SOIL EROSION, CONSERVATION, AND ECO-ENVIRONMENT CHANGES IN THE LOESS PLATEAU OF CHINA

ABSTRACT As one of the best‐known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical variation of climate, vegetation cover, and environment changes in order to understand the causes of severe soil erosion. Documentary...

Full description

Saved in:
Bibliographic Details
Published inLand degradation & development Vol. 24; no. 5; pp. 499 - 510
Main Authors Zhao, G., Mu, X., Wen, Z., Wang, F., Gao, P.
Format Journal Article
LanguageEnglish
Published Chichester Blackwell Publishing Ltd 01.09.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1085-3278
1099-145X
DOI10.1002/ldr.2246

Cover

Loading…
Abstract ABSTRACT As one of the best‐known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical variation of climate, vegetation cover, and environment changes in order to understand the causes of severe soil erosion. Documentary evidence indicated that climate changes and vegetation cover were the dominant natural factors influencing the soil erosion rates during the Holocene. Intensive human activities consisting of warfare, population growth, deforestation, and soil and water conservation measures were responsible for the changes of soil erosion during the anthropogenic period. Spatial and temporal changes of specific sediment yields presented significant decrease within the last several decades, which resulted from decreasing rainfall, large scale soil and water conservation measures, agricultural irrigation, and reservoir construction. Different phase of soil conservation measures demonstrated the development of policies and techniques on soil erosion control. Effective strategies of soil and water conservation, consisting of terracing, afforestation, natural rehabilitation, and check‐dams construction, were carried out on the Loess Plateau during the past six decades. The progress of soil conservation measures confirmed that the check‐dams systems might be suitable for Loess hilly Plateau, and natural vegetation rehabilitation is the best way for soil erosion control and should be implemented in other regions with emphasis of improving the quality of conservation measures based on natural rehabilitation. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList As one of the best-known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical variation of climate, vegetation cover, and environment changes in order to understand the causes of severe soil erosion. Documentary evidence indicated that climate changes and vegetation cover were the dominant natural factors influencing the soil erosion rates during the Holocene. Intensive human activities consisting of warfare, population growth, deforestation, and soil and water conservation measures were responsible for the changes of soil erosion during the anthropogenic period. Spatial and temporal changes of specific sediment yields presented significant decrease within the last several decades, which resulted from decreasing rainfall, large scale soil and water conservation measures, agricultural irrigation, and reservoir construction. Different phase of soil conservation measures demonstrated the development of policies and techniques on soil erosion control. Effective strategies of soil and water conservation, consisting of terracing, afforestation, natural rehabilitation, and check-dams construction, were carried out on the Loess Plateau during the past six decades. The progress of soil conservation measures confirmed that the check-dams systems might be suitable for Loess hilly Plateau, and natural vegetation rehabilitation is the best way for soil erosion control and should be implemented in other regions with emphasis of improving the quality of conservation measures based on natural rehabilitation. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
As one of the best‐known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical variation of climate, vegetation cover, and environment changes in order to understand the causes of severe soil erosion. Documentary evidence indicated that climate changes and vegetation cover were the dominant natural factors influencing the soil erosion rates during the Holocene. Intensive human activities consisting of warfare, population growth, deforestation, and soil and water conservation measures were responsible for the changes of soil erosion during the anthropogenic period. Spatial and temporal changes of specific sediment yields presented significant decrease within the last several decades, which resulted from decreasing rainfall, large scale soil and water conservation measures, agricultural irrigation, and reservoir construction. Different phase of soil conservation measures demonstrated the development of policies and techniques on soil erosion control. Effective strategies of soil and water conservation, consisting of terracing, afforestation, natural rehabilitation, and check‐dams construction, were carried out on the Loess Plateau during the past six decades. The progress of soil conservation measures confirmed that the check‐dams systems might be suitable for Loess hilly Plateau, and natural vegetation rehabilitation is the best way for soil erosion control and should be implemented in other regions with emphasis of improving the quality of conservation measures based on natural rehabilitation. Copyright © 2013 John Wiley & Sons, Ltd.
ABSTRACT As one of the best‐known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical variation of climate, vegetation cover, and environment changes in order to understand the causes of severe soil erosion. Documentary evidence indicated that climate changes and vegetation cover were the dominant natural factors influencing the soil erosion rates during the Holocene. Intensive human activities consisting of warfare, population growth, deforestation, and soil and water conservation measures were responsible for the changes of soil erosion during the anthropogenic period. Spatial and temporal changes of specific sediment yields presented significant decrease within the last several decades, which resulted from decreasing rainfall, large scale soil and water conservation measures, agricultural irrigation, and reservoir construction. Different phase of soil conservation measures demonstrated the development of policies and techniques on soil erosion control. Effective strategies of soil and water conservation, consisting of terracing, afforestation, natural rehabilitation, and check‐dams construction, were carried out on the Loess Plateau during the past six decades. The progress of soil conservation measures confirmed that the check‐dams systems might be suitable for Loess hilly Plateau, and natural vegetation rehabilitation is the best way for soil erosion control and should be implemented in other regions with emphasis of improving the quality of conservation measures based on natural rehabilitation. Copyright © 2013 John Wiley & Sons, Ltd.
Author Mu, X.
Wang, F.
Wen, Z.
Gao, P.
Zhao, G.
Author_xml – sequence: 1
  givenname: G.
  surname: Zhao
  fullname: Zhao, G.
  organization: Institute of Soil and Water Conservation, Northwest A&F University, 26 Xinong Road, 712100, Yangling, Shaanxi Province, China
– sequence: 2
  givenname: X.
  surname: Mu
  fullname: Mu, X.
  email: Correspondence to: X. Mu, Institute of Soil and Water Conservation, Northwest A&F University, 26 Xinong Road, Yangling, 712100, Shaanxi Province, China., xmmu@ms.iswc.ac.cn
  organization: Institute of Soil and Water Conservation, Northwest A&F University, 26 Xinong Road, 712100, Yangling, Shaanxi Province, China
– sequence: 3
  givenname: Z.
  surname: Wen
  fullname: Wen, Z.
  organization: Institute of Soil and Water Conservation, Northwest A&F University, 26 Xinong Road, 712100, Yangling, Shaanxi Province, China
– sequence: 4
  givenname: F.
  surname: Wang
  fullname: Wang, F.
  organization: Institute of Soil and Water Conservation, Northwest A&F University, 26 Xinong Road, 712100, Yangling, Shaanxi Province, China
– sequence: 5
  givenname: P.
  surname: Gao
  fullname: Gao, P.
  organization: Institute of Soil and Water Conservation, Northwest A&F University, 26 Xinong Road, 712100, Yangling, Shaanxi Province, China
BookMark eNp1kE1P4zAQhq0VSMvHSvsTLHHhQLp27PjjGAXTBqU2NCnszUpTRwqUpjhBwL8n3aKVQHCaGc3zzkjPIdhbt2sHwG-MRhih8M9q6UdhSNkPcICRlAGm0d-9bS-igIRc_ASHXXeHEMKc8gMwz02aQTUzeWr0GUyMztXsJi7-TbE-hyoxgdI36czoqdIFTCaxHqscphoWEwUzo_IcXmVxoeI5NBfDPtXxMdivy1Xnfr3XI1BcqCKZBJkZp0mcBSUNEQuEqziRyDGO8YJK4mq2rAVZ0CqqXRU6GQnMyrqqwqVk5cIx4iRCnBLORSQrcgROdmc3vn18cl1v79onvx4-WkwpEoIgwQZqtKMq33add7Wtmr7sm3bd-7JZWYzs1pwdzNmtuSFw-imw8c1D6V-_QoMd-tys3Ou3nM3OZx_5puvdy3--9PeWccIje6vH9vI6k1OKbm1C3gArUoUn
CODEN LDDEF6
CitedBy_id crossref_primary_10_1080_03650340_2019_1578345
crossref_primary_10_1016_j_iswcr_2023_06_006
crossref_primary_10_1016_j_jhydrol_2016_09_010
crossref_primary_10_1002_joc_6798
crossref_primary_10_1007_s10113_016_0975_6
crossref_primary_10_1371_journal_pone_0168890
crossref_primary_10_1016_j_quaint_2016_12_005
crossref_primary_10_1016_j_catena_2022_106327
crossref_primary_10_1016_j_exis_2016_04_002
crossref_primary_10_1007_s11368_015_1072_z
crossref_primary_10_1016_j_still_2020_104605
crossref_primary_10_1111_gcb_14875
crossref_primary_10_1016_j_still_2020_104600
crossref_primary_10_1016_S2095_3119_19_62719_X
crossref_primary_10_5194_se_7_1577_2016
crossref_primary_10_1016_j_geomorph_2024_109243
crossref_primary_10_2139_ssrn_4056868
crossref_primary_10_1016_j_ecoleng_2017_03_013
crossref_primary_10_1039_C3EM00521F
crossref_primary_10_3390_land13050709
crossref_primary_10_1111_jse_12156
crossref_primary_10_1016_j_scitotenv_2018_05_194
crossref_primary_10_1016_j_ecolind_2021_108332
crossref_primary_10_1016_j_ejrh_2022_101277
crossref_primary_10_3390_f14081620
crossref_primary_10_2166_ws_2020_361
crossref_primary_10_1007_s40333_020_0091_9
crossref_primary_10_1038_srep44496
crossref_primary_10_1016_j_ecofro_2024_05_003
crossref_primary_10_3390_rs14030737
crossref_primary_10_1016_j_iswcr_2021_03_002
crossref_primary_10_1016_j_jenvman_2023_119589
crossref_primary_10_1002_esp_6059
crossref_primary_10_1016_j_catena_2019_02_002
crossref_primary_10_1002_rse2_271
crossref_primary_10_1016_j_ecoinf_2022_101887
crossref_primary_10_5194_se_6_1087_2015
crossref_primary_10_1016_j_geoderma_2021_115319
crossref_primary_10_1007_s11368_017_1888_9
crossref_primary_10_1016_j_jhydrol_2025_133046
crossref_primary_10_1016_j_catena_2024_108075
crossref_primary_10_1016_j_palaeo_2024_112184
crossref_primary_10_1016_j_geomorph_2019_106878
crossref_primary_10_1111_ejss_13412
crossref_primary_10_1002_ldr_2294
crossref_primary_10_3390_w14050772
crossref_primary_10_3390_su14116600
crossref_primary_10_1002_ldr_4229
crossref_primary_10_1016_j_catena_2018_07_031
crossref_primary_10_1016_j_scitotenv_2019_134164
crossref_primary_10_3390_w15101870
crossref_primary_10_1016_j_still_2023_105992
crossref_primary_10_3390_land12061157
crossref_primary_10_1002_ldr_3135
crossref_primary_10_1002_ldr_2289
crossref_primary_10_3390_su16020799
crossref_primary_10_1080_10106049_2022_2071473
crossref_primary_10_1002_hyp_15271
crossref_primary_10_1002_ldr_2281
crossref_primary_10_1002_ldr_5550
crossref_primary_10_1002_ldr_2283
crossref_primary_10_1007_s00382_020_05178_6
crossref_primary_10_1016_j_geomorph_2025_109708
crossref_primary_10_1016_j_still_2020_104800
crossref_primary_10_3390_su16020795
crossref_primary_10_1016_j_catena_2019_104170
crossref_primary_10_1016_j_scitotenv_2020_143715
crossref_primary_10_3390_atmos15091050
crossref_primary_10_1007_s40333_019_0107_5
crossref_primary_10_1016_j_gecco_2024_e03083
crossref_primary_10_1002_ldr_3124
crossref_primary_10_1002_ldr_2278
crossref_primary_10_1002_hyp_15283
crossref_primary_10_1109_ACCESS_2020_3018730
crossref_primary_10_1016_j_geoderma_2019_05_030
crossref_primary_10_1016_j_jenvman_2024_120880
crossref_primary_10_5194_se_6_595_2015
crossref_primary_10_1016_j_geomorph_2019_106896
crossref_primary_10_3390_su11030761
crossref_primary_10_1002_gch2_202000109
crossref_primary_10_1016_j_ecolind_2023_111060
crossref_primary_10_1016_j_scitotenv_2020_142419
crossref_primary_10_1016_j_scitotenv_2020_142418
crossref_primary_10_1016_j_agee_2019_05_005
crossref_primary_10_1016_j_catena_2018_06_008
crossref_primary_10_3390_rs11141732
crossref_primary_10_1016_j_jhydrol_2023_129470
crossref_primary_10_1029_2023JF007246
crossref_primary_10_1016_j_jenvman_2022_115701
crossref_primary_10_1016_j_agee_2021_107743
crossref_primary_10_1007_s11368_021_03054_2
crossref_primary_10_3390_geosciences9040147
crossref_primary_10_1016_j_catena_2022_106108
crossref_primary_10_1016_j_envres_2019_03_057
crossref_primary_10_1016_j_scitotenv_2018_04_104
crossref_primary_10_1016_j_catena_2014_10_022
crossref_primary_10_1002_jpln_201400231
crossref_primary_10_1016_j_ecolind_2021_107670
crossref_primary_10_5194_se_6_115_2015
crossref_primary_10_1016_j_palaeo_2023_111439
crossref_primary_10_1002_ldr_2494
crossref_primary_10_1016_j_catena_2021_105181
crossref_primary_10_1002_ldr_2253
crossref_primary_10_1080_20964471_2021_2018789
crossref_primary_10_3390_land13060725
crossref_primary_10_1021_acs_est_2c09870
crossref_primary_10_1002_ldr_2499
crossref_primary_10_1002_ldr_4436
crossref_primary_10_1002_ldr_4678
crossref_primary_10_1007_s11368_021_03089_5
crossref_primary_10_1155_2016_9732864
crossref_primary_10_1016_j_catena_2022_106332
crossref_primary_10_1371_journal_pone_0261842
crossref_primary_10_1029_2024JG008143
crossref_primary_10_1155_2014_654796
crossref_primary_10_1002_esp_5839
crossref_primary_10_1002_ldr_2249
crossref_primary_10_1016_j_foreco_2019_117767
crossref_primary_10_1016_j_jhydrol_2023_129298
crossref_primary_10_1111_tgis_12607
crossref_primary_10_5194_hess_28_87_2024
crossref_primary_10_1007_s12665_017_6506_z
crossref_primary_10_1007_s12594_023_2324_y
crossref_primary_10_1016_j_catena_2025_108740
crossref_primary_10_1016_j_catena_2024_108466
crossref_primary_10_1002_ldr_3570
crossref_primary_10_5327_Z2176_94781557
crossref_primary_10_3390_land13101563
crossref_primary_10_3390_land13122002
crossref_primary_10_1016_j_margeo_2020_106188
crossref_primary_10_1007_s11368_018_2042_z
crossref_primary_10_1007_s11356_022_24923_4
crossref_primary_10_1016_j_catena_2024_108215
crossref_primary_10_1016_j_earscirev_2024_104718
crossref_primary_10_1002_ldr_2475
crossref_primary_10_1002_ldr_2476
crossref_primary_10_1016_j_scitotenv_2018_10_172
crossref_primary_10_3390_w14121875
crossref_primary_10_1007_s40333_016_0088_6
crossref_primary_10_1080_17538947_2024_2369632
crossref_primary_10_1520_JTE20150048
crossref_primary_10_1007_s11368_020_02568_5
crossref_primary_10_1038_s43017_021_00226_z
crossref_primary_10_1016_j_catena_2024_108480
crossref_primary_10_1007_s12665_024_11424_5
crossref_primary_10_1002_ldr_2460
crossref_primary_10_1016_j_still_2018_08_012
crossref_primary_10_1016_j_catena_2024_108484
crossref_primary_10_3390_su15129160
crossref_primary_10_1080_15481603_2020_1751406
crossref_primary_10_1016_j_jhydrol_2021_126235
crossref_primary_10_1002_ldr_3304
crossref_primary_10_1002_ldr_2459
crossref_primary_10_1016_j_catena_2023_107081
crossref_primary_10_1016_j_agee_2021_107320
crossref_primary_10_1016_j_eng_2019_07_014
crossref_primary_10_1016_j_quascirev_2022_107796
crossref_primary_10_1016_j_jhydrol_2024_130799
crossref_primary_10_5194_se_6_633_2015
crossref_primary_10_24017_science_2019_2_18
crossref_primary_10_1002_ldr_2451
crossref_primary_10_1002_ldr_3300
crossref_primary_10_1002_ldr_2454
crossref_primary_10_1002_ldr_2456
crossref_primary_10_1016_j_catena_2016_10_016
crossref_primary_10_1088_2515_7620_ad3369
crossref_primary_10_1177_0959683620961486
crossref_primary_10_1016_j_catena_2021_105148
crossref_primary_10_1016_j_geoderma_2019_07_003
crossref_primary_10_1002_ldr_2447
crossref_primary_10_1002_ldr_2449
crossref_primary_10_3390_su11247084
crossref_primary_10_1016_j_jhydrol_2018_02_076
crossref_primary_10_1016_j_ecoleng_2017_01_036
crossref_primary_10_1007_s10064_024_03787_7
crossref_primary_10_1016_j_jaridenv_2016_12_014
crossref_primary_10_3390_rs15030743
crossref_primary_10_3390_agronomy10060774
crossref_primary_10_1016_j_catena_2021_105551
crossref_primary_10_1016_j_catena_2025_108783
crossref_primary_10_17221_42_2023_SWR
crossref_primary_10_1016_j_scitotenv_2023_163182
crossref_primary_10_1016_j_hydroa_2018_100009
crossref_primary_10_1016_j_ecolind_2022_109734
crossref_primary_10_1002_ldr_2679
crossref_primary_10_1016_j_geomorph_2018_04_011
crossref_primary_10_1016_j_still_2024_106299
crossref_primary_10_1360_TB_2022_0295
crossref_primary_10_3390_su12052126
crossref_primary_10_1080_07038992_2019_1608518
crossref_primary_10_1002_eco_2465
crossref_primary_10_1016_j_scitotenv_2020_139627
crossref_primary_10_1080_17538947_2023_2207840
crossref_primary_10_1007_s10933_020_00167_5
crossref_primary_10_1007_s10661_017_5792_y
crossref_primary_10_1002_ldr_2429
crossref_primary_10_1016_j_still_2023_105935
crossref_primary_10_31497_zrzyxb_20190605
crossref_primary_10_3390_w10111631
crossref_primary_10_1007_s00382_024_07401_0
crossref_primary_10_3390_rs12030453
crossref_primary_10_1016_j_quaint_2024_03_007
crossref_primary_10_1016_j_catena_2018_08_001
crossref_primary_10_1016_j_scitotenv_2021_146474
crossref_primary_10_1002_ldr_2655
crossref_primary_10_1016_j_scitotenv_2020_141715
crossref_primary_10_3390_su8050488
crossref_primary_10_5194_soil_2_49_2016
crossref_primary_10_1002_ldr_2414
crossref_primary_10_1007_s00704_024_05023_4
crossref_primary_10_1016_j_ecolind_2022_108667
crossref_primary_10_1002_ldr_2416
crossref_primary_10_3390_f14010044
crossref_primary_10_1002_ldr_2411
crossref_primary_10_1007_s12033_018_0144_x
crossref_primary_10_1007_s11368_021_03070_2
crossref_primary_10_1002_esp_5313
crossref_primary_10_1016_j_envdev_2024_100991
crossref_primary_10_1002_ldr_2402
crossref_primary_10_3389_fenvs_2021_791801
crossref_primary_10_5194_se_5_1071_2014
crossref_primary_10_1002_ldr_4825
crossref_primary_10_1007_s13762_024_05697_3
crossref_primary_10_3390_rs14133043
crossref_primary_10_1016_S1002_0160_15_30030_8
crossref_primary_10_1002_ldr_2401
crossref_primary_10_1016_j_ecolind_2023_110512
crossref_primary_10_5194_se_6_1237_2015
crossref_primary_10_1002_esp_4694
crossref_primary_10_1002_ldr_2875
crossref_primary_10_1016_j_scitotenv_2023_162559
crossref_primary_10_3390_w16192868
crossref_primary_10_5194_se_6_1103_2015
crossref_primary_10_1016_j_ecoleng_2019_105611
crossref_primary_10_1016_j_catena_2018_12_024
crossref_primary_10_1016_j_jclepro_2018_04_004
crossref_primary_10_1002_ldr_4809
crossref_primary_10_1108_MEQ_07_2015_0140
crossref_primary_10_3390_su12062457
crossref_primary_10_3390_app14135945
crossref_primary_10_1029_2023WR036307
crossref_primary_10_3390_rs12183103
crossref_primary_10_1002_ldr_2628
crossref_primary_10_1016_j_ecoleng_2016_06_069
crossref_primary_10_1002_pa_2374
crossref_primary_10_3390_ani15050730
crossref_primary_10_3390_su15065484
crossref_primary_10_5194_esurf_12_163_2024
crossref_primary_10_1017_sus_2018_9
crossref_primary_10_3390_su14127169
crossref_primary_10_1016_j_ancene_2020_100251
crossref_primary_10_3390_su162310781
crossref_primary_10_3390_w12102786
crossref_primary_10_3390_en16145282
crossref_primary_10_3390_su13031293
crossref_primary_10_1016_j_scitotenv_2024_175912
crossref_primary_10_1016_j_catena_2018_11_003
crossref_primary_10_3390_su12208376
crossref_primary_10_1038_s41598_022_17975_6
crossref_primary_10_3390_app122412662
crossref_primary_10_1016_j_oneear_2021_01_009
crossref_primary_10_1007_s12665_017_6778_3
crossref_primary_10_1016_j_iswcr_2023_02_005
crossref_primary_10_1016_j_scitotenv_2020_137305
crossref_primary_10_3390_land10090901
crossref_primary_10_1038_s41598_017_08477_x
crossref_primary_10_1016_j_geoderma_2024_116906
crossref_primary_10_1016_j_gloplacha_2017_03_003
crossref_primary_10_24180_ijaws_778880
crossref_primary_10_5194_se_6_197_2015
crossref_primary_10_5194_se_6_383_2015
crossref_primary_10_1002_esp_5752
crossref_primary_10_1016_j_catena_2016_07_030
crossref_primary_10_2139_ssrn_4178984
crossref_primary_10_1371_journal_pone_0148445
crossref_primary_10_3390_f7110258
crossref_primary_10_5194_se_5_1045_2014
crossref_primary_10_5194_se_6_1_2015
crossref_primary_10_5194_se_6_997_2015
crossref_primary_10_3390_ijerph19148446
crossref_primary_10_1002_esp_5980
crossref_primary_10_1016_j_earscirev_2023_104655
crossref_primary_10_1016_j_landusepol_2019_104163
crossref_primary_10_7717_peerj_11226
crossref_primary_10_1002_ldr_3923
crossref_primary_10_1016_j_ecoser_2018_03_013
crossref_primary_10_1016_j_ecoinf_2024_102626
crossref_primary_10_3989_estgeogr_201610
crossref_primary_10_1016_j_still_2019_04_004
crossref_primary_10_1371_journal_pone_0288848
crossref_primary_10_1088_1748_9326_acb9a8
crossref_primary_10_1007_s12665_018_7992_3
crossref_primary_10_1088_1755_1315_675_1_012043
crossref_primary_10_1016_j_jenvman_2020_110214
crossref_primary_10_1002_hyp_11377
crossref_primary_10_3390_atmos14010116
crossref_primary_10_1007_s12665_024_11713_z
crossref_primary_10_3390_land13040442
crossref_primary_10_3390_su152115200
crossref_primary_10_1007_s11356_018_1480_x
crossref_primary_10_1002_esp_3549
crossref_primary_10_1016_j_scitotenv_2023_162346
crossref_primary_10_1016_j_rse_2024_114022
crossref_primary_10_2478_euco_2018_0001
crossref_primary_10_1016_j_geoderma_2014_09_015
crossref_primary_10_1007_s12665_023_11388_y
crossref_primary_10_1371_journal_pone_0091048
crossref_primary_10_1007_s10661_022_09937_2
crossref_primary_10_1016_j_ecolind_2019_01_020
crossref_primary_10_5194_piahs_375_23_2017
crossref_primary_10_1007_s12665_021_09443_7
crossref_primary_10_3389_feart_2022_812609
crossref_primary_10_1029_2018JF004918
crossref_primary_10_1016_j_ecolind_2023_111449
crossref_primary_10_1016_j_eng_2021_12_015
crossref_primary_10_1002_jpln_202200293
crossref_primary_10_1021_acs_est_2c01855
crossref_primary_10_1007_s12665_016_6102_7
crossref_primary_10_3390_su12083317
crossref_primary_10_1002_hyp_13985
crossref_primary_10_1038_s41598_024_82469_6
crossref_primary_10_1111_rec_13494
crossref_primary_10_1016_j_flora_2018_03_012
crossref_primary_10_7717_peerj_14766
crossref_primary_10_1002_jsfa_12468
crossref_primary_10_1016_j_gloplacha_2018_11_002
crossref_primary_10_1016_j_still_2014_05_007
crossref_primary_10_1016_j_catena_2022_106141
crossref_primary_10_1002_hyp_10486
crossref_primary_10_1016_j_still_2024_106308
crossref_primary_10_1080_00103624_2017_1406099
crossref_primary_10_3389_fpls_2020_573126
crossref_primary_10_1016_j_agwat_2021_106800
crossref_primary_10_1016_j_catena_2022_106149
crossref_primary_10_1080_24749508_2018_1525669
crossref_primary_10_1016_j_catena_2023_107511
crossref_primary_10_1371_journal_pone_0134244
crossref_primary_10_3390_land13050687
crossref_primary_10_3390_f12020218
crossref_primary_10_1016_j_jenvman_2024_122517
crossref_primary_10_1002_ldr_5288
crossref_primary_10_3390_w13243647
crossref_primary_10_1093_jpe_rtaa032
crossref_primary_10_1002_ldr_5282
crossref_primary_10_1002_ldr_5283
crossref_primary_10_3389_fenvs_2021_649346
crossref_primary_10_1186_s12889_021_10407_6
crossref_primary_10_1016_j_scitotenv_2022_155952
crossref_primary_10_1016_j_jenvman_2024_123633
crossref_primary_10_3390_rs13091674
crossref_primary_10_1016_j_palaeo_2016_12_030
crossref_primary_10_1007_s12517_018_3805_y
crossref_primary_10_1007_s11430_020_9757_1
crossref_primary_10_1177_03091333231189350
crossref_primary_10_1002_ldr_5031
crossref_primary_10_1016_j_ese_2024_100496
crossref_primary_10_3390_su8010009
crossref_primary_10_1016_j_iswcr_2020_03_001
crossref_primary_10_3390_atmos14020323
crossref_primary_10_3390_w12041119
crossref_primary_10_1016_j_ejsobi_2024_103660
crossref_primary_10_2139_ssrn_4153297
crossref_primary_10_1002_hyp_13702
crossref_primary_10_5194_se_6_765_2015
crossref_primary_10_1016_j_catena_2024_107848
crossref_primary_10_1016_j_geoderma_2019_113937
crossref_primary_10_1016_j_scitotenv_2018_07_161
crossref_primary_10_1061__ASCE_HE_1943_5584_0001077
crossref_primary_10_1016_j_geomorph_2020_107559
crossref_primary_10_3390_w12113201
crossref_primary_10_1016_j_agee_2015_05_002
crossref_primary_10_1016_j_geoderma_2021_115120
crossref_primary_10_1002_ldr_4167
crossref_primary_10_1007_s10967_019_06744_x
crossref_primary_10_1016_j_socscimed_2023_116186
crossref_primary_10_7717_peerj_1220
crossref_primary_10_1016_j_catena_2018_10_023
crossref_primary_10_5194_se_6_323_2015
crossref_primary_10_1016_j_envsci_2018_09_021
crossref_primary_10_1016_j_ecolind_2019_04_082
crossref_primary_10_1155_2020_8850681
crossref_primary_10_3390_rs13173345
crossref_primary_10_3390_ijerph13080835
crossref_primary_10_1080_20964129_2019_1709560
crossref_primary_10_1007_s00382_023_06999_x
crossref_primary_10_1016_j_foreco_2018_01_041
crossref_primary_10_1016_j_geomorph_2015_10_010
crossref_primary_10_3390_w8100458
crossref_primary_10_5194_se_6_1025_2015
crossref_primary_10_1002_ldr_3061
crossref_primary_10_1016_j_envdev_2019_100493
crossref_primary_10_3390_rs16040714
crossref_primary_10_1007_s00704_016_1763_4
crossref_primary_10_1016_j_still_2015_01_007
crossref_primary_10_21523_gcj3_17010103
crossref_primary_10_1016_j_geosus_2024_01_006
crossref_primary_10_1016_j_jenvman_2025_124371
crossref_primary_10_1071_SR15068
crossref_primary_10_1111_sum_12307
crossref_primary_10_2166_wst_2020_004
crossref_primary_10_1016_j_envres_2023_116744
crossref_primary_10_1016_j_scitotenv_2018_10_206
crossref_primary_10_1016_j_scitotenv_2019_135102
crossref_primary_10_1016_j_geoderma_2022_115717
crossref_primary_10_1016_j_jhydrol_2018_05_006
crossref_primary_10_1016_j_scitotenv_2014_03_105
crossref_primary_10_1002_ldr_3049
crossref_primary_10_3390_f14091753
crossref_primary_10_1016_j_catena_2022_106431
crossref_primary_10_1016_j_ijsrc_2018_03_003
crossref_primary_10_1007_s11769_025_1487_4
crossref_primary_10_1007_s10661_020_08670_y
crossref_primary_10_1016_j_catena_2022_106659
crossref_primary_10_1007_s11368_018_2032_1
crossref_primary_10_1016_j_rse_2019_111290
crossref_primary_10_1002_ldr_3274
crossref_primary_10_1016_j_scitotenv_2020_143676
crossref_primary_10_1007_s00267_016_0818_8
crossref_primary_10_1016_j_catena_2019_104220
crossref_primary_10_1016_j_catena_2022_106666
crossref_primary_10_1016_j_catena_2023_106944
crossref_primary_10_1016_j_ecolind_2024_112519
crossref_primary_10_3390_rs15020424
crossref_primary_10_1016_j_agwat_2025_109373
crossref_primary_10_3390_biology10121261
crossref_primary_10_1016_j_catena_2022_106406
crossref_primary_10_5194_soil_1_603_2015
crossref_primary_10_1016_j_apsoil_2024_105356
crossref_primary_10_1016_j_jhydrol_2021_126751
crossref_primary_10_1109_ACCESS_2020_3007786
crossref_primary_10_1177_0959683618788682
crossref_primary_10_1002_hyp_11629
crossref_primary_10_3390_rs16050785
crossref_primary_10_1016_j_still_2017_12_005
crossref_primary_10_1002_vzj2_20217
crossref_primary_10_1016_j_scitotenv_2022_159354
crossref_primary_10_1002_ldr_3028
crossref_primary_10_5194_se_6_945_2015
crossref_primary_10_1016_j_jenvman_2023_120004
crossref_primary_10_3389_feart_2021_806921
crossref_primary_10_3390_w17010088
crossref_primary_10_1016_j_jclepro_2019_117606
crossref_primary_10_1029_2022JD036738
crossref_primary_10_3389_fenvs_2024_1410918
crossref_primary_10_1016_j_still_2022_105597
crossref_primary_10_51699_ijbea_v3i3_74
crossref_primary_10_1016_j_geoderma_2017_09_024
crossref_primary_10_1016_j_envdev_2024_101099
crossref_primary_10_1007_s13762_023_05387_6
crossref_primary_10_1016_j_catena_2022_106246
crossref_primary_10_1186_s40068_020_00177_2
crossref_primary_10_1016_j_geomorph_2016_04_017
crossref_primary_10_3389_fenvs_2023_1134917
crossref_primary_10_3390_ijgi10100693
crossref_primary_10_1016_j_jclepro_2020_125534
crossref_primary_10_3390_rs14092282
crossref_primary_10_1016_j_enggeo_2020_105516
crossref_primary_10_1016_j_catena_2019_104293
crossref_primary_10_7717_peerj_18411
crossref_primary_10_1002_ldr_2394
crossref_primary_10_1146_annurev_earth_063016_020552
crossref_primary_10_1002_ldr_2397
crossref_primary_10_1002_ldr_2398
crossref_primary_10_1002_ldr_2399
crossref_primary_10_1007_s11356_023_31204_1
crossref_primary_10_1007_s00477_017_1478_9
crossref_primary_10_1016_j_regsus_2022_11_005
crossref_primary_10_1002_ldr_2390
crossref_primary_10_3390_hydrology2040176
crossref_primary_10_3389_feart_2021_771316
crossref_primary_10_1016_j_catena_2015_01_020
crossref_primary_10_1016_j_landusepol_2017_03_003
crossref_primary_10_1071_SR15092
crossref_primary_10_3390_land11050712
crossref_primary_10_1016_j_agee_2020_107112
crossref_primary_10_3389_fpls_2021_580825
crossref_primary_10_1016_j_scitotenv_2019_134261
crossref_primary_10_1002_ldr_2384
crossref_primary_10_3390_ijerph19042372
crossref_primary_10_1002_ldr_2387
crossref_primary_10_1002_ldr_2388
crossref_primary_10_1002_ldr_2389
crossref_primary_10_3390_w11010020
crossref_primary_10_15302_J_FASE_2023502
crossref_primary_10_1016_j_geoderma_2018_03_037
crossref_primary_10_1016_j_earscirev_2024_104852
crossref_primary_10_1016_j_still_2019_104492
crossref_primary_10_1016_j_catena_2017_04_008
crossref_primary_10_1016_j_ecolind_2023_111172
crossref_primary_10_1007_s11053_021_09841_5
crossref_primary_10_1016_j_scitotenv_2018_06_061
crossref_primary_10_5194_soil_6_337_2020
crossref_primary_10_1002_ldr_2373
crossref_primary_10_1002_ldr_2375
crossref_primary_10_1002_ldr_4552
crossref_primary_10_1002_ldr_3223
crossref_primary_10_1002_ldr_4313
crossref_primary_10_1002_ldr_2378
crossref_primary_10_1007_s11676_019_00879_z
crossref_primary_10_1007_s11707_018_0732_x
crossref_primary_10_1016_j_geomorph_2020_107043
crossref_primary_10_1016_j_jhydrol_2021_126714
crossref_primary_10_1002_ldr_2371
crossref_primary_10_1016_j_still_2025_106481
crossref_primary_10_1007_s11368_019_02437_w
crossref_primary_10_1016_j_still_2015_03_010
crossref_primary_10_1016_j_geoderma_2020_114695
crossref_primary_10_3390_rs15030657
crossref_primary_10_1016_j_jhydrol_2017_09_010
crossref_primary_10_5194_se_6_857_2015
crossref_primary_10_1002_ldr_2361
crossref_primary_10_3390_ijerph20042839
crossref_primary_10_4000_geomorphologie_11865
crossref_primary_10_1002_ldr_3451
crossref_primary_10_1002_ldr_2363
crossref_primary_10_1016_j_fcr_2022_108558
crossref_primary_10_1007_s11053_019_09566_6
crossref_primary_10_1002_hyp_14261
crossref_primary_10_1016_j_catena_2022_106602
crossref_primary_10_3390_su10124589
crossref_primary_10_1016_j_catena_2025_108864
crossref_primary_10_1002_ldr_2360
crossref_primary_10_1016_j_catena_2021_105235
crossref_primary_10_1016_j_iswcr_2016_08_004
crossref_primary_10_1016_j_jhydrol_2022_128804
crossref_primary_10_1007_s12524_024_02007_9
crossref_primary_10_3390_w11122435
crossref_primary_10_1002_ldr_2359
crossref_primary_10_1007_s10661_018_6580_z
crossref_primary_10_1016_j_agee_2020_107168
crossref_primary_10_1002_ldr_2350
crossref_primary_10_1002_ldr_2351
crossref_primary_10_1007_s10342_019_01177_3
crossref_primary_10_3389_fpls_2017_01465
crossref_primary_10_1002_ldr_2355
crossref_primary_10_1016_j_still_2022_105328
crossref_primary_10_1002_ldr_2356
crossref_primary_10_1002_ldr_2357
crossref_primary_10_1016_j_earscirev_2017_05_005
crossref_primary_10_3390_w14091344
crossref_primary_10_1002_ldr_3680
crossref_primary_10_5194_se_6_445_2015
crossref_primary_10_1002_ldr_2347
crossref_primary_10_1002_ldr_2348
crossref_primary_10_1002_ldr_2349
crossref_primary_10_1016_j_scitotenv_2022_154483
crossref_primary_10_1016_j_jhydrol_2025_132923
crossref_primary_10_1016_j_agwat_2021_107451
crossref_primary_10_1155_2020_1868792
crossref_primary_10_3390_su15031939
crossref_primary_10_1016_j_catena_2024_108365
crossref_primary_10_3390_rs15194704
crossref_primary_10_1007_s11676_020_01273_w
crossref_primary_10_1016_j_iswcr_2021_08_001
crossref_primary_10_3390_su11102870
crossref_primary_10_1007_s12583_024_1970_3
crossref_primary_10_1016_j_ecolind_2024_112362
crossref_primary_10_3389_fpls_2017_00103
crossref_primary_10_2136_sssaj2015_05_0171
crossref_primary_10_1002_esp_5924
crossref_primary_10_1515_geo_2022_0505
crossref_primary_10_1002_ldr_2331
crossref_primary_10_1002_ldr_2332
crossref_primary_10_1002_ldr_2334
crossref_primary_10_1002_ldr_4513
crossref_primary_10_1016_j_ecoser_2021_101348
crossref_primary_10_1016_j_jhydrol_2024_130671
crossref_primary_10_1016_j_agrformet_2017_08_005
crossref_primary_10_5194_se_6_929_2015
crossref_primary_10_1016_j_landusepol_2020_105038
crossref_primary_10_1016_j_ecoleng_2025_107513
crossref_primary_10_1002_ldr_2326
crossref_primary_10_1002_ldr_3657
crossref_primary_10_5194_se_5_585_2014
crossref_primary_10_1002_ldr_2328
crossref_primary_10_1029_2023WR036888
crossref_primary_10_3390_f15111918
crossref_primary_10_3390_land13030344
crossref_primary_10_1002_ldr_2324
crossref_primary_10_1016_j_catena_2024_108146
crossref_primary_10_1016_j_fecs_2025_100321
crossref_primary_10_1017_qua_2017_10
crossref_primary_10_1016_j_ecolind_2021_107375
crossref_primary_10_1002_ldr_3404
crossref_primary_10_1002_ldr_2316
crossref_primary_10_1016_j_agee_2014_09_013
crossref_primary_10_1016_j_scitotenv_2020_140726
crossref_primary_10_1002_ldr_2319
crossref_primary_10_3390_land13030360
crossref_primary_10_1016_j_ecolind_2022_109619
crossref_primary_10_1016_j_jaridenv_2017_12_002
crossref_primary_10_1002_aocs_12482
crossref_primary_10_1016_j_jhydrol_2021_126535
crossref_primary_10_1016_j_ecolind_2021_108493
crossref_primary_10_1016_j_scitotenv_2021_145010
crossref_primary_10_3390_rs13214380
crossref_primary_10_3390_w12010082
crossref_primary_10_1002_ldr_2306
crossref_primary_10_1002_ldr_2548
crossref_primary_10_5194_se_6_799_2015
crossref_primary_10_1002_ldr_2307
crossref_primary_10_1007_s11368_014_0956_7
crossref_primary_10_1002_ldr_2308
crossref_primary_10_5194_se_6_1195_2015
crossref_primary_10_5194_se_5_851_2014
crossref_primary_10_1016_j_geoderma_2020_114634
crossref_primary_10_1016_j_habitatint_2018_01_002
crossref_primary_10_1007_s12145_018_0338_6
crossref_primary_10_5194_se_6_985_2015
crossref_primary_10_5194_se_7_167_2016
crossref_primary_10_1016_j_landusepol_2018_08_015
crossref_primary_10_1016_j_catena_2022_106846
crossref_primary_10_3390_land8120180
crossref_primary_10_1002_ldr_2534
crossref_primary_10_1016_j_palaeo_2023_111958
crossref_primary_10_3390_polym14224837
crossref_primary_10_1088_1755_1315_1171_1_012067
crossref_primary_10_3390_app14167421
crossref_primary_10_5194_hess_21_6485_2017
crossref_primary_10_3390_rs13122358
crossref_primary_10_5194_se_6_515_2015
crossref_primary_10_1016_j_landusepol_2023_106810
crossref_primary_10_1007_s11200_018_0803_1
crossref_primary_10_1016_j_envres_2017_11_009
crossref_primary_10_1016_j_iswcr_2021_06_008
crossref_primary_10_1029_2022EF003472
crossref_primary_10_17475_kastorman_1394951
crossref_primary_10_1016_j_geoderma_2019_02_003
crossref_primary_10_3389_fenvs_2023_1136989
crossref_primary_10_3390_land11122228
crossref_primary_10_1016_j_jhydrol_2019_04_040
crossref_primary_10_1016_j_catena_2023_107498
crossref_primary_10_1016_j_jhydrol_2017_07_006
crossref_primary_10_3390_land12081485
crossref_primary_10_1007_s11442_022_1948_y
crossref_primary_10_1016_j_ecolind_2025_113221
crossref_primary_10_1038_s41598_022_12006_w
crossref_primary_10_1016_j_chemosphere_2023_139464
crossref_primary_10_1016_j_scitotenv_2022_155625
crossref_primary_10_1126_sciadv_abc0276
crossref_primary_10_1007_s11368_021_03018_6
crossref_primary_10_3390_rs11202429
crossref_primary_10_2134_agronj2018_06_0405
crossref_primary_10_1002_hyp_70009
crossref_primary_10_1016_j_jhydrol_2017_07_017
crossref_primary_10_1016_j_jhydrol_2018_10_047
crossref_primary_10_1016_j_geoderma_2019_03_042
crossref_primary_10_1002_ece3_6271
crossref_primary_10_1016_j_still_2015_05_004
crossref_primary_10_1017_S1755691018000531
crossref_primary_10_1016_j_scitotenv_2022_153674
crossref_primary_10_1002_ldr_2503
crossref_primary_10_1002_ldr_3836
crossref_primary_10_1029_2018JB016117
crossref_primary_10_5194_soil_8_349_2022
crossref_primary_10_1016_j_catena_2023_107473
crossref_primary_10_1007_s42729_021_00744_1
crossref_primary_10_1016_j_still_2018_03_001
crossref_primary_10_1071_SR21183
crossref_primary_10_1016_j_scitotenv_2020_139852
crossref_primary_10_1002_hyp_13478
crossref_primary_10_1016_j_jclepro_2020_123091
crossref_primary_10_1016_j_jngse_2017_07_003
crossref_primary_10_1016_j_iswcr_2020_12_002
crossref_primary_10_1016_j_scitotenv_2019_01_022
crossref_primary_10_1016_j_ecoinf_2020_101204
crossref_primary_10_1016_j_palaeo_2024_112626
crossref_primary_10_1016_j_ejrh_2022_100992
crossref_primary_10_1016_j_scitotenv_2019_01_028
crossref_primary_10_2134_agronj2016_10_0579
crossref_primary_10_1088_1755_1315_476_1_012111
crossref_primary_10_1016_j_catena_2021_105302
crossref_primary_10_3390_ijerph14101285
crossref_primary_10_32604_jrm_2023_025436
crossref_primary_10_1016_j_geomorph_2021_107935
crossref_primary_10_3390_ijerph192417059
crossref_primary_10_1002_ldr_3814
crossref_primary_10_1007_s11629_018_5305_7
crossref_primary_10_1016_j_scitotenv_2021_145514
crossref_primary_10_1002_ldr_2969
crossref_primary_10_3390_w15112081
crossref_primary_10_1016_j_geoderma_2024_116837
crossref_primary_10_1016_j_landusepol_2022_106369
crossref_primary_10_3390_su151712992
crossref_primary_10_1002_hyp_10382
crossref_primary_10_1016_j_jhydrol_2023_129936
crossref_primary_10_1016_j_ecolind_2021_108188
crossref_primary_10_1002_esp_4531
crossref_primary_10_1080_03650340_2021_1994952
crossref_primary_10_1139_cjss_2022_0061
crossref_primary_10_3390_w13040538
crossref_primary_10_1016_j_scitotenv_2019_02_246
crossref_primary_10_1080_17480930_2016_1188253
crossref_primary_10_1007_s11368_019_02353_z
crossref_primary_10_1007_s40333_020_0009_6
crossref_primary_10_1016_j_ecolind_2024_111817
crossref_primary_10_3390_f12040510
crossref_primary_10_1016_j_agwat_2021_107404
crossref_primary_10_1016_j_ecolind_2024_111814
crossref_primary_10_3390_w6103012
crossref_primary_10_1016_j_scitotenv_2019_02_009
crossref_primary_10_3390_rs14215521
crossref_primary_10_1016_j_ecolind_2020_106985
crossref_primary_10_3390_f13030396
crossref_primary_10_1007_s42729_019_00046_7
crossref_primary_10_1007_s11069_024_06540_1
crossref_primary_10_1016_j_catena_2021_105734
crossref_primary_10_1016_j_scitotenv_2015_12_076
crossref_primary_10_3390_rs16234478
crossref_primary_10_3390_rs15030803
crossref_primary_10_1016_j_jrmge_2024_05_012
crossref_primary_10_1016_j_landusepol_2025_107541
crossref_primary_10_3390_w15112058
crossref_primary_10_2166_nh_2020_069
crossref_primary_10_1016_j_catena_2018_02_011
crossref_primary_10_1016_j_scitotenv_2023_169008
crossref_primary_10_1016_S2095_3119_16_61587_3
crossref_primary_10_1002_hyp_11432
crossref_primary_10_1016_j_jhydrol_2024_131099
crossref_primary_10_1016_j_habitatint_2024_103018
crossref_primary_10_1016_j_jhydrol_2020_125535
crossref_primary_10_1016_j_jhydrol_2023_129978
crossref_primary_10_5194_bg_13_4735_2016
crossref_primary_10_1175_JHM_D_21_0158_1
crossref_primary_10_1016_j_jenvman_2024_123940
crossref_primary_10_1002_hyp_14714
crossref_primary_10_1080_03650340_2020_1800641
crossref_primary_10_1016_j_ijsrc_2020_06_005
crossref_primary_10_54691_fsd_v3i11_5725
crossref_primary_10_1016_j_catena_2018_02_008
crossref_primary_10_3389_fevo_2023_1157981
crossref_primary_10_1016_j_catena_2016_02_010
crossref_primary_10_1016_j_scitotenv_2022_161015
crossref_primary_10_5194_se_6_311_2015
crossref_primary_10_1016_j_jhydrol_2020_125786
crossref_primary_10_1007_s00477_015_1058_9
crossref_primary_10_1016_j_scitotenv_2024_170515
crossref_primary_10_1016_j_catena_2020_104798
crossref_primary_10_1016_j_ecoleng_2018_11_018
crossref_primary_10_1016_j_ecoleng_2018_11_014
crossref_primary_10_1016_j_catena_2021_105925
crossref_primary_10_1016_j_still_2015_07_015
crossref_primary_10_3390_su12030934
crossref_primary_10_3390_w12051237
crossref_primary_10_1002_hyp_13634
crossref_primary_10_1007_s11707_019_0782_8
crossref_primary_10_3390_w13030303
crossref_primary_10_1016_j_catena_2018_05_009
crossref_primary_10_1007_s12665_018_7593_1
crossref_primary_10_1016_j_jhydrol_2014_07_014
crossref_primary_10_3390_rs15020380
crossref_primary_10_1002_joc_5416
crossref_primary_10_1016_j_palaeo_2025_112768
crossref_primary_10_3389_feart_2022_922013
crossref_primary_10_1016_j_scitotenv_2019_07_362
crossref_primary_10_1007_s11442_015_1179_6
crossref_primary_10_1007_s12517_021_06580_y
crossref_primary_10_1016_j_actao_2021_103744
crossref_primary_10_1016_j_geomorph_2015_04_020
crossref_primary_10_1016_j_ecolind_2021_107940
crossref_primary_10_1016_j_soildyn_2024_109205
crossref_primary_10_3390_ijerph16030491
crossref_primary_10_1016_j_geogeo_2021_100021
crossref_primary_10_1111_rec_13169
crossref_primary_10_3390_rs16183491
crossref_primary_10_1007_s11356_017_8371_4
crossref_primary_10_3390_su8070609
crossref_primary_10_1029_2019JG005198
crossref_primary_10_1016_j_scitotenv_2016_10_124
crossref_primary_10_1080_11263504_2017_1376721
crossref_primary_10_1016_j_envres_2023_118040
crossref_primary_10_1016_j_ecolind_2020_106558
crossref_primary_10_2478_johh_2020_0042
crossref_primary_10_1016_j_ejrh_2023_101485
crossref_primary_10_1007_s40333_016_0048_1
crossref_primary_10_1016_j_catena_2016_01_011
crossref_primary_10_1016_j_ijsrc_2020_07_008
crossref_primary_10_13047_KJEE_2020_34_5_413
crossref_primary_10_1016_j_landusepol_2019_05_014
crossref_primary_10_1016_j_jaridenv_2019_05_002
crossref_primary_10_1002_hyp_13834
crossref_primary_10_3390_su141912902
crossref_primary_10_5194_esd_13_795_2022
crossref_primary_10_1007_s40333_019_0031_8
crossref_primary_10_1016_j_ecolecon_2023_108103
crossref_primary_10_3390_w11051054
crossref_primary_10_1007_s11442_024_2233_z
crossref_primary_10_1016_j_gecco_2021_e01989
crossref_primary_10_1007_s10967_022_08675_6
crossref_primary_10_1038_s41598_017_02565_8
crossref_primary_10_1007_s11270_018_4052_2
crossref_primary_10_1016_j_jhydrol_2020_125727
crossref_primary_10_1029_2018JD029036
crossref_primary_10_3390_w15030574
crossref_primary_10_1002_esp_4361
crossref_primary_10_1016_j_agwat_2020_106434
crossref_primary_10_1016_j_ijsrc_2018_10_013
crossref_primary_10_1002_ldr_4031
Cites_doi 10.1016/S0169-555X(01)00118-0
10.1002/hyp.9504
10.1002/clen.201000319
10.1007/s11430-007-0137-2
10.1016/j.catena.2005.03.007
10.1002/ldr.1128
10.1029/2003WR002763
10.1016/j.catena.2010.07.006
10.1016/j.envsci.2006.08.003
10.1177/0309133307081290
10.1002/ldr.1156
10.1016/S0306-9192(97)00011-0
10.1016/S0921-8181(03)00020-1
10.1016/j.actao.2005.07.003
10.1002/ldr.2216
10.1016/j.catena.2009.05.001
10.1016/j.margeo.2004.06.009
10.1016/j.envsci.2003.12.002
10.1016/j.agrformet.2005.05.005
10.1371/journal.pone.0031782
10.1002/ldr.2183
10.1111/j.1526-100X.2007.00235.x
10.1016/S0160-4120(02)00192-7
10.1007/s12665-012-1766-0
10.1086/629175
10.1126/science.1111773
10.1016/j.gloplacha.2007.01.003
10.1007/s10668-005-1262-8
10.1016/j.catena.2010.08.006
10.1002/ldr.2199
10.1177/095968369400400311
10.1659/0276-4741(2004)024[0342:SEDOTC]2.0.CO;2
10.1007/s10113-010-0127-3
10.1111/j.1365-2664.2008.01605.x
10.1007/BF02837376
10.1029/98WR01659
10.1023/A:1022902914221
10.1016/S0921-8181(00)00037-0
10.1016/j.geomorph.2011.07.032
10.1002/ldr.1071
10.1002/ldr.2164
10.4141/S97-060
10.1029/2007WR006711
10.1016/j.palaeo.2006.04.009
10.1890/09-0229.1
10.1073/pnas.0611508104
10.1002/ldr.663
10.1002/(SICI)1099-145X(199703)8:1<1::AID-LDR240>3.0.CO;2-X
10.1016/j.catena.2005.06.001
10.1007/s10113-005-0004-7
10.1016/j.ecocom.2011.07.003
10.1007/s00267-004-3094-y
10.1002/ldr.1050
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/ldr.2246
DatabaseName Istex
CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1099-145X
EndPage 510
ExternalDocumentID 3095056621
10_1002_ldr_2246
LDR2246
ark_67375_WNG_JQL9M40W_C
Genre article
GrantInformation_xml – fundername: Key Project of the National Science and Technology Ministry
  funderid: No. 2012BAB02B05
– fundername: Key Research Program of the Chinese Academy of Sciences
  funderid: No. KZZD‐EW‐04
– fundername: National Natural Sciences Foundation of China
  funderid: Nos.: 41201266, 41271295
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AGHSJ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
ECGQY
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7ST
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-a4206-8ec7390e6711b493ef6df83b4c5fec2e95816afcc2d96abe63e90074377859c3
IEDL.DBID DR2
ISSN 1085-3278
IngestDate Fri Jul 25 12:24:59 EDT 2025
Tue Jul 01 00:36:40 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
Wed Jan 22 16:34:37 EST 2025
Wed Oct 30 09:56:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4206-8ec7390e6711b493ef6df83b4c5fec2e95816afcc2d96abe63e90074377859c3
Notes istex:B6E61F83A83E99EA94052C143CA40EF8070918B3
ArticleID:LDR2246
Key Research Program of the Chinese Academy of Sciences - No. KZZD-EW-04
National Natural Sciences Foundation of China - No. Nos.: 41201266, 41271295
Key Project of the National Science and Technology Ministry - No. 2012BAB02B05
ark:/67375/WNG-JQL9M40W-C
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1440883086
PQPubID 1016359
PageCount 12
ParticipantIDs proquest_journals_1440883086
crossref_citationtrail_10_1002_ldr_2246
crossref_primary_10_1002_ldr_2246
wiley_primary_10_1002_ldr_2246_LDR2246
istex_primary_ark_67375_WNG_JQL9M40W_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09
September/October 2013
2013-09-00
20130901
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Land degradation & development
PublicationTitleAlternate Land Degrad. Develop
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Cao WH, Hu HH, Ji ZW. 2007. Study on relative stability of check dam system. Journal of Hydraulic Engineering 38: 606-610 (In Chinese with English abstract).
He XB, Tang KL, Zhang XB. 2004. Soil erosion dynamics on the Chinese Loess Plateau in the last 10,000 years. Mountain Research and Development 24: 342-347.
Zhang XB, Walling DE, Quine TA, Wen AB. 1997. Use of reservoir deposits and caesium-137 measurements to investigate the erosional response of a small drainage basin in the rolling Loess Plateau Region of China. Land Degradation & Development 8: 1-16.
Ren ME, Zhu XM. 1994. Anthropogenic influences on changes in the sediment load of the Yellow River, China, during the Holocene. The Holocene 4: 314-320.
Tang KL, Zhang P, Wang B. 1991. Soil erosion and eco-environment changes in Quaternary. Quaternary Research 4: 49-56 (In Chinese with English abstract).
Liu DS. 1985. Loess and the environmental. Science Press: Beijing. 64-80 (In Chinese).
Zhang XB, Walling DE, He XB, Long Y. 2009. Use of landslide-dammed lake deposits and pollen tracing techniques to investigate the erosional response of a small drainage basin in the Loess Plateau, China, to land use change during the late 16th century. Catena 79: 205-213.
Wang D. 1991. History of climatic change and its predicting in middle of China. Meteorology Press: Beijing (In Chinese).
Vanacker V, Govers G, Barros S, Poesen J, Deckers J. 2003. The effect of short-term socio-economic and demographic change on land use dynamics and its corresponding geomorphic response with relation to water erosion in a tropical mountainous catchment, Ecuador. Landscape Ecology 18: 1-15.
Milliman JD, Qin YS, Ren ME, Saito Y. 1987. Man's influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example. Journal of Geology 95: 751-762.
Wang HJ, Yang ZS, Saito Y, Liu JP, Sun XX, Wang Y. 2007. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): impacts of climate change and human activities. Global and Planetary Change 57: 331-354.
Mu XM, Zhang XQ, Shao HB, Gao P, Wang F, Jiao JY, Zhu JL. 2012. Dynamic changes of sediment discharge and the influencing factors in the Yellow River, China, for the recent 90 years. Clean-Soil Air Water 40: 303-309.
Pan XD, Li Y, Zhang XH, Shen GQ, Yue DJ. 2006. The fluvial process in the lower Yellow River after completion of Sanmenxia Reservoir. Yellow River Water Resources Press: Zhengzhou; 458 (In Chinese).
Zhao GJ, Mu XM, Tian P, Wang F, Gao P. 2012. The variation trend of streamflow and sediment flux in the middle reaches of Yellow River over the past 60 years and the influencing factors. Resources Science 34: 1070-1078 (In Chinese).
Yao WY, Xu JH, Ran DC. 2011. Assessment of changing trends in streamflow and sediment fluxes in the Yellow River basin. Yellow River Conservancy Press: Zhengzhou (In Chinese).
He XB, Zhou J, Zhang XB, Tang KL. 2006. Soil erosion response to climatic change and human activity during the Quaternary on the Loess Plateau, China. Regional Environmental Change 6: 62-70.
Liu DS, Ding ML. 2004. The Loess Plateau, origin of agriculture and water and soil conservation. Earthquake Press: Beijing, China (In Chinese).
Cerdà A. 1999. Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions. Water Resources Research 35(1): 319-328.
Zhou P, Wen AB, Zhang XB, He XB. 2013. Soil conservation and sustainable eco-environment in the Loess Plateau of China. Environmental Earth Sciences 68: 633-639.
Zhao W. 1996. The Yellow River's sediment. Huanghe Water Conservancy Press: Zhengzhou (in Chinese).
Lal R. 2003. Soil erosion and the global carbon budget. Environment International 29: 437-450.
Lamb D, Erskine PD, Parrotta JA. 2005. Restoration of degraded tropical forest landscapes. Sciece 310: 1628-1632.
Chen LD, Wei W, Fu BJ, Lu YH. 2007. Soil and water conservation on the Loess Plateau in China: review and perspective. Progress in Physical Geography 31: 389-403.
König HJ, Zhen L, Helming K, Uthes S, Yang L, Cao X, Wiggering H. 2013. Assessing the impact of the sloping land conservation programme on rural sustainability in Guyuan, western China. Land Degradation & Development. DOI: 10.1002/ldr.2164 (In Press)
Feng ZD, Tang LY, Wang HB, Ma YZ, Liu KB. 2006. Holocene vegetation variations and the associated environmental changes in the western part of the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 241: 440-456.
Pimentel D. 2006. Soil erosion: a food and environmental threat. Environment, Development and Sustatinability 8: 119-137.
Xu XZ, Zhang HW, Zhang OY. 2004. Development of check-dam systems in gullies on the Loess Plateau, China. Environmental Science & Policy 7: 79-86.
Peng J, Chen SL, Dong P. 2010. Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta. Catena 83: 135-147.
Gao XD, Wu PT, Zhao XN, Wang J, Shi Y. 2013. Effects of land use on soil moisture variation in a semi-arid catchment: implications for land and agricultural water management. Land Degradation & Development. DOI: 10.1002/ldr.1156
Wang L, Shao MA, Wang QJ, Gale WJ. 2006. Historical changes in the environment of the Chinese Loess Plateau. Environmental Science & Policy 9: 675-684.
Ma YX, Huang HQ, Nanson GC, Li Y, Yao WY. 2012. Channel adjustments in response to the operation of large dams: the upper reach of the lower Yellow River. Geomorphology 147: 35-48.
Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols MH, Nunes JP, Renschler CS, Souchere V, van Oost K. 2005. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61: 131-154.
Tang KL. 2004. Soil and water conservation in China. Science Press: Beijing (In Chinese).
Xu JH, Li XM, Zhang PD, Lin YP. 1998. Delimitation of coarse sediment and study on overlap of coarse sediment and sediment abundant areas in the middle Yellow River basin. Journal of Sediment Research 4: 36-46 (In Chinese).
Zhao XN, Wu PT, Gao XD. 2013b. Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China. Land Degradation & Development. DOI: 10.1002/ldr.2199
Liu JP, Milliman JD, Gao S, Cheng P. 2004. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Marine Geology 209: 182-191.
Wang TM, Wu JG, Kou XJ, Oliver C, Mou P, Ge JP. 2010. Ecologically asynchronous agricultural practice erodes sustainability of the Loess Plateau of China. Ecological Applications 20: 1126-1135.
Walling DE, Fang D. 2003. Recent trends in the suspended sediment loads of the world's rivers. Global and Planetary Change 39: 111-126.
Yang DW, Li C, Hu HP, Lei ZD, Yang SX, Kusuda T, Koike T, Musiake K. 2004. Analysis of water resources variability in the Yellow River of China during the last half century using historical data. Water Resources Research 40: w06502. DOI: 10.1029/2003WR002763
Cao SX, Chen L, Yu XX. 2009. Impact of China's grain for green project on the landscape of vulnerable arid and semi-arid agricultural regions: a case study in northern Shaanxi Province. Journal of Applied Ecology 46: 536-543.
Montgomery DR. 2007. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America 104: 13268-13272.
Valentin C, Poesen J, Li Y. 2005. Gully erosion: Impacts, factors and control. Catena 63: 132-153.
Saito Y, Yang ZS, Hori K. 2001. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology 41: 219-231.
NDRC, MWR, MA and SFA. National Development and Reform Commission, Ministry of Water Resources, Ministry of Agriculture and State Forestry Administration, People's Republic of China. 2010. Programming for Comprehensive Management of the Loess Plateau (2010-2030) 69: 8-10.
Cerdà A. 1998. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science 78: 321-330.
Fu BJ, Liu Y, Lu YH, He CS, Zeng Y, Wu BF. 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity 8: 284-293.
Jiao JY, Tzanopoulos J, Xofis P, Bai WJ, Ma XH, Mitchley J. 2007. Can the study of natural vegetation succession assist in the control of soil erosion on abandoned croplands on the Loess Plateau, China? Restoration Ecology 15: 391-399.
Wang YQ, Shao MA. 2013. Spatial variability of soil physical properties in a region of the Loess Plateau of PR China subject to wind and water erosion. Land Degradation & Development 24(3): 296-304. DOI: 10.1002/ldr.1128
Wang X, Chen FH, Dong Z, Xia D. 2005. Evolution of the southern Mu US desert in north China over the past 50 years: an analysis using proxies of human activity and climate parameters. Land Degradation & Development 16(4): 351-366. DOI: 10.1002/ldr.663
Fan X, Pedroli B, Liu G, Liu Q, Liu H, Shu L. 2012. Soil salinity development in the yellow river delta in relation to groundwater dynamics. Land Degradation & Development 23(2): 175-189. DOI: 10.1002/ldr.1071
Miao CY, Yang L, Chen XH, Gao Y. 2012. The vegetation cover dynamics (1982-2006) in different erosion regions of the Yellow River basin, China. Land Degradation & Development 23(1): 62-71. DOI: 10.1002/ldr.1050
Rozelle S, Huang JK, Zhang LX. 1997. Poverty, population and environmental degradation in China. Food Policy 22: 229-251.
Cai QG. 2001. Soil erosion and management on the Loess Plateau. Journal of Geographical Sciences 11: 53-70.
Kimura R, Fan J, Zhang XC, Takayama N, Kamichika M, Matsuoka N. 2006. Evapotranspiration over the grassland field in the Liudaogou Basin of the Loess Plateau, China. Acta Oecologica-International Journal of Ecology 29: 45-53.
Zhu XM. 1989. Soil and agircuture on the Loess Plateau. Agricultural Press: Beijing, China (In Chinese).
Zhang X
2007; 104
2009; 46
2005; 131
2013; 24
2013; 68
2004; 7
2004; 24
2005; 63
2011; 11
2003; 18
2005; 61
2007; 31
2001; 41
2007; 38
2004; 209
1997; 8
2010; 20
2010; 69
2000
2006; 29
1985
2006; 241
2001; 11
2012; 23
2005; 35
1989
1991; 4
2004; 40
1987; 95
2009; 64
1997; 22
2000; 26
2011
2005; 310
2006; 9
2006; 8
1996
2006; 6
2006
2003; 39
2004
2013b
2013a
1991
2012; 147
2008; 51
2012; 34
2011; 8
2007; 57
2007; 15
2010; 83
2009; 79
1999; 35
2009; 7
2003; 29
2008; 44
2013
2012; 7
2005; 16
1998; 4
1998; 78
1994; 4
2012; 40
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
Xu JH (e_1_2_7_57_1) 1998; 4
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
Cao WH (e_1_2_7_3_1) 2007; 38
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_28_1
Tang KL (e_1_2_7_39_1) 2004
Liu DS (e_1_2_7_22_1) 2004
NDRC (e_1_2_7_31_1) 2010; 69
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_54_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_6_1
e_1_2_7_4_1
Yao WY (e_1_2_7_60_1) 2011
Zhu XM (e_1_2_7_70_1) 1989
e_1_2_7_8_1
Wang F (e_1_2_7_49_1) 2009; 7
Liu DS (e_1_2_7_21_1) 1985
e_1_2_7_18_1
Zhao W (e_1_2_7_65_1) 1996
e_1_2_7_16_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
Wang D (e_1_2_7_44_1) 1991
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Tang KL (e_1_2_7_40_1) 1991; 4
Xu JX (e_1_2_7_56_1) 2009; 64
Pan XD (e_1_2_7_33_1) 2006
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
Xin ZB (e_1_2_7_53_1) 2008; 51
e_1_2_7_59_1
e_1_2_7_38_1
Lu ZD (e_1_2_7_24_1) 2000
Zhao GJ (e_1_2_7_66_1) 2012; 34
References_xml – reference: Cao SX, Chen L, Yu XX. 2009. Impact of China's grain for green project on the landscape of vulnerable arid and semi-arid agricultural regions: a case study in northern Shaanxi Province. Journal of Applied Ecology 46: 536-543.
– reference: Peng J, Chen SL, Dong P. 2010. Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta. Catena 83: 135-147.
– reference: Xu JX. 2009. A study of sediment sink between Longmen and Sanmenxia on the Yellow River. Acta Geographica sinica 64(5): 515-530.
– reference: Miao CY, Yang L, Chen XH, Gao Y. 2012. The vegetation cover dynamics (1982-2006) in different erosion regions of the Yellow River basin, China. Land Degradation & Development 23(1): 62-71. DOI: 10.1002/ldr.1050
– reference: Feng ZD, Tang LY, Wang HB, Ma YZ, Liu KB. 2006. Holocene vegetation variations and the associated environmental changes in the western part of the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 241: 440-456.
– reference: Wang YQ, Shao MA. 2013. Spatial variability of soil physical properties in a region of the Loess Plateau of PR China subject to wind and water erosion. Land Degradation & Development 24(3): 296-304. DOI: 10.1002/ldr.1128
– reference: Wang N, Jiao JY, Lei D, Chen Y, Wang DL. 2013. Effect of rainfall erosion: seeding damage and establishment problems. Land Degradation & Development. DOI: 10.1002/ldr.2183 (In Press)
– reference: Lamb D, Erskine PD, Parrotta JA. 2005. Restoration of degraded tropical forest landscapes. Sciece 310: 1628-1632.
– reference: Wen ZM, Lees BG, Jiao F, Lei WN, Shi HJ. 2010. Stratified vegetation cover index: a new way to assess vegetation impact on soil erosion. Catena 83: 87-93.
– reference: Xu JX. 2005. The water fluxes of the Yellow River to the sea in the past 50 years, in response to climate change and human activities. Environmental Management 35: 620-631.
– reference: Lu ZD. 2000 Guild of western development of China. China Society Press: Beijing (in Chinese).
– reference: Guo ZT, Petit-Maire N, Kropelin S. 2000. Holocene non-orbital climatic events in present-day arid areas of Northern Africa and China. Global and Planetary Change 26: 97-103.
– reference: Xu XZ, Zhang HW, Zhang OY. 2004. Development of check-dam systems in gullies on the Loess Plateau, China. Environmental Science & Policy 7: 79-86.
– reference: Kiernan K. 2013. Nature, severity and persistence of geomorphological damage caused by armed conflict. Land Degradation & Development. DOI: 10.1002/ldr.2216
– reference: Zhao W. 1996. The Yellow River's sediment. Huanghe Water Conservancy Press: Zhengzhou (in Chinese).
– reference: Pimentel D. 2006. Soil erosion: a food and environmental threat. Environment, Development and Sustatinability 8: 119-137.
– reference: Ma YX, Huang HQ, Nanson GC, Li Y, Yao WY. 2012. Channel adjustments in response to the operation of large dams: the upper reach of the lower Yellow River. Geomorphology 147: 35-48.
– reference: Ren ME, Zhu XM. 1994. Anthropogenic influences on changes in the sediment load of the Yellow River, China, during the Holocene. The Holocene 4: 314-320.
– reference: Lal R. 2003. Soil erosion and the global carbon budget. Environment International 29: 437-450.
– reference: NDRC, MWR, MA and SFA. National Development and Reform Commission, Ministry of Water Resources, Ministry of Agriculture and State Forestry Administration, People's Republic of China. 2010. Programming for Comprehensive Management of the Loess Plateau (2010-2030) 69: 8-10.
– reference: Jiao JY, Tzanopoulos J, Xofis P, Bai WJ, Ma XH, Mitchley J. 2007. Can the study of natural vegetation succession assist in the control of soil erosion on abandoned croplands on the Loess Plateau, China? Restoration Ecology 15: 391-399.
– reference: Yang DW, Li C, Hu HP, Lei ZD, Yang SX, Kusuda T, Koike T, Musiake K. 2004. Analysis of water resources variability in the Yellow River of China during the last half century using historical data. Water Resources Research 40: w06502. DOI: 10.1029/2003WR002763
– reference: Tang KL. 2004. Soil and water conservation in China. Science Press: Beijing (In Chinese).
– reference: Xin ZB, Xu JX, Zheng W. 2008. Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981-2006): Impacts of climate changes and human activities. Science in China Series D-Earth Sciences 51: 67-78.
– reference: Lü YH, Fu BJ, Feng XM, Zeng Y, Liu Y, Chang RY, Sun G, Wu BF. 2012. A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China. Plos One 7(2): e31782. DOI: 10.1371/journal.pone.0031782
– reference: Zhou P, Wen AB, Zhang XB, He XB. 2013. Soil conservation and sustainable eco-environment in the Loess Plateau of China. Environmental Earth Sciences 68: 633-639.
– reference: Wang F, Li R, Yang QK, Jiao JY. 2009. Policy development of soil and water conservation in the Loess Plateau. Science of Soil and Water Conservation 7: 103-107 (In Chinese with English abstract).
– reference: Zhao XN, Wu PT, Gao XD. 2013b. Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China. Land Degradation & Development. DOI: 10.1002/ldr.2199
– reference: Gao XD, Wu PT, Zhao XN, Wang J, Shi Y. 2013. Effects of land use on soil moisture variation in a semi-arid catchment: implications for land and agricultural water management. Land Degradation & Development. DOI: 10.1002/ldr.1156
– reference: Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols MH, Nunes JP, Renschler CS, Souchere V, van Oost K. 2005. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61: 131-154.
– reference: Zhang XP, Zhang L, Zhao J, Rustomji P, Hairsine P. 2008. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resources Research 44: W00A07. DOI: 10.1029/2007WR006711
– reference: Pan XD, Li Y, Zhang XH, Shen GQ, Yue DJ. 2006. The fluvial process in the lower Yellow River after completion of Sanmenxia Reservoir. Yellow River Water Resources Press: Zhengzhou; 458 (In Chinese).
– reference: Valentin C, Poesen J, Li Y. 2005. Gully erosion: Impacts, factors and control. Catena 63: 132-153.
– reference: Vanacker V, Govers G, Barros S, Poesen J, Deckers J. 2003. The effect of short-term socio-economic and demographic change on land use dynamics and its corresponding geomorphic response with relation to water erosion in a tropical mountainous catchment, Ecuador. Landscape Ecology 18: 1-15.
– reference: König HJ, Zhen L, Helming K, Uthes S, Yang L, Cao X, Wiggering H. 2013. Assessing the impact of the sloping land conservation programme on rural sustainability in Guyuan, western China. Land Degradation & Development. DOI: 10.1002/ldr.2164 (In Press)
– reference: Montgomery DR. 2007. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America 104: 13268-13272.
– reference: Kimura R, Fan J, Zhang XC, Takayama N, Kamichika M, Matsuoka N. 2006. Evapotranspiration over the grassland field in the Liudaogou Basin of the Loess Plateau, China. Acta Oecologica-International Journal of Ecology 29: 45-53.
– reference: Mu XM, Zhang XQ, Shao HB, Gao P, Wang F, Jiao JY, Zhu JL. 2012. Dynamic changes of sediment discharge and the influencing factors in the Yellow River, China, for the recent 90 years. Clean-Soil Air Water 40: 303-309.
– reference: Cerdà A. 1998. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science 78: 321-330.
– reference: Wang HJ, Yang ZS, Saito Y, Liu JP, Sun XX, Wang Y. 2007. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): impacts of climate change and human activities. Global and Planetary Change 57: 331-354.
– reference: Wang D. 1991. History of climatic change and its predicting in middle of China. Meteorology Press: Beijing (In Chinese).
– reference: Milliman JD, Qin YS, Ren ME, Saito Y. 1987. Man's influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example. Journal of Geology 95: 751-762.
– reference: Zhao GJ, Mu XM, Tian P, Wang F, Gao P. 2012. The variation trend of streamflow and sediment flux in the middle reaches of Yellow River over the past 60 years and the influencing factors. Resources Science 34: 1070-1078 (In Chinese).
– reference: Xu JH, Li XM, Zhang PD, Lin YP. 1998. Delimitation of coarse sediment and study on overlap of coarse sediment and sediment abundant areas in the middle Yellow River basin. Journal of Sediment Research 4: 36-46 (In Chinese).
– reference: Zhang XB, Walling DE, Quine TA, Wen AB. 1997. Use of reservoir deposits and caesium-137 measurements to investigate the erosional response of a small drainage basin in the rolling Loess Plateau Region of China. Land Degradation & Development 8: 1-16.
– reference: Fu BJ, Liu Y, Lu YH, He CS, Zeng Y, Wu BF. 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity 8: 284-293.
– reference: Tang KL, Zhang P, Wang B. 1991. Soil erosion and eco-environment changes in Quaternary. Quaternary Research 4: 49-56 (In Chinese with English abstract).
– reference: He XB, Zhou J, Zhang XB, Tang KL. 2006. Soil erosion response to climatic change and human activity during the Quaternary on the Loess Plateau, China. Regional Environmental Change 6: 62-70.
– reference: Cerdà A. 1999. Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions. Water Resources Research 35(1): 319-328.
– reference: Xin ZB, Yu XX, Li QY, Lu XX. 2011. Spatiotemporal variation in rainfall erosivity on the Chinese Loess Plateau during the period 1956-2008. Regional Environmental Change 11: 149-159.
– reference: Cao WH, Hu HH, Ji ZW. 2007. Study on relative stability of check dam system. Journal of Hydraulic Engineering 38: 606-610 (In Chinese with English abstract).
– reference: Fan X, Pedroli B, Liu G, Liu Q, Liu H, Shu L. 2012. Soil salinity development in the yellow river delta in relation to groundwater dynamics. Land Degradation & Development 23(2): 175-189. DOI: 10.1002/ldr.1071
– reference: Liu DS, Ding ML. 2004. The Loess Plateau, origin of agriculture and water and soil conservation. Earthquake Press: Beijing, China (In Chinese).
– reference: Chen LD, Wei W, Fu BJ, Lu YH. 2007. Soil and water conservation on the Loess Plateau in China: review and perspective. Progress in Physical Geography 31: 389-403.
– reference: Liu JP, Milliman JD, Gao S, Cheng P. 2004. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Marine Geology 209: 182-191.
– reference: Saito Y, Yang ZS, Hori K. 2001. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology 41: 219-231.
– reference: Cai QG. 2001. Soil erosion and management on the Loess Plateau. Journal of Geographical Sciences 11: 53-70.
– reference: Walling DE, Fang D. 2003. Recent trends in the suspended sediment loads of the world's rivers. Global and Planetary Change 39: 111-126.
– reference: Wang TM, Wu JG, Kou XJ, Oliver C, Mou P, Ge JP. 2010. Ecologically asynchronous agricultural practice erodes sustainability of the Loess Plateau of China. Ecological Applications 20: 1126-1135.
– reference: Yao WY, Xu JH, Ran DC. 2011. Assessment of changing trends in streamflow and sediment fluxes in the Yellow River basin. Yellow River Conservancy Press: Zhengzhou (In Chinese).
– reference: He XB, Tang KL, Zhang XB. 2004. Soil erosion dynamics on the Chinese Loess Plateau in the last 10,000 years. Mountain Research and Development 24: 342-347.
– reference: Rozelle S, Huang JK, Zhang LX. 1997. Poverty, population and environmental degradation in China. Food Policy 22: 229-251.
– reference: Wang L, Shao MA, Wang QJ, Gale WJ. 2006. Historical changes in the environment of the Chinese Loess Plateau. Environmental Science & Policy 9: 675-684.
– reference: Zhang XB, Walling DE, He XB, Long Y. 2009. Use of landslide-dammed lake deposits and pollen tracing techniques to investigate the erosional response of a small drainage basin in the Loess Plateau, China, to land use change during the late 16th century. Catena 79: 205-213.
– reference: Wang X, Chen FH, Dong Z, Xia D. 2005. Evolution of the southern Mu US desert in north China over the past 50 years: an analysis using proxies of human activity and climate parameters. Land Degradation & Development 16(4): 351-366. DOI: 10.1002/ldr.663
– reference: Zhao GJ, Mu XM, Tian P, Wang F, Gao P. 2013a. Climate changes and their impacts on water resources in semiarid regions: a case study of the Wei River basin, China. Hydrological Processes. DOI: 10.1002/hyp.9504
– reference: Liu DS. 1985. Loess and the environmental. Science Press: Beijing. 64-80 (In Chinese).
– reference: Zhang XC, Liu WZ. 2005. Simulating potential response of hydrology, soil erosion, and crop productivity to climate change in Changwu tableland region on the Loess Plateau of China. Agricultural and Forest Meteorology 131: 127-142.
– reference: Zhu XM. 1989. Soil and agircuture on the Loess Plateau. Agricultural Press: Beijing, China (In Chinese).
– year: 2011
– volume: 209
  start-page: 182
  year: 2004
  end-page: 191
  article-title: Holocene development of the Yellow River's subaqueous delta, North Yellow Sea
  publication-title: Marine Geology
– volume: 4
  start-page: 314
  year: 1994
  end-page: 320
  article-title: Anthropogenic influences on changes in the sediment load of the Yellow River, China, during the Holocene
  publication-title: The Holocene
– volume: 68
  start-page: 633
  year: 2013
  end-page: 639
  article-title: Soil conservation and sustainable eco‐environment in the Loess Plateau of China
  publication-title: Environmental Earth Sciences
– volume: 241
  start-page: 440
  year: 2006
  end-page: 456
  article-title: Holocene vegetation variations and the associated environmental changes in the western part of the Chinese Loess Plateau
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
– volume: 40
  year: 2004
  article-title: Analysis of water resources variability in the Yellow River of China during the last half century using historical data
  publication-title: Water Resources Research
– volume: 23
  start-page: 62
  issue: 1
  year: 2012
  end-page: 71
  article-title: The vegetation cover dynamics (1982–2006) in different erosion regions of the Yellow River basin, China
  publication-title: Land Degradation & Development
– volume: 69
  start-page: 8
  year: 2010
  end-page: 10
  article-title: National Development and Reform Commission, Ministry of Water Resources, Ministry of Agriculture and State Forestry Administration, People's Republic of China
  publication-title: Programming for Comprehensive Management of the Loess Plateau (2010–2030)
– volume: 4
  start-page: 49
  year: 1991
  end-page: 56
  article-title: Soil erosion and eco‐environment changes in Quaternary
  publication-title: Quaternary Research
– year: 2013
  article-title: Effect of rainfall erosion: seeding damage and establishment problems
  publication-title: Land Degradation & Development
– year: 1989
– volume: 29
  start-page: 45
  year: 2006
  end-page: 53
  article-title: Evapotranspiration over the grassland field in the Liudaogou Basin of the Loess Plateau, China
  publication-title: Acta Oecologica‐International Journal of Ecology
– volume: 26
  start-page: 97
  year: 2000
  end-page: 103
  article-title: Holocene non‐orbital climatic events in present‐day arid areas of Northern Africa and China
  publication-title: Global and Planetary Change
– volume: 39
  start-page: 111
  year: 2003
  end-page: 126
  article-title: Recent trends in the suspended sediment loads of the world's rivers
  publication-title: Global and Planetary Change
– volume: 9
  start-page: 675
  year: 2006
  end-page: 684
  article-title: Historical changes in the environment of the Chinese Loess Plateau
  publication-title: Environmental Science & Policy
– volume: 16
  start-page: 351
  issue: 4
  year: 2005
  end-page: 366
  article-title: Evolution of the southern Mu US desert in north China over the past 50 years: an analysis using proxies of human activity and climate parameters
  publication-title: Land Degradation & Development
– volume: 83
  start-page: 87
  year: 2010
  end-page: 93
  article-title: Stratified vegetation cover index: a new way to assess vegetation impact on soil erosion
  publication-title: Catena
– volume: 104
  start-page: 13268
  year: 2007
  end-page: 13272
  article-title: Soil erosion and agricultural sustainability
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 83
  start-page: 135
  year: 2010
  end-page: 147
  article-title: Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta
  publication-title: Catena
– volume: 8
  start-page: 284
  year: 2011
  end-page: 293
  article-title: Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China
  publication-title: Ecological Complexity
– volume: 7
  start-page: 103
  year: 2009
  end-page: 107
  article-title: Policy development of soil and water conservation in the Loess Plateau
  publication-title: Science of Soil and Water Conservation
– volume: 20
  start-page: 1126
  year: 2010
  end-page: 1135
  article-title: Ecologically asynchronous agricultural practice erodes sustainability of the Loess Plateau of China
  publication-title: Ecological Applications
– volume: 310
  start-page: 1628
  year: 2005
  end-page: 1632
  article-title: Restoration of degraded tropical forest landscapes
  publication-title: Sciece
– volume: 57
  start-page: 331
  year: 2007
  end-page: 354
  article-title: Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): impacts of climate change and human activities
  publication-title: Global and Planetary Change
– volume: 46
  start-page: 536
  year: 2009
  end-page: 543
  article-title: Impact of China's grain for green project on the landscape of vulnerable arid and semi‐arid agricultural regions: a case study in northern Shaanxi Province
  publication-title: Journal of Applied Ecology
– volume: 63
  start-page: 132
  year: 2005
  end-page: 153
  article-title: Gully erosion: Impacts, factors and control
  publication-title: Catena
– year: 2013b
  article-title: Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China
  publication-title: Land Degradation & Development
– volume: 35
  start-page: 319
  issue: 1
  year: 1999
  end-page: 328
  article-title: Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions
  publication-title: Water Resources Research
– volume: 51
  start-page: 67
  year: 2008
  end-page: 78
  article-title: Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981–2006): Impacts of climate changes and human activities
  publication-title: Science in China Series D‐Earth Sciences
– volume: 78
  start-page: 321
  year: 1998
  end-page: 330
  article-title: The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain
  publication-title: Canadian Journal of Soil Science
– year: 2004
– volume: 44
  year: 2008
  article-title: Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China
  publication-title: Water Resources Research
– volume: 23
  start-page: 175
  issue: 2
  year: 2012
  end-page: 189
  article-title: Soil salinity development in the yellow river delta in relation to groundwater dynamics
  publication-title: Land Degradation & Development
– start-page: 64
  year: 1985
  end-page: 80
– volume: 8
  start-page: 119
  year: 2006
  end-page: 137
  article-title: Soil erosion: a food and environmental threat
  publication-title: Environment, Development and Sustatinability
– volume: 24
  start-page: 296
  issue: 3
  year: 2013
  end-page: 304
  article-title: Spatial variability of soil physical properties in a region of the Loess Plateau of PR China subject to wind and water erosion
  publication-title: Land Degradation & Development
– volume: 61
  start-page: 131
  year: 2005
  end-page: 154
  article-title: Modeling response of soil erosion and runoff to changes in precipitation and cover
  publication-title: Catena
– volume: 8
  start-page: 1
  year: 1997
  end-page: 16
  article-title: Use of reservoir deposits and caesium‐137 measurements to investigate the erosional response of a small drainage basin in the rolling Loess Plateau Region of China
  publication-title: Land Degradation & Development
– year: 2013a
  article-title: Climate changes and their impacts on water resources in semiarid regions: a case study of the Wei River basin, China
  publication-title: Hydrological Processes
– volume: 4
  start-page: 36
  year: 1998
  end-page: 46
  article-title: Delimitation of coarse sediment and study on overlap of coarse sediment and sediment abundant areas in the middle Yellow River basin
  publication-title: Journal of Sediment Research
– volume: 79
  start-page: 205
  year: 2009
  end-page: 213
  article-title: Use of landslide‐dammed lake deposits and pollen tracing techniques to investigate the erosional response of a small drainage basin in the Loess Plateau, China, to land use change during the late 16th century
  publication-title: Catena
– volume: 18
  start-page: 1
  year: 2003
  end-page: 15
  article-title: The effect of short‐term socio‐economic and demographic change on land use dynamics and its corresponding geomorphic response with relation to water erosion in a tropical mountainous catchment, Ecuador
  publication-title: Landscape Ecology
– volume: 29
  start-page: 437
  year: 2003
  end-page: 450
  article-title: Soil erosion and the global carbon budget
  publication-title: Environment International
– volume: 64
  start-page: 515
  issue: 5
  year: 2009
  end-page: 530
  article-title: A study of sediment sink between Longmen and Sanmenxia on the Yellow River
  publication-title: Acta Geographica sinica
– year: 2013
  article-title: Effects of land use on soil moisture variation in a semi‐arid catchment: implications for land and agricultural water management
  publication-title: Land Degradation & Development
– volume: 35
  start-page: 620
  year: 2005
  end-page: 631
  article-title: The water fluxes of the Yellow River to the sea in the past 50 years, in response to climate change and human activities
  publication-title: Environmental Management
– volume: 24
  start-page: 342
  year: 2004
  end-page: 347
  article-title: Soil erosion dynamics on the Chinese Loess Plateau in the last 10,000 years
  publication-title: Mountain Research and Development
– volume: 38
  start-page: 606
  year: 2007
  end-page: 610
  article-title: Study on relative stability of check dam system
  publication-title: Journal of Hydraulic Engineering
– volume: 31
  start-page: 389
  year: 2007
  end-page: 403
  article-title: Soil and water conservation on the Loess Plateau in China: review and perspective
  publication-title: Progress in Physical Geography
– year: 2000
– year: 1996
– volume: 95
  start-page: 751
  year: 1987
  end-page: 762
  article-title: Man's influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example
  publication-title: Journal of Geology
– volume: 6
  start-page: 62
  year: 2006
  end-page: 70
  article-title: Soil erosion response to climatic change and human activity during the Quaternary on the Loess Plateau, China
  publication-title: Regional Environmental Change
– volume: 147
  start-page: 35
  year: 2012
  end-page: 48
  article-title: Channel adjustments in response to the operation of large dams: the upper reach of the lower Yellow River
  publication-title: Geomorphology
– volume: 7
  issue: 2
  year: 2012
  article-title: A policy‐driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China
  publication-title: Plos One
– year: 2013
  article-title: Assessing the impact of the sloping land conservation programme on rural sustainability in Guyuan, western China
  publication-title: Land Degradation & Development
– volume: 131
  start-page: 127
  year: 2005
  end-page: 142
  article-title: Simulating potential response of hydrology, soil erosion, and crop productivity to climate change in Changwu tableland region on the Loess Plateau of China
  publication-title: Agricultural and Forest Meteorology
– start-page: 458
  year: 2006
– volume: 40
  start-page: 303
  year: 2012
  end-page: 309
  article-title: Dynamic changes of sediment discharge and the influencing factors in the Yellow River, China, for the recent 90 years
  publication-title: Clean‐Soil Air Water
– year: 2013
  article-title: Nature, severity and persistence of geomorphological damage caused by armed conflict
  publication-title: Land Degradation & Development
– volume: 15
  start-page: 391
  year: 2007
  end-page: 399
  article-title: Can the study of natural vegetation succession assist in the control of soil erosion on abandoned croplands on the Loess Plateau, China?
  publication-title: Restoration Ecology
– volume: 34
  start-page: 1070
  year: 2012
  end-page: 1078
  article-title: The variation trend of streamflow and sediment flux in the middle reaches of Yellow River over the past 60 years and the influencing factors
  publication-title: Resources Science
– year: 1991
– volume: 7
  start-page: 79
  year: 2004
  end-page: 86
  article-title: Development of check‐dam systems in gullies on the Loess Plateau, China
  publication-title: Environmental Science & Policy
– volume: 11
  start-page: 53
  year: 2001
  end-page: 70
  article-title: Soil erosion and management on the Loess Plateau
  publication-title: Journal of Geographical Sciences
– volume: 22
  start-page: 229
  year: 1997
  end-page: 251
  article-title: Poverty, population and environmental degradation in China
  publication-title: Food Policy
– volume: 41
  start-page: 219
  year: 2001
  end-page: 231
  article-title: The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene
  publication-title: Geomorphology
– volume: 11
  start-page: 149
  year: 2011
  end-page: 159
  article-title: Spatiotemporal variation in rainfall erosivity on the Chinese Loess Plateau during the period 1956–2008
  publication-title: Regional Environmental Change
– volume-title: Soil and water conservation in China
  year: 2004
  ident: e_1_2_7_39_1
– ident: e_1_2_7_38_1
  doi: 10.1016/S0169-555X(01)00118-0
– ident: e_1_2_7_67_1
  doi: 10.1002/hyp.9504
– ident: e_1_2_7_30_1
  doi: 10.1002/clen.201000319
– volume: 51
  start-page: 67
  year: 2008
  ident: e_1_2_7_53_1
  article-title: Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981–2006): Impacts of climate changes and human activities
  publication-title: Science in China Series D‐Earth Sciences
  doi: 10.1007/s11430-007-0137-2
– ident: e_1_2_7_32_1
  doi: 10.1016/j.catena.2005.03.007
– ident: e_1_2_7_45_1
  doi: 10.1002/ldr.1128
– ident: e_1_2_7_59_1
  doi: 10.1029/2003WR002763
– ident: e_1_2_7_52_1
  doi: 10.1016/j.catena.2010.07.006
– ident: e_1_2_7_47_1
  doi: 10.1016/j.envsci.2006.08.003
– ident: e_1_2_7_7_1
  doi: 10.1177/0309133307081290
– ident: e_1_2_7_11_1
  doi: 10.1002/ldr.1156
– ident: e_1_2_7_37_1
  doi: 10.1016/S0306-9192(97)00011-0
– volume: 64
  start-page: 515
  issue: 5
  year: 2009
  ident: e_1_2_7_56_1
  article-title: A study of sediment sink between Longmen and Sanmenxia on the Yellow River
  publication-title: Acta Geographica sinica
– ident: e_1_2_7_43_1
  doi: 10.1016/S0921-8181(03)00020-1
– ident: e_1_2_7_17_1
  doi: 10.1016/j.actao.2005.07.003
– ident: e_1_2_7_16_1
  doi: 10.1002/ldr.2216
– ident: e_1_2_7_64_1
  doi: 10.1016/j.catena.2009.05.001
– ident: e_1_2_7_23_1
  doi: 10.1016/j.margeo.2004.06.009
– ident: e_1_2_7_58_1
  doi: 10.1016/j.envsci.2003.12.002
– ident: e_1_2_7_61_1
  doi: 10.1016/j.agrformet.2005.05.005
– ident: e_1_2_7_25_1
  doi: 10.1371/journal.pone.0031782
– ident: e_1_2_7_51_1
  doi: 10.1002/ldr.2183
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1526-100X.2007.00235.x
– ident: e_1_2_7_19_1
  doi: 10.1016/S0160-4120(02)00192-7
– ident: e_1_2_7_69_1
  doi: 10.1007/s12665-012-1766-0
– start-page: 64
  volume-title: Loess and the environmental
  year: 1985
  ident: e_1_2_7_21_1
– ident: e_1_2_7_28_1
  doi: 10.1086/629175
– ident: e_1_2_7_20_1
  doi: 10.1126/science.1111773
– volume-title: History of climatic change and its predicting in middle of China
  year: 1991
  ident: e_1_2_7_44_1
– ident: e_1_2_7_48_1
  doi: 10.1016/j.gloplacha.2007.01.003
– ident: e_1_2_7_35_1
  doi: 10.1007/s10668-005-1262-8
– volume-title: The Yellow River's sediment
  year: 1996
  ident: e_1_2_7_65_1
– volume-title: Guild of western development of China
  year: 2000
  ident: e_1_2_7_24_1
– volume-title: Soil and agircuture on the Loess Plateau
  year: 1989
  ident: e_1_2_7_70_1
– ident: e_1_2_7_34_1
  doi: 10.1016/j.catena.2010.08.006
– volume-title: Assessment of changing trends in streamflow and sediment fluxes in the Yellow River basin
  year: 2011
  ident: e_1_2_7_60_1
– ident: e_1_2_7_68_1
  doi: 10.1002/ldr.2199
– ident: e_1_2_7_36_1
  doi: 10.1177/095968369400400311
– ident: e_1_2_7_13_1
  doi: 10.1659/0276-4741(2004)024[0342:SEDOTC]2.0.CO;2
– ident: e_1_2_7_54_1
  doi: 10.1007/s10113-010-0127-3
– volume: 4
  start-page: 36
  year: 1998
  ident: e_1_2_7_57_1
  article-title: Delimitation of coarse sediment and study on overlap of coarse sediment and sediment abundant areas in the middle Yellow River basin
  publication-title: Journal of Sediment Research
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1365-2664.2008.01605.x
– volume: 38
  start-page: 606
  year: 2007
  ident: e_1_2_7_3_1
  article-title: Study on relative stability of check dam system
  publication-title: Journal of Hydraulic Engineering
– ident: e_1_2_7_2_1
  doi: 10.1007/BF02837376
– ident: e_1_2_7_6_1
  doi: 10.1029/98WR01659
– volume: 69
  start-page: 8
  year: 2010
  ident: e_1_2_7_31_1
  article-title: National Development and Reform Commission, Ministry of Water Resources, Ministry of Agriculture and State Forestry Administration, People's Republic of China
  publication-title: Programming for Comprehensive Management of the Loess Plateau (2010–2030)
– ident: e_1_2_7_42_1
  doi: 10.1023/A:1022902914221
– ident: e_1_2_7_12_1
  doi: 10.1016/S0921-8181(00)00037-0
– ident: e_1_2_7_26_1
  doi: 10.1016/j.geomorph.2011.07.032
– ident: e_1_2_7_8_1
  doi: 10.1002/ldr.1071
– ident: e_1_2_7_18_1
  doi: 10.1002/ldr.2164
– ident: e_1_2_7_5_1
  doi: 10.4141/S97-060
– ident: e_1_2_7_63_1
  doi: 10.1029/2007WR006711
– ident: e_1_2_7_9_1
  doi: 10.1016/j.palaeo.2006.04.009
– ident: e_1_2_7_50_1
  doi: 10.1890/09-0229.1
– ident: e_1_2_7_29_1
  doi: 10.1073/pnas.0611508104
– ident: e_1_2_7_46_1
  doi: 10.1002/ldr.663
– volume-title: The Loess Plateau, origin of agriculture and water and soil conservation
  year: 2004
  ident: e_1_2_7_22_1
– start-page: 458
  volume-title: The fluvial process in the lower Yellow River after completion of Sanmenxia Reservoir
  year: 2006
  ident: e_1_2_7_33_1
– volume: 4
  start-page: 49
  year: 1991
  ident: e_1_2_7_40_1
  article-title: Soil erosion and eco‐environment changes in Quaternary
  publication-title: Quaternary Research
– ident: e_1_2_7_62_1
  doi: 10.1002/(SICI)1099-145X(199703)8:1<1::AID-LDR240>3.0.CO;2-X
– volume: 34
  start-page: 1070
  year: 2012
  ident: e_1_2_7_66_1
  article-title: The variation trend of streamflow and sediment flux in the middle reaches of Yellow River over the past 60 years and the influencing factors
  publication-title: Resources Science
– volume: 7
  start-page: 103
  year: 2009
  ident: e_1_2_7_49_1
  article-title: Policy development of soil and water conservation in the Loess Plateau
  publication-title: Science of Soil and Water Conservation
– ident: e_1_2_7_41_1
  doi: 10.1016/j.catena.2005.06.001
– ident: e_1_2_7_14_1
  doi: 10.1007/s10113-005-0004-7
– ident: e_1_2_7_10_1
  doi: 10.1016/j.ecocom.2011.07.003
– ident: e_1_2_7_55_1
  doi: 10.1007/s00267-004-3094-y
– ident: e_1_2_7_27_1
  doi: 10.1002/ldr.1050
SSID ssj0001747
Score 2.5629175
Snippet ABSTRACT As one of the best‐known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the...
As one of the best‐known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical...
As one of the best-known areas in the world, the Loess Plateau, has long been suffering from serious soil erosion. The present paper reviewed the historical...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 499
SubjectTerms Anthropogenic factors
Check dams
Climate change
Deforestation
Development policy
eco-environment changes
Erosion control
Erosion rates
Holocene
Irrigation water
Loess Plateau
Natural vegetation
Population growth
Reservoir construction
runoff and sediment
Sediment yield
soil and water conservation
Soil conservation
Soil erosion
Vegetation cover
Water conservation
Title SOIL EROSION, CONSERVATION, AND ECO-ENVIRONMENT CHANGES IN THE LOESS PLATEAU OF CHINA
URI https://api.istex.fr/ark:/67375/WNG-JQL9M40W-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fldr.2246
https://www.proquest.com/docview/1440883086
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamcYEDMAaisE1GQuyydG6cOM4xCunaKXOg7dZJHCzbcThsKqjrJMRpfwJ_I38JfvnRsQkkxCmHPCe2n-332fnyPYTelpwwSyrf09rCBiUsPeXCokdd7K2UdgFCwUbxRLDRaXB8Hp63rEr4F6bRh1gfuMHMqNdrmOBKXx3eioZelss-qKG55ReoWoCHJrfKUQ5oRx23nvoR73RniX_YFbwTiR5Ap367AzN_B6t1tBk-QZ-6ejYkk4v-9Ur3zfd7Eo7_15Cn6HELQnHSjJottGEXz9Cj5POyFeKw22g-LcY5ziYFLLYHOC3ENJuc1QdaBzgR73GWFj9vfmTibDwpBGQEwOkoEUfZFI8Fno0ynBfOt_hDnsyy5BQXQ3d_LJLnaDbMZunIa5MweCrwCfO4NRGNiWXRYKCDmNqKlRWnOgCamvFtHPIBU5UxfhkzpS2jNq5xSRTxMDb0BdpcfFnYlwhbYrWKS0AcrjQbaEId1iw5JcaaMgh6aL_zhzStQDnkybiUjbSyL11PSeipHnqztvzaiHL8weZd7dK1gVpeAIktCuVcHMnjj3l8EpC5THtop_O5bOfvlYRP3tzVjMNzauf99UUyd-POXV_9q-Fr9NCvc2oAUW0Hba6W13bXIZuV3qvH8C_Y9u0V
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKe4Ae-EddKGAkBJdm640TxxGnKGSblKwDu2m3ByQrdhwOrZZqu5UQJx6BZ-RJsJ1kSxFIiFMOGSe2Z8bz2Zl8A8DLmiKiUOM6QiizQfFrp9Jh0cE69jaV0AGiMhvFCSPpkXd44p9sgDf9vzAtP8T6wM14hl2vjYObA-n9K9bQs3o5NHRoN8CWKeht91PTK-4oDbWDPrseuwHtmWeRu9-3vBaLtsy0frkGNH-FqzbejO-Aj31P2zST0-HlSgzl199IHP9zKHfB7Q6Hwqg1nHtgQy3ug-3o07Lj4lAPwHxWZDlMpoVZb_dgXLBZMj22Z1p7MGJvYRIXP759T9hxNi2YKQoA4zRiB8kMZgyWaQLzQqsXvs-jMomOYDHW9zMWPQTlOCnj1OnqMDiV5yLiUCUDHCJFgtFIeCFWDakbioVnMtWkq0KfjkjVSOnWIamEIliFFpoEAfVDiR-BzcXnhdoBUCElqrA2oEO3JiOBsIabNcVIKll73gC87hXCZcdRbkplnPGWXdnleqa4makBeLGWPG95Of4g88rqdC1QLU9NHlvg8zk74Icf8nDioTmPB2C3VzrvXPiCm6_eVPeMmudY7f31RTzXhqevj_9V8Dm4mZaTnOcZe_cE3HJtiQ2Tt7YLNlfLS_VUA52VeGYN-ifBiPEw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaglRAc-EdsKWAkBJdm640TxzlG2Ww3JXXK7rZbqQcrjh0OrbbVspUQJx6BZ-RJ8ORnSxFIiFMOGSf2zNjz2Zl8g9BbzQkzpHIdpQxsUHztFDYsOtTG3qpQNkAUsFE8EGx85O2f-CdtViX8C9PwQ6wP3GBm1Os1TPBLXe1ek4ae62Uf2NBuo02PEQ4ePZxcU0dZpB10yfXUDXhHPEvc3a7ljVC0CVr9cgNn_opW63AzeoBOu442WSZn_auV6pdff-Nw_L-RPET3WxSKo8ZtHqFbZvEY3Ys-LVsmDvMEzad5muFkksNqu4PjXEyTyXF9orWDIzHESZz_-PY9EcfpJBdQEgDH40jsJVOcCjwbJzjLrXHxYRbNkugI5yN7PxXRUzQbJbN47LRVGJzCcwlzuCkDGhLDgsFAeSE1FdMVp8qDPLXSNaHPB6yoytLVISuUYdSENTAJAu6HJX2GNhYXC_McYUOMKkINkMO2ZgNFqAWbmlNSmlJ7Xg-97-why5ahHAplnMuGW9mVVlMSNNVDb9aSlw0rxx9k3tUmXQsUyzPIYgt8ORd7cv9jFh54ZC7jHtrubC7bCfxZwjdvbnvG4Tm18f76IplZv7PXrX8VfI3uHA5HMkvFhxforlvX14CktW20sVpemZcW5azUq9qdfwIFPe_o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SOIL+EROSION%2C+CONSERVATION%2C+AND+ECO%E2%80%90ENVIRONMENT+CHANGES+IN+THE+LOESS+PLATEAU+OF+CHINA&rft.jtitle=Land+degradation+%26+development&rft.au=Zhao%2C+G.&rft.au=Mu%2C+X.&rft.au=Wen%2C+Z.&rft.au=Wang%2C+F.&rft.date=2013-09-01&rft.issn=1085-3278&rft.eissn=1099-145X&rft.volume=24&rft.issue=5&rft.spage=499&rft.epage=510&rft_id=info:doi/10.1002%2Fldr.2246&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ldr_2246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-3278&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-3278&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-3278&client=summon