Wetland soil microplastics are negatively related to vegetation cover and stem density

Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and with...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 256; p. 113391
Main Authors Helcoski, Ryan, Yonkos, Lance T., Sanchez, Alterra, Baldwin, Andrew H.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%–93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m−2 or 1,270 ± 150 kg−1) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats. [Display omitted] •Soil microplastics varied spatially in an urban wetland and averaged 23,200 m−2 (1,270 kg−1).•Microfiber concentration was negatively related to stem density and percent cover.•Microfibers were most abundant in mudflats and microfragments in channel edges.•Microfibers comprised 77–94% of total microplastics in an urban wetland. This study reveals that microplastics found throughout urban wetland soils are mostly microfibers and present at lower numbers in areas of dense vegetation compared to areas with few or no plants.
AbstractList Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%–93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m−2 or 1,270 ± 150 kg−1) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats. [Display omitted] •Soil microplastics varied spatially in an urban wetland and averaged 23,200 m−2 (1,270 kg−1).•Microfiber concentration was negatively related to stem density and percent cover.•Microfibers were most abundant in mudflats and microfragments in channel edges.•Microfibers comprised 77–94% of total microplastics in an urban wetland. This study reveals that microplastics found throughout urban wetland soils are mostly microfibers and present at lower numbers in areas of dense vegetation compared to areas with few or no plants.
Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%-93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m-2 or 1,270 ± 150 kg-1) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats.Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%-93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m-2 or 1,270 ± 150 kg-1) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats.
Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%–93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m−2 or 1,270 ± 150 kg−1) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats.
Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can be transferred between trophic levels. In aquatic systems, they have been identified suspended in the water column, along shorelines, and within sediment. However, the abundance and distribution of microplastics in vegetated wetlands, which are transitional ecosystems between terrestrial and aquatic environments, are poorly understood. Here we describe the spatial distribution of soil microplastics in habitats of varying vegetation density in an urban tidal wetland. Samples were wet-sieved, organic matter was oxidized using hydrogen peroxide, and microplastics separated under a dissecting microscope, counted, and weighed. A fraction (n = 175) were analyzed via FTIR for validation. Positive microplastics identification was 81%-93%. Dominant polymers were polystyrene (29%) and polyethylene and synthetic rubber (both 8%). Average microplastic number to a 5-cm depth (23,200 ± 2,500 m or 1,270 ± 150 kg ) varied between habitat types, where mudflat, channel edge, and drift line habitats all had significantly more total microplastics than the interior of dense stands of vegetation, suggesting that emergent wetland plants are a highly effective filter of microplastics. Microfibers were about eight times as abundant as microfragments, and fibers and fragments differed in their distribution patterns, with microfibers most abundant in vegetation-free mudflats and microfragments in vegetated channel edges. Our results demonstrate that vegetated wetlands are important locations for microplastic accumulation and that wetland vegetation and hydrodynamics affect spatial distribution of microplastics between habitats.
ArticleNumber 113391
Author Sanchez, Alterra
Helcoski, Ryan
Yonkos, Lance T.
Baldwin, Andrew H.
Author_xml – sequence: 1
  givenname: Ryan
  surname: Helcoski
  fullname: Helcoski, Ryan
  email: rhelcoski@gmail.com
  organization: Conservation Biology and Sustainable Development Graduate Program, University of Maryland, College Park, MD, 20740, USA
– sequence: 2
  givenname: Lance T.
  surname: Yonkos
  fullname: Yonkos, Lance T.
  email: lyonkos@umd.edu
  organization: Environmental Science and Technology Department, University of Maryland, College Park, MD, 20740, USA
– sequence: 3
  givenname: Alterra
  surname: Sanchez
  fullname: Sanchez, Alterra
  email: asanche3@umd.edu
  organization: Marine-Estuarine and Environmental Sciences Program, Civil and Environmental Engineering Department, University of Maryland, College Park, MD, 20740, USA
– sequence: 4
  givenname: Andrew H.
  surname: Baldwin
  fullname: Baldwin, Andrew H.
  email: baldwin@umd.edu
  organization: Environmental Science and Technology Department, University of Maryland, College Park, MD, 20740, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31662247$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9r3DAQxUVJaTZpv0EpOvbi7YykaO0eCiX0HwR6Ce1RyNIoaLGtraQ17LePU6c99NCcBobfe_Deu2BnU5qIsdcIWwTU7_ZbmuZDGrYCsNsiStnhM7bBdicbrYQ6YxsQumt2qsNzdlHKHgCUlPIFO5eotRBqt2E_flId7OR5SXHgY3Q5HQZbanSF20x8ojtb40zDiWcabCXPa-Iz3VFd_mniLs2U-W-HSiP3NJVYTy_Z82CHQq8e7yW7_fzp9vprc_P9y7frjzeNVdjWJngIIDoRWt1bsfMK0INTrtcY-qDAguqlCIGs813ovbMBr1ovHYKA3slL9na1PeT060ilmjEWR8OSiNKxGKEkdktk6J5GJYLWrdZXC_rmET32I3lzyHG0-WT-tLYAagWWtkrJFP4iCOZhHLM36zjmYRyzjrPI3v8jc3FtsWYbh6fEH1YxLXXOkbIpLtLkyMdMrhqf4v8N7gEXdq5U
CitedBy_id crossref_primary_10_1007_s11270_023_06684_z
crossref_primary_10_1016_j_resconrec_2024_107578
crossref_primary_10_1016_S1002_0160_21_60060_7
crossref_primary_10_1007_s10653_024_02324_5
crossref_primary_10_1016_j_scitotenv_2021_150620
crossref_primary_10_3389_fenvs_2022_1017480
crossref_primary_10_3389_fmicb_2021_768297
crossref_primary_10_1039_D4EN01052C
crossref_primary_10_3390_w15132330
crossref_primary_10_1016_j_scitotenv_2021_145793
crossref_primary_10_1016_j_ecss_2022_107963
crossref_primary_10_1016_j_scitotenv_2021_152085
crossref_primary_10_1016_j_watres_2021_118002
crossref_primary_10_3934_environsci_2022013
crossref_primary_10_2166_wst_2023_202
crossref_primary_10_1007_s11270_024_06964_2
crossref_primary_10_1016_j_cej_2021_132351
crossref_primary_10_1016_j_jhazmat_2024_133732
crossref_primary_10_1016_j_marpolbul_2020_111739
crossref_primary_10_1007_s10311_024_01727_1
crossref_primary_10_1016_j_jece_2022_107421
crossref_primary_10_1016_j_ibiod_2023_105581
crossref_primary_10_1016_j_scitotenv_2023_169081
crossref_primary_10_1016_j_ecoenv_2024_117332
crossref_primary_10_1007_s11157_021_09609_6
crossref_primary_10_1016_j_scitotenv_2023_161869
crossref_primary_10_3389_fenvs_2022_878152
crossref_primary_10_1016_j_pce_2024_103800
crossref_primary_10_1016_j_scitotenv_2023_168705
crossref_primary_10_1021_acsnano_4c05875
crossref_primary_10_1016_j_chemosphere_2023_139979
crossref_primary_10_1016_j_jclepro_2022_130766
crossref_primary_10_1016_j_scitotenv_2020_144695
crossref_primary_10_1016_j_jclepro_2024_141806
crossref_primary_10_1016_j_marpolbul_2023_115552
crossref_primary_10_1007_s10653_022_01279_9
crossref_primary_10_1016_j_scitotenv_2022_153717
crossref_primary_10_1016_j_scitotenv_2022_158922
crossref_primary_10_1186_s43591_023_00063_5
crossref_primary_10_1186_s43591_025_00115_y
crossref_primary_10_1016_j_scitotenv_2023_166482
crossref_primary_10_3390_w15071382
crossref_primary_10_1021_acs_est_0c07289
crossref_primary_10_1016_j_scitotenv_2023_168373
crossref_primary_10_1016_j_scitotenv_2021_151851
crossref_primary_10_1007_s10653_024_02325_4
crossref_primary_10_1007_s40333_022_0025_9
crossref_primary_10_1016_j_plaphy_2023_108132
crossref_primary_10_1016_j_scitotenv_2024_177248
crossref_primary_10_1016_j_scitotenv_2021_146546
crossref_primary_10_1016_j_envpol_2023_122890
crossref_primary_10_1016_j_scitotenv_2024_178298
crossref_primary_10_3390_pr9111917
crossref_primary_10_53623_idwm_v3i2_291
crossref_primary_10_1016_j_envpol_2022_120276
crossref_primary_10_1016_j_atmosenv_2023_120212
crossref_primary_10_3390_jmse8080549
crossref_primary_10_1016_j_psep_2022_11_084
crossref_primary_10_1016_j_scitotenv_2024_176707
crossref_primary_10_1016_j_ecoenv_2023_115274
crossref_primary_10_1021_acs_est_1c01042
crossref_primary_10_3390_toxics10070391
crossref_primary_10_1016_j_heliyon_2023_e13296
crossref_primary_10_1016_j_envpol_2024_124282
crossref_primary_10_1016_j_marpolbul_2021_112467
crossref_primary_10_1038_s41565_021_01063_3
crossref_primary_10_1007_s11270_024_07168_4
crossref_primary_10_1016_j_jclepro_2024_144455
crossref_primary_10_1016_j_jenvman_2024_120618
crossref_primary_10_1007_s11270_023_06468_5
crossref_primary_10_1016_j_jenvman_2024_121826
crossref_primary_10_1016_j_scitotenv_2024_176163
crossref_primary_10_1016_j_envpol_2024_125016
crossref_primary_10_1016_j_jenvman_2023_118011
crossref_primary_10_1016_j_seh_2023_100019
crossref_primary_10_1007_s00477_023_02403_6
crossref_primary_10_1016_j_trac_2023_117106
crossref_primary_10_1038_s41598_022_18881_7
crossref_primary_10_1080_01480545_2024_2433075
crossref_primary_10_1016_j_envpol_2021_118220
crossref_primary_10_1016_j_scitotenv_2020_142572
crossref_primary_10_3390_w16243574
crossref_primary_10_1016_j_scitotenv_2022_160740
crossref_primary_10_1016_j_jwpe_2021_101966
crossref_primary_10_1016_j_jhazmat_2023_132636
crossref_primary_10_3389_fenvs_2020_574008
crossref_primary_10_1007_s11270_024_07451_4
crossref_primary_10_1016_j_chemosphere_2024_143908
crossref_primary_10_1016_j_scitotenv_2023_166580
crossref_primary_10_1016_j_chemosphere_2021_133176
crossref_primary_10_1016_j_jhazmat_2022_129450
crossref_primary_10_1016_j_scitotenv_2022_154989
crossref_primary_10_1016_j_trac_2023_117292
crossref_primary_10_1016_j_rsma_2024_103858
crossref_primary_10_3390_membranes15030082
crossref_primary_10_1016_j_plaphy_2022_12_008
crossref_primary_10_1007_s10924_022_02580_5
crossref_primary_10_1016_j_jclepro_2020_125240
crossref_primary_10_1016_j_watres_2023_120249
crossref_primary_10_1016_j_wsee_2024_02_001
crossref_primary_10_1016_j_scitotenv_2024_176491
crossref_primary_10_1016_j_envint_2021_106708
crossref_primary_10_1016_j_susmat_2021_e00251
crossref_primary_10_1016_j_scitotenv_2022_160113
crossref_primary_10_1016_j_scitotenv_2023_166334
crossref_primary_10_1016_j_cofs_2021_04_001
crossref_primary_10_1016_j_envpol_2022_119385
crossref_primary_10_1016_j_trac_2023_117294
crossref_primary_10_1016_j_chemosphere_2022_134370
crossref_primary_10_1016_j_scitotenv_2020_138824
crossref_primary_10_1016_j_catena_2022_106764
crossref_primary_10_1016_j_envpol_2021_116553
crossref_primary_10_1016_j_envpol_2024_123492
crossref_primary_10_1016_j_jhazmat_2021_125178
crossref_primary_10_1016_j_scitotenv_2022_154975
crossref_primary_10_1016_j_jhazmat_2021_127234
crossref_primary_10_1016_j_apsoil_2022_104486
crossref_primary_10_1016_j_envpol_2023_123072
crossref_primary_10_1016_j_scitotenv_2022_160118
crossref_primary_10_1016_j_coesh_2022_100361
crossref_primary_10_1016_j_jhazmat_2021_125615
crossref_primary_10_1016_j_marpolbul_2025_117815
crossref_primary_10_1656_045_029_0204
crossref_primary_10_1007_s11270_024_07356_2
crossref_primary_10_1016_j_scitotenv_2024_170160
crossref_primary_10_1016_j_envadv_2024_100535
crossref_primary_10_1016_j_scitotenv_2023_164427
crossref_primary_10_1016_j_cscee_2021_100088
crossref_primary_10_1016_j_jconhyd_2024_104398
crossref_primary_10_1002_ieam_4694
crossref_primary_10_1016_j_jhazmat_2021_127750
crossref_primary_10_1016_j_scitotenv_2023_166165
crossref_primary_10_1016_j_eehl_2024_04_001
crossref_primary_10_1016_j_earscirev_2022_104021
crossref_primary_10_3390_land12020472
crossref_primary_10_1016_j_scitotenv_2022_155772
crossref_primary_10_1016_j_scitotenv_2024_177200
crossref_primary_10_4491_eer_2023_734
crossref_primary_10_1016_j_eti_2024_103637
crossref_primary_10_1016_j_envpol_2023_121087
crossref_primary_10_1016_j_scitotenv_2020_143633
crossref_primary_10_1002_etc_5173
crossref_primary_10_1016_j_envpol_2020_116050
crossref_primary_10_3390_microplastics1040042
crossref_primary_10_1016_j_scitotenv_2024_172949
crossref_primary_10_1186_s40068_024_00389_w
crossref_primary_10_2139_ssrn_4174079
crossref_primary_10_1016_j_jhazmat_2021_125954
crossref_primary_10_1016_j_scitotenv_2021_152352
crossref_primary_10_1016_j_marpolbul_2021_112544
crossref_primary_10_1016_j_scitotenv_2024_173133
crossref_primary_10_1016_j_scitotenv_2022_154399
crossref_primary_10_1016_j_scitotenv_2024_177331
crossref_primary_10_1016_j_envpol_2023_122320
crossref_primary_10_1016_j_jhazmat_2023_131341
crossref_primary_10_1016_j_aquatox_2023_106771
crossref_primary_10_1007_s12010_023_04832_z
crossref_primary_10_1016_j_ecoenv_2022_114009
crossref_primary_10_1016_j_pmatsci_2022_101035
crossref_primary_10_3390_w16111595
crossref_primary_10_1016_j_cej_2021_131870
crossref_primary_10_1039_D0EM00312C
crossref_primary_10_1016_j_jwpe_2023_104559
crossref_primary_10_1007_s13762_024_05656_y
crossref_primary_10_1016_j_jhazmat_2023_130897
crossref_primary_10_1016_j_scitotenv_2023_164363
crossref_primary_10_1016_j_teac_2021_e00151
crossref_primary_10_1680_jenge_20_00179
crossref_primary_10_1016_j_envpol_2022_119892
crossref_primary_10_1016_j_scitotenv_2022_159834
crossref_primary_10_1016_j_chemosphere_2022_135573
Cites_doi 10.1002/ieam.1915
10.1023/B:BIOG.0000031077.28527.a2
10.1098/rstb.2008.0205
10.1029/WR018i006p01615
10.1016/j.marpolbul.2015.07.050
10.1021/es201811s
10.1016/j.marpolbul.2017.12.062
10.1016/j.envpol.2016.12.064
10.1016/j.scitotenv.2017.01.190
10.1016/j.envpol.2013.02.031
10.1890/1540-9295(2003)001[0065:WAYSRI]2.0.CO;2
10.1016/j.envpol.2018.03.010
10.1016/j.envpol.2017.07.103
10.4319/lo.1978.23.4.0798
10.2134/jeq2001.3041447x
10.1016/j.apgeochem.2014.06.012
10.1007/s10452-006-9044-4
10.1016/j.scitotenv.2018.03.233
10.2307/1351574
10.1016/0077-7579(94)90028-0
10.1016/j.marpolbul.2011.05.030
10.1016/S0272-7714(02)00353-0
10.1039/C6EM00206D
10.1016/j.ecss.2013.03.022
10.1016/S0925-8574(02)00037-X
10.1007/BF00003145
10.1126/science.224.4648.487
10.1002/etc.3935
10.1016/j.marpolbul.2011.06.030
10.1136/archdischild-2014-307149
10.1007/BF03160866
10.1021/es800249a
10.1038/s41559-017-0116
10.1016/j.marpolbul.2013.08.013
10.1672/0277-5212(2002)022[0415:FDASIS]2.0.CO;2
10.1016/j.marenvres.2015.12.006
10.1007/s00244-015-0155-6
10.1021/es903784e
10.1021/es5036317
10.3389/feart.2019.00080
10.1023/A:1017520800568
10.1016/j.envres.2008.07.025
10.1023/A:1009549117419
10.1016/j.marpolbul.2018.01.030
10.1016/j.cub.2013.09.001
10.2136/sssaj2000.642681x
10.1111/gcb.14020
10.1002/etc.4371
10.1198/1061860043515
10.1016/j.ecoleng.2010.04.028
10.1016/j.marpolbul.2013.11.025
10.1021/acs.est.7b06003
10.1006/ecss.2001.0854
10.1021/acs.est.7b05559
10.4319/lo.2007.52.3.1220
10.1016/j.watres.2015.02.012
10.1016/j.marpolbul.2011.09.025
10.1071/EN14172
10.4319/lo.1995.40.8.1474
10.1016/j.envpol.2016.12.038
10.1016/0272-7714(85)90106-4
10.1006/ecss.2000.0548
10.1016/j.marpolbul.2018.06.020
10.1016/j.marpolbul.2018.02.015
10.1016/j.marpolbul.2012.11.028
10.1016/j.marpolbul.2014.02.018
10.1016/j.marpolbul.2016.05.077
10.1002/etc.3432
10.1016/j.marpolbul.2016.06.002
10.1016/j.envpol.2019.01.067
10.1021/es2031505
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2019.113391
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 31662247
10_1016_j_envpol_2019_113391
S026974911932305X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
29G
4.4
457
53G
5GY
5VS
6TJ
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XJT
XOL
XPP
ZMT
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a418t-fd0f0292f86ba27d401d0c4cb61fbf40a04b32ffeacd9fbdcaf158d3c1020bc3
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Thu Jul 10 19:34:45 EDT 2025
Thu Jul 10 20:44:38 EDT 2025
Wed Feb 19 02:30:49 EST 2025
Tue Jul 01 03:14:49 EDT 2025
Thu Apr 24 22:54:31 EDT 2025
Fri Feb 23 02:49:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wetland soil
Microfiber
Microplastic
Spatial variation
Vegetation
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a418t-fd0f0292f86ba27d401d0c4cb61fbf40a04b32ffeacd9fbdcaf158d3c1020bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31662247
PQID 2310668665
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2431933309
proquest_miscellaneous_2310668665
pubmed_primary_31662247
crossref_primary_10_1016_j_envpol_2019_113391
crossref_citationtrail_10_1016_j_envpol_2019_113391
elsevier_sciencedirect_doi_10_1016_j_envpol_2019_113391
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
2020-Jan
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Klute, Petersen, Calvin (bib49) 1986
Eerkes-Medrano, Thompson, Aldridge (bib30) 2015; 75
Klein, Dimzon, Eubeler, Knepper (bib48) 2017
Mitsch, Gosselink (bib65) 2015
Hollander, Wolfe (bib41) 1973
Miller, Watts, Winslow, Galloway, Barrows (bib63) 2017; vol. 124
Baldwin (bib5) 2009
Xu, Peng, Su, Gao, Gao, Li (bib91) 2018; 133
Darke, Megonigal (bib24) 2003; 57
Daubenmire (bib25) 1959; 33
Frias, Gago, Otero, Sobral (bib32) 2016; 114
Cole (bib19) 2015; 100
Horton, Walton, Spurgeon, Lahive, Svendsen (bib42) 2017; 586
Yonkos, Friedel, Perez-Reyes, Ghosal, Arthur (bib92) 2014; 48
Baldwin, Derico (bib4) 1999; 3
Gray, Wertz, Leads, Weinstein (bib36) 2018; 128
Peng, Zhu, Yang, Su, Shi, Li (bib74) 2017; 225
Braskerud (bib9) 2001; 30
Twilley (bib85) 1985; 20
Connor, Sarraino, Frantz, Bushaw-Newton, MacAvoy (bib94) 2014
Grant, Daborn (bib35) 1994; 32
Dris, Gasperi, Tassin (bib29) 2017
Kadlec, Roy, Munson, Charlton, Brownlie (bib45) 2010; 36
Zedler (bib93) 2003; 1
Valiela, Teal, Volkmann, Shafer, Carpenter (bib86) 1978; 23
Dris, Imhof, Sanchez, Gasperi, Galgani, Tassin, Laforsch (bib28) 2015; 12
Sruthy, Ramasamy (bib83) 2017; 222
Brinson (bib10) 1993; 13
Martin, Almahasheer, Duarte (bib60) 2019; 247
Wessel, Lockridge, Battiste, Cebrian (bib89) 2016; 109
Mohamed Nor, Obbard (bib67) 2014; 79
Chambers (bib15) 1992
Baldwin, Hammerschlag, Cahoon (bib6) 2009
Barnes, Galgani, Thompson, Barlaz (bib7) 2009; 364
Christiansen, Wiberg, Milligan (bib16) 2000; 50
Rodrigues, Abrantes, Gonçalves, Nogueira, Marques, Gonçalves (bib80) 2018; 633
Sutton, Wren, Box, Willis-Norton, Mason, Stanek (bib84) 2016; 109
Wright, Thompson, Galloway (bib90) 2013; 178
Leonard, Luther (bib56) 1995; 40
Lourenço, Serra-Gonçalves, Ferreira, Catry, Granadeiro (bib57) 2017; 231
Dietrich (bib27) 1982; 18
Weinstein, Cricker, Gray (bib88) 2016; 35
Kane, Clare (bib46) 2019; 7
Orson, Simpson, Good (bib73) 1990; 60
Alimi, Farner Budarz, Hernandez, Tufenkji (bib1) 2018; 52
Madsen, Chambers, James, Koch, Westlake (bib59) 2001; 444
Andrady (bib2) 2011; 62
Herrera, Garrido-amador, Martínez, Samper, López-martínez, Gómez, Packard (bib39) 2018; 129
Cole, Lindeque, Halsband, Galloway (bib18) 2011; 62
Munno, Helm, Jackson, Rochman, Sims (bib70) 2018; 37
Lusher, McHugh, Thompson (bib58) 2013; 67
Masura, Baker, Foster, Arthur, Herring (bib61) 2015
Craft (bib22) 2007; 52
Howard, Dorjes (bib43) 1972; 42
Press, Flannery, Teukolsky, Vetterling (bib76) 1988
Mathalon, Hill (bib62) 2014; 81
Gleason, Elmer, Pien, Fisher (bib34) 1979; 2
Scheurer, Bigalke (bib81) 2018; 52
de Souza Machado, Kloas, Zarfl, Hempel, Rillig (bib26) 2018; 24
Vianello, Boldrin, Guerriero, Moschino, Rella, Sturaro, Da Ros (bib87) 2013; 130
Claessens, Meester, Landuyt, Clerck, Janssen (bib17) 2011; 62
Neubauer, Anderson, Constantine, Kuehl (bib71) 2002; 54
R Core Team (bib77) 2018
Harrell, Dupont (bib37) 2019
Kim, Chae, Kim, Choi, Woo (bib47) 2015; 69
Leonard, Wren, Beavers (bib55) 2002; 22
Browne, Dissanayake, Galloway, Lowe, Thompson (bib11) 2008; 42
Imhof, Ivelva, Schmid, Reinhard, Laforsch (bib44) 2013; 23
Galloway, Cole, Lewis (bib33) 2017; 1
Dacey, Howes (bib23) 1984; 224
Kroon, Motti, Talbot, Sobral, Puotinen (bib50) 2018; 238
Hidalgo-Ruz, Gutow, Thompson, Thiel (bib40) 2012; 46
Lambert, Wagner (bib51) 2017
Piepho (bib75) 2004; 13
Rochman, Tahir, Williams, Baxa, Lam, Miller, Teh, Werorilangi, Teh (bib78) 2015
Harvey, Odum (bib38) 1990; 10
Lee, Hong, Song, Hong, Jang, Jang, Heo, Han, Lee, Kang, Shim (bib53) 2013; 77
Coveney, Stites, Lowe, Battoe, Conrow (bib20) 2002; 19
Lasee, Mauricio, Thompson, Karnjanapiboonwong, Kasumba, Subbiah, Morse, Anderson (bib52) 2017; 13
Nizzetto, Bussi, Futter, Butterfield, Whitehead (bib72) 2016; 18
Bouchard (bib8) 2007; 41
Cowardin, Carter, Golet, LaRoe (bib21) 1979
Browne, Crump, Niven, Teuten, Tonkin, Galloway, Thompson (bib13) 2011; 45
Morse, Megonigal, Walbridge (bib68) 2004; 69
Mudd, D’Alpaos, Morris (bib69) 2010; 115
Moore (bib66) 2008; 108
Rochman, Brookson, Bikker, Djuric, Earn, Bucci, Athey, Huntington, McIlwraith, Munno, De Frond, Kolomijeca, Erdle, Grbic, Bayoumi, Borrelle, Wu, Santoro, Werbowski, Zhu, Giles, Hamilton, Thaysen, Kaura, Klasios, Ead, Kim, Sherlock, Ho, Hung (bib79) 2019; 38
(bib3) 2016
Six, Paustian, Elliott, Combrink (bib82) 2000; 64
Fok, Cheung (bib31) 2015; 99
Mitsch, Gosselink (bib64) 2000
Browne, Galloway, Thompson (bib12) 2010; 44
Lenth (bib54) 2019
Caron, Thomas, Berry, Motti, Ariel, Brodie (bib14) 2018; 17
Browne (10.1016/j.envpol.2019.113391_bib12) 2010; 44
Coveney (10.1016/j.envpol.2019.113391_bib20) 2002; 19
Dietrich (10.1016/j.envpol.2019.113391_bib27) 1982; 18
Dris (10.1016/j.envpol.2019.113391_bib28) 2015; 12
Lee (10.1016/j.envpol.2019.113391_bib53) 2013; 77
Xu (10.1016/j.envpol.2019.113391_bib91) 2018; 133
Connor (10.1016/j.envpol.2019.113391_bib94) 2014
Imhof (10.1016/j.envpol.2019.113391_bib44) 2013; 23
Bouchard (10.1016/j.envpol.2019.113391_bib8) 2007; 41
Zedler (10.1016/j.envpol.2019.113391_bib93) 2003; 1
Brinson (10.1016/j.envpol.2019.113391_bib10) 1993; 13
Mathalon (10.1016/j.envpol.2019.113391_bib62) 2014; 81
Kroon (10.1016/j.envpol.2019.113391_bib50) 2018; 238
Piepho (10.1016/j.envpol.2019.113391_bib75) 2004; 13
Peng (10.1016/j.envpol.2019.113391_bib74) 2017; 225
Andrady (10.1016/j.envpol.2019.113391_bib2) 2011; 62
Dacey (10.1016/j.envpol.2019.113391_bib23) 1984; 224
Kane (10.1016/j.envpol.2019.113391_bib46) 2019; 7
Valiela (10.1016/j.envpol.2019.113391_bib86) 1978; 23
Claessens (10.1016/j.envpol.2019.113391_bib17) 2011; 62
Weinstein (10.1016/j.envpol.2019.113391_bib88) 2016; 35
Mitsch (10.1016/j.envpol.2019.113391_bib65) 2015
Neubauer (10.1016/j.envpol.2019.113391_bib71) 2002; 54
Scheurer (10.1016/j.envpol.2019.113391_bib81) 2018; 52
Wessel (10.1016/j.envpol.2019.113391_bib89) 2016; 109
Eerkes-Medrano (10.1016/j.envpol.2019.113391_bib30) 2015; 75
Gray (10.1016/j.envpol.2019.113391_bib36) 2018; 128
Daubenmire (10.1016/j.envpol.2019.113391_bib25) 1959; 33
Harvey (10.1016/j.envpol.2019.113391_bib38) 1990; 10
Press (10.1016/j.envpol.2019.113391_bib76) 1988
Leonard (10.1016/j.envpol.2019.113391_bib55) 2002; 22
Mitsch (10.1016/j.envpol.2019.113391_bib64) 2000
Chambers (10.1016/j.envpol.2019.113391_bib15) 1992
Lenth (10.1016/j.envpol.2019.113391_bib54) 2019
Galloway (10.1016/j.envpol.2019.113391_bib33) 2017; 1
Hidalgo-Ruz (10.1016/j.envpol.2019.113391_bib40) 2012; 46
Dris (10.1016/j.envpol.2019.113391_bib29) 2017
Sutton (10.1016/j.envpol.2019.113391_bib84) 2016; 109
Darke (10.1016/j.envpol.2019.113391_bib24) 2003; 57
Six (10.1016/j.envpol.2019.113391_bib82) 2000; 64
Lourenço (10.1016/j.envpol.2019.113391_bib57) 2017; 231
Rochman (10.1016/j.envpol.2019.113391_bib79) 2019; 38
Cole (10.1016/j.envpol.2019.113391_bib18) 2011; 62
Hollander (10.1016/j.envpol.2019.113391_bib41) 1973
Lusher (10.1016/j.envpol.2019.113391_bib58) 2013; 67
Grant (10.1016/j.envpol.2019.113391_bib35) 1994; 32
Howard (10.1016/j.envpol.2019.113391_bib43) 1972; 42
Barnes (10.1016/j.envpol.2019.113391_bib7) 2009; 364
Browne (10.1016/j.envpol.2019.113391_bib13) 2011; 45
Christiansen (10.1016/j.envpol.2019.113391_bib16) 2000; 50
Madsen (10.1016/j.envpol.2019.113391_bib59) 2001; 444
Cowardin (10.1016/j.envpol.2019.113391_bib21) 1979
Cole (10.1016/j.envpol.2019.113391_bib19) 2015; 100
Miller (10.1016/j.envpol.2019.113391_bib63) 2017; vol. 124
Munno (10.1016/j.envpol.2019.113391_bib70) 2018; 37
Gleason (10.1016/j.envpol.2019.113391_bib34) 1979; 2
Moore (10.1016/j.envpol.2019.113391_bib66) 2008; 108
Alimi (10.1016/j.envpol.2019.113391_bib1) 2018; 52
Rodrigues (10.1016/j.envpol.2019.113391_bib80) 2018; 633
Caron (10.1016/j.envpol.2019.113391_bib14) 2018; 17
R Core Team (10.1016/j.envpol.2019.113391_bib77) 2018
Klein (10.1016/j.envpol.2019.113391_bib48) 2017
Rochman (10.1016/j.envpol.2019.113391_bib78) 2015
Martin (10.1016/j.envpol.2019.113391_bib60) 2019; 247
Orson (10.1016/j.envpol.2019.113391_bib73) 1990; 60
Baldwin (10.1016/j.envpol.2019.113391_bib6) 2009
Fok (10.1016/j.envpol.2019.113391_bib31) 2015; 99
Sruthy (10.1016/j.envpol.2019.113391_bib83) 2017; 222
Morse (10.1016/j.envpol.2019.113391_bib68) 2004; 69
Horton (10.1016/j.envpol.2019.113391_bib42) 2017; 586
Kadlec (10.1016/j.envpol.2019.113391_bib45) 2010; 36
Wright (10.1016/j.envpol.2019.113391_bib90) 2013; 178
Braskerud (10.1016/j.envpol.2019.113391_bib9) 2001; 30
Baldwin (10.1016/j.envpol.2019.113391_bib4) 1999; 3
Klute (10.1016/j.envpol.2019.113391_bib49) 1986
Twilley (10.1016/j.envpol.2019.113391_bib85) 1985; 20
Masura (10.1016/j.envpol.2019.113391_bib61) 2015
Kim (10.1016/j.envpol.2019.113391_bib47) 2015; 69
Baldwin (10.1016/j.envpol.2019.113391_bib5) 2009
Frias (10.1016/j.envpol.2019.113391_bib32) 2016; 114
Craft (10.1016/j.envpol.2019.113391_bib22) 2007; 52
Lasee (10.1016/j.envpol.2019.113391_bib52) 2017; 13
Nizzetto (10.1016/j.envpol.2019.113391_bib72) 2016; 18
Vianello (10.1016/j.envpol.2019.113391_bib87) 2013; 130
Yonkos (10.1016/j.envpol.2019.113391_bib92) 2014; 48
(10.1016/j.envpol.2019.113391_bib3) 2016
Browne (10.1016/j.envpol.2019.113391_bib11) 2008; 42
de Souza Machado (10.1016/j.envpol.2019.113391_bib26) 2018; 24
Harrell (10.1016/j.envpol.2019.113391_bib37) 2019
Leonard (10.1016/j.envpol.2019.113391_bib56) 1995; 40
Lambert (10.1016/j.envpol.2019.113391_bib51) 2017
Herrera (10.1016/j.envpol.2019.113391_bib39) 2018; 129
Mohamed Nor (10.1016/j.envpol.2019.113391_bib67) 2014; 79
Mudd (10.1016/j.envpol.2019.113391_bib69) 2010; 115
References_xml – volume: 115
  start-page: 1
  year: 2010
  end-page: 14
  ident: bib69
  article-title: How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 444
  start-page: 71
  year: 2001
  end-page: 84
  ident: bib59
  article-title: The interaction between water movement, sediment dynamics and submersed macrophytes
  publication-title: Hydrobiologia
– volume: 45
  start-page: 9175
  year: 2011
  end-page: 9179
  ident: bib13
  article-title: Accumulation of microplastic on shorelines woldwide: sources and sinks
  publication-title: Environ. Sci. Technol.
– volume: 1
  start-page: 65
  year: 2003
  end-page: 72
  ident: bib93
  article-title: Wetlands at your service: Reducing impacts of agriculture at the watershed scale
  publication-title: Front. Ecol. Environ.
– start-page: 209
  year: 2014
  end-page: 216
  ident: bib94
  article-title: Geochemical characteristics of an urban river: Influences of an anthropogenic landscape
  publication-title: Appl. Geochem.
– volume: 247
  start-page: 499
  year: 2019
  end-page: 508
  ident: bib60
  article-title: Mangrove forests as traps for marine litter
  publication-title: Environ. Pollut.
– volume: 20
  start-page: 543
  year: 1985
  end-page: 557
  ident: bib85
  article-title: The exchange of organic carbon in basin mangrove forests in a southwest Florida estuary
  publication-title: Estuar. Coast Shelf Sci.
– year: 2016
  ident: bib3
  article-title: ESRI
– volume: 114
  start-page: 24
  year: 2016
  end-page: 30
  ident: bib32
  article-title: Microplastics in coastal sediments from Southern Portuguese shelf waters
  publication-title: Mar. Environ. Res.
– volume: vol. 124
  start-page: 245
  year: 2017
  end-page: 251
  ident: bib63
  publication-title: Mountains to the Sea: River Study of Plastic and Non-plastic Micro Fiber Pollution in the Northeast USA
– volume: 18
  start-page: 1050
  year: 2016
  end-page: 1059
  ident: bib72
  article-title: A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments
  publication-title: Environ. Sci. Process. Impacts
– year: 1988
  ident: bib76
  article-title: Numerical Methods in C
– volume: 633
  start-page: 1549
  year: 2018
  end-page: 1559
  ident: bib80
  article-title: Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal)
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 1405
  year: 2018
  end-page: 1416
  ident: bib26
  article-title: Microplastics as an emerging threat to terrestrial ecosystems
  publication-title: Glob. Chang. Biol.
– volume: 79
  start-page: 278
  year: 2014
  end-page: 283
  ident: bib67
  article-title: Microplastics in Singapore’s coastal mangrove ecosystems
  publication-title: Mar. Pollut. Bull.
– volume: 69
  start-page: 299
  year: 2015
  end-page: 309
  ident: bib47
  article-title: Factors influencing the spatial variation of microplastics on high-tidal coastal beaches in Korea
  publication-title: Environ. Contam. Toxicol.
– volume: 52
  start-page: 1704
  year: 2018
  end-page: 1724
  ident: bib1
  article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport
  publication-title: Environ. Sci. Technol.
– start-page: 1
  year: 2017
  end-page: 24
  ident: bib51
  article-title: Microplastics are contaminants of emerging concern in freshwater environments: an overview
  publication-title: Freshwater Microplastics: Emerging Environmental Contaminants
– year: 1973
  ident: bib41
  article-title: Nonparametric Statistical Methods
– volume: 36
  start-page: 1093
  year: 2010
  end-page: 1107
  ident: bib45
  article-title: Water quality performance of treatment wetlands in the Imperial Valley, California
  publication-title: Ecol. Eng.
– year: 1979
  ident: bib21
  article-title: Classification of Wetlands and Deepwater Habitats of the United States
– volume: 57
  start-page: 255
  year: 2003
  end-page: 268
  ident: bib24
  article-title: Control of sediment deposition rates in two mid-Atlantic Coast tidal freshwater wetlands
  publication-title: Estuar. Coast Shelf Sci.
– volume: 130
  start-page: 54
  year: 2013
  end-page: 61
  ident: bib87
  article-title: Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification
  publication-title: Estuar. Coast Shelf Sci.
– volume: 50
  start-page: 315
  year: 2000
  end-page: 331
  ident: bib16
  article-title: Flow and sediment transport on a tidal salt marsh surface
  publication-title: Estuar. Coast Shelf Sci.
– volume: 54
  start-page: 713
  year: 2002
  end-page: 727
  ident: bib71
  article-title: Sediment deposition and accretion in a mid-Atlantic (U.S.A.) tidal freshwater marsh
  publication-title: Estuar. Coast Shelf Sci.
– volume: 586
  start-page: 127
  year: 2017
  end-page: 141
  ident: bib42
  article-title: Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities
  publication-title: Sci. Total Environ.
– volume: 109
  start-page: 178
  year: 2016
  end-page: 183
  ident: bib89
  article-title: Abundance and characteristics of microplastics in beach sediments: Insights into microplastic accumulation in northern Gulf of Mexico estuaries
  publication-title: Mar. Pollut. Bull.
– start-page: 1
  year: 2015
  end-page: 10
  ident: bib78
  article-title: Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption
  publication-title: Nat. Publ. Group
– volume: 17
  start-page: 743
  year: 2018
  end-page: 751
  ident: bib14
  article-title: Ingestion of microplastics debris by green sea turtles (
  publication-title: Mar. Pollut. Bull.
– volume: 13
  start-page: 65
  year: 1993
  end-page: 74
  ident: bib10
  article-title: Changes in the functioning of wetlands along environmental gradients
  publication-title: Wetlands
– volume: 69
  start-page: 175
  year: 2004
  end-page: 206
  ident: bib68
  article-title: Sediment nutrient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virginia, USA
  publication-title: Biogeochemistry
– volume: 35
  start-page: 1632
  year: 2016
  end-page: 1640
  ident: bib88
  article-title: From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat
  publication-title: Environ. Toxicol. Chem.
– volume: 109
  start-page: 230
  year: 2016
  end-page: 235
  ident: bib84
  article-title: Microplastic contamination in the San Francisco Bay, California, USA
  publication-title: Mar. Pollut. Bull.
– volume: 3
  start-page: 5
  year: 1999
  end-page: 20
  ident: bib4
  article-title: The seed bank of a restored tidal freshwater marsh in Washington, DC
  publication-title: Urban Ecosyst.
– year: 1992
  ident: bib15
  article-title: Linear models
  publication-title: Statistical Models in S
– volume: 41
  start-page: 1
  year: 2007
  end-page: 7
  ident: bib8
  article-title: Export of organic matter from a coastal freshwater wetland to Lake Erie: an extension of the outwelling hypothesis
  publication-title: Aquat. Ecol.
– volume: 23
  start-page: 867
  year: 2013
  end-page: 868
  ident: bib44
  article-title: Beyond the ocean: contamination of beach sediments of a subapline lake with microplastic particles
  publication-title: Curr. Biol.
– year: 2019
  ident: bib37
  article-title: Hmisc: Harrell Miscellaneous
– volume: 52
  start-page: 3591
  year: 2018
  end-page: 3598
  ident: bib81
  article-title: Microplastics in Swiss floodplain soils
  publication-title: Environ. Sci. Technol.
– year: 1986
  ident: bib49
  article-title: Bulk density
  publication-title: Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods
– start-page: 207
  year: 2009
  end-page: 222
  ident: bib5
  article-title: Restoration of tidal freshwater wetlands in North America
  publication-title: Tidal Freshwater Wetlands
– volume: 77
  start-page: 349
  year: 2013
  end-page: 354
  ident: bib53
  article-title: Relationships among the abundances of plastic debris in different size classes on beaches in South Korea
  publication-title: Mar. Pollut. Bull.
– volume: 37
  start-page: 91
  year: 2018
  end-page: 98
  ident: bib70
  article-title: Impacts of temperature and selected chemical digestion methods on microplastic particles
  publication-title: Environ. Toxicol. Chem.
– volume: 128
  start-page: 223
  year: 2018
  end-page: 233
  ident: bib36
  article-title: Microplastic in two South Carolina Estuaries: occurrence, distribution, and composition
  publication-title: Mar. Pollut. Bull.
– start-page: 18
  year: 2015
  ident: bib61
  article-title: Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments
  publication-title: Natl. Ocean. Atmospheric Adm. USA
– year: 2017
  ident: bib29
  article-title: Sources and fate of microplastics in urban areas: a focus on Paris Megacity. Pp. 69–84
  publication-title: Freshwater Microplastics: Emerging Environmental Contaminants
– volume: 99
  start-page: 112
  year: 2015
  end-page: 118
  ident: bib31
  article-title: Hong Kong at the Pearl River Estuary: a hotspot of microplastic pollution
  publication-title: Mar. Pollut. Bull.
– volume: 40
  start-page: 1474
  year: 1995
  end-page: 1484
  ident: bib56
  article-title: Flow hydrodynamics in tidal marsh canopies
  publication-title: Limnol. Oceanogr.
– year: 2019
  ident: bib54
  article-title: Emmeans: Estimated Marginal Means, Aka Least-Squares Means
– volume: 19
  start-page: 141
  year: 2002
  end-page: 159
  ident: bib20
  article-title: Nutrient removal from eutrophic lake water by wetland filtration
  publication-title: Ecol. Eng.
– volume: 46
  start-page: 3060
  year: 2012
  end-page: 3075
  ident: bib40
  article-title: Microplastics in the marine environment: a review of the methods used for identification and quantification
  publication-title: Environ. Sci. Technol.
– volume: 30
  start-page: 1447
  year: 2001
  end-page: 1457
  ident: bib9
  article-title: The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands
  publication-title: J. Environ. Qual.
– volume: 75
  start-page: 63
  year: 2015
  end-page: 82
  ident: bib30
  article-title: Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs
  publication-title: Water Res.
– volume: 64
  start-page: 681
  year: 2000
  end-page: 689
  ident: bib82
  article-title: Soil structure and organic matter: I. Distribution of aggregate-size classes
  publication-title: Soil Sci. Soc. Am. J.
– volume: 13
  start-page: 456
  year: 2004
  end-page: 466
  ident: bib75
  article-title: An algorithm for a letter-based representation of all-pairwise comparisons
  publication-title: J. Comput. Graph. Stat.
– volume: 10
  start-page: 217
  year: 1990
  end-page: 236
  ident: bib38
  article-title: The influence of tidal marshes on upland groundwater discharge to estuaries
  publication-title: Biogeochemistry
– year: 2017
  ident: bib48
  article-title: Analysis, occurrence, and degradation of microplastics in the aqueous environment. Pp. 51–68
  publication-title: Freshwater Microplastics: Emerging Environmental Contaminants
– volume: 178
  start-page: 483
  year: 2013
  end-page: 492
  ident: bib90
  article-title: The physical impacts of microplastics on marine organisms: A review
  publication-title: Environ. Pollut.
– volume: 224
  start-page: 487
  year: 1984
  end-page: 489
  ident: bib23
  article-title: Water uptake by roots controls water table movement and sediment oxidation in short Spartina marsh
  publication-title: Science
– volume: 23
  start-page: 798
  year: 1978
  end-page: 812
  ident: bib86
  article-title: Nutrient and particulate fluxes in a salt marsh ecosystem: Tidal exchanges and inputs by precipitation and groundwater 1
  publication-title: Limnol. Oceanogr.
– volume: 100
  start-page: 608
  year: 2015
  end-page: 609
  ident: bib19
  article-title: Too many digits: the presentation of numerical data
  publication-title: Arch. Dis. Child.
– volume: 1
  start-page: 116
  year: 2017
  ident: bib33
  article-title: Interactions of microplastic debris throughout the marine ecosystem
  publication-title: Nat. Ecol. Evol.
– year: 2015
  ident: bib65
  article-title: Wetlands
– volume: 108
  start-page: 131
  year: 2008
  end-page: 139
  ident: bib66
  article-title: Synthetic polymers in the marine environment: a rapidly increasing, long-term threat
  publication-title: Environ. Res.
– volume: 12
  start-page: 539
  year: 2015
  end-page: 550
  ident: bib28
  article-title: Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles
  publication-title: Environ. Chem.
– volume: 48
  start-page: 14195
  year: 2014
  end-page: 14202
  ident: bib92
  article-title: Microplastics in four estuarine rivers in the Chesapeake Bay
  publication-title: U.S.A. Environ. Sci. Technol.
– volume: 44
  start-page: 3404
  year: 2010
  end-page: 3409
  ident: bib12
  article-title: Spatial patterns of plastic debris along estuarine shorelines
  publication-title: Environ. Sci. Technol.
– volume: 33
  start-page: 43
  year: 1959
  end-page: 64
  ident: bib25
  article-title: A canopy-coverage method of vegetational analysis
  publication-title: Northwest Sci.
– volume: 18
  start-page: 1615
  year: 1982
  end-page: 1626
  ident: bib27
  article-title: Settling velocity of natural particles
  publication-title: Water Resour. Res.
– volume: 32
  start-page: 63
  year: 1994
  end-page: 72
  ident: bib35
  article-title: The effects of bioturbation on sediment transport on an intertidal mudflat
  publication-title: Neth. J. Sea Res.
– start-page: 801
  year: 2009
  end-page: 832
  ident: bib6
  article-title: Evaluation of restored tidal freshwater wetlands
  publication-title: Coastal Wetlands: an Integrated Ecosystem Approach
– volume: 62
  start-page: 2588
  year: 2011
  end-page: 2597
  ident: bib18
  article-title: Microplastics as contaminants in the marine environment: a review
  publication-title: Mar. Pollut. Bull.
– volume: 238
  start-page: 26
  year: 2018
  end-page: 38
  ident: bib50
  article-title: A workflow for improving estimates of microplastic contamination in marine waters: a case study from North-Western Australia
  publication-title: Environ. Pollut.
– volume: 2
  start-page: 271
  year: 1979
  end-page: 273
  ident: bib34
  article-title: Effects of stem density upon sediment retention by salt marsh cord grass,
  publication-title: Estuaries
– year: 2000
  ident: bib64
  article-title: Wetlands
– volume: 225
  start-page: 283
  year: 2017
  end-page: 290
  ident: bib74
  article-title: Microplastics in sediments of the Changjiang Estuary, China
  publication-title: Environ. Pollut.
– volume: 129
  start-page: 61
  year: 2018
  end-page: 69
  ident: bib39
  article-title: Novel methodology to isolate microplastics from vegetal-rich samples Novel methodology to isolate microplastics from vegetal-rich samples
  publication-title: Mar. Pollut. Bull.
– volume: 7
  year: 2019
  ident: bib46
  article-title: Dispersion, accumulation, and the ultimate fate of microplastics in deep-marine environments: a review and future directions
  publication-title: Front. Earth Sci.
– volume: 67
  start-page: 94
  year: 2013
  end-page: 99
  ident: bib58
  article-title: Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel
  publication-title: Mar. Pollut. Bull.
– year: 2018
  ident: bib77
  article-title: R: A Language and Environment for Statistical Computing
– volume: 231
  start-page: 123
  year: 2017
  end-page: 133
  ident: bib57
  article-title: Plastic and other microfibers in sediments, macroinvertebrates and shorebirds from three intertidal wetlands of southern Europe and west Africa
  publication-title: Environ. Pollut.
– volume: 222
  start-page: 315
  year: 2017
  end-page: 322
  ident: bib83
  article-title: Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India
  publication-title: Environ. Pollut.
– volume: 364
  start-page: 1985
  year: 2009
  end-page: 1998
  ident: bib7
  article-title: Accumulation and fragmentation of plastic debris in global environments
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 13
  start-page: 528
  year: 2017
  end-page: 532
  ident: bib52
  article-title: Microplastics in a freshwater environment receiving treated wastewater effluent
  publication-title: Integr. Environ. Assess. Manag.
– volume: 62
  start-page: 2199
  year: 2011
  end-page: 2204
  ident: bib17
  article-title: Occurrence and distribution of microplastics in marine sediments along the Belgian coast
  publication-title: Mar. Pollut. Bull.
– volume: 60
  year: 1990
  ident: bib73
  article-title: Rates of sediment accumulation in a tidal freshwater marsh
  publication-title: SEPM J. Sediment. Res.
– volume: 62
  start-page: 1596
  year: 2011
  end-page: 1605
  ident: bib2
  article-title: Microplastics in the marine environment
  publication-title: Mar. Pollut. Bull.
– volume: 81
  start-page: 69
  year: 2014
  end-page: 79
  ident: bib62
  article-title: Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia
  publication-title: Mar. Pollut. Bull.
– volume: 42
  year: 1972
  ident: bib43
  article-title: Animal-sediment relationships in two beach-related tidal flats, Sapelo Island, Georgia
  publication-title: SEPM J. Sediment. Res.
– volume: 42
  start-page: 5026
  year: 2008
  end-page: 5031
  ident: bib11
  article-title: Ingested microscopic plastic translocates to the circulatory system of the mussel,
  publication-title: Environ. Sci. Technol.
– volume: 52
  start-page: 1220
  year: 2007
  end-page: 1230
  ident: bib22
  article-title: Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and US tidal marshes
  publication-title: Limnol. Oceanogr.
– volume: 133
  start-page: 647
  year: 2018
  end-page: 654
  ident: bib91
  article-title: Microplastic risk assessment in surface waters: A case study in the Changjiang Estuary, China
  publication-title: Mar. Pollut. Bull.
– volume: 22
  start-page: 415
  year: 2002
  end-page: 424
  ident: bib55
  article-title: Flow dynamics and sedimentation in Spartina alterniflora and Phragmites australis marshes of the Chesapeake Bay
  publication-title: Wetlands
– volume: 38
  start-page: 703
  year: 2019
  end-page: 711
  ident: bib79
  article-title: Rethinking microplastics as a diverse contaminant suite
  publication-title: Environ. Toxicol. Chem.
– volume: 13
  start-page: 528
  year: 2017
  ident: 10.1016/j.envpol.2019.113391_bib52
  article-title: Microplastics in a freshwater environment receiving treated wastewater effluent
  publication-title: Integr. Environ. Assess. Manag.
  doi: 10.1002/ieam.1915
– volume: 69
  start-page: 175
  year: 2004
  ident: 10.1016/j.envpol.2019.113391_bib68
  article-title: Sediment nutrient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virginia, USA
  publication-title: Biogeochemistry
  doi: 10.1023/B:BIOG.0000031077.28527.a2
– volume: 364
  start-page: 1985
  year: 2009
  ident: 10.1016/j.envpol.2019.113391_bib7
  article-title: Accumulation and fragmentation of plastic debris in global environments
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2008.0205
– start-page: 18
  year: 2015
  ident: 10.1016/j.envpol.2019.113391_bib61
  article-title: Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments
  publication-title: Natl. Ocean. Atmospheric Adm. USA
– volume: 60
  year: 1990
  ident: 10.1016/j.envpol.2019.113391_bib73
  article-title: Rates of sediment accumulation in a tidal freshwater marsh
  publication-title: SEPM J. Sediment. Res.
– volume: 18
  start-page: 1615
  year: 1982
  ident: 10.1016/j.envpol.2019.113391_bib27
  article-title: Settling velocity of natural particles
  publication-title: Water Resour. Res.
  doi: 10.1029/WR018i006p01615
– year: 2018
  ident: 10.1016/j.envpol.2019.113391_bib77
– volume: 99
  start-page: 112
  year: 2015
  ident: 10.1016/j.envpol.2019.113391_bib31
  article-title: Hong Kong at the Pearl River Estuary: a hotspot of microplastic pollution
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2015.07.050
– volume: 45
  start-page: 9175
  year: 2011
  ident: 10.1016/j.envpol.2019.113391_bib13
  article-title: Accumulation of microplastic on shorelines woldwide: sources and sinks
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es201811s
– volume: vol. 124
  start-page: 245
  year: 2017
  ident: 10.1016/j.envpol.2019.113391_bib63
– volume: 17
  start-page: 743
  year: 2018
  ident: 10.1016/j.envpol.2019.113391_bib14
  article-title: Ingestion of microplastics debris by green sea turtles (Chelonia mydas) in the Great Barrier Reef: validation of a sequential extraction protocol
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2017.12.062
– year: 1986
  ident: 10.1016/j.envpol.2019.113391_bib49
  article-title: Bulk density
– volume: 225
  start-page: 283
  year: 2017
  ident: 10.1016/j.envpol.2019.113391_bib74
  article-title: Microplastics in sediments of the Changjiang Estuary, China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.12.064
– volume: 586
  start-page: 127
  year: 2017
  ident: 10.1016/j.envpol.2019.113391_bib42
  article-title: Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.190
– volume: 178
  start-page: 483
  year: 2013
  ident: 10.1016/j.envpol.2019.113391_bib90
  article-title: The physical impacts of microplastics on marine organisms: A review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.02.031
– volume: 1
  start-page: 65
  year: 2003
  ident: 10.1016/j.envpol.2019.113391_bib93
  article-title: Wetlands at your service: Reducing impacts of agriculture at the watershed scale
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/1540-9295(2003)001[0065:WAYSRI]2.0.CO;2
– volume: 238
  start-page: 26
  year: 2018
  ident: 10.1016/j.envpol.2019.113391_bib50
  article-title: A workflow for improving estimates of microplastic contamination in marine waters: a case study from North-Western Australia
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.03.010
– year: 2017
  ident: 10.1016/j.envpol.2019.113391_bib29
  article-title: Sources and fate of microplastics in urban areas: a focus on Paris Megacity. Pp. 69–84
– volume: 231
  start-page: 123
  year: 2017
  ident: 10.1016/j.envpol.2019.113391_bib57
  article-title: Plastic and other microfibers in sediments, macroinvertebrates and shorebirds from three intertidal wetlands of southern Europe and west Africa
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.07.103
– volume: 23
  start-page: 798
  year: 1978
  ident: 10.1016/j.envpol.2019.113391_bib86
  article-title: Nutrient and particulate fluxes in a salt marsh ecosystem: Tidal exchanges and inputs by precipitation and groundwater 1
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1978.23.4.0798
– volume: 30
  start-page: 1447
  year: 2001
  ident: 10.1016/j.envpol.2019.113391_bib9
  article-title: The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2001.3041447x
– start-page: 209
  year: 2014
  ident: 10.1016/j.envpol.2019.113391_bib94
  article-title: Geochemical characteristics of an urban river: Influences of an anthropogenic landscape
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2014.06.012
– volume: 41
  start-page: 1
  year: 2007
  ident: 10.1016/j.envpol.2019.113391_bib8
  article-title: Export of organic matter from a coastal freshwater wetland to Lake Erie: an extension of the outwelling hypothesis
  publication-title: Aquat. Ecol.
  doi: 10.1007/s10452-006-9044-4
– volume: 633
  start-page: 1549
  year: 2018
  ident: 10.1016/j.envpol.2019.113391_bib80
  article-title: Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.233
– volume: 2
  start-page: 271
  year: 1979
  ident: 10.1016/j.envpol.2019.113391_bib34
  article-title: Effects of stem density upon sediment retention by salt marsh cord grass, Spartina alterniflora Loisel
  publication-title: Estuaries
  doi: 10.2307/1351574
– volume: 32
  start-page: 63
  year: 1994
  ident: 10.1016/j.envpol.2019.113391_bib35
  article-title: The effects of bioturbation on sediment transport on an intertidal mudflat
  publication-title: Neth. J. Sea Res.
  doi: 10.1016/0077-7579(94)90028-0
– volume: 62
  start-page: 1596
  year: 2011
  ident: 10.1016/j.envpol.2019.113391_bib2
  article-title: Microplastics in the marine environment
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.05.030
– volume: 57
  start-page: 255
  year: 2003
  ident: 10.1016/j.envpol.2019.113391_bib24
  article-title: Control of sediment deposition rates in two mid-Atlantic Coast tidal freshwater wetlands
  publication-title: Estuar. Coast Shelf Sci.
  doi: 10.1016/S0272-7714(02)00353-0
– volume: 18
  start-page: 1050
  year: 2016
  ident: 10.1016/j.envpol.2019.113391_bib72
  article-title: A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments
  publication-title: Environ. Sci. Process. Impacts
  doi: 10.1039/C6EM00206D
– volume: 130
  start-page: 54
  year: 2013
  ident: 10.1016/j.envpol.2019.113391_bib87
  article-title: Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification
  publication-title: Estuar. Coast Shelf Sci.
  doi: 10.1016/j.ecss.2013.03.022
– volume: 19
  start-page: 141
  year: 2002
  ident: 10.1016/j.envpol.2019.113391_bib20
  article-title: Nutrient removal from eutrophic lake water by wetland filtration
  publication-title: Ecol. Eng.
  doi: 10.1016/S0925-8574(02)00037-X
– volume: 10
  start-page: 217
  year: 1990
  ident: 10.1016/j.envpol.2019.113391_bib38
  article-title: The influence of tidal marshes on upland groundwater discharge to estuaries
  publication-title: Biogeochemistry
  doi: 10.1007/BF00003145
– volume: 224
  start-page: 487
  year: 1984
  ident: 10.1016/j.envpol.2019.113391_bib23
  article-title: Water uptake by roots controls water table movement and sediment oxidation in short Spartina marsh
  publication-title: Science
  doi: 10.1126/science.224.4648.487
– year: 1992
  ident: 10.1016/j.envpol.2019.113391_bib15
  article-title: Linear models
– volume: 37
  start-page: 91
  year: 2018
  ident: 10.1016/j.envpol.2019.113391_bib70
  article-title: Impacts of temperature and selected chemical digestion methods on microplastic particles
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.3935
– year: 2016
  ident: 10.1016/j.envpol.2019.113391_bib3
– volume: 62
  start-page: 2199
  year: 2011
  ident: 10.1016/j.envpol.2019.113391_bib17
  article-title: Occurrence and distribution of microplastics in marine sediments along the Belgian coast
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.06.030
– year: 1979
  ident: 10.1016/j.envpol.2019.113391_bib21
– year: 2017
  ident: 10.1016/j.envpol.2019.113391_bib48
  article-title: Analysis, occurrence, and degradation of microplastics in the aqueous environment. Pp. 51–68
– volume: 100
  start-page: 608
  year: 2015
  ident: 10.1016/j.envpol.2019.113391_bib19
  article-title: Too many digits: the presentation of numerical data
  publication-title: Arch. Dis. Child.
  doi: 10.1136/archdischild-2014-307149
– volume: 13
  start-page: 65
  year: 1993
  ident: 10.1016/j.envpol.2019.113391_bib10
  article-title: Changes in the functioning of wetlands along environmental gradients
  publication-title: Wetlands
  doi: 10.1007/BF03160866
– volume: 42
  start-page: 5026
  year: 2008
  ident: 10.1016/j.envpol.2019.113391_bib11
  article-title: Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800249a
– volume: 1
  start-page: 116
  year: 2017
  ident: 10.1016/j.envpol.2019.113391_bib33
  article-title: Interactions of microplastic debris throughout the marine ecosystem
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-017-0116
– volume: 77
  start-page: 349
  year: 2013
  ident: 10.1016/j.envpol.2019.113391_bib53
  article-title: Relationships among the abundances of plastic debris in different size classes on beaches in South Korea
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2013.08.013
– volume: 22
  start-page: 415
  year: 2002
  ident: 10.1016/j.envpol.2019.113391_bib55
  article-title: Flow dynamics and sedimentation in Spartina alterniflora and Phragmites australis marshes of the Chesapeake Bay
  publication-title: Wetlands
  doi: 10.1672/0277-5212(2002)022[0415:FDASIS]2.0.CO;2
– volume: 114
  start-page: 24
  year: 2016
  ident: 10.1016/j.envpol.2019.113391_bib32
  article-title: Microplastics in coastal sediments from Southern Portuguese shelf waters
  publication-title: Mar. Environ. Res.
  doi: 10.1016/j.marenvres.2015.12.006
– year: 2019
  ident: 10.1016/j.envpol.2019.113391_bib37
– volume: 69
  start-page: 299
  year: 2015
  ident: 10.1016/j.envpol.2019.113391_bib47
  article-title: Factors influencing the spatial variation of microplastics on high-tidal coastal beaches in Korea
  publication-title: Environ. Contam. Toxicol.
  doi: 10.1007/s00244-015-0155-6
– volume: 44
  start-page: 3404
  year: 2010
  ident: 10.1016/j.envpol.2019.113391_bib12
  article-title: Spatial patterns of plastic debris along estuarine shorelines
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903784e
– year: 2000
  ident: 10.1016/j.envpol.2019.113391_bib64
– volume: 48
  start-page: 14195
  year: 2014
  ident: 10.1016/j.envpol.2019.113391_bib92
  article-title: Microplastics in four estuarine rivers in the Chesapeake Bay
  publication-title: U.S.A. Environ. Sci. Technol.
  doi: 10.1021/es5036317
– volume: 7
  year: 2019
  ident: 10.1016/j.envpol.2019.113391_bib46
  article-title: Dispersion, accumulation, and the ultimate fate of microplastics in deep-marine environments: a review and future directions
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2019.00080
– volume: 444
  start-page: 71
  year: 2001
  ident: 10.1016/j.envpol.2019.113391_bib59
  article-title: The interaction between water movement, sediment dynamics and submersed macrophytes
  publication-title: Hydrobiologia
  doi: 10.1023/A:1017520800568
– volume: 108
  start-page: 131
  year: 2008
  ident: 10.1016/j.envpol.2019.113391_bib66
  article-title: Synthetic polymers in the marine environment: a rapidly increasing, long-term threat
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2008.07.025
– volume: 3
  start-page: 5
  year: 1999
  ident: 10.1016/j.envpol.2019.113391_bib4
  article-title: The seed bank of a restored tidal freshwater marsh in Washington, DC
  publication-title: Urban Ecosyst.
  doi: 10.1023/A:1009549117419
– volume: 128
  start-page: 223
  year: 2018
  ident: 10.1016/j.envpol.2019.113391_bib36
  article-title: Microplastic in two South Carolina Estuaries: occurrence, distribution, and composition
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2018.01.030
– volume: 23
  start-page: 867
  year: 2013
  ident: 10.1016/j.envpol.2019.113391_bib44
  article-title: Beyond the ocean: contamination of beach sediments of a subapline lake with microplastic particles
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.09.001
– year: 2019
  ident: 10.1016/j.envpol.2019.113391_bib54
– volume: 115
  start-page: 1
  year: 2010
  ident: 10.1016/j.envpol.2019.113391_bib69
  article-title: How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 64
  start-page: 681
  year: 2000
  ident: 10.1016/j.envpol.2019.113391_bib82
  article-title: Soil structure and organic matter: I. Distribution of aggregate-size classes
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.642681x
– volume: 24
  start-page: 1405
  year: 2018
  ident: 10.1016/j.envpol.2019.113391_bib26
  article-title: Microplastics as an emerging threat to terrestrial ecosystems
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14020
– year: 1988
  ident: 10.1016/j.envpol.2019.113391_bib76
– volume: 38
  start-page: 703
  year: 2019
  ident: 10.1016/j.envpol.2019.113391_bib79
  article-title: Rethinking microplastics as a diverse contaminant suite
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.4371
– volume: 42
  year: 1972
  ident: 10.1016/j.envpol.2019.113391_bib43
  article-title: Animal-sediment relationships in two beach-related tidal flats, Sapelo Island, Georgia
  publication-title: SEPM J. Sediment. Res.
– volume: 13
  start-page: 456
  year: 2004
  ident: 10.1016/j.envpol.2019.113391_bib75
  article-title: An algorithm for a letter-based representation of all-pairwise comparisons
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/1061860043515
– start-page: 207
  year: 2009
  ident: 10.1016/j.envpol.2019.113391_bib5
  article-title: Restoration of tidal freshwater wetlands in North America
– volume: 36
  start-page: 1093
  year: 2010
  ident: 10.1016/j.envpol.2019.113391_bib45
  article-title: Water quality performance of treatment wetlands in the Imperial Valley, California
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2010.04.028
– volume: 79
  start-page: 278
  year: 2014
  ident: 10.1016/j.envpol.2019.113391_bib67
  article-title: Microplastics in Singapore’s coastal mangrove ecosystems
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2013.11.025
– volume: 52
  start-page: 3591
  year: 2018
  ident: 10.1016/j.envpol.2019.113391_bib81
  article-title: Microplastics in Swiss floodplain soils
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b06003
– volume: 54
  start-page: 713
  year: 2002
  ident: 10.1016/j.envpol.2019.113391_bib71
  article-title: Sediment deposition and accretion in a mid-Atlantic (U.S.A.) tidal freshwater marsh
  publication-title: Estuar. Coast Shelf Sci.
  doi: 10.1006/ecss.2001.0854
– volume: 52
  start-page: 1704
  year: 2018
  ident: 10.1016/j.envpol.2019.113391_bib1
  article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05559
– volume: 52
  start-page: 1220
  year: 2007
  ident: 10.1016/j.envpol.2019.113391_bib22
  article-title: Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and US tidal marshes
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2007.52.3.1220
– volume: 33
  start-page: 43
  year: 1959
  ident: 10.1016/j.envpol.2019.113391_bib25
  article-title: A canopy-coverage method of vegetational analysis
  publication-title: Northwest Sci.
– volume: 75
  start-page: 63
  year: 2015
  ident: 10.1016/j.envpol.2019.113391_bib30
  article-title: Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.02.012
– volume: 62
  start-page: 2588
  year: 2011
  ident: 10.1016/j.envpol.2019.113391_bib18
  article-title: Microplastics as contaminants in the marine environment: a review
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.09.025
– volume: 12
  start-page: 539
  year: 2015
  ident: 10.1016/j.envpol.2019.113391_bib28
  article-title: Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles
  publication-title: Environ. Chem.
  doi: 10.1071/EN14172
– volume: 40
  start-page: 1474
  year: 1995
  ident: 10.1016/j.envpol.2019.113391_bib56
  article-title: Flow hydrodynamics in tidal marsh canopies
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1995.40.8.1474
– volume: 222
  start-page: 315
  year: 2017
  ident: 10.1016/j.envpol.2019.113391_bib83
  article-title: Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.12.038
– year: 1973
  ident: 10.1016/j.envpol.2019.113391_bib41
– volume: 20
  start-page: 543
  year: 1985
  ident: 10.1016/j.envpol.2019.113391_bib85
  article-title: The exchange of organic carbon in basin mangrove forests in a southwest Florida estuary
  publication-title: Estuar. Coast Shelf Sci.
  doi: 10.1016/0272-7714(85)90106-4
– start-page: 1
  year: 2017
  ident: 10.1016/j.envpol.2019.113391_bib51
  article-title: Microplastics are contaminants of emerging concern in freshwater environments: an overview
– year: 2015
  ident: 10.1016/j.envpol.2019.113391_bib65
– volume: 50
  start-page: 315
  year: 2000
  ident: 10.1016/j.envpol.2019.113391_bib16
  article-title: Flow and sediment transport on a tidal salt marsh surface
  publication-title: Estuar. Coast Shelf Sci.
  doi: 10.1006/ecss.2000.0548
– volume: 133
  start-page: 647
  year: 2018
  ident: 10.1016/j.envpol.2019.113391_bib91
  article-title: Microplastic risk assessment in surface waters: A case study in the Changjiang Estuary, China
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2018.06.020
– volume: 129
  start-page: 61
  year: 2018
  ident: 10.1016/j.envpol.2019.113391_bib39
  article-title: Novel methodology to isolate microplastics from vegetal-rich samples Novel methodology to isolate microplastics from vegetal-rich samples
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2018.02.015
– volume: 67
  start-page: 94
  year: 2013
  ident: 10.1016/j.envpol.2019.113391_bib58
  article-title: Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2012.11.028
– volume: 81
  start-page: 69
  year: 2014
  ident: 10.1016/j.envpol.2019.113391_bib62
  article-title: Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2014.02.018
– volume: 109
  start-page: 230
  year: 2016
  ident: 10.1016/j.envpol.2019.113391_bib84
  article-title: Microplastic contamination in the San Francisco Bay, California, USA
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.05.077
– volume: 35
  start-page: 1632
  year: 2016
  ident: 10.1016/j.envpol.2019.113391_bib88
  article-title: From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.3432
– volume: 109
  start-page: 178
  year: 2016
  ident: 10.1016/j.envpol.2019.113391_bib89
  article-title: Abundance and characteristics of microplastics in beach sediments: Insights into microplastic accumulation in northern Gulf of Mexico estuaries
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.06.002
– start-page: 801
  year: 2009
  ident: 10.1016/j.envpol.2019.113391_bib6
  article-title: Evaluation of restored tidal freshwater wetlands
– volume: 247
  start-page: 499
  year: 2019
  ident: 10.1016/j.envpol.2019.113391_bib60
  article-title: Mangrove forests as traps for marine litter
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.01.067
– volume: 46
  start-page: 3060
  year: 2012
  ident: 10.1016/j.envpol.2019.113391_bib40
  article-title: Microplastics in the marine environment: a review of the methods used for identification and quantification
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2031505
– start-page: 1
  year: 2015
  ident: 10.1016/j.envpol.2019.113391_bib78
  article-title: Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption
  publication-title: Nat. Publ. Group
SSID ssj0004333
Score 2.6407247
Snippet Microplastics are a complex group of ubiquitous environmental contaminants of emerging concern. These particles degrade slowly, release plasticizers, and can...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113391
SubjectTerms aquatic environment
Ecosystem
ecosystems
Environmental Monitoring - methods
Fourier transform infrared spectroscopy
habitats
hydrodynamics
hydrogen peroxide
Microfiber
Microplastic
microplastics
Microplastics - analysis
organic matter
oxidation
plasticizers
pollution
polyethylene
Polyethylene - analysis
Polymers - analysis
polystyrenes
sediments
shorelines
Soil - chemistry
Spatial variation
synthetic rubber
Terpenes - analysis
trophic levels
vegetated waterways
Vegetation
vegetation cover
Water Pollutants, Chemical - analysis
wetland plants
Wetland soil
wetland soils
Wetlands
Title Wetland soil microplastics are negatively related to vegetation cover and stem density
URI https://dx.doi.org/10.1016/j.envpol.2019.113391
https://www.ncbi.nlm.nih.gov/pubmed/31662247
https://www.proquest.com/docview/2310668665
https://www.proquest.com/docview/2431933309
Volume 256
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V5QIHBFsKy0flSohb2DhOnOS4qlotrdoLBfZm2bFdLdpNVt200l747cw4SQuHUolrZDuWZzzzxn4zBvjoJSec6yKTOUEpOXFEhQAj9D5aZjx3RShWfX4hZ9_S03k234GjIReGaJW97e9serDW_ZdJv5qT9WIx-YrRA4Jh3KwIQVBr55TBnuak5Z9_3dM88PeiO2cpI2o9pM8Fjperb9cNXUDwkh43ESV_yD09BD-DGzp5Ac97_Mim3RRfwo6rR7A3rTF2Xm3ZJxYYneGofATP_ig2OIL94_ucNhyh39SbPfj-w7XEb2SbZrFkK2LorRFTU_1mpq8dq91VqA6-3LKQ-eIsaxt26656piKriAbKwgitWzFLnPh2-wouT44vj2ZR_9xCpFNetJG3sY-TMvGFNDrJLUZeNq7SykjujU9jHadGJN6jqbalN7bSnmeFFRVilNhUYh9266Z2b4C5QmiZFhibISDkiTS-ynRZOIxGEN_YfAxiWGRV9aXI6UWMpRo4Zz9VJxpFolGdaMYQ3fVad6U4HmmfD_JTf6mUQm_xSM_DQdwKdxtdoejaNTcbRWhYSqoR-I82iMlK1Lq4HMPrTlfu5iu4lAia8rf_Pbd38DShkD-cAr2H3fb6xn1AXNSag6D4B_Bk-uVsdvEbWxkNpA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4a3QE4IOgYlJ9GQtyiJnHiJMdq2tSxrRcK9GbZsT0VtUm1ZpP63_Oek2xwGJO4RrZl-dnvfc_53meAz05EhHNtoFPLqSQnDEgIMMDoo0QaZTb3YtUXMzH9nnxdpIs9OOprYYhW2fn-1qd7b919GXerOd4sl-NvmD0gGMbDihAEd-3iEeyTOlU6gP3J6dl0dlceydsX5bF9QB36CjpP87LVzaamfxBRQe-b8CK6L0Ldh0B9JDp5Ds86CMkm7SxfwJ6thnAwqTB9Xu_YF-ZJnf62fAhP_9AbHMLh8V1ZG47QnevtAfz4aRuiOLJtvVyxNZH0NgirScKZqSvLKnvpBcJXO-aLX6xhTc1u7GVHVmQlMUGZH6Gxa2aIFt_sXsL85Hh-NA26FxcClUR5EzgTujAuYpcLreLMYPJlwjIptYicdkmowkTz2Dn01qZw2pTKRWlueIkwJdQlP4RBVVf2NTCbcyWSHNMzxIRRLLQrU1XkFhMShDgmGwHvF1mWnRo5PYqxkj3t7JdsTSPJNLI1zQiC216bVo3jgfZZbz_5166SGDAe6PmpN7fEA0d_UVRl6-utJEAsBMkE_qMNwrICd11YjOBVu1du58sjIRA3ZW_-e24f4fF0fnEuz09nZ2_hSUw3AP5S6B0Mmqtr-x5hUqM_dMfgN4lUEFU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wetland+soil+microplastics+are+negatively+related+to+vegetation+cover+and+stem+density&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Helcoski%2C+Ryan&rft.au=Yonkos%2C+Lance+T&rft.au=Sanchez%2C+Alterra&rft.au=Baldwin%2C+Andrew+H&rft.date=2020-01-01&rft.issn=0269-7491&rft.volume=256+p.113391-&rft_id=info:doi/10.1016%2Fj.envpol.2019.113391&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon