The Emerging Role of β-Lactams in the Treatment of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections
Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced ant...
Saved in:
Published in | Antimicrobial agents and chemotherapy Vol. 64; no. 7 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
23.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Methicillin-resistant
Staphylococcus aureus
(MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI.
Methicillin-resistant
Staphylococcus aureus
(MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Ceftaroline (CPT), the only commercially available β-lactam in the United States with intrinsic
in vitro
activity against MRSA, has been increasingly studied in the setting of VAN and DAP failures. Novel combinations of first-line agents (VAN and DAP) with β-lactams have been the subject of many recent investigations due to
in vitro
findings such as the “seesaw effect,” where β-lactam susceptibility may be improved in the presence of decreased glycopeptide and lipopeptide susceptibility. The combination of CPT and DAP, in particular, has become the focus of many scientific evaluations, due to intrinsic anti-MRSA activities and potent
in vitro
synergistic activity against various MRSA strains. This article reviews the available literature describing these innovative therapeutic approaches for MRSA BSI, focusing on preclinical and clinical studies, and evaluates the potential benefits and limitations of each strategy. |
---|---|
AbstractList | Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Ceftaroline (CPT), the only commercially available β-lactam in the United States with intrinsic in vitro activity against MRSA, has been increasingly studied in the setting of VAN and DAP failures. Novel combinations of first-line agents (VAN and DAP) with β-lactams have been the subject of many recent investigations due to in vitro findings such as the "seesaw effect," where β-lactam susceptibility may be improved in the presence of decreased glycopeptide and lipopeptide susceptibility. The combination of CPT and DAP, in particular, has become the focus of many scientific evaluations, due to intrinsic anti-MRSA activities and potent in vitro synergistic activity against various MRSA strains. This article reviews the available literature describing these innovative therapeutic approaches for MRSA BSI, focusing on preclinical and clinical studies, and evaluates the potential benefits and limitations of each strategy.Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Ceftaroline (CPT), the only commercially available β-lactam in the United States with intrinsic in vitro activity against MRSA, has been increasingly studied in the setting of VAN and DAP failures. Novel combinations of first-line agents (VAN and DAP) with β-lactams have been the subject of many recent investigations due to in vitro findings such as the "seesaw effect," where β-lactam susceptibility may be improved in the presence of decreased glycopeptide and lipopeptide susceptibility. The combination of CPT and DAP, in particular, has become the focus of many scientific evaluations, due to intrinsic anti-MRSA activities and potent in vitro synergistic activity against various MRSA strains. This article reviews the available literature describing these innovative therapeutic approaches for MRSA BSI, focusing on preclinical and clinical studies, and evaluates the potential benefits and limitations of each strategy. Methicillin-resistant (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Ceftaroline (CPT), the only commercially available β-lactam in the United States with intrinsic activity against MRSA, has been increasingly studied in the setting of VAN and DAP failures. Novel combinations of first-line agents (VAN and DAP) with β-lactams have been the subject of many recent investigations due to findings such as the "seesaw effect," where β-lactam susceptibility may be improved in the presence of decreased glycopeptide and lipopeptide susceptibility. The combination of CPT and DAP, in particular, has become the focus of many scientific evaluations, due to intrinsic anti-MRSA activities and potent synergistic activity against various MRSA strains. This article reviews the available literature describing these innovative therapeutic approaches for MRSA BSI, focusing on preclinical and clinical studies, and evaluates the potential benefits and limitations of each strategy. Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Ceftaroline (CPT), the only commercially available β-lactam in the United States with intrinsic in vitro activity against MRSA, has been increasingly studied in the setting of VAN and DAP failures. Novel combinations of first-line agents (VAN and DAP) with β-lactams have been the subject of many recent investigations due to in vitro findings such as the “seesaw effect,” where β-lactam susceptibility may be improved in the presence of decreased glycopeptide and lipopeptide susceptibility. The combination of CPT and DAP, in particular, has become the focus of many scientific evaluations, due to intrinsic anti-MRSA activities and potent in vitro synergistic activity against various MRSA strains. This article reviews the available literature describing these innovative therapeutic approaches for MRSA BSI, focusing on preclinical and clinical studies, and evaluates the potential benefits and limitations of each strategy. Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Ceftaroline (CPT), the only commercially available β-lactam in the United States with intrinsic in vitro activity against MRSA, has been increasingly studied in the setting of VAN and DAP failures. Novel combinations of first-line agents (VAN and DAP) with β-lactams have been the subject of many recent investigations due to in vitro findings such as the “seesaw effect,” where β-lactam susceptibility may be improved in the presence of decreased glycopeptide and lipopeptide susceptibility. The combination of CPT and DAP, in particular, has become the focus of many scientific evaluations, due to intrinsic anti-MRSA activities and potent in vitro synergistic activity against various MRSA strains. This article reviews the available literature describing these innovative therapeutic approaches for MRSA BSI, focusing on preclinical and clinical studies, and evaluates the potential benefits and limitations of each strategy. |
Author | Huang, Vanthida Miller, Matthew A. Molina, Kyle C. Morrisette, Taylor Fish, Douglas N. |
Author_xml | – sequence: 1 givenname: Kyle C. orcidid: 0000-0002-6764-5984 surname: Molina fullname: Molina, Kyle C. organization: Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA, Department of Pharmacy-Infectious Diseases, University of Colorado Hospital, Aurora, Colorado, USA – sequence: 2 givenname: Taylor orcidid: 0000-0002-1094-043X surname: Morrisette fullname: Morrisette, Taylor organization: Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA, Department of Pharmacy-Infectious Diseases, University of Colorado Hospital, Aurora, Colorado, USA – sequence: 3 givenname: Matthew A. surname: Miller fullname: Miller, Matthew A. organization: Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA, Department of Pharmacy-Infectious Diseases, University of Colorado Hospital, Aurora, Colorado, USA – sequence: 4 givenname: Vanthida orcidid: 0000-0001-8028-3554 surname: Huang fullname: Huang, Vanthida organization: Department of Pharmacy Practice, Midwestern University College of Pharmacy–Glendale, Glendale, Arizona, USA – sequence: 5 givenname: Douglas N. surname: Fish fullname: Fish, Douglas N. organization: Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32312776$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV9rFDEUxYNU7Lb65rPMo4LT5s_MZPIibJdqC1uEuj6HNHOzm5JJ1iRT6Nfyg_iZzLptUdGnSzi_e7gn5wgd-OABodcEnxBC-9P5fHGCcdP1NcXP0Ixg0dddK7oDNMO46-qmx80hOkrpFpd3K_ALdMgoI5TzbobuVhuozkeIa-vX1XVwUAVT_fheL5XOakyV9VUuyCqCyiP4vJOvIG-sts5ZX19DsimrInzJaru5d0EHradUqSlCGWcuhCHlsj5Wl96Azjb49BI9N8olePUwj9HXj-erxUW9_PzpcjFf1qohfa570LxtBkw61XJmCGCuOYGhoTfNIAYGom91C4Ya2irTMUFZawbWE96RBivDjtGHve92uhlh0CVAVE5uox1VvJdBWfmn4u1GrsOd5IxwIZpi8PbBIIZvE6QsR5s0OKc8hClJygTDjAuMC_puj6o0UnkbpuhLNEmw3PUkS0_yV0-S7tg3v9_1dNBjMQV4vwd0DClFME_If_zoX7i2We2-uqSy7t9LPwF50LCV |
CitedBy_id | crossref_primary_10_3390_antibiotics12030557 crossref_primary_10_3390_antibiotics9110762 crossref_primary_10_3390_diagnostics13050819 crossref_primary_10_2147_IDR_S318322 crossref_primary_10_7759_cureus_31486 crossref_primary_10_1021_acs_chemrev_0c01010 crossref_primary_10_1177_87551225241227796 crossref_primary_10_1016_j_amjmed_2022_09_017 crossref_primary_10_2106_JBJS_22_00792 crossref_primary_10_3389_fmolb_2021_688357 crossref_primary_10_1016_j_ijbiomac_2020_11_096 crossref_primary_10_1016_j_ijantimicag_2021_106310 crossref_primary_10_3390_antibiotics10070763 crossref_primary_10_2174_1381612829666230410095155 crossref_primary_10_1080_14656566_2024_2367003 crossref_primary_10_1186_s12941_025_00773_z crossref_primary_10_3390_antibiotics10070849 crossref_primary_10_3390_pathogens13010076 crossref_primary_10_1128_jb_00387_22 crossref_primary_10_1128_aac_01264_22 crossref_primary_10_3390_antibiotics11010056 |
Cites_doi | 10.1128/jb.179.8.2557-2566.1997 10.1128/AAC.02308-12 10.1128/AAC.01554-17 10.1128/AAC.01242-06 10.1128/AAC.01235-16 10.1086/655827 10.1007/s10156-012-0449-9 10.1093/cid/ciq146 10.1093/cid/civ808 10.1517/14656566.5.11.2321 10.1128/AAC.01204-13 10.1128/AAC.43.7.1747 10.1093/jac/dky439 10.1016/j.ijid.2017.01.019 10.1093/cid/ciz746 10.1128/AAC.48.8.2871-2875.2004 10.1001/jama.2020.0103 10.1093/jac/dkq193 10.1016/j.ijantimicag.2013.07.005 10.1007/s40265-017-0785-2 10.1128/JCM.00775-12 10.1007/s15010-015-0763-0 10.1128/AAC.02015-16 10.1097/IPC.0000000000000222 10.1007/s40121-014-0023-0 10.1128/AAC.00797-12 10.1080/23744235.2018.1448110 10.1016/j.ijantimicag.2014.07.024 10.1093/jac/dku378 10.1093/cid/cir340 10.1093/jac/dkv076 10.1128/AAC.03600-14 10.1097/CCM.0000000000002769 10.1002/phar.2034 10.1128/AAC.00019-10 10.1007/s40121-019-00277-2 10.1097/IPC.0000000000000191 10.1128/AAC.50.3.1079-1082.2006 10.1128/AAC.00636-09 10.1128/AAC.01586-12 10.1093/jac/dkx214 10.1111/j.1574-6976.2007.00095.x 10.1128/AAC.00487-10 10.1016/j.clinthera.2014.05.061 10.1128/AAC.00900-19 10.1128/AAC.01516-09 10.1093/jac/dks006 10.1093/ofid/ofz168 10.1128/AAC.00157-18 10.1128/AAC.01525-12 10.1007/s15010-019-01304-7 10.1128/AAC.02483-18 10.1093/jac/dku455 10.1093/cid/ciw709 10.1086/430352 10.1128/AAC.00386-15 10.1128/AAC.01816-17 10.1093/cid/ciz498 10.1128/AAC.02371-13 10.1128/AAC.01666-15 10.1016/j.clinthera.2016.12.005 10.1016/j.jmii.2018.07.006 10.1093/ofid/ofz538 |
ContentType | Journal Article |
Copyright | Copyright © 2020 American Society for Microbiology. Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2020 American Society for Microbiology. – notice: Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1128/AAC.00468-20 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1098-6596 |
ExternalDocumentID | PMC7317994 00468-20 32312776 10_1128_AAC_00468_20 |
Genre | Journal Article Review |
GroupedDBID | --- .55 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 AAGFI AAYXX ACGFO ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS F5P FRP GX1 H13 HH5 HYE HZ~ H~9 K-O KQ8 L7B LSO O9- OK1 P2P RHI RNS RPM RSF TR2 UHB W2D W8F WH7 WOQ X7M NPM RHF - 0R 55 AAPBV ABFLS ADACO BXI HZ ZA5 7X8 5PM |
ID | FETCH-LOGICAL-a418t-8ec754d016a573f1e07c71ed42b4d9d3e985c5ef2f25af639235fd38176140af3 |
ISSN | 0066-4804 1098-6596 |
IngestDate | Thu Aug 21 13:50:11 EDT 2025 Fri Jul 11 09:22:09 EDT 2025 Tue Dec 28 13:59:02 EST 2021 Thu Jan 02 22:58:42 EST 2025 Tue Jul 01 04:13:13 EDT 2025 Thu Apr 24 22:52:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | ceftaroline combination therapy beta-lactams Staphylococcus aureus bacteremia |
Language | English |
License | Copyright © 2020 American Society for Microbiology. All Rights Reserved. https://doi.org/10.1128/ASMCopyrightv2 All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a418t-8ec754d016a573f1e07c71ed42b4d9d3e985c5ef2f25af639235fd38176140af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Citation Molina KC, Morrisette T, Miller MA, Huang V, Fish DN. 2020. The emerging role of β-lactams in the treatment of methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob Agents Chemother 64:e00468-20. https://doi.org/10.1128/AAC.00468-20. |
ORCID | 0000-0002-1094-043X 0000-0002-6764-5984 0000-0001-8028-3554 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7317994 |
PMID | 32312776 |
PQID | 2393037900 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7317994 proquest_miscellaneous_2393037900 asm2_journals_10_1128_AAC_00468_20 pubmed_primary_32312776 crossref_primary_10_1128_AAC_00468_20 crossref_citationtrail_10_1128_AAC_00468_20 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200623 |
PublicationDateYYYYMMDD | 2020-06-23 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200623 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Antimicrobial agents and chemotherapy |
PublicationTitleAbbrev | Antimicrob Agents Chemother |
PublicationTitleAlternate | Antimicrob Agents Chemother |
PublicationYear | 2020 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_1_60_2 e_1_3_1_43_2 e_1_3_1_66_2 e_1_3_1_22_2 e_1_3_1_45_2 e_1_3_1_68_2 Merck & Co, Inc (e_1_3_1_9_2) 2003 e_1_3_1_24_2 e_1_3_1_8_2 e_1_3_1_62_2 e_1_3_1_41_2 e_1_3_1_64_2 e_1_3_1_20_2 e_1_3_1_4_2 e_1_3_1_6_2 e_1_3_1_26_2 e_1_3_1_47_2 e_1_3_1_28_2 e_1_3_1_49_2 Nakhate PH (e_1_3_1_53_2) 2013; 2 CLSI (e_1_3_1_12_2) 2020 e_1_3_1_70_2 e_1_3_1_32_2 e_1_3_1_55_2 e_1_3_1_34_2 e_1_3_1_57_2 e_1_3_1_13_2 e_1_3_1_51_2 e_1_3_1_11_2 e_1_3_1_30_2 e_1_3_1_17_2 e_1_3_1_15_2 e_1_3_1_36_2 e_1_3_1_59_2 e_1_3_1_19_2 e_1_3_1_38_2 Forest Pharmaceuticals, Inc (e_1_3_1_48_2) 2011 e_1_3_1_21_2 e_1_3_1_44_2 e_1_3_1_65_2 e_1_3_1_23_2 e_1_3_1_46_2 e_1_3_1_67_2 e_1_3_1_7_2 e_1_3_1_40_2 e_1_3_1_61_2 e_1_3_1_42_2 e_1_3_1_63_2 e_1_3_1_29_2 e_1_3_1_3_2 e_1_3_1_5_2 e_1_3_1_25_2 e_1_3_1_69_2 e_1_3_1_27_2 e_1_3_1_33_2 e_1_3_1_54_2 e_1_3_1_35_2 e_1_3_1_56_2 e_1_3_1_50_2 e_1_3_1_10_2 e_1_3_1_31_2 e_1_3_1_52_2 Inagaki K (e_1_3_1_2_2) 2019; 69 e_1_3_1_16_2 e_1_3_1_14_2 e_1_3_1_37_2 e_1_3_1_58_2 e_1_3_1_18_2 e_1_3_1_39_2 Kalil, AC, Holubar, M, Deresinski, S, Chambers, HF (B62) 2019; 63 Sullivan, EL, Turner, RB, O’Neal, HR, Crum-Cianflone, NF (B30) 2019; 6 Lin, JC, Fierer, J, Aung, G, Johns, S, Thomas, A, Jahng, M, Fierer, J, Fierer, J (B21) 2013; 19 Luther, MK, Timbrook, TT, Caffrey, AR, Dosa, D, Lodise, TP, LaPlante, KL (B41) 2018; 46 Inagaki, K, Lucar, J, Blackshear, C, Hobbs, CV (B1) 2019; 69 Sader, HS, Farrell, DJ, Flamm, RK, Jones, RN (B12) 2015; 70 Liu, C, Bayer, A, Cosgrove, SE, Daum, RS, Fridkin, SK, Gorwitz, RJ, Kaplan, SL, Karchmer, AW, Levine, DP, Murray, BE, J Rybak, M, Talan, DA, Chambers, HF (B3) 2011; 52 Espedido, BA, Jensen, SO, van Hal, SJ (B13) 2015; 70 Polenakovik, HM, Pleiman, CM (B22) 2013; 42 Silverman, JA, Mortin, LI, VanPraagh, ADG, Li, T, Alder, J (B6) 2005; 191 Geriak, M, Haddad, F, Rizvi, K, Rose, W, Kullar, R, LaPlante, K, Yu, M, Vasina, L, Ouellette, K, Zervos, M, Nizet, V, Sakoulas, G (B61) 2019; 63 Yang, S-J, Xiong, YQ, Boyle-Vavra, S, Daum, R, Jones, T, Bayer, AS (B33) 2010; 54 Davis, JS, Sud, A, O’Sullivan, MVN, Robinson, JO, Ferguson, PE, Foo, H, van Hal, SJ, Ralph, AP, Howden, BP, Binks, PM, Kirby, A, Tong, SYC, Tong, S, Davis, J, Binks, P, Majumdar, S, Ralph, A, Baird, R, Gordon, C, Jeremiah, C, Leung, G, Brischetto, A, Crowe, A, Dakh, F, Whykes, K, Kirkwood, M, Sud, A, Menon, M, Somerville, L, Subedi, S, Owen, S, O’Sullivan, M, Liu, E, Zhou, F, Robinson, O, Coombs, G, Ferguson, P, Ralph, A, Liu, E, Pollet, S, Van Hal, S, Foo, H, Van Hal, S, Davis, R (B42) 2016; 62 Gatin, L, Saleh-Mghir, A, Tasse, J, Ghout, I, Laurent, F, Crémieux, A-C (B18) 2014; 58 Corey, GR, Wilcox, M, Talbot, GH, Friedland, HD, Baculik, T, Witherell, GW, Critchley, I, Das, AF, Thye, D (B26) 2010; 51 Vidaillac, C, Leonard, SN, Rybak, MJ (B16) 2009; 53 Sakoulas, G, Moise, PA, Casapao, AM, Nonejuie, P, Olson, J, Okumura, CYM, Rybak, MJ, Kullar, R, Dhand, A, Rose, WE, Goff, DA, Bressler, AM, Lee, Y, Pogliano, J, Johns, S, Kaatz, GW, Ebright, JR, Nizet, V (B51) 2014; 36 Eljaaly, K, Alshehri, S, Erstad, BL (B45) 2018; 62 Tong, SYC, Lye, DC, Yahav, D, Sud, A, Robinson, JO, Nelson, J, Archuleta, S, Roberts, MA, Cass, A, Paterson, DL, Foo, H, Paul, M, Guy, SD, Tramontana, AR, Walls, GB, McBride, S, Bak, N, Ghosh, N, Rogers, BA, Ralph, AP, Davies, J, Ferguson, PE, Dotel, R, McKew, GL, Gray, TJ, Holmes, NE, Smith, S, Warner, MS, Kalimuddin, S, Young, BE, Runnegar, N, Andresen, DN, Anagnostou, NA, Johnson, SA, Chatfield, MD, Cheng, AC, Fowler, VG, Howden, BP, Meagher, N, Price, DJ, van Hal, SJ, O’Sullivan, MVN, Davis, JS (B44) 2020; 323 Werth, BJ, Steed, ME, Kaatz, GW, Rybak, MJ (B54) 2013; 57 Britt, RS, Evoy, KE, Lee, GC, Reveles, KR, Sorensen, KM, Jones, X, Bollinger, M, Frei, CR (B29) 2017; 77 Werth, BJ, Sakoulas, G, Rose, WE, Pogliano, J, Tewhey, R, Rybak, MJ (B50) 2013; 57 Singh, R, Almutairi, M, Alm, RA, Lahiri, SD, San Martin, M, Chen, A, Ambler, JE (B14) 2017; 72 Austin, ED, Sullivan, SS, Macesic, N, Mehta, M, Miko, BA, Nematollahi, S, Shi, Q, Lowy, FD, Uhlemann, A-C (B2) 2019 Rand, KH, Houck, HJ (B34) 2004; 48 Baxi, SM, Chan, D, Jain, V (B58) 2015; 43 Barber, KE, Smith, JR, Ireland, CE, Boles, BR, Rose, WE, Rybak, MJ (B55) 2015; 59 Vazquez, JA, Maggiore, CR, Cole, P, Smith, A, Jandourek, A, Friedland, HD (B25) 2015; 23 Zasowski, EJ, Trinh, TD, Claeys, KC, Casapao, AM, Sabagha, N, Lagnf, AM, Klinker, KP, Davis, SL, Rybak, MJ (B28) 2017; 61 Paladino, JA, Jacobs, DM, Shields, RK, Taylor, J, Bader, J, Adelman, MH, Wilton, GJ, Crane, JK, Schentag, JJ (B24) 2014; 44 Dilworth, TJ, Ibrahim, O, Hall, P, Sliwinski, J, Walraven, C, Mercier, R-C (B38) 2014; 58 Casapao, AM, Davis, SL, Barr, VO, Klinker, KP, Goff, DA, Barber, KE, Kaye, KS, Mynatt, RP, Molloy, LM, Pogue, JM, Rybak, MJ (B23) 2014; 58 Miller, MA, Fish, DN, Barber, GR, Barron, MA, Goolsby, TA, Moine, P, Mueller, SW (B46) 2018 Rose, WE, Schulz, LT, Andes, D, Striker, R, Berti, AD, Hutson, PR, Shukla, SK (B49) 2012; 56 Bhowmick, T, Liu, C, Imp, B, Sharma, R, Boruchoff, SE (B65) 2019; 47 Holmes, NE, Johnson, PDR, Howden, BP (B4) 2012; 50 Casapao, AM, Jacobs, DM, Bowers, DR, Beyda, ND, Dilworth, TJ (B39) 2017; 37 Cui, L, Tominaga, E, Neoh, H, Hiramatsu, K (B5) 2006; 50 Smith, JR, Arya, A, Yim, J, Barber, KE, Hallesy, J, Singh, NB, Rybak, MJ (B69) 2016; 60 Navalkele, B, Pogue, JM, Karino, S, Nishan, B, Salim, M, Solanki, S, Pervaiz, A, Tashtoush, N, Shaikh, H, Koppula, S, Koons, J, Hussain, T, Perry, W, Evans, R, Martin, ET, Mynatt, RP, Murray, KP, Rybak, MJ, Kaye, KS (B40) 2017; 64 Zapun, A, Contreras-Martel, C, Vernet, T (B9) 2008; 32 Cortes-Penfield, N, Oliver, NT, Hunter, A, Rodriguez-Barradas, M (B60) 2018; 50 McCreary, EK, Kullar, R, Geriak, M, Zasowski, EJ, Rizvi, K, Schulz, LT, Ouellette, K, Vasina, L, Haddad, F, Rybak, MJ, Zervos, MJ, Sakoulas, G, Rose, WE (B68) 2020; 7 Arshad, S, Huang, V, Hartman, P, Perri, MB, Moreno, D, Zervos, MJ (B27) 2017; 57 Das, S, Li, J, Iaconis, J, Zhou, D, Stone, GG, Yan, JL, Melnick, D (B15) 2019; 74 (B11) 2020 Ahmad, O, Crawford, TN, Myint, T (B64) 2020; 9 (B8) 2003 Tran, K-N, Rybak, MJ (B37) 2018; 62 Jacqueline, C, Caillon, J, Le Mabecque, V, Miègeville, A-F, Hamel, A, Bugnon, D, Ge, JY, Potel, G (B19) 2007; 51 Dhand, A, Bayer, AS, Pogliano, J, Yang, S-J, Bolaris, M, Nizet, V, Wang, G, Sakoulas, G (B36) 2011; 53 Barber, KE, Ireland, CE, Bukavyn, N, Rybak, MJ (B7) 2014; 3 Saravolatz, L, Pawlak, J, Johnson, L (B48) 2010; 54 Barber, KE, Werth, BJ, Rybak, MJ (B56) 2015; 70 Jacqueline, C, Amador, G, Caillon, J, Le Mabecque, V, Batard, E, Miègeville, A-F, Biek, D, Ge, Y, Potel, G, Hamel, A (B17) 2010; 65 Kosowska-Shick, K, McGhee, PL, Appelbaum, PC (B10) 2010; 54 Ho, TT, Cadena, J, Childs, LM, Gonzalez-Velez, M, Lewis, JS (B20) 2012; 67 LaPlante, KL, Rybak, MJ (B53) 2004; 5 Sieradzki, K, Tomasz, A (B31) 1997; 179 Jorgensen, SCJ, Zasowski, EJ, Trinh, TD, Lagnf, AM, Bhatia, S, Sabagha, N, Abdul-Mutakabbir, JC, Alosaimy, S, Mynatt, RP, Davis, SL, Rybak, MJ (B43) 2019 Climo, MW, Patron, RL, Archer, GL (B32) 1999; 43 Mehta, S, Singh, C, Plata, KB, Chanda, PK, Paul, A, Riosa, S, Rosato, RR, Rosato, AE (B35) 2012; 56 Heil, EL, Shah, KP, Amoroso, A (B57) 2015; 23 (B47) 2011 Nakhate, PH, Yadav, DVK, Pathak, AN (B52) 2013; 2 Nigo, M, Diaz, L, Carvajal, LP, Tran, TT, Rios, R, Panesso, D, Garavito, JD, Miller, WR, Wanger, A, Weinstock, G, Munita, JM, Arias, CA, Chambers, HF (B59) 2017; 61 Gritsenko, D, Fedorenko, M, Ruhe, JJ, Altshuler, J (B66) 2017; 39 Truong, J, Veillette, JJ, Forland, SC (B67) 2018; 62 B63 |
References_xml | – ident: e_1_3_1_32_2 doi: 10.1128/jb.179.8.2557-2566.1997 – ident: e_1_3_1_55_2 doi: 10.1128/AAC.02308-12 – ident: e_1_3_1_68_2 doi: 10.1128/AAC.01554-17 – ident: e_1_3_1_20_2 doi: 10.1128/AAC.01242-06 – ident: e_1_3_1_60_2 doi: 10.1128/AAC.01235-16 – ident: e_1_3_1_27_2 doi: 10.1086/655827 – ident: e_1_3_1_22_2 doi: 10.1007/s10156-012-0449-9 – volume: 2 start-page: 970 year: 2013 ident: e_1_3_1_53_2 article-title: A review on daptomycin; the first US-FDA approved lipopeptide antibiotics publication-title: J Sci Innovative Res – ident: e_1_3_1_4_2 doi: 10.1093/cid/ciq146 – ident: e_1_3_1_43_2 doi: 10.1093/cid/civ808 – ident: e_1_3_1_54_2 doi: 10.1517/14656566.5.11.2321 – ident: e_1_3_1_39_2 doi: 10.1128/AAC.01204-13 – ident: e_1_3_1_33_2 doi: 10.1128/AAC.43.7.1747 – ident: e_1_3_1_16_2 doi: 10.1093/jac/dky439 – volume: 69 start-page: 2112 year: 2019 ident: e_1_3_1_2_2 article-title: Methicillin-susceptible and methicillin-resistant Staphylococcus aureus bacteremia: nationwide estimates of 30-day readmission, in-hospital mortality, length of stay, and cost in the United States publication-title: Clin Infect Dis – volume-title: Package insert year: 2011 ident: e_1_3_1_48_2 – ident: e_1_3_1_28_2 doi: 10.1016/j.ijid.2017.01.019 – ident: e_1_3_1_44_2 doi: 10.1093/cid/ciz746 – ident: e_1_3_1_35_2 doi: 10.1128/AAC.48.8.2871-2875.2004 – ident: e_1_3_1_45_2 doi: 10.1001/jama.2020.0103 – ident: e_1_3_1_64_2 – ident: e_1_3_1_18_2 doi: 10.1093/jac/dkq193 – ident: e_1_3_1_23_2 doi: 10.1016/j.ijantimicag.2013.07.005 – ident: e_1_3_1_30_2 doi: 10.1007/s40265-017-0785-2 – ident: e_1_3_1_5_2 doi: 10.1128/JCM.00775-12 – ident: e_1_3_1_59_2 doi: 10.1007/s15010-015-0763-0 – volume-title: Performance standards for antimicrobial susceptibility testing year: 2020 ident: e_1_3_1_12_2 – ident: e_1_3_1_29_2 doi: 10.1128/AAC.02015-16 – ident: e_1_3_1_58_2 doi: 10.1097/IPC.0000000000000222 – ident: e_1_3_1_8_2 doi: 10.1007/s40121-014-0023-0 – ident: e_1_3_1_50_2 doi: 10.1128/AAC.00797-12 – ident: e_1_3_1_61_2 doi: 10.1080/23744235.2018.1448110 – ident: e_1_3_1_25_2 doi: 10.1016/j.ijantimicag.2014.07.024 – ident: e_1_3_1_57_2 doi: 10.1093/jac/dku378 – ident: e_1_3_1_37_2 doi: 10.1093/cid/cir340 – ident: e_1_3_1_13_2 doi: 10.1093/jac/dkv076 – ident: e_1_3_1_19_2 doi: 10.1128/AAC.03600-14 – ident: e_1_3_1_42_2 doi: 10.1097/CCM.0000000000002769 – ident: e_1_3_1_40_2 doi: 10.1002/phar.2034 – ident: e_1_3_1_11_2 doi: 10.1128/AAC.00019-10 – ident: e_1_3_1_65_2 doi: 10.1007/s40121-019-00277-2 – ident: e_1_3_1_26_2 doi: 10.1097/IPC.0000000000000191 – volume-title: Package insert year: 2003 ident: e_1_3_1_9_2 – ident: e_1_3_1_6_2 doi: 10.1128/AAC.50.3.1079-1082.2006 – ident: e_1_3_1_17_2 doi: 10.1128/AAC.00636-09 – ident: e_1_3_1_51_2 doi: 10.1128/AAC.01586-12 – ident: e_1_3_1_15_2 doi: 10.1093/jac/dkx214 – ident: e_1_3_1_10_2 doi: 10.1111/j.1574-6976.2007.00095.x – ident: e_1_3_1_34_2 doi: 10.1128/AAC.00487-10 – ident: e_1_3_1_52_2 doi: 10.1016/j.clinthera.2014.05.061 – ident: e_1_3_1_63_2 doi: 10.1128/AAC.00900-19 – ident: e_1_3_1_49_2 doi: 10.1128/AAC.01516-09 – ident: e_1_3_1_21_2 doi: 10.1093/jac/dks006 – ident: e_1_3_1_31_2 doi: 10.1093/ofid/ofz168 – ident: e_1_3_1_38_2 doi: 10.1128/AAC.00157-18 – ident: e_1_3_1_36_2 doi: 10.1128/AAC.01525-12 – ident: e_1_3_1_66_2 doi: 10.1007/s15010-019-01304-7 – ident: e_1_3_1_62_2 doi: 10.1128/AAC.02483-18 – ident: e_1_3_1_14_2 doi: 10.1093/jac/dku455 – ident: e_1_3_1_41_2 doi: 10.1093/cid/ciw709 – ident: e_1_3_1_7_2 doi: 10.1086/430352 – ident: e_1_3_1_56_2 doi: 10.1128/AAC.00386-15 – ident: e_1_3_1_46_2 doi: 10.1128/AAC.01816-17 – ident: e_1_3_1_3_2 doi: 10.1093/cid/ciz498 – ident: e_1_3_1_24_2 doi: 10.1128/AAC.02371-13 – ident: e_1_3_1_70_2 doi: 10.1128/AAC.01666-15 – ident: e_1_3_1_67_2 doi: 10.1016/j.clinthera.2016.12.005 – ident: e_1_3_1_47_2 doi: 10.1016/j.jmii.2018.07.006 – ident: e_1_3_1_69_2 doi: 10.1093/ofid/ofz538 – volume: 6 start-page: ofz168 year: 2019 ident: B30 article-title: Ceftaroline-associated neutropenia: case series and literature review of incidence, risk factors, and outcomes publication-title: Open Forum Infect Dis doi: 10.1093/ofid/ofz168 – volume: 32 start-page: 361 year: 2008 end-page: 385 ident: B9 article-title: Penicillin-binding proteins and beta-lactam resistance publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2007.00095.x – volume: 77 start-page: 1345 year: 2017 end-page: 1351 ident: B29 article-title: Early use of ceftaroline fosamil in the United States veterans health care system publication-title: Drugs doi: 10.1007/s40265-017-0785-2 – volume: 60 start-page: 3970 year: 2016 end-page: 3975 ident: B69 article-title: Daptomycin in combination with ceftolozane-tazobactam or cefazolin against daptomycin-susceptible and -nonsusceptible Staphylococcus aureus in an in vitro, hollow-fiber model publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01666-15 – volume: 54 start-page: 1670 year: 2010 end-page: 1677 ident: B10 article-title: Affinity of ceftaroline and other beta-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00019-10 – volume: 51 start-page: 641 year: 2010 end-page: 650 ident: B26 article-title: Integrated analysis of CANVAS 1 and 2: phase 3, multicenter, randomized, double‐blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin‐structure infection publication-title: Clin Infect Dis doi: 10.1086/655827 – volume: 323 start-page: 527 year: 2020 end-page: 537 ident: B44 article-title: Effect of vancomycin or daptomycin with vs without an antistaphylococcal β-lactam on mortality, bacteremia, relapse, or treatment failure in patients with MRSA bacteremia: a randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2020.0103 – volume: 56 start-page: 5296 year: 2012 end-page: 5302 ident: B49 article-title: Addition of ceftaroline to daptomycin after emergence of daptomycin-nonsusceptible Staphylococcus aureus during therapy improves antibacterial activity publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00797-12 – volume: 36 start-page: 1317 year: 2014 end-page: 1333 ident: B51 article-title: Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline publication-title: Clin Ther doi: 10.1016/j.clinthera.2014.05.061 – volume: 69 start-page: 2112 year: 2019 end-page: 2118 ident: B1 article-title: Methicillin-susceptible and methicillin-resistant Staphylococcus aureus bacteremia: nationwide estimates of 30-day readmission, in-hospital mortality, length of stay, and cost in the United States publication-title: Clin Infect Dis – volume: 23 start-page: 39 year: 2015 end-page: 43 ident: B25 article-title: Ceftaroline fosamil for the treatment of Staphylococcus aureus bacteremia secondary to acute bacterial skin and skin structure infections or community-acquired bacterial pneumonia publication-title: Infect Dis Clin Pract (Baltim Md) doi: 10.1097/IPC.0000000000000191 – year: 2018 ident: B46 article-title: A comparison of safety and outcomes with cefazolin versus nafcillin for methicillin-susceptible Staphylococcus aureus bloodstream infections publication-title: J Microbiol Immunol Infect doi: 10.1016/j.jmii.2018.07.006 – volume: 7 start-page: ofz538 year: 2020 ident: B68 article-title: Multicenter cohort of patients with methicillin-resistant Staphylococcus aureus bacteremia receiving daptomycin plus ceftaroline compared to other MRSA treatments publication-title: Open Forum Infect Dis doi: 10.1093/ofid/ofz538 – volume: 52 start-page: e18 year: 2011 end-page: e55 ident: B3 article-title: Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children publication-title: Clin Infect Dis doi: 10.1093/cid/ciq146 – volume: 62 year: 2018 ident: B45 article-title: Systematic review and meta-analysis of the safety of antistaphylococcal penicillins compared to cefazolin publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01816-17 – volume: 62 year: 2018 ident: B37 article-title: β-Lactam combinations with vancomycin show synergistic activity against vancomycin-susceptible Staphylococcus aureus, vancomycin-intermediate S. aureus (VISA), and heterogeneous VISA publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00157-18 – volume: 59 start-page: 4497 year: 2015 end-page: 4503 ident: B55 article-title: Evaluation of ceftaroline alone and in combination against biofilm-producing methicillin-resistant Staphylococcus aureus with reduced susceptibility to daptomycin and vancomycin in an in vitro pharmacokinetic/pharmacodynamic model publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00386-15 – volume: 62 start-page: 173 year: 2016 end-page: 180 ident: B42 article-title: Combination of vancomycin and β-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial publication-title: Clin Infect Dis doi: 10.1093/cid/civ808 – volume: 50 start-page: 1079 year: 2006 end-page: 1082 ident: B5 article-title: Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.50.3.1079-1082.2006 – volume: 70 start-page: 797 year: 2015 end-page: 801 ident: B13 article-title: Ceftaroline fosamil salvage therapy: an option for reduced-vancomycin-susceptible MRSA bacteraemia publication-title: J Antimicrob Chemother doi: 10.1093/jac/dku455 – year: 2020 ident: B11 publication-title: Performance standards for antimicrobial susceptibility testing ;30th ed ;CLSI supplement M100 ;Clinical and Laboratory Standards Institute ;Wayne, PA – volume: 50 start-page: 643 year: 2018 end-page: 647 ident: B60 article-title: Daptomycin and combination daptomycin-ceftaroline as salvage therapy for persistent methicillin-resistant Staphylococcus aureus bacteremia publication-title: Infect Dis (Lond) doi: 10.1080/23744235.2018.1448110 – volume: 70 start-page: 505 year: 2015 end-page: 509 ident: B56 article-title: The combination of ceftaroline plus daptomycin allows for therapeutic de-escalation and daptomycin sparing against MRSA publication-title: J Antimicrob Chemother doi: 10.1093/jac/dku378 – volume: 57 start-page: 2664 year: 2013 end-page: 2668 ident: B54 article-title: Evaluation of ceftaroline activity against heteroresistant vancomycin-intermediate Staphylococcus aureus and vancomycin-intermediate methicillin-resistant S. aureus strains in an in vitro pharmacokinetic/pharmacodynamic model: exploring the “seesaw effect.” publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02308-12 – volume: 58 start-page: 102 year: 2014 end-page: 109 ident: B38 article-title: β-Lactams enhance vancomycin activity against methicillin-resistant Staphylococcus aureus bacteremia compared to vancomycin alone publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01204-13 – volume: 74 start-page: 425 year: 2019 end-page: 431 ident: B15 article-title: Ceftaroline fosamil doses and breakpoints for Staphylococcus aureus in complicated skin and soft tissue infections publication-title: J Antimicrob Chemother doi: 10.1093/jac/dky439 – volume: 58 start-page: 2541 year: 2014 end-page: 2546 ident: B23 article-title: Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02371-13 – volume: 46 start-page: 12 year: 2018 end-page: 20 ident: B41 article-title: Vancomycin plus piperacillin-tazobactam and acute kidney injury in adults: a systematic review and meta-analysis publication-title: Crit Care Med doi: 10.1097/CCM.0000000000002769 – volume: 5 start-page: 2321 year: 2004 end-page: 2331 ident: B53 article-title: Daptomycin—a novel antibiotic against Gram-positive pathogens publication-title: Expert Opin Pharmacother doi: 10.1517/14656566.5.11.2321 – year: 2019 ident: B2 article-title: Reduced mortality of Staphylococcus aureus bacteremia in a retrospective cohort study of 2139 patients: 2007–2015 publication-title: Clin Infect Dis doi: 10.1093/cid/ciz498 – volume: 72 start-page: 2796 year: 2017 end-page: 2803 ident: B14 article-title: Ceftaroline efficacy against high-MIC clinical Staphylococcus aureus isolates in an in vitro hollow-fibre infection model publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkx214 – volume: 63 year: 2019 ident: B62 article-title: Is daptomycin plus ceftaroline associated with better clinical outcomes than standard of care monotherapy for Staphylococcus aureus bacteremia? publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00900-19 – volume: 191 start-page: 2149 year: 2005 end-page: 2152 ident: B6 article-title: Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact publication-title: J Infect Dis doi: 10.1086/430352 – volume: 61 year: 2017 ident: B59 article-title: Ceftaroline-resistant, daptomycin-tolerant, and heterogeneous vancomycin-intermediate methicillin-resistant Staphylococcus aureus causing infective endocarditis publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01235-16 – volume: 57 start-page: 27 year: 2017 end-page: 31 ident: B27 article-title: Ceftaroline fosamil monotherapy for methicillin-resistant Staphylococcus aureus bacteremia: a comparative clinical outcomes study publication-title: Int J Infect Dis doi: 10.1016/j.ijid.2017.01.019 – volume: 53 start-page: 4712 year: 2009 end-page: 4717 ident: B16 article-title: In vitro activity of ceftaroline against methicillin-resistant Staphylococcus aureus and heterogeneous vancomycin-intermediate S. aureus in a hollow fiber model publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00636-09 – ident: B63 article-title: McCreary E , Geriak M , Zasowski E , Rizvi K , Schulz LT , Ouellette K , Vasina L , Rybak MJ , Zervos M , Sakoulas G , Rose W . 2018 . Multi-centre cohort study of daptomycin plus ceftaroline combination compared to matched standard of care treatment in patients with methicillin-resistant Staphylococcus aureus bacteraemia, abstr P2038. 28th Eur Congr Clin Microbiol Infect Dis, Madrid, Spain. – volume: 43 start-page: 1747 year: 1999 end-page: 1753 ident: B32 article-title: Combinations of vancomycin and β-lactams are synergistic against staphylococci with reduced susceptibilities to vancomycin publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.43.7.1747 – volume: 43 start-page: 751 year: 2015 end-page: 754 ident: B58 article-title: Daptomycin non-susceptible, vancomycin-intermediate Staphylococcus aureus endocarditis treated with ceftaroline and daptomycin: case report and brief review of the literature publication-title: Infection doi: 10.1007/s15010-015-0763-0 – volume: 63 year: 2019 ident: B61 article-title: Clinical data on daptomycin plus ceftaroline versus standard of care monotherapy in the treatment of methicillin-resistant Staphylococcus aureus bacteremia publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02483-18 – volume: 62 year: 2018 ident: B67 article-title: Outcomes of vancomycin plus a β-lactam versus vancomycin only for treatment of methicillin-resistant Staphylococcus aureus bacteremia publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01554-17 – volume: 47 start-page: 629 year: 2019 end-page: 635 ident: B65 article-title: Ceftaroline as salvage therapy for complicated MRSA bacteremia: case series and analysis publication-title: Infection doi: 10.1007/s15010-019-01304-7 – volume: 37 start-page: 1347 year: 2017 end-page: 1356 ident: B39 article-title: Early administration of adjuvant β-lactam therapy in combination with vancomycin among patients with methicillin-resistant Staphylococcus aureus bloodstream infection: a retrospective, multicenter analysis publication-title: Pharmacotherapy doi: 10.1002/phar.2034 – year: 2011 ident: B47 article-title: Teflaro (ceftaroline fosamil) publication-title: Package insert ;Forest Pharmaceuticals, Inc ;St. Louis, MO – year: 2019 ident: B43 article-title: Daptomycin plus β-lactam combination therapy for methicillin-resistant Staphylococcus aureus bloodstream infections: a retrospective, comparative cohort study publication-title: Clin Infect Dis doi: 10.1093/cid/ciz746 – volume: 64 start-page: 116 year: 2017 end-page: 123 ident: B40 article-title: Risk of acute kidney injury in patients on concomitant vancomycin and piperacillin-tazobactam compared to those on vancomycin and cefepime publication-title: Clin Infect Dis doi: 10.1093/cid/ciw709 – volume: 56 start-page: 6192 year: 2012 end-page: 6200 ident: B35 article-title: β-Lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01525-12 – volume: 3 start-page: 35 year: 2014 end-page: 43 ident: B7 article-title: Observation of “seesaw effect” with vancomycin, teicoplanin, daptomycin and ceftaroline in 150 unique MRSA strains publication-title: Infect Dis Ther doi: 10.1007/s40121-014-0023-0 – volume: 2 start-page: 970 year: 2013 end-page: 980 ident: B52 article-title: A review on daptomycin; the first US-FDA approved lipopeptide antibiotics publication-title: J Sci Innovative Res – volume: 50 start-page: 2548 year: 2012 end-page: 2552 ident: B4 article-title: Relationship between vancomycin-resistant Staphylococcus aureus, vancomycin-intermediate S. aureus, high vancomycin MIC, and outcome in serious S. aureus infections publication-title: J Clin Microbiol doi: 10.1128/JCM.00775-12 – volume: 179 start-page: 2557 year: 1997 end-page: 2566 ident: B31 article-title: Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant of Staphylococcus aureus publication-title: J Bacteriol doi: 10.1128/jb.179.8.2557-2566.1997 – volume: 53 start-page: 158 year: 2011 end-page: 163 ident: B36 article-title: Use of antistaphylococcal beta-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: role of enhanced daptomycin binding publication-title: Clin Infect Dis doi: 10.1093/cid/cir340 – volume: 58 start-page: 6496 year: 2014 end-page: 6500 ident: B18 article-title: Ceftaroline-fosamil efficacy against methicillin-resistant Staphylococcus aureus in a rabbit prosthetic joint infection model publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.03600-14 – volume: 67 start-page: 1267 year: 2012 end-page: 1270 ident: B20 article-title: Methicillin-resistant Staphylococcus aureus bacteraemia and endocarditis treated with ceftaroline salvage therapy publication-title: J Antimicrob Chemother doi: 10.1093/jac/dks006 – volume: 54 start-page: 3161 year: 2010 end-page: 3169 ident: B33 article-title: Daptomycin-oxacillin combinations in treatment of experimental endocarditis caused by daptomycin-nonsusceptible strains of methicillin-resistant Staphylococcus aureus with evolving oxacillin susceptibility (the “seesaw effect”) publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00487-10 – volume: 65 start-page: 1749 year: 2010 end-page: 1752 ident: B17 article-title: Efficacy of the new cephalosporin ceftaroline in the treatment of experimental methicillin-resistant Staphylococcus aureus acute osteomyelitis publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkq193 – volume: 9 start-page: 77 year: 2020 end-page: 87 ident: B64 article-title: Comparing the outcomes of ceftaroline plus vancomycin or daptomycin combination therapy versus monotherapy in adults with complicated and prolonged methicillin-resistant Staphylococcus aureus bacteremia initially treated with supplemental ceftaroline publication-title: Infect Dis Ther doi: 10.1007/s40121-019-00277-2 – volume: 39 start-page: 212 year: 2017 end-page: 218 ident: B66 article-title: Combination therapy with vancomycin and ceftaroline for refractory methicillin-resistant Staphylococcus aureus bacteremia: a case series publication-title: Clin Ther doi: 10.1016/j.clinthera.2016.12.005 – volume: 44 start-page: 557 year: 2014 end-page: 563 ident: B24 article-title: Use of ceftaroline after glycopeptide failure to eradicate meticillin-resistant Staphylococcus aureus bacteraemia with elevated vancomycin minimum inhibitory concentrations publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2014.07.024 – volume: 48 start-page: 2871 year: 2004 end-page: 2875 ident: B34 article-title: Synergy of daptomycin with oxacillin and other beta-lactams against methicillin-resistant Staphylococcus aureus publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.48.8.2871-2875.2004 – year: 2003 ident: B8 article-title: Cubicin (daptomycin) publication-title: Package insert ;Merck & Co, Inc ;Whitehouse Station, NJ – volume: 57 start-page: 66 year: 2013 end-page: 73 ident: B50 article-title: Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01586-12 – volume: 61 year: 2017 ident: B28 article-title: Multicenter observational study of ceftaroline fosamil for methicillin-resistant Staphylococcus aureus bloodstream infections publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02015-16 – volume: 42 start-page: 450 year: 2013 end-page: 455 ident: B22 article-title: Ceftaroline for meticillin-resistant Staphylococcus aureus bacteraemia: case series and review of the literature publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2013.07.005 – volume: 54 start-page: 3027 year: 2010 end-page: 3030 ident: B48 article-title: In vitro activity of ceftaroline against community-associated methicillin-resistant, vancomycin-intermediate, vancomycin-resistant, and daptomycin-nonsusceptible Staphylococcus aureus isolates publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01516-09 – volume: 51 start-page: 3397 year: 2007 end-page: 3400 ident: B19 article-title: In vivo efficacy of ceftaroline (PPI-0903), a new broad-spectrum cephalosporin, compared with linezolid and vancomycin against methicillin-resistant and vancomycin-intermediate Staphylococcus aureus in a rabbit endocarditis model publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01242-06 – volume: 19 start-page: 42 year: 2013 end-page: 49 ident: B21 article-title: The use of ceftaroline fosamil in methicillin-resistant Staphylococcus aureus endocarditis and deep-seated MRSA infections: a retrospective case series of 10 patients publication-title: J Infect Chemother doi: 10.1007/s10156-012-0449-9 – volume: 70 start-page: 2053 year: 2015 end-page: 2056 ident: B12 article-title: Activity of ceftaroline and comparator agents tested against Staphylococcus aureus from patients with bloodstream infections in US medical centres (2009–13) publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkv076 – volume: 23 start-page: 155 year: 2015 end-page: 157 ident: B57 article-title: Successful salvage therapy using daptomycin and ceftaroline after the emergence of daptomycin nonsusceptible Staphylococcus aureus endocarditis and infected pacemaker/implantable cardioverter-defibrillator publication-title: Infect Dis Clin Pract doi: 10.1097/IPC.0000000000000222 |
SSID | ssj0006590 |
Score | 2.45839 |
SecondaryResourceType | review_article |
Snippet | Methicillin-resistant
Staphylococcus aureus
(MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with... Methicillin-resistant (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials... Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with... |
SourceID | pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Editor's Pick Minireview |
Title | The Emerging Role of β-Lactams in the Treatment of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32312776 https://journals.asm.org/doi/10.1128/AAC.00468-20 https://www.proquest.com/docview/2393037900 https://pubmed.ncbi.nlm.nih.gov/PMC7317994 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIqpeEAQo4aUFkV5SB2dtZ51jGhWVR1BUpVJv1tpeE0vEqRIHKfws_gNXfhMzu-tHSipBL07kndirzLfj2fHMN4S87TMe-47jWmHSiyxXONwSA8atOEJ0-WAeVfu28Zf-2YX78dK7bDR-1bKW1nnYjX7srCu5jVbhHOgVq2T_Q7PlReEEfAf9whE0DMd_1jFGlVSjoXOTJ9genbZPmPVZRDmyLZg8xmmZUI45LxKz3DHSklnncoUuJAyA3wn_OTzcFlG0XnXEeinh4wQz27GiRMzBmOjMLRPhKzmY83SeKkInJB74qmrmVLncTM5NgVeVa6yaBCnzsoH5jrrVwBLsDSYeKQipQEI5VhYsmvbknWG3wqOJeGPLsFlqAgwmjsGw3Y2lS41rpQNo02rZquO0YqOqW_F-33J93ba4K7XhRl7Uvqe74xaWXfOjGwTz3Q8MhkUQw-Goi5EChFddDNR9NVfgccAPZpxfY-1WfsBkPOIOEuu5d8hdkNE7-w-fSocApqUrocy0i_oL5r-r3_iA7Bd3Af9ArOZs21f6awN0PY-35hhNH5D7ZkdDhxqeD0lDZk1yT_c43TTJ_thkbzTJ0UTzpG-O6bQq-1sd0yM6qRjUN4_IdximBbApApsuEvr7ZwFqmmYUYEBLUOPwTlDTbVBTDWpaAzWtQP2YXLw_nY7OLNMgxBJuz88tX0bcc2PYtQiPO0lP2jziPRm7LHTjQezIge9FnkxYwjyRgC_OHC-JkZMSnFJbJM4TspctMvmU0F4Err9IBiKSnit9FnLBbDcRaKxC2JO3yBvUSGBW_ypQm2fmB6DBQGkwYHaLdAp9BZGh2MdOL99ukG6X0leaWuYGudeF6gOw_fhCT2RysV4FSF9oO3xgg8yhhkJ5pQJKLcK3QFIKIK_89kiWzhS_vEHzs1v_8jk5qFb4C7KXL9fyJfjuefhKrYw_kn7zEw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Emerging+Role+of+%CE%B2-Lactams+in+the+Treatment+of+Methicillin-Resistant+Staphylococcus+aureus+Bloodstream+Infections&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Molina%2C+Kyle+C.&rft.au=Morrisette%2C+Taylor&rft.au=Miller%2C+Matthew+A.&rft.au=Huang%2C+Vanthida&rft.date=2020-06-23&rft.pub=American+Society+for+Microbiology&rft.issn=0066-4804&rft.eissn=1098-6596&rft.volume=64&rft.issue=7&rft_id=info:doi/10.1128%2FAAC.00468-20&rft_id=info%3Apmid%2F32312776&rft.externalDocID=PMC7317994 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon |