Fluoride and nitrate contamination of groundwater in the Loess Plateau, China: Sources and related human health risks

Fluoride (F−) and nitrate (NO3−) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore,...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 286; p. 117287
Main Authors Su, He, Kang, Weidong, Li, Yanrong, Li, Zhi
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.10.2021
Subjects
Online AccessGet full text
ISSN0269-7491
1873-6424
1873-6424
DOI10.1016/j.envpol.2021.117287

Cover

Loading…
Abstract Fluoride (F−) and nitrate (NO3−) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore, we collected 105 groundwater samples (78 from shallow aquifers and 27 from deep aquifers) from the western district of the Loess Plateau for physicochemical and isotopic analysis to investigate the sources of F− and NO3− in groundwater and associated health risks. Fluoride concentration in 73.1% of shallow groundwater and 22.2% of deep groundwater exceeds 1.5 mg/L, while NO3− content in 76.3% of shallow groundwater and 51.9% of deep groundwater surpasses 50 mg/L. High-F- groundwater is associated with HCO3–Na, SO4–Na·Mg and Cl–Na·Mg types water. Fluorine-bearing minerals dissolution, cation exchange, calcite precipitation, evaporation, and anthropogenic activities contribute significantly F− in groundwater. Mixing with shallow groundwater is an important source of F− in deep groundwater. The NO3− content is highest in Cl type water, followed by SO4 type and HCO3 type water. NO3− mainly originates from soil organic nitrogen (SON), chemical fertilizers (CF), and manure and sewage (M&S). Nitrification is the dominant transformation process of nitrogen nutrients in groundwater. The hazard index (HI) values for shallow groundwater are 0.203–9.232 for adults, 0.253–11.522 for teenagers, 0.359–16.322 for children, and 0.507–23.043 for infants, while those for deep groundwater are 0.713–5.813 for adults, 0.890–7.254 for teenagers, 1.261–10.277 for children, and 1.780–14.508 for infants. Approximately 96.2% of shallow groundwater poses non-carcinogenic risks to infants and children, followed by 92.3% to teenagers, and 89.7% to adults. All deep groundwater poses non-carcinogenic risks to infants and children, followed by 92.6% to teenagers, and 74.1% to adults. This study is helpful to develop strategies for the integrated management of high fluoride or nitrate groundwater in arid areas. [Display omitted] •Fluoride and nitrate sources were identified by chemical and isotopic analysis.•Water-rock interaction, evaporation and anthropogenic activities control F− contents.•Major nitrate sources are soil N, chemical fertilizers, and manure and sewage.•Absence of denitrification emphasizes the importance of controlling nitrate sources.•Non-carcinogenic health risks of fluoride and nitrate increase with decreasing age. Chemical and isotopic analysis combined with land use and a health risk assessment model to illustrate the sources of fluoride and nitrate in groundwater and the associated health risks.
AbstractList Fluoride (F-) and nitrate (NO3-) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore, we collected 105 groundwater samples (78 from shallow aquifers and 27 from deep aquifers) from the western district of the Loess Plateau for physicochemical and isotopic analysis to investigate the sources of F- and NO3- in groundwater and associated health risks. Fluoride concentration in 73.1% of shallow groundwater and 22.2% of deep groundwater exceeds 1.5 mg/L, while NO3- content in 76.3% of shallow groundwater and 51.9% of deep groundwater surpasses 50 mg/L. High-F- groundwater is associated with HCO3-Na, SO4-Na·Mg and Cl-Na·Mg types water. Fluorine-bearing minerals dissolution, cation exchange, calcite precipitation, evaporation, and anthropogenic activities contribute significantly F- in groundwater. Mixing with shallow groundwater is an important source of F- in deep groundwater. The NO3- content is highest in Cl type water, followed by SO4 type and HCO3 type water. NO3- mainly originates from soil organic nitrogen (SON), chemical fertilizers (CF), and manure and sewage (M&S). Nitrification is the dominant transformation process of nitrogen nutrients in groundwater. The hazard index (HI) values for shallow groundwater are 0.203-9.232 for adults, 0.253-11.522 for teenagers, 0.359-16.322 for children, and 0.507-23.043 for infants, while those for deep groundwater are 0.713-5.813 for adults, 0.890-7.254 for teenagers, 1.261-10.277 for children, and 1.780-14.508 for infants. Approximately 96.2% of shallow groundwater poses non-carcinogenic risks to infants and children, followed by 92.3% to teenagers, and 89.7% to adults. All deep groundwater poses non-carcinogenic risks to infants and children, followed by 92.6% to teenagers, and 74.1% to adults. This study is helpful to develop strategies for the integrated management of high fluoride or nitrate groundwater in arid areas.Fluoride (F-) and nitrate (NO3-) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore, we collected 105 groundwater samples (78 from shallow aquifers and 27 from deep aquifers) from the western district of the Loess Plateau for physicochemical and isotopic analysis to investigate the sources of F- and NO3- in groundwater and associated health risks. Fluoride concentration in 73.1% of shallow groundwater and 22.2% of deep groundwater exceeds 1.5 mg/L, while NO3- content in 76.3% of shallow groundwater and 51.9% of deep groundwater surpasses 50 mg/L. High-F- groundwater is associated with HCO3-Na, SO4-Na·Mg and Cl-Na·Mg types water. Fluorine-bearing minerals dissolution, cation exchange, calcite precipitation, evaporation, and anthropogenic activities contribute significantly F- in groundwater. Mixing with shallow groundwater is an important source of F- in deep groundwater. The NO3- content is highest in Cl type water, followed by SO4 type and HCO3 type water. NO3- mainly originates from soil organic nitrogen (SON), chemical fertilizers (CF), and manure and sewage (M&S). Nitrification is the dominant transformation process of nitrogen nutrients in groundwater. The hazard index (HI) values for shallow groundwater are 0.203-9.232 for adults, 0.253-11.522 for teenagers, 0.359-16.322 for children, and 0.507-23.043 for infants, while those for deep groundwater are 0.713-5.813 for adults, 0.890-7.254 for teenagers, 1.261-10.277 for children, and 1.780-14.508 for infants. Approximately 96.2% of shallow groundwater poses non-carcinogenic risks to infants and children, followed by 92.3% to teenagers, and 89.7% to adults. All deep groundwater poses non-carcinogenic risks to infants and children, followed by 92.6% to teenagers, and 74.1% to adults. This study is helpful to develop strategies for the integrated management of high fluoride or nitrate groundwater in arid areas.
Fluoride (F−) and nitrate (NO3−) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore, we collected 105 groundwater samples (78 from shallow aquifers and 27 from deep aquifers) from the western district of the Loess Plateau for physicochemical and isotopic analysis to investigate the sources of F− and NO3− in groundwater and associated health risks. Fluoride concentration in 73.1% of shallow groundwater and 22.2% of deep groundwater exceeds 1.5 mg/L, while NO3− content in 76.3% of shallow groundwater and 51.9% of deep groundwater surpasses 50 mg/L. High-F- groundwater is associated with HCO3–Na, SO4–Na·Mg and Cl–Na·Mg types water. Fluorine-bearing minerals dissolution, cation exchange, calcite precipitation, evaporation, and anthropogenic activities contribute significantly F− in groundwater. Mixing with shallow groundwater is an important source of F− in deep groundwater. The NO3− content is highest in Cl type water, followed by SO4 type and HCO3 type water. NO3− mainly originates from soil organic nitrogen (SON), chemical fertilizers (CF), and manure and sewage (M&S). Nitrification is the dominant transformation process of nitrogen nutrients in groundwater. The hazard index (HI) values for shallow groundwater are 0.203–9.232 for adults, 0.253–11.522 for teenagers, 0.359–16.322 for children, and 0.507–23.043 for infants, while those for deep groundwater are 0.713–5.813 for adults, 0.890–7.254 for teenagers, 1.261–10.277 for children, and 1.780–14.508 for infants. Approximately 96.2% of shallow groundwater poses non-carcinogenic risks to infants and children, followed by 92.3% to teenagers, and 89.7% to adults. All deep groundwater poses non-carcinogenic risks to infants and children, followed by 92.6% to teenagers, and 74.1% to adults. This study is helpful to develop strategies for the integrated management of high fluoride or nitrate groundwater in arid areas. [Display omitted] •Fluoride and nitrate sources were identified by chemical and isotopic analysis.•Water-rock interaction, evaporation and anthropogenic activities control F− contents.•Major nitrate sources are soil N, chemical fertilizers, and manure and sewage.•Absence of denitrification emphasizes the importance of controlling nitrate sources.•Non-carcinogenic health risks of fluoride and nitrate increase with decreasing age. Chemical and isotopic analysis combined with land use and a health risk assessment model to illustrate the sources of fluoride and nitrate in groundwater and the associated health risks.
Fluoride (F ) and nitrate (NO ) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore, we collected 105 groundwater samples (78 from shallow aquifers and 27 from deep aquifers) from the western district of the Loess Plateau for physicochemical and isotopic analysis to investigate the sources of F and NO in groundwater and associated health risks. Fluoride concentration in 73.1% of shallow groundwater and 22.2% of deep groundwater exceeds 1.5 mg/L, while NO content in 76.3% of shallow groundwater and 51.9% of deep groundwater surpasses 50 mg/L. High-F groundwater is associated with HCO -Na, SO -Na·Mg and Cl-Na·Mg types water. Fluorine-bearing minerals dissolution, cation exchange, calcite precipitation, evaporation, and anthropogenic activities contribute significantly F in groundwater. Mixing with shallow groundwater is an important source of F in deep groundwater. The NO content is highest in Cl type water, followed by SO type and HCO type water. NO mainly originates from soil organic nitrogen (SON), chemical fertilizers (CF), and manure and sewage (M&S). Nitrification is the dominant transformation process of nitrogen nutrients in groundwater. The hazard index (HI) values for shallow groundwater are 0.203-9.232 for adults, 0.253-11.522 for teenagers, 0.359-16.322 for children, and 0.507-23.043 for infants, while those for deep groundwater are 0.713-5.813 for adults, 0.890-7.254 for teenagers, 1.261-10.277 for children, and 1.780-14.508 for infants. Approximately 96.2% of shallow groundwater poses non-carcinogenic risks to infants and children, followed by 92.3% to teenagers, and 89.7% to adults. All deep groundwater poses non-carcinogenic risks to infants and children, followed by 92.6% to teenagers, and 74.1% to adults. This study is helpful to develop strategies for the integrated management of high fluoride or nitrate groundwater in arid areas.
Fluoride (F⁻) and nitrate (NO₃⁻) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore, we collected 105 groundwater samples (78 from shallow aquifers and 27 from deep aquifers) from the western district of the Loess Plateau for physicochemical and isotopic analysis to investigate the sources of F⁻ and NO₃⁻ in groundwater and associated health risks. Fluoride concentration in 73.1% of shallow groundwater and 22.2% of deep groundwater exceeds 1.5 mg/L, while NO₃⁻ content in 76.3% of shallow groundwater and 51.9% of deep groundwater surpasses 50 mg/L. High-F⁻ groundwater is associated with HCO₃–Na, SO₄–Na·Mg and Cl–Na·Mg types water. Fluorine-bearing minerals dissolution, cation exchange, calcite precipitation, evaporation, and anthropogenic activities contribute significantly F⁻ in groundwater. Mixing with shallow groundwater is an important source of F⁻ in deep groundwater. The NO₃⁻ content is highest in Cl type water, followed by SO₄ type and HCO₃ type water. NO₃⁻ mainly originates from soil organic nitrogen (SON), chemical fertilizers (CF), and manure and sewage (M&S). Nitrification is the dominant transformation process of nitrogen nutrients in groundwater. The hazard index (HI) values for shallow groundwater are 0.203–9.232 for adults, 0.253–11.522 for teenagers, 0.359–16.322 for children, and 0.507–23.043 for infants, while those for deep groundwater are 0.713–5.813 for adults, 0.890–7.254 for teenagers, 1.261–10.277 for children, and 1.780–14.508 for infants. Approximately 96.2% of shallow groundwater poses non-carcinogenic risks to infants and children, followed by 92.3% to teenagers, and 89.7% to adults. All deep groundwater poses non-carcinogenic risks to infants and children, followed by 92.6% to teenagers, and 74.1% to adults. This study is helpful to develop strategies for the integrated management of high fluoride or nitrate groundwater in arid areas.
ArticleNumber 117287
Author Li, Zhi
Li, Yanrong
Su, He
Kang, Weidong
Author_xml – sequence: 1
  givenname: He
  orcidid: 0000-0001-5752-2369
  surname: Su
  fullname: Su, He
  organization: Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
– sequence: 2
  givenname: Weidong
  surname: Kang
  fullname: Kang, Weidong
  organization: State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
– sequence: 3
  givenname: Yanrong
  surname: Li
  fullname: Li, Yanrong
  email: li.dennis@hotmail.com
  organization: Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
– sequence: 4
  givenname: Zhi
  surname: Li
  fullname: Li, Zhi
  email: lizhibox@nwafu.edu.cn
  organization: College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33971470$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URLeFf4CQjxzI4q84SQ9I1YoC0kqtBJwtrz0hXhJ78UcR_55sUzj0UDiNNPO872GeM3TigweEXlKypoTKt_s1-NtDGNeMMLqmtGFt8wStaNvwSgomTtCKMNlVjejoKTpLaU8IEZzzZ-iU866hoiErVK7GEqKzgLW32LscdQZsgs96cl5nFzwOPf4WQ_H253yL2HmcB8DbACnhm3He6fIGb4YZv8CfQ4kG0l1bhOPR4qFM2uMB9JgHHF36np6jp70eE7y4n-fo69X7L5uP1fb6w6fN5bbSgra50rXhGlou6p2VTNOWUbqztdSkbmXLqSRM9C0njdCCiw40laLrWVvDruZgLT9Hr5feQww_CqSsJpcMjKP2EEpSrK5px6TkzX-grJaSNpzM6Kt7tOwmsOoQ3aTjL_XnqzMgFsDEkFKE_i9CiTrKU3u1yFNHeWqRN8cuHsSMy3cKZitu_Ff43RKG-Z-3DqJKxoE3YF0Ek5UN7vGC3zyvtwY
CitedBy_id crossref_primary_10_1016_j_hazadv_2023_100312
crossref_primary_10_1016_j_watres_2023_121016
crossref_primary_10_1007_s10653_024_01964_x
crossref_primary_10_1007_s11356_023_28401_3
crossref_primary_10_1016_j_ecolind_2024_113024
crossref_primary_10_1007_s10661_022_10154_0
crossref_primary_10_1007_s11356_024_34030_1
crossref_primary_10_1016_j_chemer_2023_125985
crossref_primary_10_1007_s12665_022_10437_2
crossref_primary_10_1007_s00477_023_02485_2
crossref_primary_10_1007_s11356_024_33730_y
crossref_primary_10_1016_j_biortech_2021_126228
crossref_primary_10_1016_j_gsd_2024_101107
crossref_primary_10_1016_j_envpol_2022_120524
crossref_primary_10_1080_10807039_2022_2140028
crossref_primary_10_1016_j_chemosphere_2023_139228
crossref_primary_10_1038_s41598_023_36621_3
crossref_primary_10_1016_j_envres_2022_113588
crossref_primary_10_2166_ws_2024_202
crossref_primary_10_1016_j_catena_2024_108143
crossref_primary_10_1155_2022_9682371
crossref_primary_10_1016_j_gsd_2024_101309
crossref_primary_10_1002_wer_11088
crossref_primary_10_1016_j_envres_2022_114837
crossref_primary_10_1016_j_scitotenv_2022_155903
crossref_primary_10_1007_s11814_022_1184_2
crossref_primary_10_3389_fenvs_2022_901637
crossref_primary_10_1016_j_chemosphere_2024_142762
crossref_primary_10_1021_acsanm_4c07317
crossref_primary_10_1186_s40068_024_00360_9
crossref_primary_10_1007_s10661_024_13458_5
crossref_primary_10_1016_j_ecoenv_2025_118048
crossref_primary_10_1016_j_watres_2023_120379
crossref_primary_10_1016_j_scitotenv_2024_176940
crossref_primary_10_3390_w15122220
crossref_primary_10_1007_s11356_022_22914_z
crossref_primary_10_1016_j_jhazmat_2025_137185
crossref_primary_10_1007_s00284_022_03027_9
crossref_primary_10_1016_j_gsd_2024_101356
crossref_primary_10_1016_j_scitotenv_2023_166920
crossref_primary_10_1016_j_jhazmat_2024_135663
crossref_primary_10_1007_s12403_023_00553_0
crossref_primary_10_1016_j_envpol_2022_120855
crossref_primary_10_1016_j_ecoenv_2022_113496
crossref_primary_10_1016_j_marpolbul_2022_114440
crossref_primary_10_1007_s11270_024_07605_4
crossref_primary_10_1007_s43832_024_00086_w
crossref_primary_10_1111_fwb_14332
crossref_primary_10_2166_ws_2024_196
crossref_primary_10_1007_s11356_022_20073_9
crossref_primary_10_1016_j_scitotenv_2024_170574
crossref_primary_10_1016_j_dwt_2024_100664
crossref_primary_10_1016_j_envpol_2024_125000
crossref_primary_10_1007_s12665_024_11656_5
crossref_primary_10_1016_j_jclepro_2023_139671
crossref_primary_10_1016_j_desal_2024_117392
crossref_primary_10_1016_j_jenvman_2025_124424
crossref_primary_10_3390_w15234067
crossref_primary_10_1016_j_gsd_2023_101052
crossref_primary_10_3390_toxics11070577
crossref_primary_10_1007_s10661_024_13546_6
crossref_primary_10_1016_j_ecoenv_2022_113500
crossref_primary_10_5004_dwt_2022_28936
crossref_primary_10_1016_j_envres_2023_116911
crossref_primary_10_3389_fenvs_2022_1024797
crossref_primary_10_1016_j_biortech_2022_128098
crossref_primary_10_3390_met14091062
crossref_primary_10_1007_s10661_024_13207_8
crossref_primary_10_1016_j_envpol_2021_117528
crossref_primary_10_1021_acs_est_4c08197
crossref_primary_10_1007_s11356_024_33768_y
crossref_primary_10_1016_j_ecoenv_2024_116705
crossref_primary_10_1007_s10653_024_02276_w
crossref_primary_10_1007_s11270_023_06614_z
crossref_primary_10_5004_dwt_2023_30096
crossref_primary_10_1016_j_jenvman_2022_116171
crossref_primary_10_1007_s11356_023_25958_x
crossref_primary_10_1038_s41598_024_84318_y
crossref_primary_10_1080_10807039_2024_2436669
crossref_primary_10_1016_j_rineng_2025_104363
crossref_primary_10_1007_s11356_024_32941_7
crossref_primary_10_3390_pr10091740
crossref_primary_10_1007_s10661_024_12985_5
crossref_primary_10_1016_j_geog_2022_04_003
crossref_primary_10_1007_s11356_023_26765_0
crossref_primary_10_1007_s11356_022_23516_5
crossref_primary_10_1016_j_jconhyd_2024_104495
crossref_primary_10_3389_feart_2022_1084890
crossref_primary_10_1016_j_jconhyd_2023_104270
crossref_primary_10_1007_s11356_023_30001_0
Cites_doi 10.1016/j.chemosphere.2015.03.067
10.5004/dwt.2019.23865
10.1126/science.170.3962.1088
10.1016/j.jhydrol.2016.08.023
10.1016/j.scitotenv.2015.09.134
10.1002/hyp.11103
10.1016/j.envpol.2019.113646
10.1016/j.earscirev.2017.06.005
10.1016/j.envpol.2019.06.046
10.1016/j.watres.2008.12.048
10.1016/j.chemosphere.2017.12.021
10.1007/s10661-012-2900-x
10.1016/j.watres.2012.10.042
10.1016/j.scitotenv.2005.11.003
10.1021/es071958y
10.1021/ac020113w
10.1016/j.envpol.2018.02.072
10.1016/j.chemosphere.2018.04.116
10.1016/j.jhydrol.2019.124211
10.1016/j.envpol.2016.12.074
10.1016/j.scitotenv.2014.10.090
10.1007/s12011-018-1269-2
10.5004/dwt.2019.23651
10.1016/j.ecoenv.2020.111217
10.1016/j.envpol.2020.115947
10.1016/j.scitotenv.2018.08.007
10.1016/j.scitotenv.2020.140460
10.1007/s11356-016-6069-7
10.1016/j.ecoenv.2020.110227
10.1021/ac010088e
10.1016/j.scitotenv.2018.07.245
10.1016/j.watres.2018.10.049
10.1007/s00254-007-0692-z
10.1007/s12665-018-7968-3
10.1007/s12665-016-6362-2
10.1016/j.ecolind.2016.01.028
10.1016/j.scitotenv.2018.09.322
10.1016/j.scitotenv.2014.11.045
10.3390/ijerph16040564
10.1016/0003-9861(84)90499-5
10.1016/j.scitotenv.2018.04.064
10.1016/j.ecoenv.2017.10.057
10.1016/j.apgeochem.2011.01.012
10.1016/j.chemosphere.2018.12.084
10.1080/10807039.2018.1553612
10.1016/j.envpol.2011.09.033
10.1007/s10661-010-1348-0
10.1016/j.quaint.2015.01.021
10.1007/s12403-018-0278-x
10.1038/s41598-017-17328-8
10.1016/j.apgeochem.2008.12.015
10.1016/j.envpol.2021.116930
10.1016/j.yrtph.2019.104408
10.1016/j.envint.2019.02.011
10.1016/j.scitotenv.2007.12.025
10.1016/j.envpol.2019.113711
10.1007/s10653-017-0037-0
10.1016/j.chemosphere.2016.02.021
10.1016/j.ecoenv.2020.110503
10.1016/j.scitotenv.2020.137134
10.1016/j.ecoenv.2016.11.010
10.1016/j.envpol.2017.12.078
10.1016/j.scitotenv.2017.07.176
10.1007/s12403-016-0234-6
10.1016/j.jconhyd.2018.10.009
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2021.117287
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 33971470
10_1016_j_envpol_2021_117287
S0269749121008691
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5VS
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
XPP
ZMT
~G-
29G
53G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
OHT
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
XJT
XOL
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a418t-a5c3ae8345bd62a18211bd56a05868316024f83074a4349ea1649f285eb53edd3
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Fri Jul 11 00:10:28 EDT 2025
Fri Jul 11 05:23:50 EDT 2025
Mon Jul 21 05:34:05 EDT 2025
Tue Jul 01 03:15:09 EDT 2025
Thu Apr 24 23:06:11 EDT 2025
Fri Feb 23 02:43:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fluoride
Nitrate
Health risk assessment
Source
Loess Plateau
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a418t-a5c3ae8345bd62a18211bd56a05868316024f83074a4349ea1649f285eb53edd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5752-2369
PMID 33971470
PQID 2525661730
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2551926637
proquest_miscellaneous_2525661730
pubmed_primary_33971470
crossref_primary_10_1016_j_envpol_2021_117287
crossref_citationtrail_10_1016_j_envpol_2021_117287
elsevier_sciencedirect_doi_10_1016_j_envpol_2021_117287
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Peng, Li, Gao, Chen (bib35) 2021; 268
Subba Rao (bib51) 2020; 1–23
Yousefi, Ghalehaskar, Asghari, Ghaderpoury, Mohammadi (bib69) 2019; 107
Li, He, Li, Xiang (bib33) 2019; 11
Radfard, Gholizadeh, Azhdarpoor, Badeenezhad, Mohammadi, Yousefi (bib41) 2019; 145
(bib56) 2011
Zhang, Huang, Yang, Wei, Qin, Ou, Zhang, Zou (bib72) 2017; 222
Amini, Mueller, Abbaspour, Rosenberg, Afyuni, Moller (bib3) 2008; 42
Rinklebe, Antoniadis, Shaheen, Rosche, Altermann (bib46) 2019; 126
Wang, Zheng, Currell, Yang, Zhao, Lv (bib58) 2017; 609
Zabala, Manzano, Vives (bib70) 2016; 541
Zhai, Zhao, Teng, Li, Zhang, Wu, Zuo (bib71) 2017; 137
Wu, Luo, Luo, Ma, Wang (bib60) 2018; 218
Kendall, Aravena (bib24) 2000
Matiatos (bib36) 2016; 541
Li, Gao, Wang, Luo (bib29) 2018; 237
Xue, Botte, Baets, Accoe, Nestler, Taylor, Cleemput, Berglund, Boeckx (bib64) 2009; 43
Yousefi, Yaseri, Nabizadeh, Hooshmand, Jalilzadeh (bib66) 2018; 185
Zhen, Zhu (bib75) 2016; 66
Yousefi, Asghari, Zuccarello, Oliveri Conti, Ejlali, Mohammadi, Ferrante (bib68) 2019; 16
Biddau, Cidu, Da Pelo, Carletti, Ghiglieri, Pittalis (bib7) 2019; 647
Su, Wang, Liu (bib50) 2019; 252
Kaur, Rishi, Siddiqui (bib23) 2020; 259
Tekle-Haimanot, Melaku, Kloos, Reimann, Fantaye, Zerihun, Bjorvatn (bib53) 2006; 367
Li, He, Yang, Xiang (bib30) 2018; 77
Yousefi, Ghoochani, Mahvi (bib67) 2018; 148
Taufiq, Effendi, Iskandar, Hosono, Hutasoit (bib52) 2019; 148
Li, He, Guo (bib32) 2019; 25
Gibbs (bib18) 1970; 170
Li, Gao, Liu, Wang (bib31) 2019; 579
Sigman, Casciotti, Andreani, Barford, Galanter, Bohlke (bib47) 2001; 73
Souza, Lima, Adriano, Carvalho, Forte, Oliveira (bib48) 2013; 185
Adimalla, Qian, Nandan (bib2) 2020; 206
Kim, Oh, Do, Lee, Hyun, Oh, Kam, Yun (bib26) 2018; 51
WHO (bib59) 2011
Currell, Cartwright, Raveggi, Han (bib12) 2011; 26
Mohammadi, Yousefi, Yaseri, Jalilzadeh, Mahvi (bib38) 2017; 7
Naderi, Jahanshahi, Dehbandi (bib39) 2020; 195
Egbi, Anornu, Ganyaglo, Appiah-Adjei, Li, Dampare (bib15) 2020; 191
Antoniadis, Levizou, Shaheen, Ok, Sebastian, Baum, Prasad, Wenzel, Rinklebe (bib5) 2017; 171
Kendall, Elliott, Wankel, Michener, Lajtha (bib25) 2007
Su, Kang, Xu, Wang (bib49) 2017; 9
Guo, Yang, Tang, Li, Shen (bib19) 2008; 393
Kalpana, Brindha, Elango (bib22) 2019; 220
Brahman, Kazi, Afridi, Naseem, Arain, Ullah (bib8) 2013; 47
Rashid, Guan, Farooqi, Khan, Zahir, Jehan, Khattak, Khan, Khan (bib43) 2018; 635
Das, Das, Sarma, Kumar (bib14) 2018; 194
Hossain, Patra (bib21) 2020; 258
Kumar, Venkatesh, Singh, Udayabhanu, Saha (bib27) 2018; 205
Xue, De Baets, Van Cleemput, Hennessy, Berglund, Boeckx (bib65) 2012; 161
Liu (bib34) 2008
An, Lu (bib4) 2018; 40
Azhdarpoor, Radfard, Pakdel, Abbasnia, Badeenezhad, Mohammadi, Yousefi (bib6) 2019; 149
Brindha, Rajesh, Murugan, Elango (bib9) 2011; 172
Casciotti, Sigman, Hastings, Böhlke, Hilkert (bib11) 2002; 74
Adimalla, Venkatayogi (bib1) 2017; 76
Brindha, Jagadeshan, Kalpana, Elango (bib10) 2016; 23
Xiao, Wang, Deng, Jin (bib62) 2019; 650
Fernández, Grilli, Alvarez, Aravena (bib16) 2017; 31
Zhang, Xu, Cheng, Li, Yu (bib74) 2020; 717
Xiao, Jin, Wang, Zhang (bib61) 2015; 380–381
Li, Gao, Wang (bib28) 2015; 508
Rinklebe, Shaheen, Schroter, Rennert (bib44) 2016; 150
(bib55) 2004
Rinklebe, Shaheen, Frohne (bib45) 2016; 142
Urresti-Estala, Vadillo-Pérez, Jiménez-Gavilán, Soler, Sánchez-García, Carrasco-Cantos (bib54) 2015; 506
Zhang, Xu, Qian, Yang (bib73) 2020; 741
Gao, Wang, Li, Guo (bib17) 2007; 53
Hollocher (bib20) 1984; 233
Xiao, Wang, Chai, Liu, Jin, Rinklebe (bib63) 2021; 278
Wang, Shvartsev, Su (bib57) 2009; 24
Ogrinc, Tamše, Zavadlav, Vrzel, Jin (bib40) 2019; 646
Meghdadi, Javar (bib37) 2018; 235
Rahman, Bodrud-Doza, Muhib, Hossain, Sikder, Shammi, Akter, Uddin (bib42) 2020; 6
Mohammadi (10.1016/j.envpol.2021.117287_bib38) 2017; 7
Souza (10.1016/j.envpol.2021.117287_bib48) 2013; 185
Liu (10.1016/j.envpol.2021.117287_bib35) 2021; 268
Zhang (10.1016/j.envpol.2021.117287_bib74) 2020; 717
Li (10.1016/j.envpol.2021.117287_bib28) 2015; 508
Brindha (10.1016/j.envpol.2021.117287_bib10) 2016; 23
Naderi (10.1016/j.envpol.2021.117287_bib39) 2020; 195
Zhang (10.1016/j.envpol.2021.117287_bib72) 2017; 222
An (10.1016/j.envpol.2021.117287_bib4) 2018; 40
Li (10.1016/j.envpol.2021.117287_bib29) 2018; 237
Antoniadis (10.1016/j.envpol.2021.117287_bib5) 2017; 171
Yousefi (10.1016/j.envpol.2021.117287_bib69) 2019; 107
Yousefi (10.1016/j.envpol.2021.117287_bib66) 2018; 185
Yousefi (10.1016/j.envpol.2021.117287_bib68) 2019; 16
Tekle-Haimanot (10.1016/j.envpol.2021.117287_bib53) 2006; 367
Adimalla (10.1016/j.envpol.2021.117287_bib1) 2017; 76
Wang (10.1016/j.envpol.2021.117287_bib58) 2017; 609
Kaur (10.1016/j.envpol.2021.117287_bib23) 2020; 259
(10.1016/j.envpol.2021.117287_bib56) 2011
Kim (10.1016/j.envpol.2021.117287_bib26) 2018; 51
Xiao (10.1016/j.envpol.2021.117287_bib62) 2019; 650
Biddau (10.1016/j.envpol.2021.117287_bib7) 2019; 647
Fernández (10.1016/j.envpol.2021.117287_bib16) 2017; 31
Zhen (10.1016/j.envpol.2021.117287_bib75) 2016; 66
Egbi (10.1016/j.envpol.2021.117287_bib15) 2020; 191
Gibbs (10.1016/j.envpol.2021.117287_bib18) 1970; 170
Rashid (10.1016/j.envpol.2021.117287_bib43) 2018; 635
Xue (10.1016/j.envpol.2021.117287_bib65) 2012; 161
Urresti-Estala (10.1016/j.envpol.2021.117287_bib54) 2015; 506
Kendall (10.1016/j.envpol.2021.117287_bib25) 2007
Radfard (10.1016/j.envpol.2021.117287_bib41) 2019; 145
Zabala (10.1016/j.envpol.2021.117287_bib70) 2016; 541
Das (10.1016/j.envpol.2021.117287_bib14) 2018; 194
Li (10.1016/j.envpol.2021.117287_bib32) 2019; 25
Subba Rao (10.1016/j.envpol.2021.117287_bib51) 2020; 1–23
Li (10.1016/j.envpol.2021.117287_bib33) 2019; 11
Rahman (10.1016/j.envpol.2021.117287_bib42) 2020; 6
Matiatos (10.1016/j.envpol.2021.117287_bib36) 2016; 541
Xiao (10.1016/j.envpol.2021.117287_bib61) 2015; 380–381
Ogrinc (10.1016/j.envpol.2021.117287_bib40) 2019; 646
Wu (10.1016/j.envpol.2021.117287_bib60) 2018; 218
Adimalla (10.1016/j.envpol.2021.117287_bib2) 2020; 206
WHO (10.1016/j.envpol.2021.117287_bib59) 2011
Su (10.1016/j.envpol.2021.117287_bib50) 2019; 252
Kalpana (10.1016/j.envpol.2021.117287_bib22) 2019; 220
Yousefi (10.1016/j.envpol.2021.117287_bib67) 2018; 148
Brindha (10.1016/j.envpol.2021.117287_bib9) 2011; 172
Hollocher (10.1016/j.envpol.2021.117287_bib20) 1984; 233
Brahman (10.1016/j.envpol.2021.117287_bib8) 2013; 47
Kumar (10.1016/j.envpol.2021.117287_bib27) 2018; 205
Li (10.1016/j.envpol.2021.117287_bib31) 2019; 579
Casciotti (10.1016/j.envpol.2021.117287_bib11) 2002; 74
Xiao (10.1016/j.envpol.2021.117287_bib63) 2021; 278
Su (10.1016/j.envpol.2021.117287_bib49) 2017; 9
Amini (10.1016/j.envpol.2021.117287_bib3) 2008; 42
Rinklebe (10.1016/j.envpol.2021.117287_bib46) 2019; 126
Hossain (10.1016/j.envpol.2021.117287_bib21) 2020; 258
Rinklebe (10.1016/j.envpol.2021.117287_bib44) 2016; 150
Sigman (10.1016/j.envpol.2021.117287_bib47) 2001; 73
Meghdadi (10.1016/j.envpol.2021.117287_bib37) 2018; 235
Zhai (10.1016/j.envpol.2021.117287_bib71) 2017; 137
Azhdarpoor (10.1016/j.envpol.2021.117287_bib6) 2019; 149
Guo (10.1016/j.envpol.2021.117287_bib19) 2008; 393
Liu (10.1016/j.envpol.2021.117287_bib34) 2008
Xue (10.1016/j.envpol.2021.117287_bib64) 2009; 43
(10.1016/j.envpol.2021.117287_bib55) 2004
Wang (10.1016/j.envpol.2021.117287_bib57) 2009; 24
Rinklebe (10.1016/j.envpol.2021.117287_bib45) 2016; 142
Kendall (10.1016/j.envpol.2021.117287_bib24) 2000
Zhang (10.1016/j.envpol.2021.117287_bib73) 2020; 741
Gao (10.1016/j.envpol.2021.117287_bib17) 2007; 53
Taufiq (10.1016/j.envpol.2021.117287_bib52) 2019; 148
Li (10.1016/j.envpol.2021.117287_bib30) 2018; 77
Currell (10.1016/j.envpol.2021.117287_bib12) 2011; 26
References_xml – volume: 220
  start-page: 381
  year: 2019
  end-page: 390
  ident: bib22
  article-title: FIMAR: a new fluoride index to mitigate geogenic contamination by managed aquifer recharge
  publication-title: Chemosphere
– volume: 77
  start-page: 775
  year: 2018
  ident: bib30
  article-title: Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, northwest China: implications to sustainable groundwater quality management on the Loess Plateau
  publication-title: Environ. Earth Sci.
– volume: 541
  start-page: 802
  year: 2016
  end-page: 814
  ident: bib36
  article-title: Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: a case study of Asopos basin (Central Greece)
  publication-title: Sci. Total Environ.
– volume: 172
  start-page: 481
  year: 2011
  end-page: 492
  ident: bib9
  article-title: Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India
  publication-title: Environ. Monit. Assess.
– volume: 609
  start-page: 607
  year: 2017
  end-page: 620
  ident: bib58
  article-title: Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain
  publication-title: Sci. Total Environ.
– volume: 185
  start-page: 282
  year: 2018
  end-page: 288
  ident: bib66
  article-title: Association of hypertension, body mass index, and waist circumference with fluoride intake; water drinking in residents of fluoride endemic areas, Iran Association of Hypertension, Body Mass Index, and Waist Circumference with Fluoride Intake
  publication-title: Wate. Biol. Trace Elem. Res.
– volume: 171
  start-page: 621
  year: 2017
  end-page: 645
  ident: bib5
  article-title: Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–A review
  publication-title: Earth Sci. Rev.
– volume: 7
  start-page: 17300
  year: 2017
  ident: bib38
  article-title: Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran
  publication-title: Sci. Rep.
– volume: 367
  start-page: 182
  year: 2006
  end-page: 190
  ident: bib53
  article-title: The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley
  publication-title: Sci. Total Environ.
– volume: 218
  start-page: 44
  year: 2018
  end-page: 58
  ident: bib60
  article-title: Multiple isotope geochemistry and hydrochemical monitoring of karst water in a rapidly urbanized region
  publication-title: J. Contam. Hydrol.
– volume: 148
  start-page: 426
  year: 2018
  end-page: 430
  ident: bib67
  article-title: Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran
  publication-title: Ecotoxicol. Environ. Saf.
– year: 2011
  ident: bib56
  article-title: Exposure Factors Handbook
– volume: 259
  start-page: 113711
  year: 2020
  ident: bib23
  article-title: Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India
  publication-title: Environ. Pollut.
– volume: 646
  start-page: 1588
  year: 2019
  end-page: 1600
  ident: bib40
  article-title: Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko polje aquifer (Slovenia): a stable isotope perspective
  publication-title: Sci. Total Environ.
– volume: 268
  start-page: 115947
  year: 2021
  ident: bib35
  article-title: Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health
  publication-title: Environ. Pollut.
– volume: 278
  start-page: 116930
  year: 2021
  ident: bib63
  article-title: Groundwater hydrochemistry, source identification and pollution assessment in intensive industrial areas, eastern Chinese loess plateau
  publication-title: Environ. Pollut.
– volume: 508
  start-page: 155
  year: 2015
  end-page: 165
  ident: bib28
  article-title: Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China
  publication-title: Sci. Total Environ.
– volume: 233
  start-page: 721
  year: 1984
  end-page: 727
  ident: bib20
  article-title: Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a PON anhydride mechanism in oxidative phosphorylation
  publication-title: Arch. Biochem. Biophys.
– volume: 148
  start-page: 292
  year: 2019
  end-page: 305
  ident: bib52
  article-title: Controlling factors and driving mechanisms of nitrate contamination in groundwater system of Bandung Basin, Indonesia, deduced by combined use of stable isotope ratios, CFC age dating, and socioeconomic parameters
  publication-title: Water Res.
– volume: 24
  start-page: 641
  year: 2009
  end-page: 649
  ident: bib57
  article-title: Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China
  publication-title: Appl. Geochem.
– volume: 51
  start-page: 15
  year: 2018
  end-page: 26
  ident: bib26
  article-title: Spatial-temporal variations of nitrate levels in groundwater of Jeju Island, Korea: evaluation of long-term (1993-2015) monitoring data
  publication-title: Econ. Environ. Geol.
– volume: 205
  start-page: 493
  year: 2018
  end-page: 505
  ident: bib27
  article-title: Geochemical signatures and isotopic systematics constraining dynamics of fluoride contamination in groundwater across Jamui district, Indo-Gangetic alluvial plains, India
  publication-title: Chemosphere
– volume: 76
  start-page: 45
  year: 2017
  ident: bib1
  article-title: Mechanism of fluoride enrichment in groundwater of hard rock aquifers in Medak, Telangana State, South India
  publication-title: Environ. Earth Sci.
– volume: 647
  start-page: 1121
  year: 2019
  end-page: 1136
  ident: bib7
  article-title: Source and fate of nitrate in contaminated groundwater systems: assessing spatial and temporal variations by hydrogeochemistry and multiple stable isotope tools
  publication-title: Sci. Total Environ.
– volume: 170
  start-page: 1088
  year: 1970
  end-page: 1090
  ident: bib18
  article-title: Mechanisms controlling world's water chemistry
  publication-title: Science
– volume: 66
  start-page: 113
  year: 2016
  end-page: 120
  ident: bib75
  article-title: Analysis of isotope tracing of domestic sewage sources in Taihu Lake-a case study of Meiliang Bay and Gonghu Bay
  publication-title: Ecol. Indicat.
– volume: 194
  start-page: 755
  year: 2018
  end-page: 772
  ident: bib14
  article-title: Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain
  publication-title: Chemosphere
– volume: 717
  start-page: 137134
  year: 2020
  ident: bib74
  article-title: Application of the dual-isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu Plain, China
  publication-title: Sci. Total Environ.
– volume: 47
  start-page: 1005
  year: 2013
  end-page: 1020
  ident: bib8
  article-title: Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: a multivariate study
  publication-title: Water Res.
– year: 2004
  ident: bib55
  article-title: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E)
– volume: 206
  start-page: 111217
  year: 2020
  ident: bib2
  article-title: Groundwater chemistry integrating the pollution index of groundwater and evaluation of potential human health risk: a case study from hard rock terrain of south India
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 161
  start-page: 43
  year: 2012
  end-page: 49
  ident: bib65
  article-title: Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water
  publication-title: Environ. Pollut.
– volume: 25
  start-page: 11
  year: 2019
  end-page: 31
  ident: bib32
  article-title: Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: a case study in Yan’an City on the Loess Plateau of northwest China
  publication-title: Hum. Ecol. Risk Assess.
– volume: 31
  start-page: 1206
  year: 2017
  end-page: 1224
  ident: bib16
  article-title: Evaluation of nitrate levels in groundwater under agricultural fields in two pilot areas in Central Chile, a hydrogeological and geochemical approach
  publication-title: Hydrol. Process.
– volume: 380–381
  start-page: 237
  year: 2015
  end-page: 246
  ident: bib61
  article-title: Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau
  publication-title: Quat. Int.
– volume: 42
  start-page: 3662
  year: 2008
  end-page: 3668
  ident: bib3
  article-title: Statistical modelling of global geogenic fluoride contamination in groundwaters
  publication-title: Environ. Sci. Technol.
– volume: 73
  start-page: 4145
  year: 2001
  end-page: 4153
  ident: bib47
  article-title: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater
  publication-title: Anal. Chem.
– volume: 142
  start-page: 41
  year: 2016
  end-page: 47
  ident: bib45
  article-title: Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil
  publication-title: Chemosphere
– volume: 741
  start-page: 140460
  year: 2020
  ident: bib73
  article-title: Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District, Central China: assessment based on multivariate statistical approach and human health risk
  publication-title: Sci. Total Environ.
– volume: 222
  start-page: 118
  year: 2017
  end-page: 125
  ident: bib72
  article-title: Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas
  publication-title: Environ. Pollut.
– volume: 635
  start-page: 203
  year: 2018
  end-page: 215
  ident: bib43
  article-title: Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan
  publication-title: Sci. Total Environ.
– volume: 235
  start-page: 207
  year: 2018
  end-page: 222
  ident: bib37
  article-title: Quantification of spatial and seasonal variations in the proportional contribution of nitrate sources using a multi-isotope approach and Bayesian isotope mixing model
  publication-title: Environ. Pollut.
– volume: 541
  start-page: 1067
  year: 2016
  end-page: 1087
  ident: bib70
  article-title: Assessment of processes controlling the regional distribution of fluoride and arsenic in groundwater of the Pampeano Aquifer in the Del Azul Creek basin (Argentina)
  publication-title: J. Hydrol.
– volume: 258
  start-page: 113646
  year: 2020
  ident: bib21
  article-title: Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types
  publication-title: Environ. Pollut.
– volume: 9
  start-page: 227
  year: 2017
  end-page: 242
  ident: bib49
  article-title: Assessment of groundwater quality and health risk in the oil and gas field of Dingbian County, Northwest China
  publication-title: Exp. Health
– volume: 53
  start-page: 795
  year: 2007
  end-page: 803
  ident: bib17
  article-title: Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China
  publication-title: Environ. Geol.
– volume: 23
  start-page: 8302
  year: 2016
  end-page: 8316
  ident: bib10
  article-title: Fluoride in weathered rock aquifers of southern India: managed aquifer recharge for mitigation
  publication-title: Environ. Sci. Pollut. Res.
– volume: 26
  start-page: 540
  year: 2011
  end-page: 552
  ident: bib12
  article-title: Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin, China
  publication-title: Appl. Geochem.
– volume: 252
  start-page: 1154
  year: 2019
  end-page: 1162
  ident: bib50
  article-title: Geochemical factors controlling the occurrence of high-fluoride groundwater in the western region of the Ordos basin, northwestern China
  publication-title: Environ. Pollut.
– volume: 74
  start-page: 4905
  year: 2002
  end-page: 4912
  ident: bib11
  article-title: Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method
  publication-title: Anal. Chem.
– volume: 185
  start-page: 4735
  year: 2013
  end-page: 4743
  ident: bib48
  article-title: Assessment of groundwater quality in a region of endemic fluorosis in the northeast of Brazil
  publication-title: Environ. Monit. Assess.
– volume: 650
  start-page: 2004
  year: 2019
  end-page: 2012
  ident: bib62
  article-title: Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau
  publication-title: Sci. Total Environ.
– volume: 11
  start-page: 95
  year: 2019
  end-page: 107
  ident: bib33
  article-title: Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese loess plateau: a case study of Tongchuan, Northwest China
  publication-title: Exp. Health
– volume: 1–23
  year: 2020
  ident: bib51
  article-title: Spatial distribution of quality of groundwater and probabilistic non-carcinogenic risk from a rural dry climatic region of South India
  publication-title: Environ. Geochem. Health
– volume: 16
  start-page: 564
  year: 2019
  ident: bib68
  article-title: Spatial distribution variation and probabilistic risk assessment of exposure to fluoride in ground water supplies: a case study in an endemic fluorosis region of northwest Iran
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 145
  start-page: 249
  year: 2019
  end-page: 256
  ident: bib41
  article-title: Health risk assessment to fluoride and nitrate in drinking water of rural residents living in the Bardaskan city, arid region, southeastern Iran
  publication-title: Desalin. Water Treat.
– volume: 150
  start-page: 390
  year: 2016
  end-page: 397
  ident: bib44
  article-title: Exploiting biogeochemical and spectroscopic techniques to assess the geochemical distribution and release dynamics of chromium and lead in a contaminated floodplain soil
  publication-title: Chemosphere
– volume: 506
  start-page: 46
  year: 2015
  end-page: 57
  ident: bib54
  article-title: Application of stable isotopes (δ
  publication-title: Sci. Total Environ.
– start-page: 375
  year: 2007
  end-page: 449
  ident: bib25
  article-title: Tracing anthropogenic inputs of nitrogen to ecosystems
  publication-title: Stable Isotopes in Ecology and Environmental Science
– volume: 107
  start-page: 104408
  year: 2019
  ident: bib69
  article-title: Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information system, northwest Iran
  publication-title: Regul. Toxicol. Pharmacol.
– volume: 40
  start-page: 1209
  year: 2018
  end-page: 1219
  ident: bib4
  article-title: Hydrogeochemical processes identification and groundwater pollution causes analysis in the northern Ordos Cretaceous Basin, China
  publication-title: Environ. Geochem. Health
– volume: 126
  start-page: 76
  year: 2019
  end-page: 88
  ident: bib46
  article-title: Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany
  publication-title: Environ. Int.
– volume: 237
  start-page: 430
  year: 2018
  end-page: 441
  ident: bib29
  article-title: Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China
  publication-title: Environ. Pollut.
– volume: 149
  start-page: 43
  year: 2019
  end-page: 51
  ident: bib6
  article-title: Assessing fluoride and nitrate contaminants in drinking water resources and their health risk assessment in a semiarid region of southwest Iran
  publication-title: Desalin. Water Treat.
– volume: 195
  start-page: 110503
  year: 2020
  ident: bib39
  article-title: Two distinct mechanisms of fluoride enrichment and associated health risk in springs' water near an inactive volcano, southeast Iran
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 43
  start-page: 1159
  year: 2009
  end-page: 1170
  ident: bib64
  article-title: Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater
  publication-title: Water Res.
– volume: 191
  start-page: 110227
  year: 2020
  ident: bib15
  article-title: Nitrate contamination of groundwater in the Lower Volta River Basin of Ghana: sources and related human health risks
  publication-title: Ecotoxicol. Environ. Saf.
– start-page: 261
  year: 2000
  end-page: 297
  ident: bib24
  article-title: Nitrate isotopes in groundwater systems
  publication-title: Environmental Tracers in Subsurface Hydrology
– start-page: 154
  year: 2008
  ident: bib34
  article-title: Research on Groundwater Circulation and Hydrochemical Transport in the Northern Part of Ordos Cretaceous Basin Based on Isotope Technology
– volume: 6
  start-page: 253
  year: 2020
  end-page: 266
  ident: bib42
  article-title: Human health risk assessment of nitrate and trace metals via groundwater in Central Bangladesh
  publication-title: J. Pollut.
– volume: 579
  start-page: 124211
  year: 2019
  ident: bib31
  article-title: Impact of anthropogenic activities on the enrichment of fluoride and salinity in groundwater in the Yuncheng Basin constrained by Cl/Br ratio, δ
  publication-title: J. Hydrol.
– volume: 137
  start-page: 130
  year: 2017
  end-page: 142
  ident: bib71
  article-title: Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China
  publication-title: Ecotoxicol. Environ. Saf.
– year: 2011
  ident: bib59
  article-title: Guidelines for Drinking Water Quality
– volume: 393
  start-page: 131
  year: 2008
  end-page: 144
  ident: bib19
  article-title: Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia
  publication-title: Sci. Total Environ.
– volume: 142
  start-page: 41
  year: 2016
  ident: 10.1016/j.envpol.2021.117287_bib45
  article-title: Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.03.067
– volume: 149
  start-page: 43
  year: 2019
  ident: 10.1016/j.envpol.2021.117287_bib6
  article-title: Assessing fluoride and nitrate contaminants in drinking water resources and their health risk assessment in a semiarid region of southwest Iran
  publication-title: Desalin. Water Treat.
  doi: 10.5004/dwt.2019.23865
– volume: 170
  start-page: 1088
  year: 1970
  ident: 10.1016/j.envpol.2021.117287_bib18
  article-title: Mechanisms controlling world's water chemistry
  publication-title: Science
  doi: 10.1126/science.170.3962.1088
– volume: 541
  start-page: 1067
  year: 2016
  ident: 10.1016/j.envpol.2021.117287_bib70
  article-title: Assessment of processes controlling the regional distribution of fluoride and arsenic in groundwater of the Pampeano Aquifer in the Del Azul Creek basin (Argentina)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.08.023
– volume: 541
  start-page: 802
  year: 2016
  ident: 10.1016/j.envpol.2021.117287_bib36
  article-title: Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: a case study of Asopos basin (Central Greece)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.09.134
– volume: 31
  start-page: 1206
  year: 2017
  ident: 10.1016/j.envpol.2021.117287_bib16
  article-title: Evaluation of nitrate levels in groundwater under agricultural fields in two pilot areas in Central Chile, a hydrogeological and geochemical approach
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.11103
– volume: 258
  start-page: 113646
  year: 2020
  ident: 10.1016/j.envpol.2021.117287_bib21
  article-title: Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113646
– volume: 171
  start-page: 621
  year: 2017
  ident: 10.1016/j.envpol.2021.117287_bib5
  article-title: Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–A review
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2017.06.005
– volume: 252
  start-page: 1154
  year: 2019
  ident: 10.1016/j.envpol.2021.117287_bib50
  article-title: Geochemical factors controlling the occurrence of high-fluoride groundwater in the western region of the Ordos basin, northwestern China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.06.046
– volume: 43
  start-page: 1159
  year: 2009
  ident: 10.1016/j.envpol.2021.117287_bib64
  article-title: Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.12.048
– volume: 194
  start-page: 755
  year: 2018
  ident: 10.1016/j.envpol.2021.117287_bib14
  article-title: Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.12.021
– volume: 185
  start-page: 4735
  year: 2013
  ident: 10.1016/j.envpol.2021.117287_bib48
  article-title: Assessment of groundwater quality in a region of endemic fluorosis in the northeast of Brazil
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-012-2900-x
– volume: 47
  start-page: 1005
  year: 2013
  ident: 10.1016/j.envpol.2021.117287_bib8
  article-title: Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: a multivariate study
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.10.042
– volume: 367
  start-page: 182
  year: 2006
  ident: 10.1016/j.envpol.2021.117287_bib53
  article-title: The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.11.003
– year: 2011
  ident: 10.1016/j.envpol.2021.117287_bib59
– volume: 42
  start-page: 3662
  year: 2008
  ident: 10.1016/j.envpol.2021.117287_bib3
  article-title: Statistical modelling of global geogenic fluoride contamination in groundwaters
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071958y
– volume: 74
  start-page: 4905
  year: 2002
  ident: 10.1016/j.envpol.2021.117287_bib11
  article-title: Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method
  publication-title: Anal. Chem.
  doi: 10.1021/ac020113w
– start-page: 375
  year: 2007
  ident: 10.1016/j.envpol.2021.117287_bib25
  article-title: Tracing anthropogenic inputs of nitrogen to ecosystems
– volume: 237
  start-page: 430
  year: 2018
  ident: 10.1016/j.envpol.2021.117287_bib29
  article-title: Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.02.072
– volume: 205
  start-page: 493
  year: 2018
  ident: 10.1016/j.envpol.2021.117287_bib27
  article-title: Geochemical signatures and isotopic systematics constraining dynamics of fluoride contamination in groundwater across Jamui district, Indo-Gangetic alluvial plains, India
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.04.116
– volume: 579
  start-page: 124211
  year: 2019
  ident: 10.1016/j.envpol.2021.117287_bib31
  article-title: Impact of anthropogenic activities on the enrichment of fluoride and salinity in groundwater in the Yuncheng Basin constrained by Cl/Br ratio, δ18O, δ2H, δ13C and δ7Li isotopes
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124211
– volume: 222
  start-page: 118
  year: 2017
  ident: 10.1016/j.envpol.2021.117287_bib72
  article-title: Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.12.074
– volume: 51
  start-page: 15
  year: 2018
  ident: 10.1016/j.envpol.2021.117287_bib26
  article-title: Spatial-temporal variations of nitrate levels in groundwater of Jeju Island, Korea: evaluation of long-term (1993-2015) monitoring data
  publication-title: Econ. Environ. Geol.
– volume: 1–23
  year: 2020
  ident: 10.1016/j.envpol.2021.117287_bib51
  article-title: Spatial distribution of quality of groundwater and probabilistic non-carcinogenic risk from a rural dry climatic region of South India
  publication-title: Environ. Geochem. Health
– volume: 6
  start-page: 253
  year: 2020
  ident: 10.1016/j.envpol.2021.117287_bib42
  article-title: Human health risk assessment of nitrate and trace metals via groundwater in Central Bangladesh
  publication-title: J. Pollut.
– volume: 506
  start-page: 46
  year: 2015
  ident: 10.1016/j.envpol.2021.117287_bib54
  article-title: Application of stable isotopes (δ34S-SO4, δ18O-SO4, δ15N-NO3, δ18O-NO3) to determine natural background and contamination sources in the Guadalhorce River Basin (southern Spain)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.10.090
– volume: 185
  start-page: 282
  year: 2018
  ident: 10.1016/j.envpol.2021.117287_bib66
  article-title: Association of hypertension, body mass index, and waist circumference with fluoride intake; water drinking in residents of fluoride endemic areas, Iran Association of Hypertension, Body Mass Index, and Waist Circumference with Fluoride Intake
  publication-title: Wate. Biol. Trace Elem. Res.
  doi: 10.1007/s12011-018-1269-2
– start-page: 154
  year: 2008
  ident: 10.1016/j.envpol.2021.117287_bib34
– volume: 145
  start-page: 249
  year: 2019
  ident: 10.1016/j.envpol.2021.117287_bib41
  article-title: Health risk assessment to fluoride and nitrate in drinking water of rural residents living in the Bardaskan city, arid region, southeastern Iran
  publication-title: Desalin. Water Treat.
  doi: 10.5004/dwt.2019.23651
– volume: 206
  start-page: 111217
  year: 2020
  ident: 10.1016/j.envpol.2021.117287_bib2
  article-title: Groundwater chemistry integrating the pollution index of groundwater and evaluation of potential human health risk: a case study from hard rock terrain of south India
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111217
– volume: 268
  start-page: 115947
  year: 2021
  ident: 10.1016/j.envpol.2021.117287_bib35
  article-title: Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.115947
– start-page: 261
  year: 2000
  ident: 10.1016/j.envpol.2021.117287_bib24
  article-title: Nitrate isotopes in groundwater systems
– volume: 647
  start-page: 1121
  year: 2019
  ident: 10.1016/j.envpol.2021.117287_bib7
  article-title: Source and fate of nitrate in contaminated groundwater systems: assessing spatial and temporal variations by hydrogeochemistry and multiple stable isotope tools
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.08.007
– volume: 741
  start-page: 140460
  year: 2020
  ident: 10.1016/j.envpol.2021.117287_bib73
  article-title: Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District, Central China: assessment based on multivariate statistical approach and human health risk
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140460
– volume: 23
  start-page: 8302
  year: 2016
  ident: 10.1016/j.envpol.2021.117287_bib10
  article-title: Fluoride in weathered rock aquifers of southern India: managed aquifer recharge for mitigation
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-6069-7
– volume: 191
  start-page: 110227
  year: 2020
  ident: 10.1016/j.envpol.2021.117287_bib15
  article-title: Nitrate contamination of groundwater in the Lower Volta River Basin of Ghana: sources and related human health risks
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110227
– volume: 73
  start-page: 4145
  year: 2001
  ident: 10.1016/j.envpol.2021.117287_bib47
  article-title: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater
  publication-title: Anal. Chem.
  doi: 10.1021/ac010088e
– year: 2004
  ident: 10.1016/j.envpol.2021.117287_bib55
– volume: 646
  start-page: 1588
  year: 2019
  ident: 10.1016/j.envpol.2021.117287_bib40
  article-title: Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko polje aquifer (Slovenia): a stable isotope perspective
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.245
– volume: 148
  start-page: 292
  year: 2019
  ident: 10.1016/j.envpol.2021.117287_bib52
  article-title: Controlling factors and driving mechanisms of nitrate contamination in groundwater system of Bandung Basin, Indonesia, deduced by combined use of stable isotope ratios, CFC age dating, and socioeconomic parameters
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.10.049
– volume: 53
  start-page: 795
  year: 2007
  ident: 10.1016/j.envpol.2021.117287_bib17
  article-title: Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-007-0692-z
– volume: 77
  start-page: 775
  year: 2018
  ident: 10.1016/j.envpol.2021.117287_bib30
  article-title: Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, northwest China: implications to sustainable groundwater quality management on the Loess Plateau
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7968-3
– volume: 76
  start-page: 45
  year: 2017
  ident: 10.1016/j.envpol.2021.117287_bib1
  article-title: Mechanism of fluoride enrichment in groundwater of hard rock aquifers in Medak, Telangana State, South India
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-6362-2
– volume: 66
  start-page: 113
  year: 2016
  ident: 10.1016/j.envpol.2021.117287_bib75
  article-title: Analysis of isotope tracing of domestic sewage sources in Taihu Lake-a case study of Meiliang Bay and Gonghu Bay
  publication-title: Ecol. Indicat.
  doi: 10.1016/j.ecolind.2016.01.028
– volume: 650
  start-page: 2004
  year: 2019
  ident: 10.1016/j.envpol.2021.117287_bib62
  article-title: Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.322
– volume: 508
  start-page: 155
  year: 2015
  ident: 10.1016/j.envpol.2021.117287_bib28
  article-title: Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.11.045
– volume: 16
  start-page: 564
  year: 2019
  ident: 10.1016/j.envpol.2021.117287_bib68
  article-title: Spatial distribution variation and probabilistic risk assessment of exposure to fluoride in ground water supplies: a case study in an endemic fluorosis region of northwest Iran
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph16040564
– volume: 233
  start-page: 721
  year: 1984
  ident: 10.1016/j.envpol.2021.117287_bib20
  article-title: Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a PON anhydride mechanism in oxidative phosphorylation
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(84)90499-5
– volume: 635
  start-page: 203
  year: 2018
  ident: 10.1016/j.envpol.2021.117287_bib43
  article-title: Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.064
– volume: 148
  start-page: 426
  year: 2018
  ident: 10.1016/j.envpol.2021.117287_bib67
  article-title: Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.10.057
– volume: 26
  start-page: 540
  year: 2011
  ident: 10.1016/j.envpol.2021.117287_bib12
  article-title: Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin, China
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2011.01.012
– volume: 220
  start-page: 381
  year: 2019
  ident: 10.1016/j.envpol.2021.117287_bib22
  article-title: FIMAR: a new fluoride index to mitigate geogenic contamination by managed aquifer recharge
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.12.084
– volume: 25
  start-page: 11
  year: 2019
  ident: 10.1016/j.envpol.2021.117287_bib32
  article-title: Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: a case study in Yan’an City on the Loess Plateau of northwest China
  publication-title: Hum. Ecol. Risk Assess.
  doi: 10.1080/10807039.2018.1553612
– year: 2011
  ident: 10.1016/j.envpol.2021.117287_bib56
– volume: 161
  start-page: 43
  year: 2012
  ident: 10.1016/j.envpol.2021.117287_bib65
  article-title: Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.09.033
– volume: 172
  start-page: 481
  year: 2011
  ident: 10.1016/j.envpol.2021.117287_bib9
  article-title: Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-010-1348-0
– volume: 380–381
  start-page: 237
  year: 2015
  ident: 10.1016/j.envpol.2021.117287_bib61
  article-title: Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2015.01.021
– volume: 11
  start-page: 95
  year: 2019
  ident: 10.1016/j.envpol.2021.117287_bib33
  article-title: Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese loess plateau: a case study of Tongchuan, Northwest China
  publication-title: Exp. Health
  doi: 10.1007/s12403-018-0278-x
– volume: 7
  start-page: 17300
  year: 2017
  ident: 10.1016/j.envpol.2021.117287_bib38
  article-title: Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17328-8
– volume: 24
  start-page: 641
  year: 2009
  ident: 10.1016/j.envpol.2021.117287_bib57
  article-title: Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.12.015
– volume: 278
  start-page: 116930
  year: 2021
  ident: 10.1016/j.envpol.2021.117287_bib63
  article-title: Groundwater hydrochemistry, source identification and pollution assessment in intensive industrial areas, eastern Chinese loess plateau
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.116930
– volume: 107
  start-page: 104408
  year: 2019
  ident: 10.1016/j.envpol.2021.117287_bib69
  article-title: Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information system, northwest Iran
  publication-title: Regul. Toxicol. Pharmacol.
  doi: 10.1016/j.yrtph.2019.104408
– volume: 126
  start-page: 76
  year: 2019
  ident: 10.1016/j.envpol.2021.117287_bib46
  article-title: Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.02.011
– volume: 393
  start-page: 131
  year: 2008
  ident: 10.1016/j.envpol.2021.117287_bib19
  article-title: Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2007.12.025
– volume: 259
  start-page: 113711
  year: 2020
  ident: 10.1016/j.envpol.2021.117287_bib23
  article-title: Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113711
– volume: 40
  start-page: 1209
  year: 2018
  ident: 10.1016/j.envpol.2021.117287_bib4
  article-title: Hydrogeochemical processes identification and groundwater pollution causes analysis in the northern Ordos Cretaceous Basin, China
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-017-0037-0
– volume: 150
  start-page: 390
  year: 2016
  ident: 10.1016/j.envpol.2021.117287_bib44
  article-title: Exploiting biogeochemical and spectroscopic techniques to assess the geochemical distribution and release dynamics of chromium and lead in a contaminated floodplain soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.02.021
– volume: 195
  start-page: 110503
  year: 2020
  ident: 10.1016/j.envpol.2021.117287_bib39
  article-title: Two distinct mechanisms of fluoride enrichment and associated health risk in springs' water near an inactive volcano, southeast Iran
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110503
– volume: 717
  start-page: 137134
  year: 2020
  ident: 10.1016/j.envpol.2021.117287_bib74
  article-title: Application of the dual-isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu Plain, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137134
– volume: 137
  start-page: 130
  year: 2017
  ident: 10.1016/j.envpol.2021.117287_bib71
  article-title: Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2016.11.010
– volume: 235
  start-page: 207
  year: 2018
  ident: 10.1016/j.envpol.2021.117287_bib37
  article-title: Quantification of spatial and seasonal variations in the proportional contribution of nitrate sources using a multi-isotope approach and Bayesian isotope mixing model
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.12.078
– volume: 609
  start-page: 607
  year: 2017
  ident: 10.1016/j.envpol.2021.117287_bib58
  article-title: Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.07.176
– volume: 9
  start-page: 227
  year: 2017
  ident: 10.1016/j.envpol.2021.117287_bib49
  article-title: Assessment of groundwater quality and health risk in the oil and gas field of Dingbian County, Northwest China
  publication-title: Exp. Health
  doi: 10.1007/s12403-016-0234-6
– volume: 218
  start-page: 44
  year: 2018
  ident: 10.1016/j.envpol.2021.117287_bib60
  article-title: Multiple isotope geochemistry and hydrochemical monitoring of karst water in a rapidly urbanized region
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2018.10.009
SSID ssj0004333
Score 2.636488
Snippet Fluoride (F−) and nitrate (NO3−) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the...
Fluoride (F ) and nitrate (NO ) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the...
Fluoride (F-) and nitrate (NO3-) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the...
Fluoride (F⁻) and nitrate (NO₃⁻) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117287
SubjectTerms calcite
cation exchange
China
evaporation
Fluoride
fluorides
groundwater
groundwater contamination
Health risk assessment
human health
isotope labeling
Loess Plateau
Nitrate
nitrates
nitrification
nitrogen
sewage
soil organic nitrogen
Source
Title Fluoride and nitrate contamination of groundwater in the Loess Plateau, China: Sources and related human health risks
URI https://dx.doi.org/10.1016/j.envpol.2021.117287
https://www.ncbi.nlm.nih.gov/pubmed/33971470
https://www.proquest.com/docview/2525661730
https://www.proquest.com/docview/2551926637
Volume 286
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7QUeEOsYjLHpkBBPmDb-SNy9VdOq8jUhjUl7s5zYkToVp2obJl742znbyQYSMInHOGfLytnn38W_uyPklRRVkZtSUZOVjApZCKpQlGa8RCiHOMnyEI386TyfXYr3V_Jqi5z2sTCBVtnZ_mTTo7XuWobd1xwu5_PhBXoPCIbHIQMW4vIUwS6KQOt7--OO5iF4KiePwjRI9-FzkePl_LdlEy4gWBZuL1kg1v35ePob_IzH0PQxedThR5ikKe6SLecHZG_i0Xf--h1eQ2R0xl_lA_Lwl2SDA7J_dhfThiN0m3q9R9rpom1Wc-vAeAu4xUP2CAgcdhN4MkFz0NQQ4j-8vcF3K5h7QOAIHxu0k_B5gW2mfQOxFvcJXMT7gHUcLYbKOAuxFCCkoEsIdPb1E3I5PftyOqNdNQZqRKY21MiKG6e4kKXNmUG_JENNytyMpMoVz3I87WuFJkMYwcXYGXTExjVT0pWSO2v5Ptn2jXfPCLCa81GlDBvbUihbGyYsOi5lXSCg41V1QHivBF11qcpDxYyF7jlp1zqpTgfV6aS6A0Jvey1Tqo575Itev_q3JafxNLmn58t-OWjcjeGKxXjXtGvNJEJIBIV89C8ZRM2IiziO8zStpdv5coSHmShGz_97bofkQXhKfMMXZHuzat0R4qZNeRw3xjHZmbz7MDv_CcIwF9U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELam7gF4mKBjMNjASIgnojb-kbi8VdOqjnUV0jZpb5YTO1JR51RtA-K_585ONpCASbwmtmXl7PN38ffdEfJeijLPTKESkxYsETIXiYKmScoLgHKAkyxHNfLFPJtei8838maHnHRaGKRVtr4_-vTgrdsng_ZrDlaLxeASogcAwyPMgAW4HBXsu5idSvTI7vjsfDq_l0fyWFEe2ifYoVPQBZqX899WNd5BsBQvMBly6_58Qv0NgYaTaPKU7LUQko7jLJ-RHef7ZH_sIXy-_UE_0EDqDH_L--TJL_kG--Tg9F7WBiO0-3qzT5rJsqnXC-uo8ZbCLscEEhRp7AapMmg8WlcUJSDefod3a7rwFLAjndXgKumXJTwzzUcaynF_opfhSmATRgtqGWdpqAZIo-6SIqN985xcT06vTqZJW5AhMSJV28TIkhunuJCFzZiB0CQFY8rMDKXKFE8zOPArBV5DGMHFyBmIxUYVU9IVkjtr-QHp-dq7l4SyivNhqQwb2UIoWxkmLMQuRZUDpuNleUh4ZwRdttnKsWjGUne0tK86mk6j6XQ03SFJ7nqtYraOB9rnnX31b6tOw4HyQM933XLQsCHxlsV4VzcbzSSgSMCFfPivNgCcARpxGOdFXEt38-WAEFORD1_999zekkfTq4uZnp3Nz1-Tx_gm0g-PSG-7btwxwKht8abdJj8BSBsahg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluoride+and+nitrate+contamination+of+groundwater+in+the+Loess+Plateau%2C+China%3A+Sources+and+related+human+health+risks&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Su%2C+He&rft.au=Kang%2C+Weidong&rft.au=Li%2C+Yanrong&rft.au=Li%2C+Zhi&rft.date=2021-10-01&rft.issn=0269-7491&rft.volume=286+p.117287-&rft_id=info:doi/10.1016%2Fj.envpol.2021.117287&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon