Harnessing the Noncanonical Keap1-Nrf2 Pathway for Human Cytomegalovirus Control

Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathway...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 97; no. 4; p. e0016023
Main Authors Ghosh, Ayan K., Su, Yu-Pin, Forman, Michael, Keyes, Robert F., Smith, Brian C., Hu, Xin, Ferrer, Marc, Arav-Boger, Ravit
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 27.04.2023
Subjects
Online AccessGet full text
ISSN0022-538X
1098-5514
1098-5514
DOI10.1128/jvi.00160-23

Cover

Loading…
Abstract Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.
AbstractList Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.
Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.
Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.
Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.
Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.
Author Ferrer, Marc
Smith, Brian C.
Forman, Michael
Keyes, Robert F.
Su, Yu-Pin
Arav-Boger, Ravit
Ghosh, Ayan K.
Hu, Xin
Author_xml – sequence: 1
  givenname: Ayan K.
  surname: Ghosh
  fullname: Ghosh, Ayan K.
  organization: Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
– sequence: 2
  givenname: Yu-Pin
  surname: Su
  fullname: Su, Yu-Pin
  organization: Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
– sequence: 3
  givenname: Michael
  surname: Forman
  fullname: Forman, Michael
  organization: Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
– sequence: 4
  givenname: Robert F.
  surname: Keyes
  fullname: Keyes, Robert F.
  organization: Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
– sequence: 5
  givenname: Brian C.
  surname: Smith
  fullname: Smith, Brian C.
  organization: Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
– sequence: 6
  givenname: Xin
  surname: Hu
  fullname: Hu, Xin
  organization: National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland, USA
– sequence: 7
  givenname: Marc
  surname: Ferrer
  fullname: Ferrer, Marc
  organization: National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland, USA
– sequence: 8
  givenname: Ravit
  orcidid: 0000-0002-5363-167X
  surname: Arav-Boger
  fullname: Arav-Boger, Ravit
  organization: Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, Wisconsin, USA, Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36939350$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhi3Uim4LN84oR5BI8ec6OSG0allEVXoAiZs1cSa7XiX2Yidb7b-vy5YKKjjNYR4_M573lBz54JGQV4yeM8ar95udO6eUzWnJxTMyY7SuSqWYPCIzSjkvlah-nJDTlDaZknIun5MTMa9FLRSdkZslRI8pOb8qxjUW18FbyBOchb74grBl5XXseHED4_oW9kUXYrGcBvDFYj-GAVfQh52LUyoWwY8x9C_IcQd9wpcP9Yx8v7z4tliWV18_fV58vCpBsnosW-SNYAIlalSgQWrJALTSmllouEXdKJQC21YBq2qQbWOBdlJobu2cVuKMfDh4t1MzYGsxT4febKMbIO5NAGf-7ni3NquwM4wyIStBs-HNgyGGnxOm0QwuWex78BimZLiuKl1rSlVG3x5QSAM3mzBFn_-WVeY-ApMjML8iMFxk9vWfiz1u9PvmGXh3AGwMKUXsHpH_-PgT3LoRRnd_bnD9vx_dAfN7pJ0
CitedBy_id crossref_primary_10_1016_j_carbpol_2024_122101
crossref_primary_10_3390_v16091440
Cites_doi 10.1128/JVI.01861-17
10.1056/NEJM199203053261010
10.1056/NEJM199907083410203
10.1074/jbc.M111.316471
10.1016/j.molcel.2013.08.003
10.1080/15548627.2016.1248018
10.1097/TP.0000000000001418
10.1128/JVI.02015-17
10.1016/j.febslet.2014.01.045
10.1128/AAC.00214-16
10.1186/1743-422X-8-40
10.1017/s095026880005799x
10.4161/auto.5184
10.1086/315476
10.1016/j.bmc.2006.01.056
10.1128/MCB.00099-20
10.1038/s41467-020-18764-3
10.1038/s41573-018-0008-x
10.1099/vir.0.052142-0
10.1016/j.freeradbiomed.2015.06.014
10.1056/NEJMoa1706640
10.1073/pnas.1121572109
10.1073/pnas.0709695104
10.1128/JVI.05102-11
10.1128/JVI.02651-15
10.1186/s11658-016-0031-z
10.1093/clinids/13.2.315
10.1111/jop.12992
10.1074/jbc.M110.118976
10.1517/14656560802678138
10.1084/jem.20121337
10.1128/MCB.06271-11
10.1038/s41467-020-20185-1
10.1016/j.molcel.2011.07.039
10.1371/journal.pone.0007124
10.1074/jbc.M109.039925
10.1002/rmv.574
10.1016/j.bbrc.2010.12.106
10.1242/jcs.126128
10.1002/2211-5463.12385
10.1111/cbdd.13410
10.1042/EBC20170035
10.1016/j.febslet.2013.10.027
10.2174/157489107779561634
10.1038/s41598-019-41029-z
10.1128/JVI.05572-11
10.1038/s41467-019-12894-z
10.1128/CMR.00009-10
10.4084/mjhid.2019.001
10.1016/j.ophtha.2009.06.016
10.1016/j.tibs.2014.02.002
10.1128/AAC.01623-15
10.1056/NEJMoa1309533
10.1186/s12985-021-01733-7
10.1034/j.1399-3062.2001.00004.x
10.1016/j.cotox.2016.09.005
10.1128/JVI.01913-10
10.1093/infdis/jix188
10.1093/jac/45.suppl_4.29
10.18632/oncotarget.25436
10.1086/508173
10.1371/journal.ppat.1005717
10.1158/0008-5472.CAN-16-2204
10.1038/ncb2021
10.1080/15548627.2020.1732686
ContentType Journal Article
Copyright Copyright © 2023 Ghosh et al.
Copyright © 2023 Ghosh et al. 2023 Ghosh et al.
Copyright_xml – notice: Copyright © 2023 Ghosh et al.
– notice: Copyright © 2023 Ghosh et al. 2023 Ghosh et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/jvi.00160-23
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
Editor Goodrum, Felicia
Editor_xml – sequence: 1
  givenname: Felicia
  surname: Goodrum
  fullname: Goodrum, Felicia
ExternalDocumentID PMC10134830
00160-23
36939350
10_1128_jvi_00160_23
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R21 AI164033
– fundername: NIGMS NIH HHS
  grantid: R35 GM128840
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R21AI164033
  funderid: https://doi.org/10.13039/100000060
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R35GM128840
  funderid: https://doi.org/10.13039/100000057
– fundername: Children's Wisconsin Research Institute
  grantid: N/A
– fundername: ;
  grantid: R21AI164033
– fundername: ;
  grantid: N/A
– fundername: ;
  grantid: R35GM128840
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
ABPTK
BQPYB
RHF
UCJ
ZA5
7X8
5PM
ID FETCH-LOGICAL-a419t-de2b313e4e7e5a7a4741aa75771cab2ce7b5e43edd5a189a4dbca0f4372cc6083
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:37:51 EDT 2025
Fri Jul 11 00:59:18 EDT 2025
Fri Apr 28 22:51:12 EDT 2023
Mon Jul 21 06:02:27 EDT 2025
Tue Jul 01 01:32:42 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords ARP101
SQSTM1/p62
p62-Keap1-Nrf2
human cytomegalovirus
noncanonical Keap1-Nrf2 pathway
antioxidant response element
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a419t-de2b313e4e7e5a7a4741aa75771cab2ce7b5e43edd5a189a4dbca0f4372cc6083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0002-5363-167X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10134830
PMID 36939350
PQID 2788797005
PQPubID 23479
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10134830
proquest_miscellaneous_2788797005
asm2_journals_10_1128_jvi_00160_23
pubmed_primary_36939350
crossref_primary_10_1128_jvi_00160_23
crossref_citationtrail_10_1128_jvi_00160_23
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-27
PublicationDateYYYYMMDD 2023-04-27
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAbbrev J Virol
PublicationTitleAlternate J Virol
PublicationYear 2023
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
Sabin, CA, Devereux, HL, Clewley, G, Emery, VC, Phillips, AN, Loveday, C, Lee, CA, Griffiths, PD (B5) 2000; 181
Lamark, T, Svenning, S, Johansen, T (B29) 2017; 61
Pankiv, S, Lamark, T, Bruun, JA, Overvatn, A, Bjorkoy, G, Johansen, T (B59) 2010; 285
Camp, ND, James, RG, Dawson, DW, Yan, F, Davison, JM, Houck, SA, Tang, X, Zheng, N, Major, MB, Moon, RT (B34) 2012; 287
Schreiber, A, Harter, G, Schubert, A, Bunjes, D, Mertens, T, Michel, D (B8) 2009; 10
Watanabe, Y, Tsujimura, A, Taguchi, K, Tanaka, M (B49) 2017; 13
Katsuragi, Y, Ichimura, Y, Komatsu, M (B32) 2016; 1
Clippinger, AJ, Maguire, TG, Alwine, JC (B58) 2011; 85
Mukhopadhyay, R, Venkatadri, R, Katsnelson, J, Arav-Boger, R (B26) 2018; 92
Jain, A, Lamark, T, Sjottem, E, Larsen, KB, Awuh, JA, Overvatn, A, McMahon, M, Hayes, JD, Johansen, T (B45) 2010; 285
Zimmermann, C, Kramer, N, Krauter, S, Strand, D, Sehn, E, Wolfrum, U, Freiwald, A, Butter, F, Plachter, B (B37) 2021; 17
Kovacs, A, Schluchter, M, Easley, K, Demmler, G, Shearer, W, La, RP, Pitt, J, Cooper, E, Goldfarb, J, Hodes, D, Kattan, M, McIntosh, K (B3) 1999; 341
Taisne, C, Lussignol, M, Hernandez, E, Moris, A, Mouna, L, Esclatine, A (B38) 2019; 9
Ishimura, R, Tanaka, K, Komatsu, M (B40) 2014; 588
Chou, SW (B10) 2001; 3
Zhang, L, Wang, J, Wang, Z, Li, Y, Wang, H, Liu, H (B52) 2022; 19
Gorrini, C, Baniasadi, PS, Harris, IS, Silvester, J, Inoue, S, Snow, B, Joshi, PA, Wakeham, A, Molyneux, SD, Martin, B, Bouwman, P, Cescon, DW, Elia, AJ, Winterton-Perks, Z, Cruickshank, J, Brenner, D, Tseng, A, Musgrave, M, Berman, HK, Khokha, R, Jonkers, J, Mak, TW, Gauthier, ML (B36) 2013; 210
Kageyama, S, Gudmundsson, SR, Sou, YS, Ichimura, Y, Tamura, N, Kazuno, S, Ueno, T, Miura, Y, Noshiro, D, Abe, M, Mizushima, T, Miura, N, Okuda, S, Motohashi, H, Lee, JA, Sakimura, K, Ohe, T, Noda, NN, Waguri, S, Eskelinen, EL, Komatsu, M (B55) 2021; 12
Tsuchiya, M, Ogawa, H, Koujin, T, Mori, C, Osakada, H, Kobayashi, S, Hiraoka, Y, Haraguchi, T (B41) 2018; 8
Demmler, GJ (B6) 1991; 13
Chou, S (B16) 2008; 18
Clark, AE, Sabalza, M, Gordts, P, Spector, DH (B27) 2018; 92
Staras, SA, Dollard, SC, Radford, KW, Flanders, WD, Pass, RF, Cannon, MJ (B1) 2006; 43
Ma, J, Cai, H, Wu, T, Sobhian, B, Huo, Y, Alcivar, A, Mehta, M, Cheung, KL, Ganesan, S, Kong, AN, Zhang, DD, Xia, B (B35) 2012; 32
Desjarlais, M, Annabi, B (B23) 2019; 93
Chou, S, Ercolani, RJ, Lanier, ER (B18) 2016; 60
Taguchi, K, Fujikawa, N, Komatsu, M, Ishii, T, Unno, M, Akaike, T, Motohashi, H, Yamamoto, M (B56) 2012; 109
Jo, YK, Park, SJ, Shin, JH, Kim, Y, Hwang, JJ, Cho, DH, Kim, JC (B22) 2011; 404
Matsumoto, G, Wada, K, Okuno, M, Kurosawa, M, Nukina, N (B48) 2011; 44
Kim, ES, Jo, YK, Park, SJ, Chang, H, Shin, JH, Choi, ES, Kim, JB, Seok, SH, Kim, JS, Oh, JS, Kim, MH, Lee, EH, Cho, DH (B24) 2013; 587
Yow, MD, Demmler, GJ (B7) 1992; 326
Wyler, E, Franke, V, Menegatti, J, Kocks, C, Boltengagen, A, Praktiknjo, S, Walch-Ruckheim, B, Bosse, J, Rajewsky, N, Grasser, F, Akalin, A, Landthaler, M (B53) 2019; 10
Ghasemi, F, Black, M, Sun, RX, Vizeacoumar, F, Pinto, N, Ruicci, KM, Yoo, J, Fung, K, MacNeil, D, Palma, DA, Winquist, E, Mymryk, JS, Ailles, LA, Datti, A, Barrett, JW, Boutros, PC, Nichols, AC (B21) 2018; 9
Komatsu, M, Kurokawa, H, Waguri, S, Taguchi, K, Kobayashi, A, Ichimura, Y, Sou, YS, Ueno, I, Sakamoto, A, Tong, KI, Kim, M, Nishito, Y, Iemura, S, Natsume, T, Ueno, T, Kominami, E, Motohashi, H, Tanaka, K, Yamamoto, M (B42) 2010; 12
Chemaly, RF, Ullmann, AJ, Stoelben, S, Richard, MP, Bornhauser, M, Groth, C, Einsele, H, Silverman, M, Mullane, KM, Brown, J, Nowak, H, Kolling, K, Stobernack, HP, Lischka, P, Zimmermann, H, Rubsamen-Schaeff, H, Champlin, RE, Ehninger, G (B12) 2014; 370
Chaumorcel, M, Souquere, S, Pierron, G, Codogno, P, Esclatine, A (B44) 2008; 4
Chou, S (B17) 2015; 59
Hayes, JD, Dinkova-Kostova, AT (B31) 2014; 39
Ichimura, Y, Waguri, S, Sou, YS, Kageyama, S, Hasegawa, J, Ishimura, R, Saito, T, Yang, Y, Kouno, T, Fukutomi, T, Hoshii, T, Hirao, A, Takagi, K, Mizushima, T, Motohashi, H, Lee, MS, Yoshimori, T, Tanaka, K, Yamamoto, M, Komatsu, M (B43) 2013; 51
Lee, J, Koh, K, Kim, YE, Ahn, JH, Kim, S (B46) 2013; 94
Zhang, L, Yu, J, Pan, H, Hu, P, Hao, Y, Cai, W, Zhu, H, Yu, AD, Xie, X, Ma, D, Yuan, J (B50) 2007; 104
Griffiths, PD, Clark, DA, Emery, VC (B2) 2000; 45
Belzile, JP, Sabalza, M, Craig, M, Clark, AE, Morello, CS, Spector, DH (B25) 2016; 90
Lu, K, Alcivar, AL, Ma, J, Foo, TK, Zywea, S, Mahdi, A, Huo, Y, Kensler, TW, Gatza, ML, Xia, B (B33) 2017; 77
Jabs, DA, Martin, BK, Forman, MS (B15) 2010; 117
He, R, Sandford, G, Hayward, GS, Burns, WH, Posner, GH, Forman, M, Arav-Boger, R (B63) 2011; 8
Tilton, C, Clippinger, AJ, Maguire, T, Alwine, JC (B47) 2011; 85
Lurain, NS, Chou, S (B64) 2010; 23
Baird, L, Yamamoto, M (B30) 2020; 40
Tuccinardi, T, Martinelli, A, Nuti, E, Carelli, P, Balzano, F, Uccello-Barretta, G, Murphy, G, Rossello, A (B62) 2006; 14
Celentano, A, Yap, T, Paolini, R, Yiannis, C, Mirams, M, Koo, K, McCullough, M, Cirillo, N (B20) 2021; 50
Steininger, C (B9) 2007; 2
Avery, RK, Arav-Boger, R, Marr, KA, Kraus, E, Shoham, S, Lees, L, Trollinger, B, Shah, P, Ambinder, R, Neofytos, D, Ostrander, D, Forman, M, Valsamakis, A (B11) 2016; 100
Forman, MS, Vaidya, D, Bolorunduro, O, Diener-West, M, Pass, RF, Arav-Boger, R (B65) 2017; 215
Liu, WJ, Ye, L, Huang, WF, Guo, LJ, Xu, ZG, Wu, HL, Yang, C, Liu, HF (B28) 2016; 21
Clippinger, AJ, Maguire, TG, Alwine, JC (B57) 2011; 85
Frietsch, JJ, Michel, D, Stamminger, T, Hunstig, F, Birndt, S, Schnetzke, U, Scholl, S, Hochhaus, A, Hilgendorf, I (B14) 2019; 11
Balgi, AD, Fonseca, BD, Donohue, E, Tsang, TC, Lajoie, P, Proud, CG, Nabi, IR, Roberge, M (B51) 2009; 4
Cuadrado, A, Rojo, AI, Wells, G, Hayes, JD, Cousin, SP, Rumsey, WL, Attucks, OC, Franklin, S, Levonen, AL, Kensler, TW, Dinkova-Kostova, AT (B60) 2019; 18
Mukhopadhyay, R, Roy, S, Venkatadri, R, Su, YP, Ye, W, Barnaeva, E, Mathews Griner, L, Southall, N, Hu, X, Wang, AQ, Xu, X, Dulcey, AE, Marugan, JJ, Ferrer, M, Arav-Boger, R (B19) 2016; 12
Sabin, CA, Phillips, AN, Lee, CA, Janossy, G, Emery, V, Griffiths, PD (B4) 1995; 114
Marty, FM, Ljungman, P, Chemaly, RF, Maertens, J, Dadwal, SS, Duarte, RF, Haider, S, Ullmann, AJ, Katayama, Y, Brown, J, Mullane, KM, Boeckh, M, Blumberg, EA, Einsele, H, Snydman, DR, Kanda, Y, DiNubile, MJ, Teal, VL, Wan, H, Murata, Y, Kartsonis, NA, Leavitt, RY, Badshah, C (B13) 2017; 377
Birgisdottir, AB, Lamark, T, Johansen, T (B39) 2013; 126
Jiang, T, Harder, B, Rojo de la Vega, M, Wong, PK, Chapman, E, Zhang, DD (B54) 2015; 88
Olagnier, D, Farahani, E, Thyrsted, J, Blay-Cadanet, J, Herengt, A, Idorn, M, Hait, A, Hernaez, B, Knudsen, A, Iversen, MB, Schilling, M, Jorgensen, SE, Thomsen, M, Reinert, LS, Lappe, M, Hoang, HD, Gilchrist, VH, Hansen, AL, Ottosen, R, Nielsen, CG, Moller, C, van der Horst, D, Peri, S, Balachandran, S, Huang, J, Jakobsen, M, Svenningsen, EB, Poulsen, TB, Bartsch, L, Thielke, AL, Luo, Y, Alain, T, Rehwinkel, J, Alcami, A, Hiscott, J, Mogensen, TH, Paludan, SR, Holm, CK (B61) 2020; 11
References_xml – ident: e_1_3_2_27_2
  doi: 10.1128/JVI.01861-17
– ident: e_1_3_2_8_2
  doi: 10.1056/NEJM199203053261010
– ident: e_1_3_2_4_2
  doi: 10.1056/NEJM199907083410203
– ident: e_1_3_2_35_2
  doi: 10.1074/jbc.M111.316471
– ident: e_1_3_2_44_2
  doi: 10.1016/j.molcel.2013.08.003
– ident: e_1_3_2_50_2
  doi: 10.1080/15548627.2016.1248018
– ident: e_1_3_2_12_2
  doi: 10.1097/TP.0000000000001418
– ident: e_1_3_2_28_2
  doi: 10.1128/JVI.02015-17
– ident: e_1_3_2_41_2
  doi: 10.1016/j.febslet.2014.01.045
– ident: e_1_3_2_19_2
  doi: 10.1128/AAC.00214-16
– ident: e_1_3_2_64_2
  doi: 10.1186/1743-422X-8-40
– ident: e_1_3_2_5_2
  doi: 10.1017/s095026880005799x
– ident: e_1_3_2_45_2
  doi: 10.4161/auto.5184
– ident: e_1_3_2_6_2
  doi: 10.1086/315476
– ident: e_1_3_2_63_2
  doi: 10.1016/j.bmc.2006.01.056
– ident: e_1_3_2_31_2
  doi: 10.1128/MCB.00099-20
– ident: e_1_3_2_62_2
  doi: 10.1038/s41467-020-18764-3
– ident: e_1_3_2_61_2
  doi: 10.1038/s41573-018-0008-x
– ident: e_1_3_2_47_2
  doi: 10.1099/vir.0.052142-0
– ident: e_1_3_2_55_2
  doi: 10.1016/j.freeradbiomed.2015.06.014
– ident: e_1_3_2_14_2
  doi: 10.1056/NEJMoa1706640
– ident: e_1_3_2_57_2
  doi: 10.1073/pnas.1121572109
– ident: e_1_3_2_51_2
  doi: 10.1073/pnas.0709695104
– ident: e_1_3_2_59_2
  doi: 10.1128/JVI.05102-11
– ident: e_1_3_2_26_2
  doi: 10.1128/JVI.02651-15
– ident: e_1_3_2_29_2
  doi: 10.1186/s11658-016-0031-z
– ident: e_1_3_2_7_2
  doi: 10.1093/clinids/13.2.315
– ident: e_1_3_2_21_2
  doi: 10.1111/jop.12992
– ident: e_1_3_2_46_2
  doi: 10.1074/jbc.M110.118976
– ident: e_1_3_2_9_2
  doi: 10.1517/14656560802678138
– ident: e_1_3_2_37_2
  doi: 10.1084/jem.20121337
– ident: e_1_3_2_36_2
  doi: 10.1128/MCB.06271-11
– ident: e_1_3_2_56_2
  doi: 10.1038/s41467-020-20185-1
– ident: e_1_3_2_49_2
  doi: 10.1016/j.molcel.2011.07.039
– ident: e_1_3_2_52_2
  doi: 10.1371/journal.pone.0007124
– ident: e_1_3_2_60_2
  doi: 10.1074/jbc.M109.039925
– ident: e_1_3_2_17_2
  doi: 10.1002/rmv.574
– ident: e_1_3_2_23_2
  doi: 10.1016/j.bbrc.2010.12.106
– ident: e_1_3_2_40_2
  doi: 10.1242/jcs.126128
– ident: e_1_3_2_42_2
  doi: 10.1002/2211-5463.12385
– ident: e_1_3_2_24_2
  doi: 10.1111/cbdd.13410
– ident: e_1_3_2_30_2
  doi: 10.1042/EBC20170035
– ident: e_1_3_2_25_2
  doi: 10.1016/j.febslet.2013.10.027
– ident: e_1_3_2_10_2
  doi: 10.2174/157489107779561634
– ident: e_1_3_2_39_2
  doi: 10.1038/s41598-019-41029-z
– ident: e_1_3_2_48_2
  doi: 10.1128/JVI.05572-11
– ident: e_1_3_2_54_2
  doi: 10.1038/s41467-019-12894-z
– ident: e_1_3_2_65_2
  doi: 10.1128/CMR.00009-10
– ident: e_1_3_2_15_2
  doi: 10.4084/mjhid.2019.001
– ident: e_1_3_2_16_2
  doi: 10.1016/j.ophtha.2009.06.016
– ident: e_1_3_2_32_2
  doi: 10.1016/j.tibs.2014.02.002
– ident: e_1_3_2_18_2
  doi: 10.1128/AAC.01623-15
– ident: e_1_3_2_13_2
  doi: 10.1056/NEJMoa1309533
– ident: e_1_3_2_53_2
  doi: 10.1186/s12985-021-01733-7
– ident: e_1_3_2_11_2
  doi: 10.1034/j.1399-3062.2001.00004.x
– ident: e_1_3_2_33_2
  doi: 10.1016/j.cotox.2016.09.005
– ident: e_1_3_2_58_2
  doi: 10.1128/JVI.01913-10
– ident: e_1_3_2_66_2
  doi: 10.1093/infdis/jix188
– ident: e_1_3_2_3_2
  doi: 10.1093/jac/45.suppl_4.29
– ident: e_1_3_2_22_2
  doi: 10.18632/oncotarget.25436
– ident: e_1_3_2_2_2
  doi: 10.1086/508173
– ident: e_1_3_2_20_2
  doi: 10.1371/journal.ppat.1005717
– ident: e_1_3_2_34_2
  doi: 10.1158/0008-5472.CAN-16-2204
– ident: e_1_3_2_43_2
  doi: 10.1038/ncb2021
– ident: e_1_3_2_38_2
  doi: 10.1080/15548627.2020.1732686
– volume: 61
  start-page: 609
  year: 2017
  end-page: 624
  ident: B29
  article-title: Regulation of selective autophagy: the p62/SQSTM1 paradigm
  publication-title: Essays Biochem
  doi: 10.1042/EBC20170035
– volume: 40
  year: 2020
  ident: B30
  article-title: The molecular mechanisms regulating the KEAP1-NRF2 pathway
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00099-20
– volume: 10
  start-page: 4878
  year: 2019
  ident: B53
  article-title: Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12894-z
– volume: 285
  start-page: 5941
  year: 2010
  end-page: 5953
  ident: B59
  article-title: Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.039925
– volume: 587
  start-page: 3955
  year: 2013
  end-page: 3960
  ident: B24
  article-title: ARP101 inhibits alpha-MSH-stimulated melanogenesis by regulation of autophagy in melanocytes
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2013.10.027
– volume: 12
  start-page: 16
  year: 2021
  ident: B55
  article-title: p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-20185-1
– volume: 287
  start-page: 6539
  year: 2012
  end-page: 6550
  ident: B34
  article-title: Wilms tumor gene on X chromosome (WTX) inhibits degradation of NRF2 protein through competitive binding to KEAP1 protein
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.316471
– volume: 88
  start-page: 199
  year: 2015
  end-page: 204
  ident: B54
  article-title: p62 links autophagy and Nrf2 signaling
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2015.06.014
– volume: 2
  start-page: 53
  year: 2007
  end-page: 72
  ident: B9
  article-title: Novel therapies for cytomegalovirus disease
  publication-title: Recent Pat Antiinfect Drug Discov
  doi: 10.2174/157489107779561634
– volume: 285
  start-page: 22576
  year: 2010
  end-page: 22591
  ident: B45
  article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.118976
– volume: 210
  start-page: 1529
  year: 2013
  end-page: 1544
  ident: B36
  article-title: BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival
  publication-title: J Exp Med
  doi: 10.1084/jem.20121337
– volume: 588
  start-page: 822
  year: 2014
  end-page: 828
  ident: B40
  article-title: Dissection of the role of p62/Sqstm1 in activation of Nrf2 during xenophagy
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2014.01.045
– volume: 11
  year: 2019
  ident: B14
  article-title: In vivo emergence of UL56 C325Y cytomegalovirus resistance to letermovir in a patient with acute myeloid leukemia after hematopoietic cell transplantation
  publication-title: Mediterr J Hematol Infect Dis
  doi: 10.4084/mjhid.2019.001
– volume: 51
  start-page: 618
  year: 2013
  end-page: 631
  ident: B43
  article-title: Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.08.003
– volume: 50
  start-page: 323
  year: 2021
  end-page: 332
  ident: B20
  article-title: Inhibition of matrix metalloproteinase-2 modulates malignant behaviour of oral squamous cell carcinoma cells
  publication-title: J Oral Pathol Med
  doi: 10.1111/jop.12992
– volume: 45
  start-page: 29
  year: 2000
  end-page: 34
  ident: B2
  article-title: Betaherpesviruses in transplant recipients
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/45.suppl_4.29
– volume: 39
  start-page: 199
  year: 2014
  end-page: 218
  ident: B31
  article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2014.02.002
– volume: 114
  start-page: 361
  year: 1995
  end-page: 372
  ident: B4
  article-title: The effect of CMV infection on progression of human immunodeficiency virus disease is a cohort of haemophilic men followed for up to 13 years from seroconversion
  publication-title: Epidemiol Infect
  doi: 10.1017/s095026880005799x
– volume: 181
  start-page: 1800
  year: 2000
  end-page: 1803
  ident: B5
  article-title: Cytomegalovirus seropositivity and human immunodeficiency virus type 1 RNA levels in individuals with hemophilia
  publication-title: J Infect Dis
  doi: 10.1086/315476
– volume: 9
  start-page: 26064
  year: 2018
  end-page: 26071
  ident: B21
  article-title: High-throughput testing in head and neck squamous cell carcinoma identifies agents with preferential activity in human papillomavirus-positive or negative cell lines
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.25436
– volume: 341
  start-page: 77
  year: 1999
  end-page: 84
  ident: B3
  article-title: Cytomegalovirus infection and HIV-1 disease progression in infants born to HIV-1-infected women. Pediatric Pulmonary and Cardiovascular Complications of Vertically Transmitted HIV Infection Study Group
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199907083410203
– volume: 377
  start-page: 2433
  year: 2017
  end-page: 2444
  ident: B13
  article-title: Letermovir prophylaxis for cytomegalovirus in hematopoietic-cell transplantation
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1706640
– volume: 12
  year: 2016
  ident: B19
  article-title: Efficacy and mechanism of action of low dose emetine against human cytomegalovirus
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1005717
– volume: 92
  year: 2018
  ident: B26
  article-title: Digitoxin suppresses human cytomegalovirus replication via Na(+), K(+)/ATPase alpha1 subunit-dependent AMP-activated protein kinase and autophagy activation
  publication-title: J Virol
  doi: 10.1128/JVI.01861-17
– volume: 11
  start-page: 4938
  year: 2020
  ident: B61
  article-title: SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18764-3
– volume: 1
  start-page: 54
  year: 2016
  end-page: 61
  ident: B32
  article-title: Regulation of the Keap1–Nrf2 pathway by p62/SQSTM1
  publication-title: Curr Opin Toxicol
  doi: 10.1016/j.cotox.2016.09.005
– volume: 104
  start-page: 19023
  year: 2007
  end-page: 19028
  ident: B50
  article-title: Small molecule regulators of autophagy identified by an image-based high-throughput screen
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0709695104
– volume: 100
  start-page: e74
  year: 2016
  end-page: e80
  ident: B11
  article-title: Outcomes in transplant recipients treated with foscarnet for ganciclovir-resistant or refractory cytomegalovirus infection
  publication-title: Transplantation
  doi: 10.1097/TP.0000000000001418
– volume: 215
  start-page: 1523
  year: 2017
  end-page: 1526
  ident: B65
  article-title: Cytomegalovirus kinetics following primary infection in healthy women
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jix188
– volume: 404
  start-page: 1039
  year: 2011
  end-page: 1043
  ident: B22
  article-title: ARP101, a selective MMP-2 inhibitor, induces autophagy-associated cell death in cancer cells
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2010.12.106
– volume: 326
  start-page: 702
  year: 1992
  end-page: 703
  ident: B7
  article-title: Congenital cytomegalovirus disease–20 years is long enough
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199203053261010
– volume: 18
  start-page: 233
  year: 2008
  end-page: 246
  ident: B16
  article-title: Cytomegalovirus UL97 mutations in the era of ganciclovir and maribavir
  publication-title: Rev Med Virol
  doi: 10.1002/rmv.574
– volume: 14
  start-page: 4260
  year: 2006
  end-page: 4276
  ident: B62
  article-title: Amber force field implementation, molecular modelling study, synthesis and MMP-1/MMP-2 inhibition profile of (R)- and (S)-N-hydroxy-2-(N-isopropoxybiphenyl-4-ylsulfonamido)-3-methylbutanamides
  publication-title: Bioorg Med Chem
  doi: 10.1016/j.bmc.2006.01.056
– volume: 59
  start-page: 6588
  year: 2015
  end-page: 6593
  ident: B17
  article-title: Rapid in vitro evolution of human cytomegalovirus UL56 mutations that confer letermovir resistance
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01623-15
– volume: 13
  start-page: 315
  year: 1991
  end-page: 329
  ident: B6
  article-title: Infectious Diseases Society of America and Centers for Disease Control. Summary of a workshop on surveillance for congenital cytomegalovirus disease
  publication-title: Rev Infect Dis
  doi: 10.1093/clinids/13.2.315
– volume: 19
  start-page: 23
  year: 2022
  ident: B52
  article-title: Upregulation of nuclear factor E2-related factor 2 (Nrf2) represses the replication of herpes simplex virus type 1
  publication-title: Virol J
  doi: 10.1186/s12985-021-01733-7
– volume: 43
  start-page: 1143
  year: 2006
  end-page: 1151
  ident: B1
  article-title: Seroprevalence of cytomegalovirus infection in the United States, 1988–1994
  publication-title: Clin Infect Dis
  doi: 10.1086/508173
– volume: 8
  start-page: 470
  year: 2018
  end-page: 480
  ident: B41
  article-title: p62/SQSTM1 promotes rapid ubiquitin conjugation to target proteins after endosome rupture during xenophagy
  publication-title: FEBS Open Bio
  doi: 10.1002/2211-5463.12385
– volume: 3
  start-page: 20
  year: 2001
  end-page: 24
  ident: B10
  article-title: Cytomegalovirus drug resistance and clinical implications
  publication-title: Transpl Infect Dis
  doi: 10.1034/j.1399-3062.2001.00004.x
– volume: 92
  year: 2018
  ident: B27
  article-title: Human cytomegalovirus replication is inhibited by the autophagy-inducing compounds trehalose and SMER28 through distinctively different mechanisms
  publication-title: J Virol
  doi: 10.1128/JVI.02015-17
– volume: 370
  start-page: 1781
  year: 2014
  end-page: 1789
  ident: B12
  article-title: Letermovir for cytomegalovirus prophylaxis in hematopoietic-cell transplantation
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1309533
– volume: 93
  start-page: 272
  year: 2019
  end-page: 282
  ident: B23
  article-title: Dual functions of ARP101 in targeting membrane type-1 matrix metalloproteinase: impact on U87 glioblastoma cell invasion and autophagy signaling
  publication-title: Chem Biol Drug Des
  doi: 10.1111/cbdd.13410
– volume: 117
  start-page: 128
  year: 2010
  end-page: 132.e2
  ident: B15
  article-title: Mortality associated with resistant cytomegalovirus among patients with cytomegalovirus retinitis and AIDS
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2009.06.016
– volume: 60
  start-page: 3845
  year: 2016
  end-page: 3848
  ident: B18
  article-title: Novel cytomegalovirus UL54 DNA polymerase gene mutations selected in vitro that confer brincidofovir resistance
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00214-16
– volume: 32
  start-page: 1506
  year: 2012
  end-page: 1517
  ident: B35
  article-title: PALB2 interacts with KEAP1 to promote NRF2 nuclear accumulation and function
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.06271-11
– volume: 44
  start-page: 279
  year: 2011
  end-page: 289
  ident: B48
  article-title: Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2011.07.039
– volume: 85
  start-page: 3930
  year: 2011
  end-page: 3939
  ident: B57
  article-title: The changing role of mTOR kinase in the maintenance of protein synthesis during human cytomegalovirus infection
  publication-title: J Virol
  doi: 10.1128/JVI.01913-10
– volume: 8
  start-page: 40
  year: 2011
  ident: B63
  article-title: Recombinant luciferase-expressing human cytomegalovirus (CMV) for evaluation of CMV inhibitors
  publication-title: Virol J
  doi: 10.1186/1743-422X-8-40
– volume: 4
  year: 2009
  ident: B51
  article-title: Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0007124
– volume: 21
  start-page: 29
  year: 2016
  ident: B28
  article-title: p62 links the autophagy pathway and the ubiquitin-proteasome system upon ubiquitinated protein degradation
  publication-title: Cell Mol Biol Lett
  doi: 10.1186/s11658-016-0031-z
– volume: 9
  start-page: 4560
  year: 2019
  ident: B38
  article-title: Human cytomegalovirus hijacks the autophagic machinery and LC3 homologs in order to optimize cytoplasmic envelopment of mature infectious particles
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-41029-z
– volume: 18
  start-page: 295
  year: 2019
  end-page: 317
  ident: B60
  article-title: Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-018-0008-x
– volume: 90
  start-page: 1259
  year: 2016
  end-page: 1277
  ident: B25
  article-title: Trehalose, an mTOR-independent inducer of autophagy, inhibits human cytomegalovirus infection in multiple cell types
  publication-title: J Virol
  doi: 10.1128/JVI.02651-15
– volume: 4
  start-page: 46
  year: 2008
  end-page: 53
  ident: B44
  article-title: Human cytomegalovirus controls a new autophagy-dependent cellular antiviral defense mechanism
  publication-title: Autophagy
  doi: 10.4161/auto.5184
– volume: 85
  start-page: 12585
  year: 2011
  end-page: 12593
  ident: B47
  article-title: Human cytomegalovirus induces multiple means to combat reactive oxygen species
  publication-title: J Virol
  doi: 10.1128/JVI.05572-11
– volume: 17
  start-page: 779
  year: 2021
  end-page: 795
  ident: B37
  article-title: Autophagy interferes with human cytomegalovirus genome replication, morphogenesis, and progeny release
  publication-title: Autophagy
  doi: 10.1080/15548627.2020.1732686
– volume: 77
  start-page: 2881
  year: 2017
  end-page: 2892
  ident: B33
  article-title: NRF2 induction supporting breast cancer cell survival is enabled by oxidative stress-induced DPP3-KEAP1 interaction
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-16-2204
– volume: 85
  start-page: 9369
  year: 2011
  end-page: 9376
  ident: B58
  article-title: Human cytomegalovirus infection maintains mTOR activity and its perinuclear localization during amino acid deprivation
  publication-title: J Virol
  doi: 10.1128/JVI.05102-11
– volume: 23
  start-page: 689
  year: 2010
  end-page: 712
  ident: B64
  article-title: Antiviral drug resistance of human cytomegalovirus
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.00009-10
– volume: 109
  start-page: 13561
  year: 2012
  end-page: 13566
  ident: B56
  article-title: Keap1 degradation by autophagy for the maintenance of redox homeostasis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1121572109
– volume: 10
  start-page: 191
  year: 2009
  end-page: 209
  ident: B8
  article-title: Antiviral treatment of cytomegalovirus infection and resistant strains
  publication-title: Expert Opin Pharmacother
  doi: 10.1517/14656560802678138
– volume: 12
  start-page: 213
  year: 2010
  end-page: 223
  ident: B42
  article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2021
– volume: 13
  start-page: 133
  year: 2017
  end-page: 148
  ident: B49
  article-title: HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1248018
– volume: 126
  start-page: 3237
  year: 2013
  end-page: 3247
  ident: B39
  article-title: The LIR motif - crucial for selective autophagy
  publication-title: J Cell Sci
  doi: 10.1242/jcs.126128
– volume: 94
  start-page: 1658
  year: 2013
  end-page: 1668
  ident: B46
  article-title: Upregulation of Nrf2 expression by human cytomegalovirus infection protects host cells from oxidative stress
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.052142-0
SSID ssj0014464
Score 2.4301486
Snippet Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been...
Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses,...
SourceID pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0016023
SubjectTerms Antimicrobial Chemotherapy
Antioxidant Response Elements - drug effects
Antiviral Agents - pharmacology
Cell Line
Cellular Response to Infection
Cytomegalovirus - drug effects
Cytomegalovirus - physiology
Cytomegalovirus Infections - prevention & control
Cytomegalovirus Infections - virology
Humans
Phosphorylation - drug effects
Transcription, Genetic - drug effects
Virus Replication
Title Harnessing the Noncanonical Keap1-Nrf2 Pathway for Human Cytomegalovirus Control
URI https://www.ncbi.nlm.nih.gov/pubmed/36939350
https://journals.asm.org/doi/10.1128/jvi.00160-23
https://www.proquest.com/docview/2788797005
https://pubmed.ncbi.nlm.nih.gov/PMC10134830
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9owELboVq32UvVd-lJatadVKDjOw8cVKou6AnHYlbhFTmxEqkIQhK3opX-9M3YehrJSu5cIJSaJ5vsynrHnQcgnmKGVmEXK5QJ8EzbjoAdF2HUTie6ICHiSYL7zaBwMr9m3qT9ttX5bUUvbIumkv47mldwFVTgHuGKW7H8gW98UTsBvwBeOgDAc_wnjoVijpqoynsb5EgSVm0zHSyVWPXe8nlEswz__KUxkplm07--KfKFgcshvsvVWt-0sTODHMUsVU-HsxfeLeb7RqzHnO7jXZafZWNIKfetOsppyA52VcBigrzX8zmgoE9t9NujYCxDUw70Uk89vxfyjMrLCTEdZU0bKVr_o-Xq6lzBMPkbjYkFTNNtslWxCdkvqseOanmL2wvebrKNbZbsma9kCfbXQqHsBx-zjbjPf1VGIk1EfFJLHIq97j9yn4GdgC4yLaR0jhL4yq8rN43tXmRM0-mI_-ZQ8rB4DM7vYLOi-lfOX63IYgWuZNFePyaMSYefcEOsJaanlU_LAdCfdPSOThl4O0Mux6eU09HJKejmAiKPp5RzQyynp9ZxcD75e9Ydu2YDDFazHC1cqmng9TzEVKl-EgoH5KUToh2EvFQlNVZj4inlKSl_0Ii6YTFLRneFWcJoGYNy_ICfwWuoVcbifwkAuIwkiDaQUHEzrUArph2mSMt4mH1Fucfl1bWLtnNIoBjnHWs4x9drkrJJqnJYl7LGTyo9bRn-uR69M6ZZbxn2oAIpBt-KGmViqfLuJKYba8hAmqjZ5aQCr71QB3ibRHpT1AKzbvn9lmc11_faKdK_v_tc35LT5FN-Sk2K9Ve_AOi6S95rBfwC5_Lx1
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+the+Noncanonical+Keap1-Nrf2+Pathway+for+Human+Cytomegalovirus+Control&rft.jtitle=Journal+of+virology&rft.au=Ghosh%2C+Ayan+K.&rft.au=Su%2C+Yu-Pin&rft.au=Forman%2C+Michael&rft.au=Keyes%2C+Robert+F.&rft.date=2023-04-27&rft.pub=American+Society+for+Microbiology&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=97&rft.issue=4&rft_id=info:doi/10.1128%2Fjvi.00160-23&rft_id=info%3Apmid%2F36939350&rft.externalDocID=PMC10134830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon