Fluoride and nitrate contamination of groundwater in the Loess Plateau, China: Sources and related human health risks
Fluoride (F−) and nitrate (NO3−) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore,...
Saved in:
Published in | Environmental pollution (1987) Vol. 286; p. 117287 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0269-7491 1873-6424 1873-6424 |
DOI | 10.1016/j.envpol.2021.117287 |
Cover
Loading…
Abstract | Fluoride (F−) and nitrate (NO3−) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore, we collected 105 groundwater samples (78 from shallow aquifers and 27 from deep aquifers) from the western district of the Loess Plateau for physicochemical and isotopic analysis to investigate the sources of F− and NO3− in groundwater and associated health risks. Fluoride concentration in 73.1% of shallow groundwater and 22.2% of deep groundwater exceeds 1.5 mg/L, while NO3− content in 76.3% of shallow groundwater and 51.9% of deep groundwater surpasses 50 mg/L. High-F- groundwater is associated with HCO3–Na, SO4–Na·Mg and Cl–Na·Mg types water. Fluorine-bearing minerals dissolution, cation exchange, calcite precipitation, evaporation, and anthropogenic activities contribute significantly F− in groundwater. Mixing with shallow groundwater is an important source of F− in deep groundwater. The NO3− content is highest in Cl type water, followed by SO4 type and HCO3 type water. NO3− mainly originates from soil organic nitrogen (SON), chemical fertilizers (CF), and manure and sewage (M&S). Nitrification is the dominant transformation process of nitrogen nutrients in groundwater. The hazard index (HI) values for shallow groundwater are 0.203–9.232 for adults, 0.253–11.522 for teenagers, 0.359–16.322 for children, and 0.507–23.043 for infants, while those for deep groundwater are 0.713–5.813 for adults, 0.890–7.254 for teenagers, 1.261–10.277 for children, and 1.780–14.508 for infants. Approximately 96.2% of shallow groundwater poses non-carcinogenic risks to infants and children, followed by 92.3% to teenagers, and 89.7% to adults. All deep groundwater poses non-carcinogenic risks to infants and children, followed by 92.6% to teenagers, and 74.1% to adults. This study is helpful to develop strategies for the integrated management of high fluoride or nitrate groundwater in arid areas.
[Display omitted]
•Fluoride and nitrate sources were identified by chemical and isotopic analysis.•Water-rock interaction, evaporation and anthropogenic activities control F− contents.•Major nitrate sources are soil N, chemical fertilizers, and manure and sewage.•Absence of denitrification emphasizes the importance of controlling nitrate sources.•Non-carcinogenic health risks of fluoride and nitrate increase with decreasing age.
Chemical and isotopic analysis combined with land use and a health risk assessment model to illustrate the sources of fluoride and nitrate in groundwater and the associated health risks. |
---|---|
AbstractList | Fluoride (F-) and nitrate (NO3-) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore, we collected 105 groundwater samples (78 from shallow aquifers and 27 from deep aquifers) from the western district of the Loess Plateau for physicochemical and isotopic analysis to investigate the sources of F- and NO3- in groundwater and associated health risks. Fluoride concentration in 73.1% of shallow groundwater and 22.2% of deep groundwater exceeds 1.5 mg/L, while NO3- content in 76.3% of shallow groundwater and 51.9% of deep groundwater surpasses 50 mg/L. High-F- groundwater is associated with HCO3-Na, SO4-Na·Mg and Cl-Na·Mg types water. Fluorine-bearing minerals dissolution, cation exchange, calcite precipitation, evaporation, and anthropogenic activities contribute significantly F- in groundwater. Mixing with shallow groundwater is an important source of F- in deep groundwater. The NO3- content is highest in Cl type water, followed by SO4 type and HCO3 type water. NO3- mainly originates from soil organic nitrogen (SON), chemical fertilizers (CF), and manure and sewage (M&S). Nitrification is the dominant transformation process of nitrogen nutrients in groundwater. The hazard index (HI) values for shallow groundwater are 0.203-9.232 for adults, 0.253-11.522 for teenagers, 0.359-16.322 for children, and 0.507-23.043 for infants, while those for deep groundwater are 0.713-5.813 for adults, 0.890-7.254 for teenagers, 1.261-10.277 for children, and 1.780-14.508 for infants. Approximately 96.2% of shallow groundwater poses non-carcinogenic risks to infants and children, followed by 92.3% to teenagers, and 89.7% to adults. All deep groundwater poses non-carcinogenic risks to infants and children, followed by 92.6% to teenagers, and 74.1% to adults. This study is helpful to develop strategies for the integrated management of high fluoride or nitrate groundwater in arid areas.Fluoride (F-) and nitrate (NO3-) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore, we collected 105 groundwater samples (78 from shallow aquifers and 27 from deep aquifers) from the western district of the Loess Plateau for physicochemical and isotopic analysis to investigate the sources of F- and NO3- in groundwater and associated health risks. Fluoride concentration in 73.1% of shallow groundwater and 22.2% of deep groundwater exceeds 1.5 mg/L, while NO3- content in 76.3% of shallow groundwater and 51.9% of deep groundwater surpasses 50 mg/L. High-F- groundwater is associated with HCO3-Na, SO4-Na·Mg and Cl-Na·Mg types water. Fluorine-bearing minerals dissolution, cation exchange, calcite precipitation, evaporation, and anthropogenic activities contribute significantly F- in groundwater. Mixing with shallow groundwater is an important source of F- in deep groundwater. The NO3- content is highest in Cl type water, followed by SO4 type and HCO3 type water. NO3- mainly originates from soil organic nitrogen (SON), chemical fertilizers (CF), and manure and sewage (M&S). Nitrification is the dominant transformation process of nitrogen nutrients in groundwater. The hazard index (HI) values for shallow groundwater are 0.203-9.232 for adults, 0.253-11.522 for teenagers, 0.359-16.322 for children, and 0.507-23.043 for infants, while those for deep groundwater are 0.713-5.813 for adults, 0.890-7.254 for teenagers, 1.261-10.277 for children, and 1.780-14.508 for infants. Approximately 96.2% of shallow groundwater poses non-carcinogenic risks to infants and children, followed by 92.3% to teenagers, and 89.7% to adults. All deep groundwater poses non-carcinogenic risks to infants and children, followed by 92.6% to teenagers, and 74.1% to adults. This study is helpful to develop strategies for the integrated management of high fluoride or nitrate groundwater in arid areas. Fluoride (F−) and nitrate (NO3−) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore, we collected 105 groundwater samples (78 from shallow aquifers and 27 from deep aquifers) from the western district of the Loess Plateau for physicochemical and isotopic analysis to investigate the sources of F− and NO3− in groundwater and associated health risks. Fluoride concentration in 73.1% of shallow groundwater and 22.2% of deep groundwater exceeds 1.5 mg/L, while NO3− content in 76.3% of shallow groundwater and 51.9% of deep groundwater surpasses 50 mg/L. High-F- groundwater is associated with HCO3–Na, SO4–Na·Mg and Cl–Na·Mg types water. Fluorine-bearing minerals dissolution, cation exchange, calcite precipitation, evaporation, and anthropogenic activities contribute significantly F− in groundwater. Mixing with shallow groundwater is an important source of F− in deep groundwater. The NO3− content is highest in Cl type water, followed by SO4 type and HCO3 type water. NO3− mainly originates from soil organic nitrogen (SON), chemical fertilizers (CF), and manure and sewage (M&S). Nitrification is the dominant transformation process of nitrogen nutrients in groundwater. The hazard index (HI) values for shallow groundwater are 0.203–9.232 for adults, 0.253–11.522 for teenagers, 0.359–16.322 for children, and 0.507–23.043 for infants, while those for deep groundwater are 0.713–5.813 for adults, 0.890–7.254 for teenagers, 1.261–10.277 for children, and 1.780–14.508 for infants. Approximately 96.2% of shallow groundwater poses non-carcinogenic risks to infants and children, followed by 92.3% to teenagers, and 89.7% to adults. All deep groundwater poses non-carcinogenic risks to infants and children, followed by 92.6% to teenagers, and 74.1% to adults. This study is helpful to develop strategies for the integrated management of high fluoride or nitrate groundwater in arid areas. [Display omitted] •Fluoride and nitrate sources were identified by chemical and isotopic analysis.•Water-rock interaction, evaporation and anthropogenic activities control F− contents.•Major nitrate sources are soil N, chemical fertilizers, and manure and sewage.•Absence of denitrification emphasizes the importance of controlling nitrate sources.•Non-carcinogenic health risks of fluoride and nitrate increase with decreasing age. Chemical and isotopic analysis combined with land use and a health risk assessment model to illustrate the sources of fluoride and nitrate in groundwater and the associated health risks. Fluoride (F ) and nitrate (NO ) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore, we collected 105 groundwater samples (78 from shallow aquifers and 27 from deep aquifers) from the western district of the Loess Plateau for physicochemical and isotopic analysis to investigate the sources of F and NO in groundwater and associated health risks. Fluoride concentration in 73.1% of shallow groundwater and 22.2% of deep groundwater exceeds 1.5 mg/L, while NO content in 76.3% of shallow groundwater and 51.9% of deep groundwater surpasses 50 mg/L. High-F groundwater is associated with HCO -Na, SO -Na·Mg and Cl-Na·Mg types water. Fluorine-bearing minerals dissolution, cation exchange, calcite precipitation, evaporation, and anthropogenic activities contribute significantly F in groundwater. Mixing with shallow groundwater is an important source of F in deep groundwater. The NO content is highest in Cl type water, followed by SO type and HCO type water. NO mainly originates from soil organic nitrogen (SON), chemical fertilizers (CF), and manure and sewage (M&S). Nitrification is the dominant transformation process of nitrogen nutrients in groundwater. The hazard index (HI) values for shallow groundwater are 0.203-9.232 for adults, 0.253-11.522 for teenagers, 0.359-16.322 for children, and 0.507-23.043 for infants, while those for deep groundwater are 0.713-5.813 for adults, 0.890-7.254 for teenagers, 1.261-10.277 for children, and 1.780-14.508 for infants. Approximately 96.2% of shallow groundwater poses non-carcinogenic risks to infants and children, followed by 92.3% to teenagers, and 89.7% to adults. All deep groundwater poses non-carcinogenic risks to infants and children, followed by 92.6% to teenagers, and 74.1% to adults. This study is helpful to develop strategies for the integrated management of high fluoride or nitrate groundwater in arid areas. Fluoride (F⁻) and nitrate (NO₃⁻) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore, we collected 105 groundwater samples (78 from shallow aquifers and 27 from deep aquifers) from the western district of the Loess Plateau for physicochemical and isotopic analysis to investigate the sources of F⁻ and NO₃⁻ in groundwater and associated health risks. Fluoride concentration in 73.1% of shallow groundwater and 22.2% of deep groundwater exceeds 1.5 mg/L, while NO₃⁻ content in 76.3% of shallow groundwater and 51.9% of deep groundwater surpasses 50 mg/L. High-F⁻ groundwater is associated with HCO₃–Na, SO₄–Na·Mg and Cl–Na·Mg types water. Fluorine-bearing minerals dissolution, cation exchange, calcite precipitation, evaporation, and anthropogenic activities contribute significantly F⁻ in groundwater. Mixing with shallow groundwater is an important source of F⁻ in deep groundwater. The NO₃⁻ content is highest in Cl type water, followed by SO₄ type and HCO₃ type water. NO₃⁻ mainly originates from soil organic nitrogen (SON), chemical fertilizers (CF), and manure and sewage (M&S). Nitrification is the dominant transformation process of nitrogen nutrients in groundwater. The hazard index (HI) values for shallow groundwater are 0.203–9.232 for adults, 0.253–11.522 for teenagers, 0.359–16.322 for children, and 0.507–23.043 for infants, while those for deep groundwater are 0.713–5.813 for adults, 0.890–7.254 for teenagers, 1.261–10.277 for children, and 1.780–14.508 for infants. Approximately 96.2% of shallow groundwater poses non-carcinogenic risks to infants and children, followed by 92.3% to teenagers, and 89.7% to adults. All deep groundwater poses non-carcinogenic risks to infants and children, followed by 92.6% to teenagers, and 74.1% to adults. This study is helpful to develop strategies for the integrated management of high fluoride or nitrate groundwater in arid areas. |
ArticleNumber | 117287 |
Author | Li, Zhi Li, Yanrong Su, He Kang, Weidong |
Author_xml | – sequence: 1 givenname: He orcidid: 0000-0001-5752-2369 surname: Su fullname: Su, He organization: Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China – sequence: 2 givenname: Weidong surname: Kang fullname: Kang, Weidong organization: State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China – sequence: 3 givenname: Yanrong surname: Li fullname: Li, Yanrong email: li.dennis@hotmail.com organization: Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China – sequence: 4 givenname: Zhi surname: Li fullname: Li, Zhi email: lizhibox@nwafu.edu.cn organization: College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33971470$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URLeFf4CQjxzI4q84SQ9I1YoC0kqtBJwtrz0hXhJ78UcR_55sUzj0UDiNNPO872GeM3TigweEXlKypoTKt_s1-NtDGNeMMLqmtGFt8wStaNvwSgomTtCKMNlVjejoKTpLaU8IEZzzZ-iU866hoiErVK7GEqKzgLW32LscdQZsgs96cl5nFzwOPf4WQ_H253yL2HmcB8DbACnhm3He6fIGb4YZv8CfQ4kG0l1bhOPR4qFM2uMB9JgHHF36np6jp70eE7y4n-fo69X7L5uP1fb6w6fN5bbSgra50rXhGlou6p2VTNOWUbqztdSkbmXLqSRM9C0njdCCiw40laLrWVvDruZgLT9Hr5feQww_CqSsJpcMjKP2EEpSrK5px6TkzX-grJaSNpzM6Kt7tOwmsOoQ3aTjL_XnqzMgFsDEkFKE_i9CiTrKU3u1yFNHeWqRN8cuHsSMy3cKZitu_Ff43RKG-Z-3DqJKxoE3YF0Ek5UN7vGC3zyvtwY |
CitedBy_id | crossref_primary_10_1016_j_hazadv_2023_100312 crossref_primary_10_1016_j_watres_2023_121016 crossref_primary_10_1007_s10653_024_01964_x crossref_primary_10_1007_s11356_023_28401_3 crossref_primary_10_1016_j_ecolind_2024_113024 crossref_primary_10_1007_s10661_022_10154_0 crossref_primary_10_1007_s11356_024_34030_1 crossref_primary_10_1016_j_chemer_2023_125985 crossref_primary_10_1007_s12665_022_10437_2 crossref_primary_10_1007_s00477_023_02485_2 crossref_primary_10_1007_s11356_024_33730_y crossref_primary_10_1016_j_biortech_2021_126228 crossref_primary_10_1016_j_gsd_2024_101107 crossref_primary_10_1016_j_envpol_2022_120524 crossref_primary_10_1080_10807039_2022_2140028 crossref_primary_10_1016_j_chemosphere_2023_139228 crossref_primary_10_1038_s41598_023_36621_3 crossref_primary_10_1016_j_envres_2022_113588 crossref_primary_10_2166_ws_2024_202 crossref_primary_10_1016_j_catena_2024_108143 crossref_primary_10_1155_2022_9682371 crossref_primary_10_1016_j_gsd_2024_101309 crossref_primary_10_1002_wer_11088 crossref_primary_10_1016_j_envres_2022_114837 crossref_primary_10_1016_j_scitotenv_2022_155903 crossref_primary_10_1007_s11814_022_1184_2 crossref_primary_10_3389_fenvs_2022_901637 crossref_primary_10_1016_j_chemosphere_2024_142762 crossref_primary_10_1021_acsanm_4c07317 crossref_primary_10_1186_s40068_024_00360_9 crossref_primary_10_1007_s10661_024_13458_5 crossref_primary_10_1016_j_ecoenv_2025_118048 crossref_primary_10_1016_j_watres_2023_120379 crossref_primary_10_1016_j_scitotenv_2024_176940 crossref_primary_10_3390_w15122220 crossref_primary_10_1007_s11356_022_22914_z crossref_primary_10_1016_j_jhazmat_2025_137185 crossref_primary_10_1007_s00284_022_03027_9 crossref_primary_10_1016_j_gsd_2024_101356 crossref_primary_10_1016_j_scitotenv_2023_166920 crossref_primary_10_1016_j_jhazmat_2024_135663 crossref_primary_10_1007_s12403_023_00553_0 crossref_primary_10_1016_j_envpol_2022_120855 crossref_primary_10_1016_j_ecoenv_2022_113496 crossref_primary_10_1016_j_marpolbul_2022_114440 crossref_primary_10_1007_s11270_024_07605_4 crossref_primary_10_1007_s43832_024_00086_w crossref_primary_10_1111_fwb_14332 crossref_primary_10_2166_ws_2024_196 crossref_primary_10_1007_s11356_022_20073_9 crossref_primary_10_1016_j_scitotenv_2024_170574 crossref_primary_10_1016_j_dwt_2024_100664 crossref_primary_10_1016_j_envpol_2024_125000 crossref_primary_10_1007_s12665_024_11656_5 crossref_primary_10_1016_j_jclepro_2023_139671 crossref_primary_10_1016_j_desal_2024_117392 crossref_primary_10_1016_j_jenvman_2025_124424 crossref_primary_10_3390_w15234067 crossref_primary_10_1016_j_gsd_2023_101052 crossref_primary_10_3390_toxics11070577 crossref_primary_10_1007_s10661_024_13546_6 crossref_primary_10_1016_j_ecoenv_2022_113500 crossref_primary_10_5004_dwt_2022_28936 crossref_primary_10_1016_j_envres_2023_116911 crossref_primary_10_3389_fenvs_2022_1024797 crossref_primary_10_1016_j_biortech_2022_128098 crossref_primary_10_3390_met14091062 crossref_primary_10_1007_s10661_024_13207_8 crossref_primary_10_1016_j_envpol_2021_117528 crossref_primary_10_1021_acs_est_4c08197 crossref_primary_10_1007_s11356_024_33768_y crossref_primary_10_1016_j_ecoenv_2024_116705 crossref_primary_10_1007_s10653_024_02276_w crossref_primary_10_1007_s11270_023_06614_z crossref_primary_10_5004_dwt_2023_30096 crossref_primary_10_1016_j_jenvman_2022_116171 crossref_primary_10_1007_s11356_023_25958_x crossref_primary_10_1038_s41598_024_84318_y crossref_primary_10_1080_10807039_2024_2436669 crossref_primary_10_1016_j_rineng_2025_104363 crossref_primary_10_1007_s11356_024_32941_7 crossref_primary_10_3390_pr10091740 crossref_primary_10_1007_s10661_024_12985_5 crossref_primary_10_1016_j_geog_2022_04_003 crossref_primary_10_1007_s11356_023_26765_0 crossref_primary_10_1007_s11356_022_23516_5 crossref_primary_10_1016_j_jconhyd_2024_104495 crossref_primary_10_3389_feart_2022_1084890 crossref_primary_10_1016_j_jconhyd_2023_104270 crossref_primary_10_1007_s11356_023_30001_0 |
Cites_doi | 10.1016/j.chemosphere.2015.03.067 10.5004/dwt.2019.23865 10.1126/science.170.3962.1088 10.1016/j.jhydrol.2016.08.023 10.1016/j.scitotenv.2015.09.134 10.1002/hyp.11103 10.1016/j.envpol.2019.113646 10.1016/j.earscirev.2017.06.005 10.1016/j.envpol.2019.06.046 10.1016/j.watres.2008.12.048 10.1016/j.chemosphere.2017.12.021 10.1007/s10661-012-2900-x 10.1016/j.watres.2012.10.042 10.1016/j.scitotenv.2005.11.003 10.1021/es071958y 10.1021/ac020113w 10.1016/j.envpol.2018.02.072 10.1016/j.chemosphere.2018.04.116 10.1016/j.jhydrol.2019.124211 10.1016/j.envpol.2016.12.074 10.1016/j.scitotenv.2014.10.090 10.1007/s12011-018-1269-2 10.5004/dwt.2019.23651 10.1016/j.ecoenv.2020.111217 10.1016/j.envpol.2020.115947 10.1016/j.scitotenv.2018.08.007 10.1016/j.scitotenv.2020.140460 10.1007/s11356-016-6069-7 10.1016/j.ecoenv.2020.110227 10.1021/ac010088e 10.1016/j.scitotenv.2018.07.245 10.1016/j.watres.2018.10.049 10.1007/s00254-007-0692-z 10.1007/s12665-018-7968-3 10.1007/s12665-016-6362-2 10.1016/j.ecolind.2016.01.028 10.1016/j.scitotenv.2018.09.322 10.1016/j.scitotenv.2014.11.045 10.3390/ijerph16040564 10.1016/0003-9861(84)90499-5 10.1016/j.scitotenv.2018.04.064 10.1016/j.ecoenv.2017.10.057 10.1016/j.apgeochem.2011.01.012 10.1016/j.chemosphere.2018.12.084 10.1080/10807039.2018.1553612 10.1016/j.envpol.2011.09.033 10.1007/s10661-010-1348-0 10.1016/j.quaint.2015.01.021 10.1007/s12403-018-0278-x 10.1038/s41598-017-17328-8 10.1016/j.apgeochem.2008.12.015 10.1016/j.envpol.2021.116930 10.1016/j.yrtph.2019.104408 10.1016/j.envint.2019.02.011 10.1016/j.scitotenv.2007.12.025 10.1016/j.envpol.2019.113711 10.1007/s10653-017-0037-0 10.1016/j.chemosphere.2016.02.021 10.1016/j.ecoenv.2020.110503 10.1016/j.scitotenv.2020.137134 10.1016/j.ecoenv.2016.11.010 10.1016/j.envpol.2017.12.078 10.1016/j.scitotenv.2017.07.176 10.1007/s12403-016-0234-6 10.1016/j.jconhyd.2018.10.009 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2021.117287 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 33971470 10_1016_j_envpol_2021_117287 S0269749121008691 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5VS 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K TWZ WH7 XPP ZMT ~G- 29G 53G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ OHT R2- RIG SEN SEW SSH VH1 WUQ XJT XOL EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a418t-a5c3ae8345bd62a18211bd56a05868316024f83074a4349ea1649f285eb53edd3 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Fri Jul 11 00:10:28 EDT 2025 Fri Jul 11 05:23:50 EDT 2025 Mon Jul 21 05:34:05 EDT 2025 Tue Jul 01 03:15:09 EDT 2025 Thu Apr 24 23:06:11 EDT 2025 Fri Feb 23 02:43:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fluoride Nitrate Health risk assessment Source Loess Plateau |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a418t-a5c3ae8345bd62a18211bd56a05868316024f83074a4349ea1649f285eb53edd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5752-2369 |
PMID | 33971470 |
PQID | 2525661730 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551926637 proquest_miscellaneous_2525661730 pubmed_primary_33971470 crossref_primary_10_1016_j_envpol_2021_117287 crossref_citationtrail_10_1016_j_envpol_2021_117287 elsevier_sciencedirect_doi_10_1016_j_envpol_2021_117287 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Peng, Li, Gao, Chen (bib35) 2021; 268 Subba Rao (bib51) 2020; 1–23 Yousefi, Ghalehaskar, Asghari, Ghaderpoury, Mohammadi (bib69) 2019; 107 Li, He, Li, Xiang (bib33) 2019; 11 Radfard, Gholizadeh, Azhdarpoor, Badeenezhad, Mohammadi, Yousefi (bib41) 2019; 145 (bib56) 2011 Zhang, Huang, Yang, Wei, Qin, Ou, Zhang, Zou (bib72) 2017; 222 Amini, Mueller, Abbaspour, Rosenberg, Afyuni, Moller (bib3) 2008; 42 Rinklebe, Antoniadis, Shaheen, Rosche, Altermann (bib46) 2019; 126 Wang, Zheng, Currell, Yang, Zhao, Lv (bib58) 2017; 609 Zabala, Manzano, Vives (bib70) 2016; 541 Zhai, Zhao, Teng, Li, Zhang, Wu, Zuo (bib71) 2017; 137 Wu, Luo, Luo, Ma, Wang (bib60) 2018; 218 Kendall, Aravena (bib24) 2000 Matiatos (bib36) 2016; 541 Li, Gao, Wang, Luo (bib29) 2018; 237 Xue, Botte, Baets, Accoe, Nestler, Taylor, Cleemput, Berglund, Boeckx (bib64) 2009; 43 Yousefi, Yaseri, Nabizadeh, Hooshmand, Jalilzadeh (bib66) 2018; 185 Zhen, Zhu (bib75) 2016; 66 Yousefi, Asghari, Zuccarello, Oliveri Conti, Ejlali, Mohammadi, Ferrante (bib68) 2019; 16 Biddau, Cidu, Da Pelo, Carletti, Ghiglieri, Pittalis (bib7) 2019; 647 Su, Wang, Liu (bib50) 2019; 252 Kaur, Rishi, Siddiqui (bib23) 2020; 259 Tekle-Haimanot, Melaku, Kloos, Reimann, Fantaye, Zerihun, Bjorvatn (bib53) 2006; 367 Li, He, Yang, Xiang (bib30) 2018; 77 Yousefi, Ghoochani, Mahvi (bib67) 2018; 148 Taufiq, Effendi, Iskandar, Hosono, Hutasoit (bib52) 2019; 148 Li, He, Guo (bib32) 2019; 25 Gibbs (bib18) 1970; 170 Li, Gao, Liu, Wang (bib31) 2019; 579 Sigman, Casciotti, Andreani, Barford, Galanter, Bohlke (bib47) 2001; 73 Souza, Lima, Adriano, Carvalho, Forte, Oliveira (bib48) 2013; 185 Adimalla, Qian, Nandan (bib2) 2020; 206 Kim, Oh, Do, Lee, Hyun, Oh, Kam, Yun (bib26) 2018; 51 WHO (bib59) 2011 Currell, Cartwright, Raveggi, Han (bib12) 2011; 26 Mohammadi, Yousefi, Yaseri, Jalilzadeh, Mahvi (bib38) 2017; 7 Naderi, Jahanshahi, Dehbandi (bib39) 2020; 195 Egbi, Anornu, Ganyaglo, Appiah-Adjei, Li, Dampare (bib15) 2020; 191 Antoniadis, Levizou, Shaheen, Ok, Sebastian, Baum, Prasad, Wenzel, Rinklebe (bib5) 2017; 171 Kendall, Elliott, Wankel, Michener, Lajtha (bib25) 2007 Su, Kang, Xu, Wang (bib49) 2017; 9 Guo, Yang, Tang, Li, Shen (bib19) 2008; 393 Kalpana, Brindha, Elango (bib22) 2019; 220 Brahman, Kazi, Afridi, Naseem, Arain, Ullah (bib8) 2013; 47 Rashid, Guan, Farooqi, Khan, Zahir, Jehan, Khattak, Khan, Khan (bib43) 2018; 635 Das, Das, Sarma, Kumar (bib14) 2018; 194 Hossain, Patra (bib21) 2020; 258 Kumar, Venkatesh, Singh, Udayabhanu, Saha (bib27) 2018; 205 Xue, De Baets, Van Cleemput, Hennessy, Berglund, Boeckx (bib65) 2012; 161 Liu (bib34) 2008 An, Lu (bib4) 2018; 40 Azhdarpoor, Radfard, Pakdel, Abbasnia, Badeenezhad, Mohammadi, Yousefi (bib6) 2019; 149 Brindha, Rajesh, Murugan, Elango (bib9) 2011; 172 Casciotti, Sigman, Hastings, Böhlke, Hilkert (bib11) 2002; 74 Adimalla, Venkatayogi (bib1) 2017; 76 Brindha, Jagadeshan, Kalpana, Elango (bib10) 2016; 23 Xiao, Wang, Deng, Jin (bib62) 2019; 650 Fernández, Grilli, Alvarez, Aravena (bib16) 2017; 31 Zhang, Xu, Cheng, Li, Yu (bib74) 2020; 717 Xiao, Jin, Wang, Zhang (bib61) 2015; 380–381 Li, Gao, Wang (bib28) 2015; 508 Rinklebe, Shaheen, Schroter, Rennert (bib44) 2016; 150 (bib55) 2004 Rinklebe, Shaheen, Frohne (bib45) 2016; 142 Urresti-Estala, Vadillo-Pérez, Jiménez-Gavilán, Soler, Sánchez-García, Carrasco-Cantos (bib54) 2015; 506 Zhang, Xu, Qian, Yang (bib73) 2020; 741 Gao, Wang, Li, Guo (bib17) 2007; 53 Hollocher (bib20) 1984; 233 Xiao, Wang, Chai, Liu, Jin, Rinklebe (bib63) 2021; 278 Wang, Shvartsev, Su (bib57) 2009; 24 Ogrinc, Tamše, Zavadlav, Vrzel, Jin (bib40) 2019; 646 Meghdadi, Javar (bib37) 2018; 235 Rahman, Bodrud-Doza, Muhib, Hossain, Sikder, Shammi, Akter, Uddin (bib42) 2020; 6 Mohammadi (10.1016/j.envpol.2021.117287_bib38) 2017; 7 Souza (10.1016/j.envpol.2021.117287_bib48) 2013; 185 Liu (10.1016/j.envpol.2021.117287_bib35) 2021; 268 Zhang (10.1016/j.envpol.2021.117287_bib74) 2020; 717 Li (10.1016/j.envpol.2021.117287_bib28) 2015; 508 Brindha (10.1016/j.envpol.2021.117287_bib10) 2016; 23 Naderi (10.1016/j.envpol.2021.117287_bib39) 2020; 195 Zhang (10.1016/j.envpol.2021.117287_bib72) 2017; 222 An (10.1016/j.envpol.2021.117287_bib4) 2018; 40 Li (10.1016/j.envpol.2021.117287_bib29) 2018; 237 Antoniadis (10.1016/j.envpol.2021.117287_bib5) 2017; 171 Yousefi (10.1016/j.envpol.2021.117287_bib69) 2019; 107 Yousefi (10.1016/j.envpol.2021.117287_bib66) 2018; 185 Yousefi (10.1016/j.envpol.2021.117287_bib68) 2019; 16 Tekle-Haimanot (10.1016/j.envpol.2021.117287_bib53) 2006; 367 Adimalla (10.1016/j.envpol.2021.117287_bib1) 2017; 76 Wang (10.1016/j.envpol.2021.117287_bib58) 2017; 609 Kaur (10.1016/j.envpol.2021.117287_bib23) 2020; 259 (10.1016/j.envpol.2021.117287_bib56) 2011 Kim (10.1016/j.envpol.2021.117287_bib26) 2018; 51 Xiao (10.1016/j.envpol.2021.117287_bib62) 2019; 650 Biddau (10.1016/j.envpol.2021.117287_bib7) 2019; 647 Fernández (10.1016/j.envpol.2021.117287_bib16) 2017; 31 Zhen (10.1016/j.envpol.2021.117287_bib75) 2016; 66 Egbi (10.1016/j.envpol.2021.117287_bib15) 2020; 191 Gibbs (10.1016/j.envpol.2021.117287_bib18) 1970; 170 Rashid (10.1016/j.envpol.2021.117287_bib43) 2018; 635 Xue (10.1016/j.envpol.2021.117287_bib65) 2012; 161 Urresti-Estala (10.1016/j.envpol.2021.117287_bib54) 2015; 506 Kendall (10.1016/j.envpol.2021.117287_bib25) 2007 Radfard (10.1016/j.envpol.2021.117287_bib41) 2019; 145 Zabala (10.1016/j.envpol.2021.117287_bib70) 2016; 541 Das (10.1016/j.envpol.2021.117287_bib14) 2018; 194 Li (10.1016/j.envpol.2021.117287_bib32) 2019; 25 Subba Rao (10.1016/j.envpol.2021.117287_bib51) 2020; 1–23 Li (10.1016/j.envpol.2021.117287_bib33) 2019; 11 Rahman (10.1016/j.envpol.2021.117287_bib42) 2020; 6 Matiatos (10.1016/j.envpol.2021.117287_bib36) 2016; 541 Xiao (10.1016/j.envpol.2021.117287_bib61) 2015; 380–381 Ogrinc (10.1016/j.envpol.2021.117287_bib40) 2019; 646 Wu (10.1016/j.envpol.2021.117287_bib60) 2018; 218 Adimalla (10.1016/j.envpol.2021.117287_bib2) 2020; 206 WHO (10.1016/j.envpol.2021.117287_bib59) 2011 Su (10.1016/j.envpol.2021.117287_bib50) 2019; 252 Kalpana (10.1016/j.envpol.2021.117287_bib22) 2019; 220 Yousefi (10.1016/j.envpol.2021.117287_bib67) 2018; 148 Brindha (10.1016/j.envpol.2021.117287_bib9) 2011; 172 Hollocher (10.1016/j.envpol.2021.117287_bib20) 1984; 233 Brahman (10.1016/j.envpol.2021.117287_bib8) 2013; 47 Kumar (10.1016/j.envpol.2021.117287_bib27) 2018; 205 Li (10.1016/j.envpol.2021.117287_bib31) 2019; 579 Casciotti (10.1016/j.envpol.2021.117287_bib11) 2002; 74 Xiao (10.1016/j.envpol.2021.117287_bib63) 2021; 278 Su (10.1016/j.envpol.2021.117287_bib49) 2017; 9 Amini (10.1016/j.envpol.2021.117287_bib3) 2008; 42 Rinklebe (10.1016/j.envpol.2021.117287_bib46) 2019; 126 Hossain (10.1016/j.envpol.2021.117287_bib21) 2020; 258 Rinklebe (10.1016/j.envpol.2021.117287_bib44) 2016; 150 Sigman (10.1016/j.envpol.2021.117287_bib47) 2001; 73 Meghdadi (10.1016/j.envpol.2021.117287_bib37) 2018; 235 Zhai (10.1016/j.envpol.2021.117287_bib71) 2017; 137 Azhdarpoor (10.1016/j.envpol.2021.117287_bib6) 2019; 149 Guo (10.1016/j.envpol.2021.117287_bib19) 2008; 393 Liu (10.1016/j.envpol.2021.117287_bib34) 2008 Xue (10.1016/j.envpol.2021.117287_bib64) 2009; 43 (10.1016/j.envpol.2021.117287_bib55) 2004 Wang (10.1016/j.envpol.2021.117287_bib57) 2009; 24 Rinklebe (10.1016/j.envpol.2021.117287_bib45) 2016; 142 Kendall (10.1016/j.envpol.2021.117287_bib24) 2000 Zhang (10.1016/j.envpol.2021.117287_bib73) 2020; 741 Gao (10.1016/j.envpol.2021.117287_bib17) 2007; 53 Taufiq (10.1016/j.envpol.2021.117287_bib52) 2019; 148 Li (10.1016/j.envpol.2021.117287_bib30) 2018; 77 Currell (10.1016/j.envpol.2021.117287_bib12) 2011; 26 |
References_xml | – volume: 220 start-page: 381 year: 2019 end-page: 390 ident: bib22 article-title: FIMAR: a new fluoride index to mitigate geogenic contamination by managed aquifer recharge publication-title: Chemosphere – volume: 77 start-page: 775 year: 2018 ident: bib30 article-title: Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, northwest China: implications to sustainable groundwater quality management on the Loess Plateau publication-title: Environ. Earth Sci. – volume: 541 start-page: 802 year: 2016 end-page: 814 ident: bib36 article-title: Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: a case study of Asopos basin (Central Greece) publication-title: Sci. Total Environ. – volume: 172 start-page: 481 year: 2011 end-page: 492 ident: bib9 article-title: Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India publication-title: Environ. Monit. Assess. – volume: 609 start-page: 607 year: 2017 end-page: 620 ident: bib58 article-title: Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain publication-title: Sci. Total Environ. – volume: 185 start-page: 282 year: 2018 end-page: 288 ident: bib66 article-title: Association of hypertension, body mass index, and waist circumference with fluoride intake; water drinking in residents of fluoride endemic areas, Iran Association of Hypertension, Body Mass Index, and Waist Circumference with Fluoride Intake publication-title: Wate. Biol. Trace Elem. Res. – volume: 171 start-page: 621 year: 2017 end-page: 645 ident: bib5 article-title: Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–A review publication-title: Earth Sci. Rev. – volume: 7 start-page: 17300 year: 2017 ident: bib38 article-title: Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran publication-title: Sci. Rep. – volume: 367 start-page: 182 year: 2006 end-page: 190 ident: bib53 article-title: The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley publication-title: Sci. Total Environ. – volume: 218 start-page: 44 year: 2018 end-page: 58 ident: bib60 article-title: Multiple isotope geochemistry and hydrochemical monitoring of karst water in a rapidly urbanized region publication-title: J. Contam. Hydrol. – volume: 148 start-page: 426 year: 2018 end-page: 430 ident: bib67 article-title: Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran publication-title: Ecotoxicol. Environ. Saf. – year: 2011 ident: bib56 article-title: Exposure Factors Handbook – volume: 259 start-page: 113711 year: 2020 ident: bib23 article-title: Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India publication-title: Environ. Pollut. – volume: 646 start-page: 1588 year: 2019 end-page: 1600 ident: bib40 article-title: Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko polje aquifer (Slovenia): a stable isotope perspective publication-title: Sci. Total Environ. – volume: 268 start-page: 115947 year: 2021 ident: bib35 article-title: Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health publication-title: Environ. Pollut. – volume: 278 start-page: 116930 year: 2021 ident: bib63 article-title: Groundwater hydrochemistry, source identification and pollution assessment in intensive industrial areas, eastern Chinese loess plateau publication-title: Environ. Pollut. – volume: 508 start-page: 155 year: 2015 end-page: 165 ident: bib28 article-title: Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China publication-title: Sci. Total Environ. – volume: 233 start-page: 721 year: 1984 end-page: 727 ident: bib20 article-title: Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a PON anhydride mechanism in oxidative phosphorylation publication-title: Arch. Biochem. Biophys. – volume: 148 start-page: 292 year: 2019 end-page: 305 ident: bib52 article-title: Controlling factors and driving mechanisms of nitrate contamination in groundwater system of Bandung Basin, Indonesia, deduced by combined use of stable isotope ratios, CFC age dating, and socioeconomic parameters publication-title: Water Res. – volume: 24 start-page: 641 year: 2009 end-page: 649 ident: bib57 article-title: Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China publication-title: Appl. Geochem. – volume: 51 start-page: 15 year: 2018 end-page: 26 ident: bib26 article-title: Spatial-temporal variations of nitrate levels in groundwater of Jeju Island, Korea: evaluation of long-term (1993-2015) monitoring data publication-title: Econ. Environ. Geol. – volume: 205 start-page: 493 year: 2018 end-page: 505 ident: bib27 article-title: Geochemical signatures and isotopic systematics constraining dynamics of fluoride contamination in groundwater across Jamui district, Indo-Gangetic alluvial plains, India publication-title: Chemosphere – volume: 76 start-page: 45 year: 2017 ident: bib1 article-title: Mechanism of fluoride enrichment in groundwater of hard rock aquifers in Medak, Telangana State, South India publication-title: Environ. Earth Sci. – volume: 647 start-page: 1121 year: 2019 end-page: 1136 ident: bib7 article-title: Source and fate of nitrate in contaminated groundwater systems: assessing spatial and temporal variations by hydrogeochemistry and multiple stable isotope tools publication-title: Sci. Total Environ. – volume: 170 start-page: 1088 year: 1970 end-page: 1090 ident: bib18 article-title: Mechanisms controlling world's water chemistry publication-title: Science – volume: 66 start-page: 113 year: 2016 end-page: 120 ident: bib75 article-title: Analysis of isotope tracing of domestic sewage sources in Taihu Lake-a case study of Meiliang Bay and Gonghu Bay publication-title: Ecol. Indicat. – volume: 194 start-page: 755 year: 2018 end-page: 772 ident: bib14 article-title: Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain publication-title: Chemosphere – volume: 717 start-page: 137134 year: 2020 ident: bib74 article-title: Application of the dual-isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu Plain, China publication-title: Sci. Total Environ. – volume: 47 start-page: 1005 year: 2013 end-page: 1020 ident: bib8 article-title: Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: a multivariate study publication-title: Water Res. – year: 2004 ident: bib55 article-title: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E) – volume: 206 start-page: 111217 year: 2020 ident: bib2 article-title: Groundwater chemistry integrating the pollution index of groundwater and evaluation of potential human health risk: a case study from hard rock terrain of south India publication-title: Ecotoxicol. Environ. Saf. – volume: 161 start-page: 43 year: 2012 end-page: 49 ident: bib65 article-title: Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water publication-title: Environ. Pollut. – volume: 25 start-page: 11 year: 2019 end-page: 31 ident: bib32 article-title: Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: a case study in Yan’an City on the Loess Plateau of northwest China publication-title: Hum. Ecol. Risk Assess. – volume: 31 start-page: 1206 year: 2017 end-page: 1224 ident: bib16 article-title: Evaluation of nitrate levels in groundwater under agricultural fields in two pilot areas in Central Chile, a hydrogeological and geochemical approach publication-title: Hydrol. Process. – volume: 380–381 start-page: 237 year: 2015 end-page: 246 ident: bib61 article-title: Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau publication-title: Quat. Int. – volume: 42 start-page: 3662 year: 2008 end-page: 3668 ident: bib3 article-title: Statistical modelling of global geogenic fluoride contamination in groundwaters publication-title: Environ. Sci. Technol. – volume: 73 start-page: 4145 year: 2001 end-page: 4153 ident: bib47 article-title: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater publication-title: Anal. Chem. – volume: 142 start-page: 41 year: 2016 end-page: 47 ident: bib45 article-title: Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil publication-title: Chemosphere – volume: 741 start-page: 140460 year: 2020 ident: bib73 article-title: Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District, Central China: assessment based on multivariate statistical approach and human health risk publication-title: Sci. Total Environ. – volume: 222 start-page: 118 year: 2017 end-page: 125 ident: bib72 article-title: Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas publication-title: Environ. Pollut. – volume: 635 start-page: 203 year: 2018 end-page: 215 ident: bib43 article-title: Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan publication-title: Sci. Total Environ. – volume: 235 start-page: 207 year: 2018 end-page: 222 ident: bib37 article-title: Quantification of spatial and seasonal variations in the proportional contribution of nitrate sources using a multi-isotope approach and Bayesian isotope mixing model publication-title: Environ. Pollut. – volume: 541 start-page: 1067 year: 2016 end-page: 1087 ident: bib70 article-title: Assessment of processes controlling the regional distribution of fluoride and arsenic in groundwater of the Pampeano Aquifer in the Del Azul Creek basin (Argentina) publication-title: J. Hydrol. – volume: 258 start-page: 113646 year: 2020 ident: bib21 article-title: Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types publication-title: Environ. Pollut. – volume: 9 start-page: 227 year: 2017 end-page: 242 ident: bib49 article-title: Assessment of groundwater quality and health risk in the oil and gas field of Dingbian County, Northwest China publication-title: Exp. Health – volume: 53 start-page: 795 year: 2007 end-page: 803 ident: bib17 article-title: Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China publication-title: Environ. Geol. – volume: 23 start-page: 8302 year: 2016 end-page: 8316 ident: bib10 article-title: Fluoride in weathered rock aquifers of southern India: managed aquifer recharge for mitigation publication-title: Environ. Sci. Pollut. Res. – volume: 26 start-page: 540 year: 2011 end-page: 552 ident: bib12 article-title: Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin, China publication-title: Appl. Geochem. – volume: 252 start-page: 1154 year: 2019 end-page: 1162 ident: bib50 article-title: Geochemical factors controlling the occurrence of high-fluoride groundwater in the western region of the Ordos basin, northwestern China publication-title: Environ. Pollut. – volume: 74 start-page: 4905 year: 2002 end-page: 4912 ident: bib11 article-title: Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method publication-title: Anal. Chem. – volume: 185 start-page: 4735 year: 2013 end-page: 4743 ident: bib48 article-title: Assessment of groundwater quality in a region of endemic fluorosis in the northeast of Brazil publication-title: Environ. Monit. Assess. – volume: 650 start-page: 2004 year: 2019 end-page: 2012 ident: bib62 article-title: Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau publication-title: Sci. Total Environ. – volume: 11 start-page: 95 year: 2019 end-page: 107 ident: bib33 article-title: Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese loess plateau: a case study of Tongchuan, Northwest China publication-title: Exp. Health – volume: 1–23 year: 2020 ident: bib51 article-title: Spatial distribution of quality of groundwater and probabilistic non-carcinogenic risk from a rural dry climatic region of South India publication-title: Environ. Geochem. Health – volume: 16 start-page: 564 year: 2019 ident: bib68 article-title: Spatial distribution variation and probabilistic risk assessment of exposure to fluoride in ground water supplies: a case study in an endemic fluorosis region of northwest Iran publication-title: Int. J. Environ. Res. Publ. Health – volume: 145 start-page: 249 year: 2019 end-page: 256 ident: bib41 article-title: Health risk assessment to fluoride and nitrate in drinking water of rural residents living in the Bardaskan city, arid region, southeastern Iran publication-title: Desalin. Water Treat. – volume: 150 start-page: 390 year: 2016 end-page: 397 ident: bib44 article-title: Exploiting biogeochemical and spectroscopic techniques to assess the geochemical distribution and release dynamics of chromium and lead in a contaminated floodplain soil publication-title: Chemosphere – volume: 506 start-page: 46 year: 2015 end-page: 57 ident: bib54 article-title: Application of stable isotopes (δ publication-title: Sci. Total Environ. – start-page: 375 year: 2007 end-page: 449 ident: bib25 article-title: Tracing anthropogenic inputs of nitrogen to ecosystems publication-title: Stable Isotopes in Ecology and Environmental Science – volume: 107 start-page: 104408 year: 2019 ident: bib69 article-title: Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information system, northwest Iran publication-title: Regul. Toxicol. Pharmacol. – volume: 40 start-page: 1209 year: 2018 end-page: 1219 ident: bib4 article-title: Hydrogeochemical processes identification and groundwater pollution causes analysis in the northern Ordos Cretaceous Basin, China publication-title: Environ. Geochem. Health – volume: 126 start-page: 76 year: 2019 end-page: 88 ident: bib46 article-title: Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany publication-title: Environ. Int. – volume: 237 start-page: 430 year: 2018 end-page: 441 ident: bib29 article-title: Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China publication-title: Environ. Pollut. – volume: 149 start-page: 43 year: 2019 end-page: 51 ident: bib6 article-title: Assessing fluoride and nitrate contaminants in drinking water resources and their health risk assessment in a semiarid region of southwest Iran publication-title: Desalin. Water Treat. – volume: 195 start-page: 110503 year: 2020 ident: bib39 article-title: Two distinct mechanisms of fluoride enrichment and associated health risk in springs' water near an inactive volcano, southeast Iran publication-title: Ecotoxicol. Environ. Saf. – volume: 43 start-page: 1159 year: 2009 end-page: 1170 ident: bib64 article-title: Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater publication-title: Water Res. – volume: 191 start-page: 110227 year: 2020 ident: bib15 article-title: Nitrate contamination of groundwater in the Lower Volta River Basin of Ghana: sources and related human health risks publication-title: Ecotoxicol. Environ. Saf. – start-page: 261 year: 2000 end-page: 297 ident: bib24 article-title: Nitrate isotopes in groundwater systems publication-title: Environmental Tracers in Subsurface Hydrology – start-page: 154 year: 2008 ident: bib34 article-title: Research on Groundwater Circulation and Hydrochemical Transport in the Northern Part of Ordos Cretaceous Basin Based on Isotope Technology – volume: 6 start-page: 253 year: 2020 end-page: 266 ident: bib42 article-title: Human health risk assessment of nitrate and trace metals via groundwater in Central Bangladesh publication-title: J. Pollut. – volume: 579 start-page: 124211 year: 2019 ident: bib31 article-title: Impact of anthropogenic activities on the enrichment of fluoride and salinity in groundwater in the Yuncheng Basin constrained by Cl/Br ratio, δ publication-title: J. Hydrol. – volume: 137 start-page: 130 year: 2017 end-page: 142 ident: bib71 article-title: Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China publication-title: Ecotoxicol. Environ. Saf. – year: 2011 ident: bib59 article-title: Guidelines for Drinking Water Quality – volume: 393 start-page: 131 year: 2008 end-page: 144 ident: bib19 article-title: Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia publication-title: Sci. Total Environ. – volume: 142 start-page: 41 year: 2016 ident: 10.1016/j.envpol.2021.117287_bib45 article-title: Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.03.067 – volume: 149 start-page: 43 year: 2019 ident: 10.1016/j.envpol.2021.117287_bib6 article-title: Assessing fluoride and nitrate contaminants in drinking water resources and their health risk assessment in a semiarid region of southwest Iran publication-title: Desalin. Water Treat. doi: 10.5004/dwt.2019.23865 – volume: 170 start-page: 1088 year: 1970 ident: 10.1016/j.envpol.2021.117287_bib18 article-title: Mechanisms controlling world's water chemistry publication-title: Science doi: 10.1126/science.170.3962.1088 – volume: 541 start-page: 1067 year: 2016 ident: 10.1016/j.envpol.2021.117287_bib70 article-title: Assessment of processes controlling the regional distribution of fluoride and arsenic in groundwater of the Pampeano Aquifer in the Del Azul Creek basin (Argentina) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.08.023 – volume: 541 start-page: 802 year: 2016 ident: 10.1016/j.envpol.2021.117287_bib36 article-title: Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: a case study of Asopos basin (Central Greece) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.09.134 – volume: 31 start-page: 1206 year: 2017 ident: 10.1016/j.envpol.2021.117287_bib16 article-title: Evaluation of nitrate levels in groundwater under agricultural fields in two pilot areas in Central Chile, a hydrogeological and geochemical approach publication-title: Hydrol. Process. doi: 10.1002/hyp.11103 – volume: 258 start-page: 113646 year: 2020 ident: 10.1016/j.envpol.2021.117287_bib21 article-title: Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113646 – volume: 171 start-page: 621 year: 2017 ident: 10.1016/j.envpol.2021.117287_bib5 article-title: Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–A review publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2017.06.005 – volume: 252 start-page: 1154 year: 2019 ident: 10.1016/j.envpol.2021.117287_bib50 article-title: Geochemical factors controlling the occurrence of high-fluoride groundwater in the western region of the Ordos basin, northwestern China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.06.046 – volume: 43 start-page: 1159 year: 2009 ident: 10.1016/j.envpol.2021.117287_bib64 article-title: Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater publication-title: Water Res. doi: 10.1016/j.watres.2008.12.048 – volume: 194 start-page: 755 year: 2018 ident: 10.1016/j.envpol.2021.117287_bib14 article-title: Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.021 – volume: 185 start-page: 4735 year: 2013 ident: 10.1016/j.envpol.2021.117287_bib48 article-title: Assessment of groundwater quality in a region of endemic fluorosis in the northeast of Brazil publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-012-2900-x – volume: 47 start-page: 1005 year: 2013 ident: 10.1016/j.envpol.2021.117287_bib8 article-title: Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: a multivariate study publication-title: Water Res. doi: 10.1016/j.watres.2012.10.042 – volume: 367 start-page: 182 year: 2006 ident: 10.1016/j.envpol.2021.117287_bib53 article-title: The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2005.11.003 – year: 2011 ident: 10.1016/j.envpol.2021.117287_bib59 – volume: 42 start-page: 3662 year: 2008 ident: 10.1016/j.envpol.2021.117287_bib3 article-title: Statistical modelling of global geogenic fluoride contamination in groundwaters publication-title: Environ. Sci. Technol. doi: 10.1021/es071958y – volume: 74 start-page: 4905 year: 2002 ident: 10.1016/j.envpol.2021.117287_bib11 article-title: Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method publication-title: Anal. Chem. doi: 10.1021/ac020113w – start-page: 375 year: 2007 ident: 10.1016/j.envpol.2021.117287_bib25 article-title: Tracing anthropogenic inputs of nitrogen to ecosystems – volume: 237 start-page: 430 year: 2018 ident: 10.1016/j.envpol.2021.117287_bib29 article-title: Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.02.072 – volume: 205 start-page: 493 year: 2018 ident: 10.1016/j.envpol.2021.117287_bib27 article-title: Geochemical signatures and isotopic systematics constraining dynamics of fluoride contamination in groundwater across Jamui district, Indo-Gangetic alluvial plains, India publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.04.116 – volume: 579 start-page: 124211 year: 2019 ident: 10.1016/j.envpol.2021.117287_bib31 article-title: Impact of anthropogenic activities on the enrichment of fluoride and salinity in groundwater in the Yuncheng Basin constrained by Cl/Br ratio, δ18O, δ2H, δ13C and δ7Li isotopes publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124211 – volume: 222 start-page: 118 year: 2017 ident: 10.1016/j.envpol.2021.117287_bib72 article-title: Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.12.074 – volume: 51 start-page: 15 year: 2018 ident: 10.1016/j.envpol.2021.117287_bib26 article-title: Spatial-temporal variations of nitrate levels in groundwater of Jeju Island, Korea: evaluation of long-term (1993-2015) monitoring data publication-title: Econ. Environ. Geol. – volume: 1–23 year: 2020 ident: 10.1016/j.envpol.2021.117287_bib51 article-title: Spatial distribution of quality of groundwater and probabilistic non-carcinogenic risk from a rural dry climatic region of South India publication-title: Environ. Geochem. Health – volume: 6 start-page: 253 year: 2020 ident: 10.1016/j.envpol.2021.117287_bib42 article-title: Human health risk assessment of nitrate and trace metals via groundwater in Central Bangladesh publication-title: J. Pollut. – volume: 506 start-page: 46 year: 2015 ident: 10.1016/j.envpol.2021.117287_bib54 article-title: Application of stable isotopes (δ34S-SO4, δ18O-SO4, δ15N-NO3, δ18O-NO3) to determine natural background and contamination sources in the Guadalhorce River Basin (southern Spain) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.10.090 – volume: 185 start-page: 282 year: 2018 ident: 10.1016/j.envpol.2021.117287_bib66 article-title: Association of hypertension, body mass index, and waist circumference with fluoride intake; water drinking in residents of fluoride endemic areas, Iran Association of Hypertension, Body Mass Index, and Waist Circumference with Fluoride Intake publication-title: Wate. Biol. Trace Elem. Res. doi: 10.1007/s12011-018-1269-2 – start-page: 154 year: 2008 ident: 10.1016/j.envpol.2021.117287_bib34 – volume: 145 start-page: 249 year: 2019 ident: 10.1016/j.envpol.2021.117287_bib41 article-title: Health risk assessment to fluoride and nitrate in drinking water of rural residents living in the Bardaskan city, arid region, southeastern Iran publication-title: Desalin. Water Treat. doi: 10.5004/dwt.2019.23651 – volume: 206 start-page: 111217 year: 2020 ident: 10.1016/j.envpol.2021.117287_bib2 article-title: Groundwater chemistry integrating the pollution index of groundwater and evaluation of potential human health risk: a case study from hard rock terrain of south India publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111217 – volume: 268 start-page: 115947 year: 2021 ident: 10.1016/j.envpol.2021.117287_bib35 article-title: Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.115947 – start-page: 261 year: 2000 ident: 10.1016/j.envpol.2021.117287_bib24 article-title: Nitrate isotopes in groundwater systems – volume: 647 start-page: 1121 year: 2019 ident: 10.1016/j.envpol.2021.117287_bib7 article-title: Source and fate of nitrate in contaminated groundwater systems: assessing spatial and temporal variations by hydrogeochemistry and multiple stable isotope tools publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.007 – volume: 741 start-page: 140460 year: 2020 ident: 10.1016/j.envpol.2021.117287_bib73 article-title: Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District, Central China: assessment based on multivariate statistical approach and human health risk publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140460 – volume: 23 start-page: 8302 year: 2016 ident: 10.1016/j.envpol.2021.117287_bib10 article-title: Fluoride in weathered rock aquifers of southern India: managed aquifer recharge for mitigation publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-6069-7 – volume: 191 start-page: 110227 year: 2020 ident: 10.1016/j.envpol.2021.117287_bib15 article-title: Nitrate contamination of groundwater in the Lower Volta River Basin of Ghana: sources and related human health risks publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110227 – volume: 73 start-page: 4145 year: 2001 ident: 10.1016/j.envpol.2021.117287_bib47 article-title: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater publication-title: Anal. Chem. doi: 10.1021/ac010088e – year: 2004 ident: 10.1016/j.envpol.2021.117287_bib55 – volume: 646 start-page: 1588 year: 2019 ident: 10.1016/j.envpol.2021.117287_bib40 article-title: Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko polje aquifer (Slovenia): a stable isotope perspective publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.245 – volume: 148 start-page: 292 year: 2019 ident: 10.1016/j.envpol.2021.117287_bib52 article-title: Controlling factors and driving mechanisms of nitrate contamination in groundwater system of Bandung Basin, Indonesia, deduced by combined use of stable isotope ratios, CFC age dating, and socioeconomic parameters publication-title: Water Res. doi: 10.1016/j.watres.2018.10.049 – volume: 53 start-page: 795 year: 2007 ident: 10.1016/j.envpol.2021.117287_bib17 article-title: Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China publication-title: Environ. Geol. doi: 10.1007/s00254-007-0692-z – volume: 77 start-page: 775 year: 2018 ident: 10.1016/j.envpol.2021.117287_bib30 article-title: Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, northwest China: implications to sustainable groundwater quality management on the Loess Plateau publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7968-3 – volume: 76 start-page: 45 year: 2017 ident: 10.1016/j.envpol.2021.117287_bib1 article-title: Mechanism of fluoride enrichment in groundwater of hard rock aquifers in Medak, Telangana State, South India publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-6362-2 – volume: 66 start-page: 113 year: 2016 ident: 10.1016/j.envpol.2021.117287_bib75 article-title: Analysis of isotope tracing of domestic sewage sources in Taihu Lake-a case study of Meiliang Bay and Gonghu Bay publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2016.01.028 – volume: 650 start-page: 2004 year: 2019 ident: 10.1016/j.envpol.2021.117287_bib62 article-title: Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.322 – volume: 508 start-page: 155 year: 2015 ident: 10.1016/j.envpol.2021.117287_bib28 article-title: Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.11.045 – volume: 16 start-page: 564 year: 2019 ident: 10.1016/j.envpol.2021.117287_bib68 article-title: Spatial distribution variation and probabilistic risk assessment of exposure to fluoride in ground water supplies: a case study in an endemic fluorosis region of northwest Iran publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph16040564 – volume: 233 start-page: 721 year: 1984 ident: 10.1016/j.envpol.2021.117287_bib20 article-title: Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a PON anhydride mechanism in oxidative phosphorylation publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(84)90499-5 – volume: 635 start-page: 203 year: 2018 ident: 10.1016/j.envpol.2021.117287_bib43 article-title: Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.064 – volume: 148 start-page: 426 year: 2018 ident: 10.1016/j.envpol.2021.117287_bib67 article-title: Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.10.057 – volume: 26 start-page: 540 year: 2011 ident: 10.1016/j.envpol.2021.117287_bib12 article-title: Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin, China publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2011.01.012 – volume: 220 start-page: 381 year: 2019 ident: 10.1016/j.envpol.2021.117287_bib22 article-title: FIMAR: a new fluoride index to mitigate geogenic contamination by managed aquifer recharge publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.12.084 – volume: 25 start-page: 11 year: 2019 ident: 10.1016/j.envpol.2021.117287_bib32 article-title: Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: a case study in Yan’an City on the Loess Plateau of northwest China publication-title: Hum. Ecol. Risk Assess. doi: 10.1080/10807039.2018.1553612 – year: 2011 ident: 10.1016/j.envpol.2021.117287_bib56 – volume: 161 start-page: 43 year: 2012 ident: 10.1016/j.envpol.2021.117287_bib65 article-title: Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.09.033 – volume: 172 start-page: 481 year: 2011 ident: 10.1016/j.envpol.2021.117287_bib9 article-title: Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-010-1348-0 – volume: 380–381 start-page: 237 year: 2015 ident: 10.1016/j.envpol.2021.117287_bib61 article-title: Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau publication-title: Quat. Int. doi: 10.1016/j.quaint.2015.01.021 – volume: 11 start-page: 95 year: 2019 ident: 10.1016/j.envpol.2021.117287_bib33 article-title: Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese loess plateau: a case study of Tongchuan, Northwest China publication-title: Exp. Health doi: 10.1007/s12403-018-0278-x – volume: 7 start-page: 17300 year: 2017 ident: 10.1016/j.envpol.2021.117287_bib38 article-title: Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran publication-title: Sci. Rep. doi: 10.1038/s41598-017-17328-8 – volume: 24 start-page: 641 year: 2009 ident: 10.1016/j.envpol.2021.117287_bib57 article-title: Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.12.015 – volume: 278 start-page: 116930 year: 2021 ident: 10.1016/j.envpol.2021.117287_bib63 article-title: Groundwater hydrochemistry, source identification and pollution assessment in intensive industrial areas, eastern Chinese loess plateau publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.116930 – volume: 107 start-page: 104408 year: 2019 ident: 10.1016/j.envpol.2021.117287_bib69 article-title: Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information system, northwest Iran publication-title: Regul. Toxicol. Pharmacol. doi: 10.1016/j.yrtph.2019.104408 – volume: 126 start-page: 76 year: 2019 ident: 10.1016/j.envpol.2021.117287_bib46 article-title: Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany publication-title: Environ. Int. doi: 10.1016/j.envint.2019.02.011 – volume: 393 start-page: 131 year: 2008 ident: 10.1016/j.envpol.2021.117287_bib19 article-title: Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2007.12.025 – volume: 259 start-page: 113711 year: 2020 ident: 10.1016/j.envpol.2021.117287_bib23 article-title: Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113711 – volume: 40 start-page: 1209 year: 2018 ident: 10.1016/j.envpol.2021.117287_bib4 article-title: Hydrogeochemical processes identification and groundwater pollution causes analysis in the northern Ordos Cretaceous Basin, China publication-title: Environ. Geochem. Health doi: 10.1007/s10653-017-0037-0 – volume: 150 start-page: 390 year: 2016 ident: 10.1016/j.envpol.2021.117287_bib44 article-title: Exploiting biogeochemical and spectroscopic techniques to assess the geochemical distribution and release dynamics of chromium and lead in a contaminated floodplain soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.021 – volume: 195 start-page: 110503 year: 2020 ident: 10.1016/j.envpol.2021.117287_bib39 article-title: Two distinct mechanisms of fluoride enrichment and associated health risk in springs' water near an inactive volcano, southeast Iran publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110503 – volume: 717 start-page: 137134 year: 2020 ident: 10.1016/j.envpol.2021.117287_bib74 article-title: Application of the dual-isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu Plain, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137134 – volume: 137 start-page: 130 year: 2017 ident: 10.1016/j.envpol.2021.117287_bib71 article-title: Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2016.11.010 – volume: 235 start-page: 207 year: 2018 ident: 10.1016/j.envpol.2021.117287_bib37 article-title: Quantification of spatial and seasonal variations in the proportional contribution of nitrate sources using a multi-isotope approach and Bayesian isotope mixing model publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.12.078 – volume: 609 start-page: 607 year: 2017 ident: 10.1016/j.envpol.2021.117287_bib58 article-title: Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.07.176 – volume: 9 start-page: 227 year: 2017 ident: 10.1016/j.envpol.2021.117287_bib49 article-title: Assessment of groundwater quality and health risk in the oil and gas field of Dingbian County, Northwest China publication-title: Exp. Health doi: 10.1007/s12403-016-0234-6 – volume: 218 start-page: 44 year: 2018 ident: 10.1016/j.envpol.2021.117287_bib60 article-title: Multiple isotope geochemistry and hydrochemical monitoring of karst water in a rapidly urbanized region publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2018.10.009 |
SSID | ssj0004333 |
Score | 2.636488 |
Snippet | Fluoride (F−) and nitrate (NO3−) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the... Fluoride (F ) and nitrate (NO ) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the... Fluoride (F-) and nitrate (NO3-) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the... Fluoride (F⁻) and nitrate (NO₃⁻) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 117287 |
SubjectTerms | calcite cation exchange China evaporation Fluoride fluorides groundwater groundwater contamination Health risk assessment human health isotope labeling Loess Plateau Nitrate nitrates nitrification nitrogen sewage soil organic nitrogen Source |
Title | Fluoride and nitrate contamination of groundwater in the Loess Plateau, China: Sources and related human health risks |
URI | https://dx.doi.org/10.1016/j.envpol.2021.117287 https://www.ncbi.nlm.nih.gov/pubmed/33971470 https://www.proquest.com/docview/2525661730 https://www.proquest.com/docview/2551926637 |
Volume | 286 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7QUeEOsYjLHpkBBPmDb-SNy9VdOq8jUhjUl7s5zYkToVp2obJl742znbyQYSMInHOGfLytnn38W_uyPklRRVkZtSUZOVjApZCKpQlGa8RCiHOMnyEI386TyfXYr3V_Jqi5z2sTCBVtnZ_mTTo7XuWobd1xwu5_PhBXoPCIbHIQMW4vIUwS6KQOt7--OO5iF4KiePwjRI9-FzkePl_LdlEy4gWBZuL1kg1v35ePob_IzH0PQxedThR5ikKe6SLecHZG_i0Xf--h1eQ2R0xl_lA_Lwl2SDA7J_dhfThiN0m3q9R9rpom1Wc-vAeAu4xUP2CAgcdhN4MkFz0NQQ4j-8vcF3K5h7QOAIHxu0k_B5gW2mfQOxFvcJXMT7gHUcLYbKOAuxFCCkoEsIdPb1E3I5PftyOqNdNQZqRKY21MiKG6e4kKXNmUG_JENNytyMpMoVz3I87WuFJkMYwcXYGXTExjVT0pWSO2v5Ptn2jXfPCLCa81GlDBvbUihbGyYsOi5lXSCg41V1QHivBF11qcpDxYyF7jlp1zqpTgfV6aS6A0Jvey1Tqo575Itev_q3JafxNLmn58t-OWjcjeGKxXjXtGvNJEJIBIV89C8ZRM2IiziO8zStpdv5coSHmShGz_97bofkQXhKfMMXZHuzat0R4qZNeRw3xjHZmbz7MDv_CcIwF9U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELam7gF4mKBjMNjASIgnojb-kbi8VdOqjnUV0jZpb5YTO1JR51RtA-K_585ONpCASbwmtmXl7PN38ffdEfJeijLPTKESkxYsETIXiYKmScoLgHKAkyxHNfLFPJtei8838maHnHRaGKRVtr4_-vTgrdsng_ZrDlaLxeASogcAwyPMgAW4HBXsu5idSvTI7vjsfDq_l0fyWFEe2ifYoVPQBZqX899WNd5BsBQvMBly6_58Qv0NgYaTaPKU7LUQko7jLJ-RHef7ZH_sIXy-_UE_0EDqDH_L--TJL_kG--Tg9F7WBiO0-3qzT5rJsqnXC-uo8ZbCLscEEhRp7AapMmg8WlcUJSDefod3a7rwFLAjndXgKumXJTwzzUcaynF_opfhSmATRgtqGWdpqAZIo-6SIqN985xcT06vTqZJW5AhMSJV28TIkhunuJCFzZiB0CQFY8rMDKXKFE8zOPArBV5DGMHFyBmIxUYVU9IVkjtr-QHp-dq7l4SyivNhqQwb2UIoWxkmLMQuRZUDpuNleUh4ZwRdttnKsWjGUne0tK86mk6j6XQ03SFJ7nqtYraOB9rnnX31b6tOw4HyQM933XLQsCHxlsV4VzcbzSSgSMCFfPivNgCcARpxGOdFXEt38-WAEFORD1_999zekkfTq4uZnp3Nz1-Tx_gm0g-PSG-7btwxwKht8abdJj8BSBsahg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluoride+and+nitrate+contamination+of+groundwater+in+the+Loess+Plateau%2C+China%3A+Sources+and+related+human+health+risks&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Su%2C+He&rft.au=Kang%2C+Weidong&rft.au=Li%2C+Yanrong&rft.au=Li%2C+Zhi&rft.date=2021-10-01&rft.issn=0269-7491&rft.volume=286+p.117287-&rft_id=info:doi/10.1016%2Fj.envpol.2021.117287&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |