Wetland soil microplastics are negatively related to vegetation cover and stem density
Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and with...
Saved in:
Published in | Environmental pollution (1987) Vol. 256; p. 113391 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%–93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m−2 or 1,270 ± 150 kg−1) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats.
[Display omitted]
•Soil microplastics varied spatially in an urban wetland and averaged 23,200 m−2 (1,270 kg−1).•Microfiber concentration was negatively related to stem density and percent cover.•Microfibers were most abundant in mudflats and microfragments in channel edges.•Microfibers comprised 77–94% of total microplastics in an urban wetland.
This study reveals that microplastics found throughout urban wetland soils are mostly microfibers and present at lower numbers in areas of dense vegetation compared to areas with few or no plants. |
---|---|
AbstractList | Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%–93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m−2 or 1,270 ± 150 kg−1) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats.
[Display omitted]
•Soil microplastics varied spatially in an urban wetland and averaged 23,200 m−2 (1,270 kg−1).•Microfiber concentration was negatively related to stem density and percent cover.•Microfibers were most abundant in mudflats and microfragments in channel edges.•Microfibers comprised 77–94% of total microplastics in an urban wetland.
This study reveals that microplastics found throughout urban wetland soils are mostly microfibers and present at lower numbers in areas of dense vegetation compared to areas with few or no plants. Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%-93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m-2 or 1,270 ± 150 kg-1) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats.Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%-93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m-2 or 1,270 ± 150 kg-1) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats. Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%–93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m−2 or 1,270 ± 150 kg−1) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats. Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%-93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m or 1,270 ± 150 kg ) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats. |
ArticleNumber | 113391 |
Author | Sanchez, Alterra Helcoski, Ryan Yonkos, Lance T. Baldwin, Andrew H. |
Author_xml | – sequence: 1 givenname: Ryan surname: Helcoski fullname: Helcoski, Ryan email: rhelcoski@gmail.com organization: Conservation Biology and Sustainable Development Graduate Program, University of Maryland, College Park, MD, 20740, USA – sequence: 2 givenname: Lance T. surname: Yonkos fullname: Yonkos, Lance T. email: lyonkos@umd.edu organization: Environmental Science and Technology Department, University of Maryland, College Park, MD, 20740, USA – sequence: 3 givenname: Alterra surname: Sanchez fullname: Sanchez, Alterra email: asanche3@umd.edu organization: Marine-Estuarine and Environmental Sciences Program, Civil and Environmental Engineering Department, University of Maryland, College Park, MD, 20740, USA – sequence: 4 givenname: Andrew H. surname: Baldwin fullname: Baldwin, Andrew H. email: baldwin@umd.edu organization: Environmental Science and Technology Department, University of Maryland, College Park, MD, 20740, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31662247$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9r3DAQxUVJaTZpv0EpOvbi7YykaO0eCiX0HwR6Ce1RyNIoaLGtraQ17LePU6c99NCcBobfe_Deu2BnU5qIsdcIWwTU7_ZbmuZDGrYCsNsiStnhM7bBdicbrYQ6YxsQumt2qsNzdlHKHgCUlPIFO5eotRBqt2E_flId7OR5SXHgY3Q5HQZbanSF20x8ojtb40zDiWcabCXPa-Iz3VFd_mniLs2U-W-HSiP3NJVYTy_Z82CHQq8e7yW7_fzp9vprc_P9y7frjzeNVdjWJngIIDoRWt1bsfMK0INTrtcY-qDAguqlCIGs813ovbMBr1ovHYKA3slL9na1PeT060ilmjEWR8OSiNKxGKEkdktk6J5GJYLWrdZXC_rmET32I3lzyHG0-WT-tLYAagWWtkrJFP4iCOZhHLM36zjmYRyzjrPI3v8jc3FtsWYbh6fEH1YxLXXOkbIpLtLkyMdMrhqf4v8N7gEXdq5U |
CitedBy_id | crossref_primary_10_1007_s11270_023_06684_z crossref_primary_10_1016_j_resconrec_2024_107578 crossref_primary_10_1016_S1002_0160_21_60060_7 crossref_primary_10_1007_s10653_024_02324_5 crossref_primary_10_1016_j_scitotenv_2021_150620 crossref_primary_10_3389_fenvs_2022_1017480 crossref_primary_10_3389_fmicb_2021_768297 crossref_primary_10_1039_D4EN01052C crossref_primary_10_3390_w15132330 crossref_primary_10_1016_j_scitotenv_2021_145793 crossref_primary_10_1016_j_ecss_2022_107963 crossref_primary_10_1016_j_scitotenv_2021_152085 crossref_primary_10_1016_j_watres_2021_118002 crossref_primary_10_3934_environsci_2022013 crossref_primary_10_2166_wst_2023_202 crossref_primary_10_1007_s11270_024_06964_2 crossref_primary_10_1016_j_cej_2021_132351 crossref_primary_10_1016_j_jhazmat_2024_133732 crossref_primary_10_1016_j_marpolbul_2020_111739 crossref_primary_10_1007_s10311_024_01727_1 crossref_primary_10_1016_j_jece_2022_107421 crossref_primary_10_1016_j_ibiod_2023_105581 crossref_primary_10_1016_j_scitotenv_2023_169081 crossref_primary_10_1016_j_ecoenv_2024_117332 crossref_primary_10_1007_s11157_021_09609_6 crossref_primary_10_1016_j_scitotenv_2023_161869 crossref_primary_10_3389_fenvs_2022_878152 crossref_primary_10_1016_j_pce_2024_103800 crossref_primary_10_1016_j_scitotenv_2023_168705 crossref_primary_10_1021_acsnano_4c05875 crossref_primary_10_1016_j_chemosphere_2023_139979 crossref_primary_10_1016_j_jclepro_2022_130766 crossref_primary_10_1016_j_scitotenv_2020_144695 crossref_primary_10_1016_j_jclepro_2024_141806 crossref_primary_10_1016_j_marpolbul_2023_115552 crossref_primary_10_1007_s10653_022_01279_9 crossref_primary_10_1016_j_scitotenv_2022_153717 crossref_primary_10_1016_j_scitotenv_2022_158922 crossref_primary_10_1186_s43591_023_00063_5 crossref_primary_10_1186_s43591_025_00115_y crossref_primary_10_1016_j_scitotenv_2023_166482 crossref_primary_10_3390_w15071382 crossref_primary_10_1021_acs_est_0c07289 crossref_primary_10_1016_j_scitotenv_2023_168373 crossref_primary_10_1016_j_scitotenv_2021_151851 crossref_primary_10_1007_s10653_024_02325_4 crossref_primary_10_1007_s40333_022_0025_9 crossref_primary_10_1016_j_plaphy_2023_108132 crossref_primary_10_1016_j_scitotenv_2024_177248 crossref_primary_10_1016_j_scitotenv_2021_146546 crossref_primary_10_1016_j_envpol_2023_122890 crossref_primary_10_1016_j_scitotenv_2024_178298 crossref_primary_10_3390_pr9111917 crossref_primary_10_53623_idwm_v3i2_291 crossref_primary_10_1016_j_envpol_2022_120276 crossref_primary_10_1016_j_atmosenv_2023_120212 crossref_primary_10_3390_jmse8080549 crossref_primary_10_1016_j_psep_2022_11_084 crossref_primary_10_1016_j_scitotenv_2024_176707 crossref_primary_10_1016_j_ecoenv_2023_115274 crossref_primary_10_1021_acs_est_1c01042 crossref_primary_10_3390_toxics10070391 crossref_primary_10_1016_j_heliyon_2023_e13296 crossref_primary_10_1016_j_envpol_2024_124282 crossref_primary_10_1016_j_marpolbul_2021_112467 crossref_primary_10_1038_s41565_021_01063_3 crossref_primary_10_1007_s11270_024_07168_4 crossref_primary_10_1016_j_jclepro_2024_144455 crossref_primary_10_1016_j_jenvman_2024_120618 crossref_primary_10_1007_s11270_023_06468_5 crossref_primary_10_1016_j_jenvman_2024_121826 crossref_primary_10_1016_j_scitotenv_2024_176163 crossref_primary_10_1016_j_envpol_2024_125016 crossref_primary_10_1016_j_jenvman_2023_118011 crossref_primary_10_1016_j_seh_2023_100019 crossref_primary_10_1007_s00477_023_02403_6 crossref_primary_10_1016_j_trac_2023_117106 crossref_primary_10_1038_s41598_022_18881_7 crossref_primary_10_1080_01480545_2024_2433075 crossref_primary_10_1016_j_envpol_2021_118220 crossref_primary_10_1016_j_scitotenv_2020_142572 crossref_primary_10_3390_w16243574 crossref_primary_10_1016_j_scitotenv_2022_160740 crossref_primary_10_1016_j_jwpe_2021_101966 crossref_primary_10_1016_j_jhazmat_2023_132636 crossref_primary_10_3389_fenvs_2020_574008 crossref_primary_10_1007_s11270_024_07451_4 crossref_primary_10_1016_j_chemosphere_2024_143908 crossref_primary_10_1016_j_scitotenv_2023_166580 crossref_primary_10_1016_j_chemosphere_2021_133176 crossref_primary_10_1016_j_jhazmat_2022_129450 crossref_primary_10_1016_j_scitotenv_2022_154989 crossref_primary_10_1016_j_trac_2023_117292 crossref_primary_10_1016_j_rsma_2024_103858 crossref_primary_10_3390_membranes15030082 crossref_primary_10_1016_j_plaphy_2022_12_008 crossref_primary_10_1007_s10924_022_02580_5 crossref_primary_10_1016_j_jclepro_2020_125240 crossref_primary_10_1016_j_watres_2023_120249 crossref_primary_10_1016_j_wsee_2024_02_001 crossref_primary_10_1016_j_scitotenv_2024_176491 crossref_primary_10_1016_j_envint_2021_106708 crossref_primary_10_1016_j_susmat_2021_e00251 crossref_primary_10_1016_j_scitotenv_2022_160113 crossref_primary_10_1016_j_scitotenv_2023_166334 crossref_primary_10_1016_j_cofs_2021_04_001 crossref_primary_10_1016_j_envpol_2022_119385 crossref_primary_10_1016_j_trac_2023_117294 crossref_primary_10_1016_j_chemosphere_2022_134370 crossref_primary_10_1016_j_scitotenv_2020_138824 crossref_primary_10_1016_j_catena_2022_106764 crossref_primary_10_1016_j_envpol_2021_116553 crossref_primary_10_1016_j_envpol_2024_123492 crossref_primary_10_1016_j_jhazmat_2021_125178 crossref_primary_10_1016_j_scitotenv_2022_154975 crossref_primary_10_1016_j_jhazmat_2021_127234 crossref_primary_10_1016_j_apsoil_2022_104486 crossref_primary_10_1016_j_envpol_2023_123072 crossref_primary_10_1016_j_scitotenv_2022_160118 crossref_primary_10_1016_j_coesh_2022_100361 crossref_primary_10_1016_j_jhazmat_2021_125615 crossref_primary_10_1016_j_marpolbul_2025_117815 crossref_primary_10_1656_045_029_0204 crossref_primary_10_1007_s11270_024_07356_2 crossref_primary_10_1016_j_scitotenv_2024_170160 crossref_primary_10_1016_j_envadv_2024_100535 crossref_primary_10_1016_j_scitotenv_2023_164427 crossref_primary_10_1016_j_cscee_2021_100088 crossref_primary_10_1016_j_jconhyd_2024_104398 crossref_primary_10_1002_ieam_4694 crossref_primary_10_1016_j_jhazmat_2021_127750 crossref_primary_10_1016_j_scitotenv_2023_166165 crossref_primary_10_1016_j_eehl_2024_04_001 crossref_primary_10_1016_j_earscirev_2022_104021 crossref_primary_10_3390_land12020472 crossref_primary_10_1016_j_scitotenv_2022_155772 crossref_primary_10_1016_j_scitotenv_2024_177200 crossref_primary_10_4491_eer_2023_734 crossref_primary_10_1016_j_eti_2024_103637 crossref_primary_10_1016_j_envpol_2023_121087 crossref_primary_10_1016_j_scitotenv_2020_143633 crossref_primary_10_1002_etc_5173 crossref_primary_10_1016_j_envpol_2020_116050 crossref_primary_10_3390_microplastics1040042 crossref_primary_10_1016_j_scitotenv_2024_172949 crossref_primary_10_1186_s40068_024_00389_w crossref_primary_10_2139_ssrn_4174079 crossref_primary_10_1016_j_jhazmat_2021_125954 crossref_primary_10_1016_j_scitotenv_2021_152352 crossref_primary_10_1016_j_marpolbul_2021_112544 crossref_primary_10_1016_j_scitotenv_2024_173133 crossref_primary_10_1016_j_scitotenv_2022_154399 crossref_primary_10_1016_j_scitotenv_2024_177331 crossref_primary_10_1016_j_envpol_2023_122320 crossref_primary_10_1016_j_jhazmat_2023_131341 crossref_primary_10_1016_j_aquatox_2023_106771 crossref_primary_10_1007_s12010_023_04832_z crossref_primary_10_1016_j_ecoenv_2022_114009 crossref_primary_10_1016_j_pmatsci_2022_101035 crossref_primary_10_3390_w16111595 crossref_primary_10_1016_j_cej_2021_131870 crossref_primary_10_1039_D0EM00312C crossref_primary_10_1016_j_jwpe_2023_104559 crossref_primary_10_1007_s13762_024_05656_y crossref_primary_10_1016_j_jhazmat_2023_130897 crossref_primary_10_1016_j_scitotenv_2023_164363 crossref_primary_10_1016_j_teac_2021_e00151 crossref_primary_10_1680_jenge_20_00179 crossref_primary_10_1016_j_envpol_2022_119892 crossref_primary_10_1016_j_scitotenv_2022_159834 crossref_primary_10_1016_j_chemosphere_2022_135573 |
Cites_doi | 10.1002/ieam.1915 10.1023/B:BIOG.0000031077.28527.a2 10.1098/rstb.2008.0205 10.1029/WR018i006p01615 10.1016/j.marpolbul.2015.07.050 10.1021/es201811s 10.1016/j.marpolbul.2017.12.062 10.1016/j.envpol.2016.12.064 10.1016/j.scitotenv.2017.01.190 10.1016/j.envpol.2013.02.031 10.1890/1540-9295(2003)001[0065:WAYSRI]2.0.CO;2 10.1016/j.envpol.2018.03.010 10.1016/j.envpol.2017.07.103 10.4319/lo.1978.23.4.0798 10.2134/jeq2001.3041447x 10.1016/j.apgeochem.2014.06.012 10.1007/s10452-006-9044-4 10.1016/j.scitotenv.2018.03.233 10.2307/1351574 10.1016/0077-7579(94)90028-0 10.1016/j.marpolbul.2011.05.030 10.1016/S0272-7714(02)00353-0 10.1039/C6EM00206D 10.1016/j.ecss.2013.03.022 10.1016/S0925-8574(02)00037-X 10.1007/BF00003145 10.1126/science.224.4648.487 10.1002/etc.3935 10.1016/j.marpolbul.2011.06.030 10.1136/archdischild-2014-307149 10.1007/BF03160866 10.1021/es800249a 10.1038/s41559-017-0116 10.1016/j.marpolbul.2013.08.013 10.1672/0277-5212(2002)022[0415:FDASIS]2.0.CO;2 10.1016/j.marenvres.2015.12.006 10.1007/s00244-015-0155-6 10.1021/es903784e 10.1021/es5036317 10.3389/feart.2019.00080 10.1023/A:1017520800568 10.1016/j.envres.2008.07.025 10.1023/A:1009549117419 10.1016/j.marpolbul.2018.01.030 10.1016/j.cub.2013.09.001 10.2136/sssaj2000.642681x 10.1111/gcb.14020 10.1002/etc.4371 10.1198/1061860043515 10.1016/j.ecoleng.2010.04.028 10.1016/j.marpolbul.2013.11.025 10.1021/acs.est.7b06003 10.1006/ecss.2001.0854 10.1021/acs.est.7b05559 10.4319/lo.2007.52.3.1220 10.1016/j.watres.2015.02.012 10.1016/j.marpolbul.2011.09.025 10.1071/EN14172 10.4319/lo.1995.40.8.1474 10.1016/j.envpol.2016.12.038 10.1016/0272-7714(85)90106-4 10.1006/ecss.2000.0548 10.1016/j.marpolbul.2018.06.020 10.1016/j.marpolbul.2018.02.015 10.1016/j.marpolbul.2012.11.028 10.1016/j.marpolbul.2014.02.018 10.1016/j.marpolbul.2016.05.077 10.1002/etc.3432 10.1016/j.marpolbul.2016.06.002 10.1016/j.envpol.2019.01.067 10.1021/es2031505 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2019.113391 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 31662247 10_1016_j_envpol_2019_113391 S026974911932305X |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 29G 4.4 457 53G 5GY 5VS 6TJ 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TWZ VH1 WH7 WUQ XJT XOL XPP ZMT ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a418t-fd0f0292f86ba27d401d0c4cb61fbf40a04b32ffeacd9fbdcaf158d3c1020bc3 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Thu Jul 10 19:34:45 EDT 2025 Thu Jul 10 20:44:38 EDT 2025 Wed Feb 19 02:30:49 EST 2025 Tue Jul 01 03:14:49 EDT 2025 Thu Apr 24 22:54:31 EDT 2025 Fri Feb 23 02:49:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wetland soil Microfiber Microplastic Spatial variation Vegetation |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a418t-fd0f0292f86ba27d401d0c4cb61fbf40a04b32ffeacd9fbdcaf158d3c1020bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31662247 |
PQID | 2310668665 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2431933309 proquest_miscellaneous_2310668665 pubmed_primary_31662247 crossref_primary_10_1016_j_envpol_2019_113391 crossref_citationtrail_10_1016_j_envpol_2019_113391 elsevier_sciencedirect_doi_10_1016_j_envpol_2019_113391 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 2020-Jan 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Klute, Petersen, Calvin (bib49) 1986 Eerkes-Medrano, Thompson, Aldridge (bib30) 2015; 75 Klein, Dimzon, Eubeler, Knepper (bib48) 2017 Mitsch, Gosselink (bib65) 2015 Hollander, Wolfe (bib41) 1973 Miller, Watts, Winslow, Galloway, Barrows (bib63) 2017; vol. 124 Baldwin (bib5) 2009 Xu, Peng, Su, Gao, Gao, Li (bib91) 2018; 133 Darke, Megonigal (bib24) 2003; 57 Daubenmire (bib25) 1959; 33 Frias, Gago, Otero, Sobral (bib32) 2016; 114 Cole (bib19) 2015; 100 Horton, Walton, Spurgeon, Lahive, Svendsen (bib42) 2017; 586 Yonkos, Friedel, Perez-Reyes, Ghosal, Arthur (bib92) 2014; 48 Baldwin, Derico (bib4) 1999; 3 Gray, Wertz, Leads, Weinstein (bib36) 2018; 128 Peng, Zhu, Yang, Su, Shi, Li (bib74) 2017; 225 Braskerud (bib9) 2001; 30 Twilley (bib85) 1985; 20 Connor, Sarraino, Frantz, Bushaw-Newton, MacAvoy (bib94) 2014 Grant, Daborn (bib35) 1994; 32 Dris, Gasperi, Tassin (bib29) 2017 Kadlec, Roy, Munson, Charlton, Brownlie (bib45) 2010; 36 Zedler (bib93) 2003; 1 Valiela, Teal, Volkmann, Shafer, Carpenter (bib86) 1978; 23 Dris, Imhof, Sanchez, Gasperi, Galgani, Tassin, Laforsch (bib28) 2015; 12 Sruthy, Ramasamy (bib83) 2017; 222 Brinson (bib10) 1993; 13 Martin, Almahasheer, Duarte (bib60) 2019; 247 Wessel, Lockridge, Battiste, Cebrian (bib89) 2016; 109 Mohamed Nor, Obbard (bib67) 2014; 79 Chambers (bib15) 1992 Baldwin, Hammerschlag, Cahoon (bib6) 2009 Barnes, Galgani, Thompson, Barlaz (bib7) 2009; 364 Christiansen, Wiberg, Milligan (bib16) 2000; 50 Rodrigues, Abrantes, Gonçalves, Nogueira, Marques, Gonçalves (bib80) 2018; 633 Sutton, Wren, Box, Willis-Norton, Mason, Stanek (bib84) 2016; 109 Wright, Thompson, Galloway (bib90) 2013; 178 Leonard, Luther (bib56) 1995; 40 Lourenço, Serra-Gonçalves, Ferreira, Catry, Granadeiro (bib57) 2017; 231 Dietrich (bib27) 1982; 18 Weinstein, Cricker, Gray (bib88) 2016; 35 Kane, Clare (bib46) 2019; 7 Orson, Simpson, Good (bib73) 1990; 60 Alimi, Farner Budarz, Hernandez, Tufenkji (bib1) 2018; 52 Madsen, Chambers, James, Koch, Westlake (bib59) 2001; 444 Andrady (bib2) 2011; 62 Herrera, Garrido-amador, Martínez, Samper, López-martínez, Gómez, Packard (bib39) 2018; 129 Cole, Lindeque, Halsband, Galloway (bib18) 2011; 62 Munno, Helm, Jackson, Rochman, Sims (bib70) 2018; 37 Lusher, McHugh, Thompson (bib58) 2013; 67 Masura, Baker, Foster, Arthur, Herring (bib61) 2015 Craft (bib22) 2007; 52 Howard, Dorjes (bib43) 1972; 42 Press, Flannery, Teukolsky, Vetterling (bib76) 1988 Mathalon, Hill (bib62) 2014; 81 Gleason, Elmer, Pien, Fisher (bib34) 1979; 2 Scheurer, Bigalke (bib81) 2018; 52 de Souza Machado, Kloas, Zarfl, Hempel, Rillig (bib26) 2018; 24 Vianello, Boldrin, Guerriero, Moschino, Rella, Sturaro, Da Ros (bib87) 2013; 130 Claessens, Meester, Landuyt, Clerck, Janssen (bib17) 2011; 62 Neubauer, Anderson, Constantine, Kuehl (bib71) 2002; 54 R Core Team (bib77) 2018 Harrell, Dupont (bib37) 2019 Kim, Chae, Kim, Choi, Woo (bib47) 2015; 69 Leonard, Wren, Beavers (bib55) 2002; 22 Browne, Dissanayake, Galloway, Lowe, Thompson (bib11) 2008; 42 Imhof, Ivelva, Schmid, Reinhard, Laforsch (bib44) 2013; 23 Galloway, Cole, Lewis (bib33) 2017; 1 Dacey, Howes (bib23) 1984; 224 Kroon, Motti, Talbot, Sobral, Puotinen (bib50) 2018; 238 Hidalgo-Ruz, Gutow, Thompson, Thiel (bib40) 2012; 46 Lambert, Wagner (bib51) 2017 Piepho (bib75) 2004; 13 Rochman, Tahir, Williams, Baxa, Lam, Miller, Teh, Werorilangi, Teh (bib78) 2015 Harvey, Odum (bib38) 1990; 10 Lee, Hong, Song, Hong, Jang, Jang, Heo, Han, Lee, Kang, Shim (bib53) 2013; 77 Coveney, Stites, Lowe, Battoe, Conrow (bib20) 2002; 19 Lasee, Mauricio, Thompson, Karnjanapiboonwong, Kasumba, Subbiah, Morse, Anderson (bib52) 2017; 13 Nizzetto, Bussi, Futter, Butterfield, Whitehead (bib72) 2016; 18 Bouchard (bib8) 2007; 41 Cowardin, Carter, Golet, LaRoe (bib21) 1979 Browne, Crump, Niven, Teuten, Tonkin, Galloway, Thompson (bib13) 2011; 45 Morse, Megonigal, Walbridge (bib68) 2004; 69 Mudd, D’Alpaos, Morris (bib69) 2010; 115 Moore (bib66) 2008; 108 Rochman, Brookson, Bikker, Djuric, Earn, Bucci, Athey, Huntington, McIlwraith, Munno, De Frond, Kolomijeca, Erdle, Grbic, Bayoumi, Borrelle, Wu, Santoro, Werbowski, Zhu, Giles, Hamilton, Thaysen, Kaura, Klasios, Ead, Kim, Sherlock, Ho, Hung (bib79) 2019; 38 (bib3) 2016 Six, Paustian, Elliott, Combrink (bib82) 2000; 64 Fok, Cheung (bib31) 2015; 99 Mitsch, Gosselink (bib64) 2000 Browne, Galloway, Thompson (bib12) 2010; 44 Lenth (bib54) 2019 Caron, Thomas, Berry, Motti, Ariel, Brodie (bib14) 2018; 17 Browne (10.1016/j.envpol.2019.113391_bib12) 2010; 44 Coveney (10.1016/j.envpol.2019.113391_bib20) 2002; 19 Dietrich (10.1016/j.envpol.2019.113391_bib27) 1982; 18 Dris (10.1016/j.envpol.2019.113391_bib28) 2015; 12 Lee (10.1016/j.envpol.2019.113391_bib53) 2013; 77 Xu (10.1016/j.envpol.2019.113391_bib91) 2018; 133 Connor (10.1016/j.envpol.2019.113391_bib94) 2014 Imhof (10.1016/j.envpol.2019.113391_bib44) 2013; 23 Bouchard (10.1016/j.envpol.2019.113391_bib8) 2007; 41 Zedler (10.1016/j.envpol.2019.113391_bib93) 2003; 1 Brinson (10.1016/j.envpol.2019.113391_bib10) 1993; 13 Mathalon (10.1016/j.envpol.2019.113391_bib62) 2014; 81 Kroon (10.1016/j.envpol.2019.113391_bib50) 2018; 238 Piepho (10.1016/j.envpol.2019.113391_bib75) 2004; 13 Peng (10.1016/j.envpol.2019.113391_bib74) 2017; 225 Andrady (10.1016/j.envpol.2019.113391_bib2) 2011; 62 Dacey (10.1016/j.envpol.2019.113391_bib23) 1984; 224 Kane (10.1016/j.envpol.2019.113391_bib46) 2019; 7 Valiela (10.1016/j.envpol.2019.113391_bib86) 1978; 23 Claessens (10.1016/j.envpol.2019.113391_bib17) 2011; 62 Weinstein (10.1016/j.envpol.2019.113391_bib88) 2016; 35 Mitsch (10.1016/j.envpol.2019.113391_bib65) 2015 Neubauer (10.1016/j.envpol.2019.113391_bib71) 2002; 54 Scheurer (10.1016/j.envpol.2019.113391_bib81) 2018; 52 Wessel (10.1016/j.envpol.2019.113391_bib89) 2016; 109 Eerkes-Medrano (10.1016/j.envpol.2019.113391_bib30) 2015; 75 Gray (10.1016/j.envpol.2019.113391_bib36) 2018; 128 Daubenmire (10.1016/j.envpol.2019.113391_bib25) 1959; 33 Harvey (10.1016/j.envpol.2019.113391_bib38) 1990; 10 Press (10.1016/j.envpol.2019.113391_bib76) 1988 Leonard (10.1016/j.envpol.2019.113391_bib55) 2002; 22 Mitsch (10.1016/j.envpol.2019.113391_bib64) 2000 Chambers (10.1016/j.envpol.2019.113391_bib15) 1992 Lenth (10.1016/j.envpol.2019.113391_bib54) 2019 Galloway (10.1016/j.envpol.2019.113391_bib33) 2017; 1 Hidalgo-Ruz (10.1016/j.envpol.2019.113391_bib40) 2012; 46 Dris (10.1016/j.envpol.2019.113391_bib29) 2017 Sutton (10.1016/j.envpol.2019.113391_bib84) 2016; 109 Darke (10.1016/j.envpol.2019.113391_bib24) 2003; 57 Six (10.1016/j.envpol.2019.113391_bib82) 2000; 64 Lourenço (10.1016/j.envpol.2019.113391_bib57) 2017; 231 Rochman (10.1016/j.envpol.2019.113391_bib79) 2019; 38 Cole (10.1016/j.envpol.2019.113391_bib18) 2011; 62 Hollander (10.1016/j.envpol.2019.113391_bib41) 1973 Lusher (10.1016/j.envpol.2019.113391_bib58) 2013; 67 Grant (10.1016/j.envpol.2019.113391_bib35) 1994; 32 Howard (10.1016/j.envpol.2019.113391_bib43) 1972; 42 Barnes (10.1016/j.envpol.2019.113391_bib7) 2009; 364 Browne (10.1016/j.envpol.2019.113391_bib13) 2011; 45 Christiansen (10.1016/j.envpol.2019.113391_bib16) 2000; 50 Madsen (10.1016/j.envpol.2019.113391_bib59) 2001; 444 Cowardin (10.1016/j.envpol.2019.113391_bib21) 1979 Cole (10.1016/j.envpol.2019.113391_bib19) 2015; 100 Miller (10.1016/j.envpol.2019.113391_bib63) 2017; vol. 124 Munno (10.1016/j.envpol.2019.113391_bib70) 2018; 37 Gleason (10.1016/j.envpol.2019.113391_bib34) 1979; 2 Moore (10.1016/j.envpol.2019.113391_bib66) 2008; 108 Alimi (10.1016/j.envpol.2019.113391_bib1) 2018; 52 Rodrigues (10.1016/j.envpol.2019.113391_bib80) 2018; 633 Caron (10.1016/j.envpol.2019.113391_bib14) 2018; 17 R Core Team (10.1016/j.envpol.2019.113391_bib77) 2018 Klein (10.1016/j.envpol.2019.113391_bib48) 2017 Rochman (10.1016/j.envpol.2019.113391_bib78) 2015 Martin (10.1016/j.envpol.2019.113391_bib60) 2019; 247 Orson (10.1016/j.envpol.2019.113391_bib73) 1990; 60 Baldwin (10.1016/j.envpol.2019.113391_bib6) 2009 Fok (10.1016/j.envpol.2019.113391_bib31) 2015; 99 Sruthy (10.1016/j.envpol.2019.113391_bib83) 2017; 222 Morse (10.1016/j.envpol.2019.113391_bib68) 2004; 69 Horton (10.1016/j.envpol.2019.113391_bib42) 2017; 586 Kadlec (10.1016/j.envpol.2019.113391_bib45) 2010; 36 Wright (10.1016/j.envpol.2019.113391_bib90) 2013; 178 Braskerud (10.1016/j.envpol.2019.113391_bib9) 2001; 30 Baldwin (10.1016/j.envpol.2019.113391_bib4) 1999; 3 Klute (10.1016/j.envpol.2019.113391_bib49) 1986 Twilley (10.1016/j.envpol.2019.113391_bib85) 1985; 20 Masura (10.1016/j.envpol.2019.113391_bib61) 2015 Kim (10.1016/j.envpol.2019.113391_bib47) 2015; 69 Baldwin (10.1016/j.envpol.2019.113391_bib5) 2009 Frias (10.1016/j.envpol.2019.113391_bib32) 2016; 114 Craft (10.1016/j.envpol.2019.113391_bib22) 2007; 52 Lasee (10.1016/j.envpol.2019.113391_bib52) 2017; 13 Nizzetto (10.1016/j.envpol.2019.113391_bib72) 2016; 18 Vianello (10.1016/j.envpol.2019.113391_bib87) 2013; 130 Yonkos (10.1016/j.envpol.2019.113391_bib92) 2014; 48 (10.1016/j.envpol.2019.113391_bib3) 2016 Browne (10.1016/j.envpol.2019.113391_bib11) 2008; 42 de Souza Machado (10.1016/j.envpol.2019.113391_bib26) 2018; 24 Harrell (10.1016/j.envpol.2019.113391_bib37) 2019 Leonard (10.1016/j.envpol.2019.113391_bib56) 1995; 40 Lambert (10.1016/j.envpol.2019.113391_bib51) 2017 Herrera (10.1016/j.envpol.2019.113391_bib39) 2018; 129 Mohamed Nor (10.1016/j.envpol.2019.113391_bib67) 2014; 79 Mudd (10.1016/j.envpol.2019.113391_bib69) 2010; 115 |
References_xml | – volume: 115 start-page: 1 year: 2010 end-page: 14 ident: bib69 article-title: How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation publication-title: J. Geophys. Res. Earth Surf. – volume: 444 start-page: 71 year: 2001 end-page: 84 ident: bib59 article-title: The interaction between water movement, sediment dynamics and submersed macrophytes publication-title: Hydrobiologia – volume: 45 start-page: 9175 year: 2011 end-page: 9179 ident: bib13 article-title: Accumulation of microplastic on shorelines woldwide: sources and sinks publication-title: Environ. Sci. Technol. – volume: 1 start-page: 65 year: 2003 end-page: 72 ident: bib93 article-title: Wetlands at your service: Reducing impacts of agriculture at the watershed scale publication-title: Front. Ecol. Environ. – start-page: 209 year: 2014 end-page: 216 ident: bib94 article-title: Geochemical characteristics of an urban river: Influences of an anthropogenic landscape publication-title: Appl. Geochem. – volume: 247 start-page: 499 year: 2019 end-page: 508 ident: bib60 article-title: Mangrove forests as traps for marine litter publication-title: Environ. Pollut. – volume: 20 start-page: 543 year: 1985 end-page: 557 ident: bib85 article-title: The exchange of organic carbon in basin mangrove forests in a southwest Florida estuary publication-title: Estuar. Coast Shelf Sci. – year: 2016 ident: bib3 article-title: ESRI – volume: 114 start-page: 24 year: 2016 end-page: 30 ident: bib32 article-title: Microplastics in coastal sediments from Southern Portuguese shelf waters publication-title: Mar. Environ. Res. – volume: vol. 124 start-page: 245 year: 2017 end-page: 251 ident: bib63 publication-title: Mountains to the Sea: River Study of Plastic and Non-plastic Micro Fiber Pollution in the Northeast USA – volume: 18 start-page: 1050 year: 2016 end-page: 1059 ident: bib72 article-title: A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments publication-title: Environ. Sci. Process. Impacts – year: 1988 ident: bib76 article-title: Numerical Methods in C – volume: 633 start-page: 1549 year: 2018 end-page: 1559 ident: bib80 article-title: Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal) publication-title: Sci. Total Environ. – volume: 24 start-page: 1405 year: 2018 end-page: 1416 ident: bib26 article-title: Microplastics as an emerging threat to terrestrial ecosystems publication-title: Glob. Chang. Biol. – volume: 79 start-page: 278 year: 2014 end-page: 283 ident: bib67 article-title: Microplastics in Singapore’s coastal mangrove ecosystems publication-title: Mar. Pollut. Bull. – volume: 69 start-page: 299 year: 2015 end-page: 309 ident: bib47 article-title: Factors influencing the spatial variation of microplastics on high-tidal coastal beaches in Korea publication-title: Environ. Contam. Toxicol. – volume: 52 start-page: 1704 year: 2018 end-page: 1724 ident: bib1 article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport publication-title: Environ. Sci. Technol. – start-page: 1 year: 2017 end-page: 24 ident: bib51 article-title: Microplastics are contaminants of emerging concern in freshwater environments: an overview publication-title: Freshwater Microplastics: Emerging Environmental Contaminants – year: 1973 ident: bib41 article-title: Nonparametric Statistical Methods – volume: 36 start-page: 1093 year: 2010 end-page: 1107 ident: bib45 article-title: Water quality performance of treatment wetlands in the Imperial Valley, California publication-title: Ecol. Eng. – year: 1979 ident: bib21 article-title: Classification of Wetlands and Deepwater Habitats of the United States – volume: 57 start-page: 255 year: 2003 end-page: 268 ident: bib24 article-title: Control of sediment deposition rates in two mid-Atlantic Coast tidal freshwater wetlands publication-title: Estuar. Coast Shelf Sci. – volume: 130 start-page: 54 year: 2013 end-page: 61 ident: bib87 article-title: Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification publication-title: Estuar. Coast Shelf Sci. – volume: 50 start-page: 315 year: 2000 end-page: 331 ident: bib16 article-title: Flow and sediment transport on a tidal salt marsh surface publication-title: Estuar. Coast Shelf Sci. – volume: 54 start-page: 713 year: 2002 end-page: 727 ident: bib71 article-title: Sediment deposition and accretion in a mid-Atlantic (U.S.A.) tidal freshwater marsh publication-title: Estuar. Coast Shelf Sci. – volume: 586 start-page: 127 year: 2017 end-page: 141 ident: bib42 article-title: Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities publication-title: Sci. Total Environ. – volume: 109 start-page: 178 year: 2016 end-page: 183 ident: bib89 article-title: Abundance and characteristics of microplastics in beach sediments: Insights into microplastic accumulation in northern Gulf of Mexico estuaries publication-title: Mar. Pollut. Bull. – start-page: 1 year: 2015 end-page: 10 ident: bib78 article-title: Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption publication-title: Nat. Publ. Group – volume: 17 start-page: 743 year: 2018 end-page: 751 ident: bib14 article-title: Ingestion of microplastics debris by green sea turtles ( publication-title: Mar. Pollut. Bull. – volume: 13 start-page: 65 year: 1993 end-page: 74 ident: bib10 article-title: Changes in the functioning of wetlands along environmental gradients publication-title: Wetlands – volume: 69 start-page: 175 year: 2004 end-page: 206 ident: bib68 article-title: Sediment nutrient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virginia, USA publication-title: Biogeochemistry – volume: 35 start-page: 1632 year: 2016 end-page: 1640 ident: bib88 article-title: From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat publication-title: Environ. Toxicol. Chem. – volume: 109 start-page: 230 year: 2016 end-page: 235 ident: bib84 article-title: Microplastic contamination in the San Francisco Bay, California, USA publication-title: Mar. Pollut. Bull. – volume: 3 start-page: 5 year: 1999 end-page: 20 ident: bib4 article-title: The seed bank of a restored tidal freshwater marsh in Washington, DC publication-title: Urban Ecosyst. – year: 1992 ident: bib15 article-title: Linear models publication-title: Statistical Models in S – volume: 41 start-page: 1 year: 2007 end-page: 7 ident: bib8 article-title: Export of organic matter from a coastal freshwater wetland to Lake Erie: an extension of the outwelling hypothesis publication-title: Aquat. Ecol. – volume: 23 start-page: 867 year: 2013 end-page: 868 ident: bib44 article-title: Beyond the ocean: contamination of beach sediments of a subapline lake with microplastic particles publication-title: Curr. Biol. – year: 2019 ident: bib37 article-title: Hmisc: Harrell Miscellaneous – volume: 52 start-page: 3591 year: 2018 end-page: 3598 ident: bib81 article-title: Microplastics in Swiss floodplain soils publication-title: Environ. Sci. Technol. – year: 1986 ident: bib49 article-title: Bulk density publication-title: Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods – start-page: 207 year: 2009 end-page: 222 ident: bib5 article-title: Restoration of tidal freshwater wetlands in North America publication-title: Tidal Freshwater Wetlands – volume: 77 start-page: 349 year: 2013 end-page: 354 ident: bib53 article-title: Relationships among the abundances of plastic debris in different size classes on beaches in South Korea publication-title: Mar. Pollut. Bull. – volume: 37 start-page: 91 year: 2018 end-page: 98 ident: bib70 article-title: Impacts of temperature and selected chemical digestion methods on microplastic particles publication-title: Environ. Toxicol. Chem. – volume: 128 start-page: 223 year: 2018 end-page: 233 ident: bib36 article-title: Microplastic in two South Carolina Estuaries: occurrence, distribution, and composition publication-title: Mar. Pollut. Bull. – start-page: 18 year: 2015 ident: bib61 article-title: Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments publication-title: Natl. Ocean. Atmospheric Adm. USA – year: 2017 ident: bib29 article-title: Sources and fate of microplastics in urban areas: a focus on Paris Megacity. Pp. 69–84 publication-title: Freshwater Microplastics: Emerging Environmental Contaminants – volume: 99 start-page: 112 year: 2015 end-page: 118 ident: bib31 article-title: Hong Kong at the Pearl River Estuary: a hotspot of microplastic pollution publication-title: Mar. Pollut. Bull. – volume: 40 start-page: 1474 year: 1995 end-page: 1484 ident: bib56 article-title: Flow hydrodynamics in tidal marsh canopies publication-title: Limnol. Oceanogr. – year: 2019 ident: bib54 article-title: Emmeans: Estimated Marginal Means, Aka Least-Squares Means – volume: 19 start-page: 141 year: 2002 end-page: 159 ident: bib20 article-title: Nutrient removal from eutrophic lake water by wetland filtration publication-title: Ecol. Eng. – volume: 46 start-page: 3060 year: 2012 end-page: 3075 ident: bib40 article-title: Microplastics in the marine environment: a review of the methods used for identification and quantification publication-title: Environ. Sci. Technol. – volume: 30 start-page: 1447 year: 2001 end-page: 1457 ident: bib9 article-title: The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands publication-title: J. Environ. Qual. – volume: 75 start-page: 63 year: 2015 end-page: 82 ident: bib30 article-title: Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs publication-title: Water Res. – volume: 64 start-page: 681 year: 2000 end-page: 689 ident: bib82 article-title: Soil structure and organic matter: I. Distribution of aggregate-size classes publication-title: Soil Sci. Soc. Am. J. – volume: 13 start-page: 456 year: 2004 end-page: 466 ident: bib75 article-title: An algorithm for a letter-based representation of all-pairwise comparisons publication-title: J. Comput. Graph. Stat. – volume: 10 start-page: 217 year: 1990 end-page: 236 ident: bib38 article-title: The influence of tidal marshes on upland groundwater discharge to estuaries publication-title: Biogeochemistry – year: 2017 ident: bib48 article-title: Analysis, occurrence, and degradation of microplastics in the aqueous environment. Pp. 51–68 publication-title: Freshwater Microplastics: Emerging Environmental Contaminants – volume: 178 start-page: 483 year: 2013 end-page: 492 ident: bib90 article-title: The physical impacts of microplastics on marine organisms: A review publication-title: Environ. Pollut. – volume: 224 start-page: 487 year: 1984 end-page: 489 ident: bib23 article-title: Water uptake by roots controls water table movement and sediment oxidation in short Spartina marsh publication-title: Science – volume: 23 start-page: 798 year: 1978 end-page: 812 ident: bib86 article-title: Nutrient and particulate fluxes in a salt marsh ecosystem: Tidal exchanges and inputs by precipitation and groundwater 1 publication-title: Limnol. Oceanogr. – volume: 100 start-page: 608 year: 2015 end-page: 609 ident: bib19 article-title: Too many digits: the presentation of numerical data publication-title: Arch. Dis. Child. – volume: 1 start-page: 116 year: 2017 ident: bib33 article-title: Interactions of microplastic debris throughout the marine ecosystem publication-title: Nat. Ecol. Evol. – year: 2015 ident: bib65 article-title: Wetlands – volume: 108 start-page: 131 year: 2008 end-page: 139 ident: bib66 article-title: Synthetic polymers in the marine environment: a rapidly increasing, long-term threat publication-title: Environ. Res. – volume: 12 start-page: 539 year: 2015 end-page: 550 ident: bib28 article-title: Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles publication-title: Environ. Chem. – volume: 48 start-page: 14195 year: 2014 end-page: 14202 ident: bib92 article-title: Microplastics in four estuarine rivers in the Chesapeake Bay publication-title: U.S.A. Environ. Sci. Technol. – volume: 44 start-page: 3404 year: 2010 end-page: 3409 ident: bib12 article-title: Spatial patterns of plastic debris along estuarine shorelines publication-title: Environ. Sci. Technol. – volume: 33 start-page: 43 year: 1959 end-page: 64 ident: bib25 article-title: A canopy-coverage method of vegetational analysis publication-title: Northwest Sci. – volume: 18 start-page: 1615 year: 1982 end-page: 1626 ident: bib27 article-title: Settling velocity of natural particles publication-title: Water Resour. Res. – volume: 32 start-page: 63 year: 1994 end-page: 72 ident: bib35 article-title: The effects of bioturbation on sediment transport on an intertidal mudflat publication-title: Neth. J. Sea Res. – start-page: 801 year: 2009 end-page: 832 ident: bib6 article-title: Evaluation of restored tidal freshwater wetlands publication-title: Coastal Wetlands: an Integrated Ecosystem Approach – volume: 62 start-page: 2588 year: 2011 end-page: 2597 ident: bib18 article-title: Microplastics as contaminants in the marine environment: a review publication-title: Mar. Pollut. Bull. – volume: 238 start-page: 26 year: 2018 end-page: 38 ident: bib50 article-title: A workflow for improving estimates of microplastic contamination in marine waters: a case study from North-Western Australia publication-title: Environ. Pollut. – volume: 2 start-page: 271 year: 1979 end-page: 273 ident: bib34 article-title: Effects of stem density upon sediment retention by salt marsh cord grass, publication-title: Estuaries – year: 2000 ident: bib64 article-title: Wetlands – volume: 225 start-page: 283 year: 2017 end-page: 290 ident: bib74 article-title: Microplastics in sediments of the Changjiang Estuary, China publication-title: Environ. Pollut. – volume: 129 start-page: 61 year: 2018 end-page: 69 ident: bib39 article-title: Novel methodology to isolate microplastics from vegetal-rich samples Novel methodology to isolate microplastics from vegetal-rich samples publication-title: Mar. Pollut. Bull. – volume: 7 year: 2019 ident: bib46 article-title: Dispersion, accumulation, and the ultimate fate of microplastics in deep-marine environments: a review and future directions publication-title: Front. Earth Sci. – volume: 67 start-page: 94 year: 2013 end-page: 99 ident: bib58 article-title: Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel publication-title: Mar. Pollut. Bull. – year: 2018 ident: bib77 article-title: R: A Language and Environment for Statistical Computing – volume: 231 start-page: 123 year: 2017 end-page: 133 ident: bib57 article-title: Plastic and other microfibers in sediments, macroinvertebrates and shorebirds from three intertidal wetlands of southern Europe and west Africa publication-title: Environ. Pollut. – volume: 222 start-page: 315 year: 2017 end-page: 322 ident: bib83 article-title: Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India publication-title: Environ. Pollut. – volume: 364 start-page: 1985 year: 2009 end-page: 1998 ident: bib7 article-title: Accumulation and fragmentation of plastic debris in global environments publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 13 start-page: 528 year: 2017 end-page: 532 ident: bib52 article-title: Microplastics in a freshwater environment receiving treated wastewater effluent publication-title: Integr. Environ. Assess. Manag. – volume: 62 start-page: 2199 year: 2011 end-page: 2204 ident: bib17 article-title: Occurrence and distribution of microplastics in marine sediments along the Belgian coast publication-title: Mar. Pollut. Bull. – volume: 60 year: 1990 ident: bib73 article-title: Rates of sediment accumulation in a tidal freshwater marsh publication-title: SEPM J. Sediment. Res. – volume: 62 start-page: 1596 year: 2011 end-page: 1605 ident: bib2 article-title: Microplastics in the marine environment publication-title: Mar. Pollut. Bull. – volume: 81 start-page: 69 year: 2014 end-page: 79 ident: bib62 article-title: Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia publication-title: Mar. Pollut. Bull. – volume: 42 year: 1972 ident: bib43 article-title: Animal-sediment relationships in two beach-related tidal flats, Sapelo Island, Georgia publication-title: SEPM J. Sediment. Res. – volume: 42 start-page: 5026 year: 2008 end-page: 5031 ident: bib11 article-title: Ingested microscopic plastic translocates to the circulatory system of the mussel, publication-title: Environ. Sci. Technol. – volume: 52 start-page: 1220 year: 2007 end-page: 1230 ident: bib22 article-title: Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and US tidal marshes publication-title: Limnol. Oceanogr. – volume: 133 start-page: 647 year: 2018 end-page: 654 ident: bib91 article-title: Microplastic risk assessment in surface waters: A case study in the Changjiang Estuary, China publication-title: Mar. Pollut. Bull. – volume: 22 start-page: 415 year: 2002 end-page: 424 ident: bib55 article-title: Flow dynamics and sedimentation in Spartina alterniflora and Phragmites australis marshes of the Chesapeake Bay publication-title: Wetlands – volume: 38 start-page: 703 year: 2019 end-page: 711 ident: bib79 article-title: Rethinking microplastics as a diverse contaminant suite publication-title: Environ. Toxicol. Chem. – volume: 13 start-page: 528 year: 2017 ident: 10.1016/j.envpol.2019.113391_bib52 article-title: Microplastics in a freshwater environment receiving treated wastewater effluent publication-title: Integr. Environ. Assess. Manag. doi: 10.1002/ieam.1915 – volume: 69 start-page: 175 year: 2004 ident: 10.1016/j.envpol.2019.113391_bib68 article-title: Sediment nutrient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virginia, USA publication-title: Biogeochemistry doi: 10.1023/B:BIOG.0000031077.28527.a2 – volume: 364 start-page: 1985 year: 2009 ident: 10.1016/j.envpol.2019.113391_bib7 article-title: Accumulation and fragmentation of plastic debris in global environments publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2008.0205 – start-page: 18 year: 2015 ident: 10.1016/j.envpol.2019.113391_bib61 article-title: Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments publication-title: Natl. Ocean. Atmospheric Adm. USA – volume: 60 year: 1990 ident: 10.1016/j.envpol.2019.113391_bib73 article-title: Rates of sediment accumulation in a tidal freshwater marsh publication-title: SEPM J. Sediment. Res. – volume: 18 start-page: 1615 year: 1982 ident: 10.1016/j.envpol.2019.113391_bib27 article-title: Settling velocity of natural particles publication-title: Water Resour. Res. doi: 10.1029/WR018i006p01615 – year: 2018 ident: 10.1016/j.envpol.2019.113391_bib77 – volume: 99 start-page: 112 year: 2015 ident: 10.1016/j.envpol.2019.113391_bib31 article-title: Hong Kong at the Pearl River Estuary: a hotspot of microplastic pollution publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2015.07.050 – volume: 45 start-page: 9175 year: 2011 ident: 10.1016/j.envpol.2019.113391_bib13 article-title: Accumulation of microplastic on shorelines woldwide: sources and sinks publication-title: Environ. Sci. Technol. doi: 10.1021/es201811s – volume: vol. 124 start-page: 245 year: 2017 ident: 10.1016/j.envpol.2019.113391_bib63 – volume: 17 start-page: 743 year: 2018 ident: 10.1016/j.envpol.2019.113391_bib14 article-title: Ingestion of microplastics debris by green sea turtles (Chelonia mydas) in the Great Barrier Reef: validation of a sequential extraction protocol publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2017.12.062 – year: 1986 ident: 10.1016/j.envpol.2019.113391_bib49 article-title: Bulk density – volume: 225 start-page: 283 year: 2017 ident: 10.1016/j.envpol.2019.113391_bib74 article-title: Microplastics in sediments of the Changjiang Estuary, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.12.064 – volume: 586 start-page: 127 year: 2017 ident: 10.1016/j.envpol.2019.113391_bib42 article-title: Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.190 – volume: 178 start-page: 483 year: 2013 ident: 10.1016/j.envpol.2019.113391_bib90 article-title: The physical impacts of microplastics on marine organisms: A review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.02.031 – volume: 1 start-page: 65 year: 2003 ident: 10.1016/j.envpol.2019.113391_bib93 article-title: Wetlands at your service: Reducing impacts of agriculture at the watershed scale publication-title: Front. Ecol. Environ. doi: 10.1890/1540-9295(2003)001[0065:WAYSRI]2.0.CO;2 – volume: 238 start-page: 26 year: 2018 ident: 10.1016/j.envpol.2019.113391_bib50 article-title: A workflow for improving estimates of microplastic contamination in marine waters: a case study from North-Western Australia publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.03.010 – year: 2017 ident: 10.1016/j.envpol.2019.113391_bib29 article-title: Sources and fate of microplastics in urban areas: a focus on Paris Megacity. Pp. 69–84 – volume: 231 start-page: 123 year: 2017 ident: 10.1016/j.envpol.2019.113391_bib57 article-title: Plastic and other microfibers in sediments, macroinvertebrates and shorebirds from three intertidal wetlands of southern Europe and west Africa publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.07.103 – volume: 23 start-page: 798 year: 1978 ident: 10.1016/j.envpol.2019.113391_bib86 article-title: Nutrient and particulate fluxes in a salt marsh ecosystem: Tidal exchanges and inputs by precipitation and groundwater 1 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1978.23.4.0798 – volume: 30 start-page: 1447 year: 2001 ident: 10.1016/j.envpol.2019.113391_bib9 article-title: The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands publication-title: J. Environ. Qual. doi: 10.2134/jeq2001.3041447x – start-page: 209 year: 2014 ident: 10.1016/j.envpol.2019.113391_bib94 article-title: Geochemical characteristics of an urban river: Influences of an anthropogenic landscape publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2014.06.012 – volume: 41 start-page: 1 year: 2007 ident: 10.1016/j.envpol.2019.113391_bib8 article-title: Export of organic matter from a coastal freshwater wetland to Lake Erie: an extension of the outwelling hypothesis publication-title: Aquat. Ecol. doi: 10.1007/s10452-006-9044-4 – volume: 633 start-page: 1549 year: 2018 ident: 10.1016/j.envpol.2019.113391_bib80 article-title: Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.233 – volume: 2 start-page: 271 year: 1979 ident: 10.1016/j.envpol.2019.113391_bib34 article-title: Effects of stem density upon sediment retention by salt marsh cord grass, Spartina alterniflora Loisel publication-title: Estuaries doi: 10.2307/1351574 – volume: 32 start-page: 63 year: 1994 ident: 10.1016/j.envpol.2019.113391_bib35 article-title: The effects of bioturbation on sediment transport on an intertidal mudflat publication-title: Neth. J. Sea Res. doi: 10.1016/0077-7579(94)90028-0 – volume: 62 start-page: 1596 year: 2011 ident: 10.1016/j.envpol.2019.113391_bib2 article-title: Microplastics in the marine environment publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.05.030 – volume: 57 start-page: 255 year: 2003 ident: 10.1016/j.envpol.2019.113391_bib24 article-title: Control of sediment deposition rates in two mid-Atlantic Coast tidal freshwater wetlands publication-title: Estuar. Coast Shelf Sci. doi: 10.1016/S0272-7714(02)00353-0 – volume: 18 start-page: 1050 year: 2016 ident: 10.1016/j.envpol.2019.113391_bib72 article-title: A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments publication-title: Environ. Sci. Process. Impacts doi: 10.1039/C6EM00206D – volume: 130 start-page: 54 year: 2013 ident: 10.1016/j.envpol.2019.113391_bib87 article-title: Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification publication-title: Estuar. Coast Shelf Sci. doi: 10.1016/j.ecss.2013.03.022 – volume: 19 start-page: 141 year: 2002 ident: 10.1016/j.envpol.2019.113391_bib20 article-title: Nutrient removal from eutrophic lake water by wetland filtration publication-title: Ecol. Eng. doi: 10.1016/S0925-8574(02)00037-X – volume: 10 start-page: 217 year: 1990 ident: 10.1016/j.envpol.2019.113391_bib38 article-title: The influence of tidal marshes on upland groundwater discharge to estuaries publication-title: Biogeochemistry doi: 10.1007/BF00003145 – volume: 224 start-page: 487 year: 1984 ident: 10.1016/j.envpol.2019.113391_bib23 article-title: Water uptake by roots controls water table movement and sediment oxidation in short Spartina marsh publication-title: Science doi: 10.1126/science.224.4648.487 – year: 1992 ident: 10.1016/j.envpol.2019.113391_bib15 article-title: Linear models – volume: 37 start-page: 91 year: 2018 ident: 10.1016/j.envpol.2019.113391_bib70 article-title: Impacts of temperature and selected chemical digestion methods on microplastic particles publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.3935 – year: 2016 ident: 10.1016/j.envpol.2019.113391_bib3 – volume: 62 start-page: 2199 year: 2011 ident: 10.1016/j.envpol.2019.113391_bib17 article-title: Occurrence and distribution of microplastics in marine sediments along the Belgian coast publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.06.030 – year: 1979 ident: 10.1016/j.envpol.2019.113391_bib21 – year: 2017 ident: 10.1016/j.envpol.2019.113391_bib48 article-title: Analysis, occurrence, and degradation of microplastics in the aqueous environment. Pp. 51–68 – volume: 100 start-page: 608 year: 2015 ident: 10.1016/j.envpol.2019.113391_bib19 article-title: Too many digits: the presentation of numerical data publication-title: Arch. Dis. Child. doi: 10.1136/archdischild-2014-307149 – volume: 13 start-page: 65 year: 1993 ident: 10.1016/j.envpol.2019.113391_bib10 article-title: Changes in the functioning of wetlands along environmental gradients publication-title: Wetlands doi: 10.1007/BF03160866 – volume: 42 start-page: 5026 year: 2008 ident: 10.1016/j.envpol.2019.113391_bib11 article-title: Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.) publication-title: Environ. Sci. Technol. doi: 10.1021/es800249a – volume: 1 start-page: 116 year: 2017 ident: 10.1016/j.envpol.2019.113391_bib33 article-title: Interactions of microplastic debris throughout the marine ecosystem publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-017-0116 – volume: 77 start-page: 349 year: 2013 ident: 10.1016/j.envpol.2019.113391_bib53 article-title: Relationships among the abundances of plastic debris in different size classes on beaches in South Korea publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2013.08.013 – volume: 22 start-page: 415 year: 2002 ident: 10.1016/j.envpol.2019.113391_bib55 article-title: Flow dynamics and sedimentation in Spartina alterniflora and Phragmites australis marshes of the Chesapeake Bay publication-title: Wetlands doi: 10.1672/0277-5212(2002)022[0415:FDASIS]2.0.CO;2 – volume: 114 start-page: 24 year: 2016 ident: 10.1016/j.envpol.2019.113391_bib32 article-title: Microplastics in coastal sediments from Southern Portuguese shelf waters publication-title: Mar. Environ. Res. doi: 10.1016/j.marenvres.2015.12.006 – year: 2019 ident: 10.1016/j.envpol.2019.113391_bib37 – volume: 69 start-page: 299 year: 2015 ident: 10.1016/j.envpol.2019.113391_bib47 article-title: Factors influencing the spatial variation of microplastics on high-tidal coastal beaches in Korea publication-title: Environ. Contam. Toxicol. doi: 10.1007/s00244-015-0155-6 – volume: 44 start-page: 3404 year: 2010 ident: 10.1016/j.envpol.2019.113391_bib12 article-title: Spatial patterns of plastic debris along estuarine shorelines publication-title: Environ. Sci. Technol. doi: 10.1021/es903784e – year: 2000 ident: 10.1016/j.envpol.2019.113391_bib64 – volume: 48 start-page: 14195 year: 2014 ident: 10.1016/j.envpol.2019.113391_bib92 article-title: Microplastics in four estuarine rivers in the Chesapeake Bay publication-title: U.S.A. Environ. Sci. Technol. doi: 10.1021/es5036317 – volume: 7 year: 2019 ident: 10.1016/j.envpol.2019.113391_bib46 article-title: Dispersion, accumulation, and the ultimate fate of microplastics in deep-marine environments: a review and future directions publication-title: Front. Earth Sci. doi: 10.3389/feart.2019.00080 – volume: 444 start-page: 71 year: 2001 ident: 10.1016/j.envpol.2019.113391_bib59 article-title: The interaction between water movement, sediment dynamics and submersed macrophytes publication-title: Hydrobiologia doi: 10.1023/A:1017520800568 – volume: 108 start-page: 131 year: 2008 ident: 10.1016/j.envpol.2019.113391_bib66 article-title: Synthetic polymers in the marine environment: a rapidly increasing, long-term threat publication-title: Environ. Res. doi: 10.1016/j.envres.2008.07.025 – volume: 3 start-page: 5 year: 1999 ident: 10.1016/j.envpol.2019.113391_bib4 article-title: The seed bank of a restored tidal freshwater marsh in Washington, DC publication-title: Urban Ecosyst. doi: 10.1023/A:1009549117419 – volume: 128 start-page: 223 year: 2018 ident: 10.1016/j.envpol.2019.113391_bib36 article-title: Microplastic in two South Carolina Estuaries: occurrence, distribution, and composition publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2018.01.030 – volume: 23 start-page: 867 year: 2013 ident: 10.1016/j.envpol.2019.113391_bib44 article-title: Beyond the ocean: contamination of beach sediments of a subapline lake with microplastic particles publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.09.001 – year: 2019 ident: 10.1016/j.envpol.2019.113391_bib54 – volume: 115 start-page: 1 year: 2010 ident: 10.1016/j.envpol.2019.113391_bib69 article-title: How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation publication-title: J. Geophys. Res. Earth Surf. – volume: 64 start-page: 681 year: 2000 ident: 10.1016/j.envpol.2019.113391_bib82 article-title: Soil structure and organic matter: I. Distribution of aggregate-size classes publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.642681x – volume: 24 start-page: 1405 year: 2018 ident: 10.1016/j.envpol.2019.113391_bib26 article-title: Microplastics as an emerging threat to terrestrial ecosystems publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14020 – year: 1988 ident: 10.1016/j.envpol.2019.113391_bib76 – volume: 38 start-page: 703 year: 2019 ident: 10.1016/j.envpol.2019.113391_bib79 article-title: Rethinking microplastics as a diverse contaminant suite publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.4371 – volume: 42 year: 1972 ident: 10.1016/j.envpol.2019.113391_bib43 article-title: Animal-sediment relationships in two beach-related tidal flats, Sapelo Island, Georgia publication-title: SEPM J. Sediment. Res. – volume: 13 start-page: 456 year: 2004 ident: 10.1016/j.envpol.2019.113391_bib75 article-title: An algorithm for a letter-based representation of all-pairwise comparisons publication-title: J. Comput. Graph. Stat. doi: 10.1198/1061860043515 – start-page: 207 year: 2009 ident: 10.1016/j.envpol.2019.113391_bib5 article-title: Restoration of tidal freshwater wetlands in North America – volume: 36 start-page: 1093 year: 2010 ident: 10.1016/j.envpol.2019.113391_bib45 article-title: Water quality performance of treatment wetlands in the Imperial Valley, California publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2010.04.028 – volume: 79 start-page: 278 year: 2014 ident: 10.1016/j.envpol.2019.113391_bib67 article-title: Microplastics in Singapore’s coastal mangrove ecosystems publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2013.11.025 – volume: 52 start-page: 3591 year: 2018 ident: 10.1016/j.envpol.2019.113391_bib81 article-title: Microplastics in Swiss floodplain soils publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b06003 – volume: 54 start-page: 713 year: 2002 ident: 10.1016/j.envpol.2019.113391_bib71 article-title: Sediment deposition and accretion in a mid-Atlantic (U.S.A.) tidal freshwater marsh publication-title: Estuar. Coast Shelf Sci. doi: 10.1006/ecss.2001.0854 – volume: 52 start-page: 1704 year: 2018 ident: 10.1016/j.envpol.2019.113391_bib1 article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05559 – volume: 52 start-page: 1220 year: 2007 ident: 10.1016/j.envpol.2019.113391_bib22 article-title: Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and US tidal marshes publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2007.52.3.1220 – volume: 33 start-page: 43 year: 1959 ident: 10.1016/j.envpol.2019.113391_bib25 article-title: A canopy-coverage method of vegetational analysis publication-title: Northwest Sci. – volume: 75 start-page: 63 year: 2015 ident: 10.1016/j.envpol.2019.113391_bib30 article-title: Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs publication-title: Water Res. doi: 10.1016/j.watres.2015.02.012 – volume: 62 start-page: 2588 year: 2011 ident: 10.1016/j.envpol.2019.113391_bib18 article-title: Microplastics as contaminants in the marine environment: a review publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.09.025 – volume: 12 start-page: 539 year: 2015 ident: 10.1016/j.envpol.2019.113391_bib28 article-title: Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles publication-title: Environ. Chem. doi: 10.1071/EN14172 – volume: 40 start-page: 1474 year: 1995 ident: 10.1016/j.envpol.2019.113391_bib56 article-title: Flow hydrodynamics in tidal marsh canopies publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1995.40.8.1474 – volume: 222 start-page: 315 year: 2017 ident: 10.1016/j.envpol.2019.113391_bib83 article-title: Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.12.038 – year: 1973 ident: 10.1016/j.envpol.2019.113391_bib41 – volume: 20 start-page: 543 year: 1985 ident: 10.1016/j.envpol.2019.113391_bib85 article-title: The exchange of organic carbon in basin mangrove forests in a southwest Florida estuary publication-title: Estuar. Coast Shelf Sci. doi: 10.1016/0272-7714(85)90106-4 – start-page: 1 year: 2017 ident: 10.1016/j.envpol.2019.113391_bib51 article-title: Microplastics are contaminants of emerging concern in freshwater environments: an overview – year: 2015 ident: 10.1016/j.envpol.2019.113391_bib65 – volume: 50 start-page: 315 year: 2000 ident: 10.1016/j.envpol.2019.113391_bib16 article-title: Flow and sediment transport on a tidal salt marsh surface publication-title: Estuar. Coast Shelf Sci. doi: 10.1006/ecss.2000.0548 – volume: 133 start-page: 647 year: 2018 ident: 10.1016/j.envpol.2019.113391_bib91 article-title: Microplastic risk assessment in surface waters: A case study in the Changjiang Estuary, China publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2018.06.020 – volume: 129 start-page: 61 year: 2018 ident: 10.1016/j.envpol.2019.113391_bib39 article-title: Novel methodology to isolate microplastics from vegetal-rich samples Novel methodology to isolate microplastics from vegetal-rich samples publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2018.02.015 – volume: 67 start-page: 94 year: 2013 ident: 10.1016/j.envpol.2019.113391_bib58 article-title: Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2012.11.028 – volume: 81 start-page: 69 year: 2014 ident: 10.1016/j.envpol.2019.113391_bib62 article-title: Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2014.02.018 – volume: 109 start-page: 230 year: 2016 ident: 10.1016/j.envpol.2019.113391_bib84 article-title: Microplastic contamination in the San Francisco Bay, California, USA publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.05.077 – volume: 35 start-page: 1632 year: 2016 ident: 10.1016/j.envpol.2019.113391_bib88 article-title: From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.3432 – volume: 109 start-page: 178 year: 2016 ident: 10.1016/j.envpol.2019.113391_bib89 article-title: Abundance and characteristics of microplastics in beach sediments: Insights into microplastic accumulation in northern Gulf of Mexico estuaries publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.06.002 – start-page: 801 year: 2009 ident: 10.1016/j.envpol.2019.113391_bib6 article-title: Evaluation of restored tidal freshwater wetlands – volume: 247 start-page: 499 year: 2019 ident: 10.1016/j.envpol.2019.113391_bib60 article-title: Mangrove forests as traps for marine litter publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.01.067 – volume: 46 start-page: 3060 year: 2012 ident: 10.1016/j.envpol.2019.113391_bib40 article-title: Microplastics in the marine environment: a review of the methods used for identification and quantification publication-title: Environ. Sci. Technol. doi: 10.1021/es2031505 – start-page: 1 year: 2015 ident: 10.1016/j.envpol.2019.113391_bib78 article-title: Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption publication-title: Nat. Publ. Group |
SSID | ssj0004333 |
Score | 2.6407247 |
Snippet | Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113391 |
SubjectTerms | aquatic environment Ecosystem ecosystems Environmental Monitoring - methods Fourier transform infrared spectroscopy habitats hydrodynamics hydrogen peroxide Microfiber Microplastic microplastics Microplastics - analysis organic matter oxidation plasticizers pollution polyethylene Polyethylene - analysis Polymers - analysis polystyrenes sediments shorelines Soil - chemistry Spatial variation synthetic rubber Terpenes - analysis trophic levels vegetated waterways Vegetation vegetation cover Water Pollutants, Chemical - analysis wetland plants Wetland soil wetland soils Wetlands |
Title | Wetland soil microplastics are negatively related to vegetation cover and stem density |
URI | https://dx.doi.org/10.1016/j.envpol.2019.113391 https://www.ncbi.nlm.nih.gov/pubmed/31662247 https://www.proquest.com/docview/2310668665 https://www.proquest.com/docview/2431933309 |
Volume | 256 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V5QIHBFsKy0flSohb2DhOnOS4qlotrdoLBfZm2bFdLdpNVt200l747cw4SQuHUolrZDuWZzzzxn4zBvjoJSec6yKTOUEpOXFEhQAj9D5aZjx3RShWfX4hZ9_S03k234GjIReGaJW97e9serDW_ZdJv5qT9WIx-YrRA4Jh3KwIQVBr55TBnuak5Z9_3dM88PeiO2cpI2o9pM8Fjperb9cNXUDwkh43ESV_yD09BD-DGzp5Ac97_Mim3RRfwo6rR7A3rTF2Xm3ZJxYYneGofATP_ig2OIL94_ucNhyh39SbPfj-w7XEb2SbZrFkK2LorRFTU_1mpq8dq91VqA6-3LKQ-eIsaxt26656piKriAbKwgitWzFLnPh2-wouT44vj2ZR_9xCpFNetJG3sY-TMvGFNDrJLUZeNq7SykjujU9jHadGJN6jqbalN7bSnmeFFRVilNhUYh9266Z2b4C5QmiZFhibISDkiTS-ynRZOIxGEN_YfAxiWGRV9aXI6UWMpRo4Zz9VJxpFolGdaMYQ3fVad6U4HmmfD_JTf6mUQm_xSM_DQdwKdxtdoejaNTcbRWhYSqoR-I82iMlK1Lq4HMPrTlfu5iu4lAia8rf_Pbd38DShkD-cAr2H3fb6xn1AXNSag6D4B_Bk-uVsdvEbWxkNpA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4a3QE4IOgYlJ9GQtyiJnHiJMdq2tSxrRcK9GbZsT0VtUm1ZpP63_Oek2xwGJO4RrZl-dnvfc_53meAz05EhHNtoFPLqSQnDEgIMMDoo0QaZTb3YtUXMzH9nnxdpIs9OOprYYhW2fn-1qd7b919GXerOd4sl-NvmD0gGMbDihAEd-3iEeyTOlU6gP3J6dl0dlceydsX5bF9QB36CjpP87LVzaamfxBRQe-b8CK6L0Ldh0B9JDp5Ds86CMkm7SxfwJ6thnAwqTB9Xu_YF-ZJnf62fAhP_9AbHMLh8V1ZG47QnevtAfz4aRuiOLJtvVyxNZH0NgirScKZqSvLKnvpBcJXO-aLX6xhTc1u7GVHVmQlMUGZH6Gxa2aIFt_sXsL85Hh-NA26FxcClUR5EzgTujAuYpcLreLMYPJlwjIptYicdkmowkTz2Dn01qZw2pTKRWlueIkwJdQlP4RBVVf2NTCbcyWSHNMzxIRRLLQrU1XkFhMShDgmGwHvF1mWnRo5PYqxkj3t7JdsTSPJNLI1zQiC216bVo3jgfZZbz_5166SGDAe6PmpN7fEA0d_UVRl6-utJEAsBMkE_qMNwrICd11YjOBVu1du58sjIRA3ZW_-e24f4fF0fnEuz09nZ2_hSUw3AP5S6B0Mmqtr-x5hUqM_dMfgN4lUEFU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wetland+soil+microplastics+are+negatively+related+to+vegetation+cover+and+stem+density&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Helcoski%2C+Ryan&rft.au=Yonkos%2C+Lance+T&rft.au=Sanchez%2C+Alterra&rft.au=Baldwin%2C+Andrew+H&rft.date=2020-01-01&rft.issn=0269-7491&rft.volume=256+p.113391-&rft_id=info:doi/10.1016%2Fj.envpol.2019.113391&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |