Impact of China's grain for green project on the landscape of vulnerable arid and semi‐arid agricultural regions: a case study in northern Shaanxi Province publication-title: Journal of Applied Ecology – volume: 63 start-page: 132 year: 2005 end-page: 153 article-title: Gully erosion: Impacts, factors and control publication-title: Catena – year: 2013b article-title: Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China publication-title: Land Degradation & Development – volume: 35 start-page: 319 issue: 1 year: 1999 end-page: 328 article-title: Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions publication-title: Water Resources Research – volume: 51 start-page: 67 year: 2008 end-page: 78 article-title: Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981–2006): Impacts of climate changes and human activities publication-title: Science in China Series D‐Earth Sciences – volume: 78 start-page: 321 year: 1998 end-page: 330 article-title: The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain publication-title: Canadian Journal of Soil Science – year: 2004 – volume: 44 year: 2008 article-title: Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China publication-title: Water Resources Research – volume: 23 start-page: 175 issue: 2 year: 2012 end-page: 189 article-title: Soil salinity development in the yellow river delta in relation to groundwater dynamics publication-title: Land Degradation & Development – start-page: 64 year: 1985 end-page: 80 – volume: 8 start-page: 119 year: 2006 end-page: 137 article-title: Soil erosion: a food and environmental threat publication-title: Environment, Development and Sustatinability – volume: 24 start-page: 296 issue: 3 year: 2013 end-page: 304 article-title: Spatial variability of soil physical properties in a region of the Loess Plateau of PR China subject to wind and water erosion publication-title: Land Degradation & Development – volume: 61 start-page: 131 year: 2005 end-page: 154 article-title: Modeling response of soil erosion and runoff to changes in precipitation and cover publication-title: Catena – volume: 8 start-page: 1 year: 1997 end-page: 16 article-title: Use of reservoir deposits and caesium‐137 measurements to investigate the erosional response of a small drainage basin in the rolling Loess Plateau Region of China publication-title: Land Degradation & Development – year: 2013a article-title: Climate changes and their impacts on water resources in semiarid regions: a case study of the Wei River basin, China publication-title: Hydrological Processes – volume: 4 start-page: 36 year: 1998 end-page: 46 article-title: Delimitation of coarse sediment and study on overlap of coarse sediment and sediment abundant areas in the middle Yellow River basin publication-title: Journal of Sediment Research – volume: 79 start-page: 205 year: 2009 end-page: 213 article-title: Use of landslide‐dammed lake deposits and pollen tracing techniques to investigate the erosional response of a small drainage basin in the Loess Plateau, China, to land use change during the late 16th century publication-title: Catena – volume: 18 start-page: 1 year: 2003 end-page: 15 article-title: The effect of short‐term socio‐economic and demographic change on land use dynamics and its corresponding geomorphic response with relation to water erosion in a tropical mountainous catchment, Ecuador publication-title: Landscape Ecology – volume: 29 start-page: 437 year: 2003 end-page: 450 article-title: Soil erosion and the global carbon budget publication-title: Environment International – volume: 64 start-page: 515 issue: 5 year: 2009 end-page: 530 article-title: A study of sediment sink between Longmen and Sanmenxia on the Yellow River publication-title: Acta Geographica sinica – year: 2013 article-title: Effects of land use on soil moisture variation in a semi‐arid catchment: implications for land and agricultural water management publication-title: Land Degradation & Development – volume: 35 start-page: 620 year: 2005 end-page: 631 article-title: The water fluxes of the Yellow River to the sea in the past 50 years, in response to climate change and human activities publication-title: Environmental Management – volume: 24 start-page: 342 year: 2004 end-page: 347 article-title: Soil erosion dynamics on the Chinese Loess Plateau in the last 10,000 years publication-title: Mountain Research and Development – volume: 38 start-page: 606 year: 2007 end-page: 610 article-title: Study on relative stability of check dam system publication-title: Journal of Hydraulic Engineering – volume: 31 start-page: 389 year: 2007 end-page: 403 article-title: Soil and water conservation on the Loess Plateau in China: review and perspective publication-title: Progress in Physical Geography – year: 2000 – year: 1996 – volume: 95 start-page: 751 year: 1987 end-page: 762 article-title: Man's influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example publication-title: Journal of Geology – volume: 6 start-page: 62 year: 2006 end-page: 70 article-title: Soil erosion response to climatic change and human activity during the Quaternary on the Loess Plateau, China publication-title: Regional Environmental Change – volume: 147 start-page: 35 year: 2012 end-page: 48 article-title: Channel adjustments in response to the operation of large dams: the upper reach of the lower Yellow River publication-title: Geomorphology – volume: 7 issue: 2 year: 2012 article-title: A policy‐driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China publication-title: Plos One – year: 2013 article-title: Assessing the impact of the sloping land conservation programme on rural sustainability in Guyuan, western China publication-title: Land Degradation & Development – volume: 131 start-page: 127 year: 2005 end-page: 142 article-title: Simulating potential response of hydrology, soil erosion, and crop productivity to climate change in Changwu tableland region on the Loess Plateau of China publication-title: Agricultural and Forest Meteorology – start-page: 458 year: 2006 – volume: 40 start-page: 303 year: 2012 end-page: 309 article-title: Dynamic changes of sediment discharge and the influencing factors in the Yellow River, China, for the recent 90 years publication-title: Clean‐Soil Air Water – year: 2013 article-title: Nature, severity and persistence of geomorphological damage caused by armed conflict publication-title: Land Degradation & Development – volume: 15 start-page: 391 year: 2007 end-page: 399 article-title: Can the study of natural vegetation succession assist in the control of soil erosion on abandoned croplands on the Loess Plateau, China? publication-title: Restoration Ecology – volume: 34 start-page: 1070 year: 2012 end-page: 1078 article-title: The variation trend of streamflow and sediment flux in the middle reaches of Yellow River over the past 60 years and the influencing factors publication-title: Resources Science – year: 1991 – volume: 7 start-page: 79 year: 2004 end-page: 86 article-title: Development of check‐dam systems in gullies on the Loess Plateau, China publication-title: Environmental Science & Policy – volume: 11 start-page: 53 year: 2001 end-page: 70 article-title: Soil erosion and management on the Loess Plateau publication-title: Journal of Geographical Sciences – volume: 22 start-page: 229 year: 1997 end-page: 251 article-title: Poverty, population and environmental degradation in China publication-title: Food Policy – volume: 41 start-page: 219 year: 2001 end-page: 231 article-title: The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene publication-title: Geomorphology – volume: 11 start-page: 149 year: 2011 end-page: 159 article-title: Spatiotemporal variation in rainfall erosivity on the Chinese Loess Plateau during the period 1956–2008 publication-title: Regional Environmental Change – volume-title: Soil and water conservation in China year: 2004 ident: e_1_2_7_39_1 – ident: e_1_2_7_38_1 doi: 10.1016/S0169-555X(01)00118-0 – ident: e_1_2_7_67_1 doi: 10.1002/hyp.9504 – ident: e_1_2_7_30_1 doi: 10.1002/clen.201000319 – volume: 51 start-page: 67 year: 2008 ident: e_1_2_7_53_1 article-title: Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981–2006): Impacts of climate changes and human activities publication-title: Science in China Series D‐Earth Sciences doi: 10.1007/s11430-007-0137-2 – ident: e_1_2_7_32_1 doi: 10.1016/j.catena.2005.03.007 – ident: e_1_2_7_45_1 doi: 10.1002/ldr.1128 – ident: e_1_2_7_59_1 doi: 10.1029/2003WR002763 – ident: e_1_2_7_52_1 doi: 10.1016/j.catena.2010.07.006 – ident: e_1_2_7_47_1 doi: 10.1016/j.envsci.2006.08.003 – ident: e_1_2_7_7_1 doi: 10.1177/0309133307081290 – ident: e_1_2_7_11_1 doi: 10.1002/ldr.1156 – ident: e_1_2_7_37_1 doi: 10.1016/S0306-9192(97)00011-0 – volume: 64 start-page: 515 issue: 5 year: 2009 ident: e_1_2_7_56_1 article-title: A study of sediment sink between Longmen and Sanmenxia on the Yellow River publication-title: Acta Geographica sinica – ident: e_1_2_7_43_1 doi: 10.1016/S0921-8181(03)00020-1 – ident: e_1_2_7_17_1 doi: 10.1016/j.actao.2005.07.003 – ident: e_1_2_7_16_1 doi: 10.1002/ldr.2216 – ident: e_1_2_7_64_1 doi: 10.1016/j.catena.2009.05.001 – ident: e_1_2_7_23_1 doi: 10.1016/j.margeo.2004.06.009 – ident: e_1_2_7_58_1 doi: 10.1016/j.envsci.2003.12.002 – ident: e_1_2_7_61_1 doi: 10.1016/j.agrformet.2005.05.005 – ident: e_1_2_7_25_1 doi: 10.1371/journal.pone.0031782 – ident: e_1_2_7_51_1 doi: 10.1002/ldr.2183 – ident: e_1_2_7_15_1 doi: 10.1111/j.1526-100X.2007.00235.x – ident: e_1_2_7_19_1 doi: 10.1016/S0160-4120(02)00192-7 – ident: e_1_2_7_69_1 doi: 10.1007/s12665-012-1766-0 – start-page: 64 volume-title: Loess and the environmental year: 1985 ident: e_1_2_7_21_1 – ident: e_1_2_7_28_1 doi: 10.1086/629175 – ident: e_1_2_7_20_1 doi: 10.1126/science.1111773 – volume-title: History of climatic change and its predicting in middle of China year: 1991 ident: e_1_2_7_44_1 – ident: e_1_2_7_48_1 doi: 10.1016/j.gloplacha.2007.01.003 – ident: e_1_2_7_35_1 doi: 10.1007/s10668-005-1262-8 – volume-title: The Yellow River's sediment year: 1996 ident: e_1_2_7_65_1 – volume-title: Guild of western development of China year: 2000 ident: e_1_2_7_24_1 – volume-title: Soil and agircuture on the Loess Plateau year: 1989 ident: e_1_2_7_70_1 – ident: e_1_2_7_34_1 doi: 10.1016/j.catena.2010.08.006 – volume-title: Assessment of changing trends in streamflow and sediment fluxes in the Yellow River basin year: 2011 ident: e_1_2_7_60_1 – ident: e_1_2_7_68_1 doi: 10.1002/ldr.2199 – ident: e_1_2_7_36_1 doi: 10.1177/095968369400400311 – ident: e_1_2_7_13_1 doi: 10.1659/0276-4741(2004)024[0342:SEDOTC]2.0.CO;2 – ident: e_1_2_7_54_1 doi: 10.1007/s10113-010-0127-3 – volume: 4 start-page: 36 year: 1998 ident: e_1_2_7_57_1 article-title: Delimitation of coarse sediment and study on overlap of coarse sediment and sediment abundant areas in the middle Yellow River basin publication-title: Journal of Sediment Research – ident: e_1_2_7_4_1 doi: 10.1111/j.1365-2664.2008.01605.x – volume: 38 start-page: 606 year: 2007 ident: e_1_2_7_3_1 article-title: Study on relative stability of check dam system publication-title: Journal of Hydraulic Engineering – ident: e_1_2_7_2_1 doi: 10.1007/BF02837376 – ident: e_1_2_7_6_1 doi: 10.1029/98WR01659 – volume: 69 start-page: 8 year: 2010 ident: e_1_2_7_31_1 article-title: National Development and Reform Commission, Ministry of Water Resources, Ministry of Agriculture and State Forestry Administration, People's Republic of China publication-title: Programming for Comprehensive Management of the Loess Plateau (2010–2030) – ident: e_1_2_7_42_1 doi: 10.1023/A:1022902914221 – ident: e_1_2_7_12_1 doi: 10.1016/S0921-8181(00)00037-0 – ident: e_1_2_7_26_1 doi: 10.1016/j.geomorph.2011.07.032 – ident: e_1_2_7_8_1 doi: 10.1002/ldr.1071 – ident: e_1_2_7_18_1 doi: 10.1002/ldr.2164 – ident: e_1_2_7_5_1 doi: 10.4141/S97-060 – ident: e_1_2_7_63_1 doi: 10.1029/2007WR006711 – ident: e_1_2_7_9_1 doi: 10.1016/j.palaeo.2006.04.009 – ident: e_1_2_7_50_1 doi: 10.1890/09-0229.1 – ident: e_1_2_7_29_1 doi: 10.1073/pnas.0611508104 – ident: e_1_2_7_46_1 doi: 10.1002/ldr.663 – volume-title: The Loess Plateau, origin of agriculture and water and soil conservation year: 2004 ident: e_1_2_7_22_1 – start-page: 458 volume-title: The fluvial process in the lower Yellow River after completion of Sanmenxia Reservoir year: 2006 ident: e_1_2_7_33_1 – volume: 4 start-page: 49 year: 1991 ident: e_1_2_7_40_1 article-title: Soil erosion and eco‐environment changes in Quaternary publication-title: Quaternary Research – ident: e_1_2_7_62_1 doi: 10.1002/(SICI)1099-145X(199703)8:1<1::AID-LDR240>3.0.CO;2-X – volume: 34 start-page: 1070 year: 2012 ident: e_1_2_7_66_1 article-title: The variation trend of streamflow and sediment flux in the middle reaches of Yellow River over the past 60 years and the influencing factors publication-title: Resources Science – volume: 7 start-page: 103 year: 2009 ident: e_1_2_7_49_1 article-title: Policy development of soil and water conservation in the Loess Plateau publication-title: Science of Soil and Water Conservation – ident: e_1_2_7_41_1 doi: 10.1016/j.catena.2005.06.001 – ident: e_1_2_7_14_1 doi: 10.1007/s10113-005-0004-7 – ident: e_1_2_7_10_1 doi: 10.1016/j.ecocom.2011.07.003 – ident: e_1_2_7_55_1 doi: 10.1007/s00267-004-3094-y – ident: e_1_2_7_27_1 doi: 10.1002/ldr.1050 |
SSID | ssj0001747 |
Score | 2.5629175 |
Snippet | ABSTRACT
As one of the best‐known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the... As one of the best‐known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical... As one of the best-known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 499 |
SubjectTerms | Anthropogenic factors Check dams Climate change Deforestation Development policy eco-environment changes Erosion control Erosion rates Holocene Irrigation water Loess Plateau Natural vegetation Population growth Reservoir construction runoff and sediment Sediment yield soil and water conservation Soil conservation Soil erosion Vegetation cover Water conservation |
Title | SOIL EROSION, CONSERVATION, AND ECO-ENVIRONMENT CHANGES IN THE LOESS PLATEAU OF CHINA |
URI | https://api.istex.fr/ark:/67375/WNG-JQL9M40W-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fldr.2246 https://www.proquest.com/docview/1440883086 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamcYEDMAaisE1GQuyydG6cOM4xCunaKXOg7dZJHCzbcThsKqjrJMRpfwJ_I38JfvnRsQkkxCmHPCe2n-332fnyPYTelpwwSyrf09rCBiUsPeXCokdd7K2UdgFCwUbxRLDRaXB8Hp63rEr4F6bRh1gfuMHMqNdrmOBKXx3eioZelss-qKG55ReoWoCHJrfKUQ5oRx23nvoR73RniX_YFbwTiR5Ap367AzN_B6t1tBk-QZ-6ejYkk4v-9Ur3zfd7Eo7_15Cn6HELQnHSjJottGEXz9Cj5POyFeKw22g-LcY5ziYFLLYHOC3ENJuc1QdaBzgR73GWFj9vfmTibDwpBGQEwOkoEUfZFI8Fno0ynBfOt_hDnsyy5BQXQ3d_LJLnaDbMZunIa5MweCrwCfO4NRGNiWXRYKCDmNqKlRWnOgCamvFtHPIBU5UxfhkzpS2jNq5xSRTxMDb0BdpcfFnYlwhbYrWKS0AcrjQbaEId1iw5JcaaMgh6aL_zhzStQDnkybiUjbSyL11PSeipHnqztvzaiHL8weZd7dK1gVpeAIktCuVcHMnjj3l8EpC5THtop_O5bOfvlYRP3tzVjMNzauf99UUyd-POXV_9q-Fr9NCvc2oAUW0Hba6W13bXIZuV3qvH8C_Y9u0V |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKe4Ae-EddKGAkBJdm640TxxGnKGSblKwDu2m3ByQrdhwOrZZqu5UQJx6BZ-RJsJ1kSxFIiFMOGSe2Z8bz2Zl8A8DLmiKiUOM6QiizQfFrp9Jh0cE69jaV0AGiMhvFCSPpkXd44p9sgDf9vzAtP8T6wM14hl2vjYObA-n9K9bQs3o5NHRoN8CWKeht91PTK-4oDbWDPrseuwHtmWeRu9-3vBaLtsy0frkGNH-FqzbejO-Aj31P2zST0-HlSgzl199IHP9zKHfB7Q6Hwqg1nHtgQy3ug-3o07Lj4lAPwHxWZDlMpoVZb_dgXLBZMj22Z1p7MGJvYRIXP759T9hxNi2YKQoA4zRiB8kMZgyWaQLzQqsXvs-jMomOYDHW9zMWPQTlOCnj1OnqMDiV5yLiUCUDHCJFgtFIeCFWDakbioVnMtWkq0KfjkjVSOnWIamEIliFFpoEAfVDiR-BzcXnhdoBUCElqrA2oEO3JiOBsIabNcVIKll73gC87hXCZcdRbkplnPGWXdnleqa4makBeLGWPG95Of4g88rqdC1QLU9NHlvg8zk74Icf8nDioTmPB2C3VzrvXPiCm6_eVPeMmudY7f31RTzXhqevj_9V8Dm4mZaTnOcZe_cE3HJtiQ2Tt7YLNlfLS_VUA52VeGYN-ifBiPEw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaglRAc-EdsKWAkBJdm640TxzlG2Ww3JXXK7rZbqQcrjh0OrbbVspUQJx6BZ-RJ8ORnSxFIiFMOGSf2zNjz2Zl8g9BbzQkzpHIdpQxsUHztFDYsOtTG3qpQNkAUsFE8EGx85O2f-CdtViX8C9PwQ6wP3GBm1Os1TPBLXe1ek4ae62Uf2NBuo02PEQ4ePZxcU0dZpB10yfXUDXhHPEvc3a7ljVC0CVr9cgNn_opW63AzeoBOu442WSZn_auV6pdff-Nw_L-RPET3WxSKo8ZtHqFbZvEY3Ys-LVsmDvMEzad5muFkksNqu4PjXEyTyXF9orWDIzHESZz_-PY9EcfpJBdQEgDH40jsJVOcCjwbJzjLrXHxYRbNkugI5yN7PxXRUzQbJbN47LRVGJzCcwlzuCkDGhLDgsFAeSE1FdMVp8qDPLXSNaHPB6yoytLVISuUYdSENTAJAu6HJX2GNhYXC_McYUOMKkINkMO2ZgNFqAWbmlNSmlJ7Xg-97-why5ahHAplnMuGW9mVVlMSNNVDb9aSlw0rxx9k3tUmXQsUyzPIYgt8ORd7cv9jFh54ZC7jHtrubC7bCfxZwjdvbnvG4Tm18f76IplZv7PXrX8VfI3uHA5HMkvFhxforlvX14CktW20sVpemZcW5azUq9qdfwIFPe_o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SOIL+EROSION%2C+CONSERVATION%2C+AND+ECO%E2%80%90ENVIRONMENT+CHANGES+IN+THE+LOESS+PLATEAU+OF+CHINA&rft.jtitle=Land+degradation+%26+development&rft.au=Zhao%2C+G.&rft.au=Mu%2C+X.&rft.au=Wen%2C+Z.&rft.au=Wang%2C+F.&rft.date=2013-09-01&rft.issn=1085-3278&rft.eissn=1099-145X&rft.volume=24&rft.issue=5&rft.spage=499&rft.epage=510&rft_id=info:doi/10.1002%2Fldr.2246&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ldr_2246 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-3278&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-3278&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-3278&client=summon |