The Emerging Role of β-Lactams in the Treatment of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections

Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced ant...

Full description

Saved in:
Bibliographic Details
Published inAntimicrobial agents and chemotherapy Vol. 64; no. 7
Main Authors Molina, Kyle C., Morrisette, Taylor, Miller, Matthew A., Huang, Vanthida, Fish, Douglas N.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 23.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Ceftaroline (CPT), the only commercially available β-lactam in the United States with intrinsic in vitro activity against MRSA, has been increasingly studied in the setting of VAN and DAP failures. Novel combinations of first-line agents (VAN and DAP) with β-lactams have been the subject of many recent investigations due to in vitro findings such as the “seesaw effect,” where β-lactam susceptibility may be improved in the presence of decreased glycopeptide and lipopeptide susceptibility. The combination of CPT and DAP, in particular, has become the focus of many scientific evaluations, due to intrinsic anti-MRSA activities and potent in vitro synergistic activity against various MRSA strains. This article reviews the available literature describing these innovative therapeutic approaches for MRSA BSI, focusing on preclinical and clinical studies, and evaluates the potential benefits and limitations of each strategy.
AbstractList Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Ceftaroline (CPT), the only commercially available β-lactam in the United States with intrinsic in vitro activity against MRSA, has been increasingly studied in the setting of VAN and DAP failures. Novel combinations of first-line agents (VAN and DAP) with β-lactams have been the subject of many recent investigations due to in vitro findings such as the "seesaw effect," where β-lactam susceptibility may be improved in the presence of decreased glycopeptide and lipopeptide susceptibility. The combination of CPT and DAP, in particular, has become the focus of many scientific evaluations, due to intrinsic anti-MRSA activities and potent in vitro synergistic activity against various MRSA strains. This article reviews the available literature describing these innovative therapeutic approaches for MRSA BSI, focusing on preclinical and clinical studies, and evaluates the potential benefits and limitations of each strategy.Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Ceftaroline (CPT), the only commercially available β-lactam in the United States with intrinsic in vitro activity against MRSA, has been increasingly studied in the setting of VAN and DAP failures. Novel combinations of first-line agents (VAN and DAP) with β-lactams have been the subject of many recent investigations due to in vitro findings such as the "seesaw effect," where β-lactam susceptibility may be improved in the presence of decreased glycopeptide and lipopeptide susceptibility. The combination of CPT and DAP, in particular, has become the focus of many scientific evaluations, due to intrinsic anti-MRSA activities and potent in vitro synergistic activity against various MRSA strains. This article reviews the available literature describing these innovative therapeutic approaches for MRSA BSI, focusing on preclinical and clinical studies, and evaluates the potential benefits and limitations of each strategy.
Methicillin-resistant (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Ceftaroline (CPT), the only commercially available β-lactam in the United States with intrinsic activity against MRSA, has been increasingly studied in the setting of VAN and DAP failures. Novel combinations of first-line agents (VAN and DAP) with β-lactams have been the subject of many recent investigations due to findings such as the "seesaw effect," where β-lactam susceptibility may be improved in the presence of decreased glycopeptide and lipopeptide susceptibility. The combination of CPT and DAP, in particular, has become the focus of many scientific evaluations, due to intrinsic anti-MRSA activities and potent synergistic activity against various MRSA strains. This article reviews the available literature describing these innovative therapeutic approaches for MRSA BSI, focusing on preclinical and clinical studies, and evaluates the potential benefits and limitations of each strategy.
Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Ceftaroline (CPT), the only commercially available β-lactam in the United States with intrinsic in vitro activity against MRSA, has been increasingly studied in the setting of VAN and DAP failures. Novel combinations of first-line agents (VAN and DAP) with β-lactams have been the subject of many recent investigations due to in vitro findings such as the “seesaw effect,” where β-lactam susceptibility may be improved in the presence of decreased glycopeptide and lipopeptide susceptibility. The combination of CPT and DAP, in particular, has become the focus of many scientific evaluations, due to intrinsic anti-MRSA activities and potent in vitro synergistic activity against various MRSA strains. This article reviews the available literature describing these innovative therapeutic approaches for MRSA BSI, focusing on preclinical and clinical studies, and evaluates the potential benefits and limitations of each strategy.
Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN and DAP that may meet an unmet therapeutic need for MRSA BSI. Ceftaroline (CPT), the only commercially available β-lactam in the United States with intrinsic in vitro activity against MRSA, has been increasingly studied in the setting of VAN and DAP failures. Novel combinations of first-line agents (VAN and DAP) with β-lactams have been the subject of many recent investigations due to in vitro findings such as the “seesaw effect,” where β-lactam susceptibility may be improved in the presence of decreased glycopeptide and lipopeptide susceptibility. The combination of CPT and DAP, in particular, has become the focus of many scientific evaluations, due to intrinsic anti-MRSA activities and potent in vitro synergistic activity against various MRSA strains. This article reviews the available literature describing these innovative therapeutic approaches for MRSA BSI, focusing on preclinical and clinical studies, and evaluates the potential benefits and limitations of each strategy.
Author Huang, Vanthida
Miller, Matthew A.
Molina, Kyle C.
Morrisette, Taylor
Fish, Douglas N.
Author_xml – sequence: 1
  givenname: Kyle C.
  orcidid: 0000-0002-6764-5984
  surname: Molina
  fullname: Molina, Kyle C.
  organization: Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA, Department of Pharmacy-Infectious Diseases, University of Colorado Hospital, Aurora, Colorado, USA
– sequence: 2
  givenname: Taylor
  orcidid: 0000-0002-1094-043X
  surname: Morrisette
  fullname: Morrisette, Taylor
  organization: Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA, Department of Pharmacy-Infectious Diseases, University of Colorado Hospital, Aurora, Colorado, USA
– sequence: 3
  givenname: Matthew A.
  surname: Miller
  fullname: Miller, Matthew A.
  organization: Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA, Department of Pharmacy-Infectious Diseases, University of Colorado Hospital, Aurora, Colorado, USA
– sequence: 4
  givenname: Vanthida
  orcidid: 0000-0001-8028-3554
  surname: Huang
  fullname: Huang, Vanthida
  organization: Department of Pharmacy Practice, Midwestern University College of Pharmacy–Glendale, Glendale, Arizona, USA
– sequence: 5
  givenname: Douglas N.
  surname: Fish
  fullname: Fish, Douglas N.
  organization: Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32312776$$D View this record in MEDLINE/PubMed
BookMark eNp1kV9rFDEUxYNU7Lb65rPMo4LT5s_MZPIibJdqC1uEuj6HNHOzm5JJ1iRT6Nfyg_iZzLptUdGnSzi_e7gn5wgd-OABodcEnxBC-9P5fHGCcdP1NcXP0Ixg0dddK7oDNMO46-qmx80hOkrpFpd3K_ALdMgoI5TzbobuVhuozkeIa-vX1XVwUAVT_fheL5XOakyV9VUuyCqCyiP4vJOvIG-sts5ZX19DsimrInzJaru5d0EHradUqSlCGWcuhCHlsj5Wl96Azjb49BI9N8olePUwj9HXj-erxUW9_PzpcjFf1qohfa570LxtBkw61XJmCGCuOYGhoTfNIAYGom91C4Ya2irTMUFZawbWE96RBivDjtGHve92uhlh0CVAVE5uox1VvJdBWfmn4u1GrsOd5IxwIZpi8PbBIIZvE6QsR5s0OKc8hClJygTDjAuMC_puj6o0UnkbpuhLNEmw3PUkS0_yV0-S7tg3v9_1dNBjMQV4vwd0DClFME_If_zoX7i2We2-uqSy7t9LPwF50LCV
CitedBy_id crossref_primary_10_3390_antibiotics12030557
crossref_primary_10_3390_antibiotics9110762
crossref_primary_10_3390_diagnostics13050819
crossref_primary_10_2147_IDR_S318322
crossref_primary_10_7759_cureus_31486
crossref_primary_10_1021_acs_chemrev_0c01010
crossref_primary_10_1177_87551225241227796
crossref_primary_10_1016_j_amjmed_2022_09_017
crossref_primary_10_2106_JBJS_22_00792
crossref_primary_10_3389_fmolb_2021_688357
crossref_primary_10_1016_j_ijbiomac_2020_11_096
crossref_primary_10_1016_j_ijantimicag_2021_106310
crossref_primary_10_3390_antibiotics10070763
crossref_primary_10_2174_1381612829666230410095155
crossref_primary_10_1080_14656566_2024_2367003
crossref_primary_10_1186_s12941_025_00773_z
crossref_primary_10_3390_antibiotics10070849
crossref_primary_10_3390_pathogens13010076
crossref_primary_10_1128_jb_00387_22
crossref_primary_10_1128_aac_01264_22
crossref_primary_10_3390_antibiotics11010056
Cites_doi 10.1128/jb.179.8.2557-2566.1997
10.1128/AAC.02308-12
10.1128/AAC.01554-17
10.1128/AAC.01242-06
10.1128/AAC.01235-16
10.1086/655827
10.1007/s10156-012-0449-9
10.1093/cid/ciq146
10.1093/cid/civ808
10.1517/14656566.5.11.2321
10.1128/AAC.01204-13
10.1128/AAC.43.7.1747
10.1093/jac/dky439
10.1016/j.ijid.2017.01.019
10.1093/cid/ciz746
10.1128/AAC.48.8.2871-2875.2004
10.1001/jama.2020.0103
10.1093/jac/dkq193
10.1016/j.ijantimicag.2013.07.005
10.1007/s40265-017-0785-2
10.1128/JCM.00775-12
10.1007/s15010-015-0763-0
10.1128/AAC.02015-16
10.1097/IPC.0000000000000222
10.1007/s40121-014-0023-0
10.1128/AAC.00797-12
10.1080/23744235.2018.1448110
10.1016/j.ijantimicag.2014.07.024
10.1093/jac/dku378
10.1093/cid/cir340
10.1093/jac/dkv076
10.1128/AAC.03600-14
10.1097/CCM.0000000000002769
10.1002/phar.2034
10.1128/AAC.00019-10
10.1007/s40121-019-00277-2
10.1097/IPC.0000000000000191
10.1128/AAC.50.3.1079-1082.2006
10.1128/AAC.00636-09
10.1128/AAC.01586-12
10.1093/jac/dkx214
10.1111/j.1574-6976.2007.00095.x
10.1128/AAC.00487-10
10.1016/j.clinthera.2014.05.061
10.1128/AAC.00900-19
10.1128/AAC.01516-09
10.1093/jac/dks006
10.1093/ofid/ofz168
10.1128/AAC.00157-18
10.1128/AAC.01525-12
10.1007/s15010-019-01304-7
10.1128/AAC.02483-18
10.1093/jac/dku455
10.1093/cid/ciw709
10.1086/430352
10.1128/AAC.00386-15
10.1128/AAC.01816-17
10.1093/cid/ciz498
10.1128/AAC.02371-13
10.1128/AAC.01666-15
10.1016/j.clinthera.2016.12.005
10.1016/j.jmii.2018.07.006
10.1093/ofid/ofz538
ContentType Journal Article
Copyright Copyright © 2020 American Society for Microbiology.
Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology
Copyright_xml – notice: Copyright © 2020 American Society for Microbiology.
– notice: Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1128/AAC.00468-20
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1098-6596
ExternalDocumentID PMC7317994
00468-20
32312776
10_1128_AAC_00468_20
Genre Journal Article
Review
GroupedDBID ---
.55
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
AAGFI
AAYXX
ACGFO
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
HZ~
H~9
K-O
KQ8
L7B
LSO
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UHB
W2D
W8F
WH7
WOQ
X7M
NPM
RHF
-
0R
55
AAPBV
ABFLS
ADACO
BXI
HZ
ZA5
7X8
5PM
ID FETCH-LOGICAL-a418t-8ec754d016a573f1e07c71ed42b4d9d3e985c5ef2f25af639235fd38176140af3
ISSN 0066-4804
1098-6596
IngestDate Thu Aug 21 13:50:11 EDT 2025
Fri Jul 11 09:22:09 EDT 2025
Tue Dec 28 13:59:02 EST 2021
Thu Jan 02 22:58:42 EST 2025
Tue Jul 01 04:13:13 EDT 2025
Thu Apr 24 22:52:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords ceftaroline
combination therapy
beta-lactams
Staphylococcus aureus bacteremia
Language English
License Copyright © 2020 American Society for Microbiology.
All Rights Reserved. https://doi.org/10.1128/ASMCopyrightv2
All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a418t-8ec754d016a573f1e07c71ed42b4d9d3e985c5ef2f25af639235fd38176140af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Citation Molina KC, Morrisette T, Miller MA, Huang V, Fish DN. 2020. The emerging role of β-lactams in the treatment of methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob Agents Chemother 64:e00468-20. https://doi.org/10.1128/AAC.00468-20.
ORCID 0000-0002-1094-043X
0000-0002-6764-5984
0000-0001-8028-3554
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7317994
PMID 32312776
PQID 2393037900
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7317994
proquest_miscellaneous_2393037900
asm2_journals_10_1128_AAC_00468_20
pubmed_primary_32312776
crossref_primary_10_1128_AAC_00468_20
crossref_citationtrail_10_1128_AAC_00468_20
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200623
PublicationDateYYYYMMDD 2020-06-23
PublicationDate_xml – month: 6
  year: 2020
  text: 20200623
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Antimicrobial agents and chemotherapy
PublicationTitleAbbrev Antimicrob Agents Chemother
PublicationTitleAlternate Antimicrob Agents Chemother
PublicationYear 2020
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_1_60_2
e_1_3_1_43_2
e_1_3_1_66_2
e_1_3_1_22_2
e_1_3_1_45_2
e_1_3_1_68_2
Merck & Co, Inc (e_1_3_1_9_2) 2003
e_1_3_1_24_2
e_1_3_1_8_2
e_1_3_1_62_2
e_1_3_1_41_2
e_1_3_1_64_2
e_1_3_1_20_2
e_1_3_1_4_2
e_1_3_1_6_2
e_1_3_1_26_2
e_1_3_1_47_2
e_1_3_1_28_2
e_1_3_1_49_2
Nakhate PH (e_1_3_1_53_2) 2013; 2
CLSI (e_1_3_1_12_2) 2020
e_1_3_1_70_2
e_1_3_1_32_2
e_1_3_1_55_2
e_1_3_1_34_2
e_1_3_1_57_2
e_1_3_1_13_2
e_1_3_1_51_2
e_1_3_1_11_2
e_1_3_1_30_2
e_1_3_1_17_2
e_1_3_1_15_2
e_1_3_1_36_2
e_1_3_1_59_2
e_1_3_1_19_2
e_1_3_1_38_2
Forest Pharmaceuticals, Inc (e_1_3_1_48_2) 2011
e_1_3_1_21_2
e_1_3_1_44_2
e_1_3_1_65_2
e_1_3_1_23_2
e_1_3_1_46_2
e_1_3_1_67_2
e_1_3_1_7_2
e_1_3_1_40_2
e_1_3_1_61_2
e_1_3_1_42_2
e_1_3_1_63_2
e_1_3_1_29_2
e_1_3_1_3_2
e_1_3_1_5_2
e_1_3_1_25_2
e_1_3_1_69_2
e_1_3_1_27_2
e_1_3_1_33_2
e_1_3_1_54_2
e_1_3_1_35_2
e_1_3_1_56_2
e_1_3_1_50_2
e_1_3_1_10_2
e_1_3_1_31_2
e_1_3_1_52_2
Inagaki K (e_1_3_1_2_2) 2019; 69
e_1_3_1_16_2
e_1_3_1_14_2
e_1_3_1_37_2
e_1_3_1_58_2
e_1_3_1_18_2
e_1_3_1_39_2
Kalil, AC, Holubar, M, Deresinski, S, Chambers, HF (B62) 2019; 63
Sullivan, EL, Turner, RB, O’Neal, HR, Crum-Cianflone, NF (B30) 2019; 6
Lin, JC, Fierer, J, Aung, G, Johns, S, Thomas, A, Jahng, M, Fierer, J, Fierer, J (B21) 2013; 19
Luther, MK, Timbrook, TT, Caffrey, AR, Dosa, D, Lodise, TP, LaPlante, KL (B41) 2018; 46
Inagaki, K, Lucar, J, Blackshear, C, Hobbs, CV (B1) 2019; 69
Sader, HS, Farrell, DJ, Flamm, RK, Jones, RN (B12) 2015; 70
Liu, C, Bayer, A, Cosgrove, SE, Daum, RS, Fridkin, SK, Gorwitz, RJ, Kaplan, SL, Karchmer, AW, Levine, DP, Murray, BE, J Rybak, M, Talan, DA, Chambers, HF (B3) 2011; 52
Espedido, BA, Jensen, SO, van Hal, SJ (B13) 2015; 70
Polenakovik, HM, Pleiman, CM (B22) 2013; 42
Silverman, JA, Mortin, LI, VanPraagh, ADG, Li, T, Alder, J (B6) 2005; 191
Geriak, M, Haddad, F, Rizvi, K, Rose, W, Kullar, R, LaPlante, K, Yu, M, Vasina, L, Ouellette, K, Zervos, M, Nizet, V, Sakoulas, G (B61) 2019; 63
Yang, S-J, Xiong, YQ, Boyle-Vavra, S, Daum, R, Jones, T, Bayer, AS (B33) 2010; 54
Davis, JS, Sud, A, O’Sullivan, MVN, Robinson, JO, Ferguson, PE, Foo, H, van Hal, SJ, Ralph, AP, Howden, BP, Binks, PM, Kirby, A, Tong, SYC, Tong, S, Davis, J, Binks, P, Majumdar, S, Ralph, A, Baird, R, Gordon, C, Jeremiah, C, Leung, G, Brischetto, A, Crowe, A, Dakh, F, Whykes, K, Kirkwood, M, Sud, A, Menon, M, Somerville, L, Subedi, S, Owen, S, O’Sullivan, M, Liu, E, Zhou, F, Robinson, O, Coombs, G, Ferguson, P, Ralph, A, Liu, E, Pollet, S, Van Hal, S, Foo, H, Van Hal, S, Davis, R (B42) 2016; 62
Gatin, L, Saleh-Mghir, A, Tasse, J, Ghout, I, Laurent, F, Crémieux, A-C (B18) 2014; 58
Corey, GR, Wilcox, M, Talbot, GH, Friedland, HD, Baculik, T, Witherell, GW, Critchley, I, Das, AF, Thye, D (B26) 2010; 51
Vidaillac, C, Leonard, SN, Rybak, MJ (B16) 2009; 53
Sakoulas, G, Moise, PA, Casapao, AM, Nonejuie, P, Olson, J, Okumura, CYM, Rybak, MJ, Kullar, R, Dhand, A, Rose, WE, Goff, DA, Bressler, AM, Lee, Y, Pogliano, J, Johns, S, Kaatz, GW, Ebright, JR, Nizet, V (B51) 2014; 36
Eljaaly, K, Alshehri, S, Erstad, BL (B45) 2018; 62
Tong, SYC, Lye, DC, Yahav, D, Sud, A, Robinson, JO, Nelson, J, Archuleta, S, Roberts, MA, Cass, A, Paterson, DL, Foo, H, Paul, M, Guy, SD, Tramontana, AR, Walls, GB, McBride, S, Bak, N, Ghosh, N, Rogers, BA, Ralph, AP, Davies, J, Ferguson, PE, Dotel, R, McKew, GL, Gray, TJ, Holmes, NE, Smith, S, Warner, MS, Kalimuddin, S, Young, BE, Runnegar, N, Andresen, DN, Anagnostou, NA, Johnson, SA, Chatfield, MD, Cheng, AC, Fowler, VG, Howden, BP, Meagher, N, Price, DJ, van Hal, SJ, O’Sullivan, MVN, Davis, JS (B44) 2020; 323
Werth, BJ, Steed, ME, Kaatz, GW, Rybak, MJ (B54) 2013; 57
Britt, RS, Evoy, KE, Lee, GC, Reveles, KR, Sorensen, KM, Jones, X, Bollinger, M, Frei, CR (B29) 2017; 77
Werth, BJ, Sakoulas, G, Rose, WE, Pogliano, J, Tewhey, R, Rybak, MJ (B50) 2013; 57
Singh, R, Almutairi, M, Alm, RA, Lahiri, SD, San Martin, M, Chen, A, Ambler, JE (B14) 2017; 72
Austin, ED, Sullivan, SS, Macesic, N, Mehta, M, Miko, BA, Nematollahi, S, Shi, Q, Lowy, FD, Uhlemann, A-C (B2) 2019
Rand, KH, Houck, HJ (B34) 2004; 48
Baxi, SM, Chan, D, Jain, V (B58) 2015; 43
Barber, KE, Smith, JR, Ireland, CE, Boles, BR, Rose, WE, Rybak, MJ (B55) 2015; 59
Vazquez, JA, Maggiore, CR, Cole, P, Smith, A, Jandourek, A, Friedland, HD (B25) 2015; 23
Zasowski, EJ, Trinh, TD, Claeys, KC, Casapao, AM, Sabagha, N, Lagnf, AM, Klinker, KP, Davis, SL, Rybak, MJ (B28) 2017; 61
Paladino, JA, Jacobs, DM, Shields, RK, Taylor, J, Bader, J, Adelman, MH, Wilton, GJ, Crane, JK, Schentag, JJ (B24) 2014; 44
Dilworth, TJ, Ibrahim, O, Hall, P, Sliwinski, J, Walraven, C, Mercier, R-C (B38) 2014; 58
Casapao, AM, Davis, SL, Barr, VO, Klinker, KP, Goff, DA, Barber, KE, Kaye, KS, Mynatt, RP, Molloy, LM, Pogue, JM, Rybak, MJ (B23) 2014; 58
Miller, MA, Fish, DN, Barber, GR, Barron, MA, Goolsby, TA, Moine, P, Mueller, SW (B46) 2018
Rose, WE, Schulz, LT, Andes, D, Striker, R, Berti, AD, Hutson, PR, Shukla, SK (B49) 2012; 56
Bhowmick, T, Liu, C, Imp, B, Sharma, R, Boruchoff, SE (B65) 2019; 47
Holmes, NE, Johnson, PDR, Howden, BP (B4) 2012; 50
Casapao, AM, Jacobs, DM, Bowers, DR, Beyda, ND, Dilworth, TJ (B39) 2017; 37
Cui, L, Tominaga, E, Neoh, H, Hiramatsu, K (B5) 2006; 50
Smith, JR, Arya, A, Yim, J, Barber, KE, Hallesy, J, Singh, NB, Rybak, MJ (B69) 2016; 60
Navalkele, B, Pogue, JM, Karino, S, Nishan, B, Salim, M, Solanki, S, Pervaiz, A, Tashtoush, N, Shaikh, H, Koppula, S, Koons, J, Hussain, T, Perry, W, Evans, R, Martin, ET, Mynatt, RP, Murray, KP, Rybak, MJ, Kaye, KS (B40) 2017; 64
Zapun, A, Contreras-Martel, C, Vernet, T (B9) 2008; 32
Cortes-Penfield, N, Oliver, NT, Hunter, A, Rodriguez-Barradas, M (B60) 2018; 50
McCreary, EK, Kullar, R, Geriak, M, Zasowski, EJ, Rizvi, K, Schulz, LT, Ouellette, K, Vasina, L, Haddad, F, Rybak, MJ, Zervos, MJ, Sakoulas, G, Rose, WE (B68) 2020; 7
Arshad, S, Huang, V, Hartman, P, Perri, MB, Moreno, D, Zervos, MJ (B27) 2017; 57
Das, S, Li, J, Iaconis, J, Zhou, D, Stone, GG, Yan, JL, Melnick, D (B15) 2019; 74
(B11) 2020
Ahmad, O, Crawford, TN, Myint, T (B64) 2020; 9
(B8) 2003
Tran, K-N, Rybak, MJ (B37) 2018; 62
Jacqueline, C, Caillon, J, Le Mabecque, V, Miègeville, A-F, Hamel, A, Bugnon, D, Ge, JY, Potel, G (B19) 2007; 51
Dhand, A, Bayer, AS, Pogliano, J, Yang, S-J, Bolaris, M, Nizet, V, Wang, G, Sakoulas, G (B36) 2011; 53
Barber, KE, Ireland, CE, Bukavyn, N, Rybak, MJ (B7) 2014; 3
Saravolatz, L, Pawlak, J, Johnson, L (B48) 2010; 54
Barber, KE, Werth, BJ, Rybak, MJ (B56) 2015; 70
Jacqueline, C, Amador, G, Caillon, J, Le Mabecque, V, Batard, E, Miègeville, A-F, Biek, D, Ge, Y, Potel, G, Hamel, A (B17) 2010; 65
Kosowska-Shick, K, McGhee, PL, Appelbaum, PC (B10) 2010; 54
Ho, TT, Cadena, J, Childs, LM, Gonzalez-Velez, M, Lewis, JS (B20) 2012; 67
LaPlante, KL, Rybak, MJ (B53) 2004; 5
Sieradzki, K, Tomasz, A (B31) 1997; 179
Jorgensen, SCJ, Zasowski, EJ, Trinh, TD, Lagnf, AM, Bhatia, S, Sabagha, N, Abdul-Mutakabbir, JC, Alosaimy, S, Mynatt, RP, Davis, SL, Rybak, MJ (B43) 2019
Climo, MW, Patron, RL, Archer, GL (B32) 1999; 43
Mehta, S, Singh, C, Plata, KB, Chanda, PK, Paul, A, Riosa, S, Rosato, RR, Rosato, AE (B35) 2012; 56
Heil, EL, Shah, KP, Amoroso, A (B57) 2015; 23
(B47) 2011
Nakhate, PH, Yadav, DVK, Pathak, AN (B52) 2013; 2
Nigo, M, Diaz, L, Carvajal, LP, Tran, TT, Rios, R, Panesso, D, Garavito, JD, Miller, WR, Wanger, A, Weinstock, G, Munita, JM, Arias, CA, Chambers, HF (B59) 2017; 61
Gritsenko, D, Fedorenko, M, Ruhe, JJ, Altshuler, J (B66) 2017; 39
Truong, J, Veillette, JJ, Forland, SC (B67) 2018; 62
B63
References_xml – ident: e_1_3_1_32_2
  doi: 10.1128/jb.179.8.2557-2566.1997
– ident: e_1_3_1_55_2
  doi: 10.1128/AAC.02308-12
– ident: e_1_3_1_68_2
  doi: 10.1128/AAC.01554-17
– ident: e_1_3_1_20_2
  doi: 10.1128/AAC.01242-06
– ident: e_1_3_1_60_2
  doi: 10.1128/AAC.01235-16
– ident: e_1_3_1_27_2
  doi: 10.1086/655827
– ident: e_1_3_1_22_2
  doi: 10.1007/s10156-012-0449-9
– volume: 2
  start-page: 970
  year: 2013
  ident: e_1_3_1_53_2
  article-title: A review on daptomycin; the first US-FDA approved lipopeptide antibiotics
  publication-title: J Sci Innovative Res
– ident: e_1_3_1_4_2
  doi: 10.1093/cid/ciq146
– ident: e_1_3_1_43_2
  doi: 10.1093/cid/civ808
– ident: e_1_3_1_54_2
  doi: 10.1517/14656566.5.11.2321
– ident: e_1_3_1_39_2
  doi: 10.1128/AAC.01204-13
– ident: e_1_3_1_33_2
  doi: 10.1128/AAC.43.7.1747
– ident: e_1_3_1_16_2
  doi: 10.1093/jac/dky439
– volume: 69
  start-page: 2112
  year: 2019
  ident: e_1_3_1_2_2
  article-title: Methicillin-susceptible and methicillin-resistant Staphylococcus aureus bacteremia: nationwide estimates of 30-day readmission, in-hospital mortality, length of stay, and cost in the United States
  publication-title: Clin Infect Dis
– volume-title: Package insert
  year: 2011
  ident: e_1_3_1_48_2
– ident: e_1_3_1_28_2
  doi: 10.1016/j.ijid.2017.01.019
– ident: e_1_3_1_44_2
  doi: 10.1093/cid/ciz746
– ident: e_1_3_1_35_2
  doi: 10.1128/AAC.48.8.2871-2875.2004
– ident: e_1_3_1_45_2
  doi: 10.1001/jama.2020.0103
– ident: e_1_3_1_64_2
– ident: e_1_3_1_18_2
  doi: 10.1093/jac/dkq193
– ident: e_1_3_1_23_2
  doi: 10.1016/j.ijantimicag.2013.07.005
– ident: e_1_3_1_30_2
  doi: 10.1007/s40265-017-0785-2
– ident: e_1_3_1_5_2
  doi: 10.1128/JCM.00775-12
– ident: e_1_3_1_59_2
  doi: 10.1007/s15010-015-0763-0
– volume-title: Performance standards for antimicrobial susceptibility testing
  year: 2020
  ident: e_1_3_1_12_2
– ident: e_1_3_1_29_2
  doi: 10.1128/AAC.02015-16
– ident: e_1_3_1_58_2
  doi: 10.1097/IPC.0000000000000222
– ident: e_1_3_1_8_2
  doi: 10.1007/s40121-014-0023-0
– ident: e_1_3_1_50_2
  doi: 10.1128/AAC.00797-12
– ident: e_1_3_1_61_2
  doi: 10.1080/23744235.2018.1448110
– ident: e_1_3_1_25_2
  doi: 10.1016/j.ijantimicag.2014.07.024
– ident: e_1_3_1_57_2
  doi: 10.1093/jac/dku378
– ident: e_1_3_1_37_2
  doi: 10.1093/cid/cir340
– ident: e_1_3_1_13_2
  doi: 10.1093/jac/dkv076
– ident: e_1_3_1_19_2
  doi: 10.1128/AAC.03600-14
– ident: e_1_3_1_42_2
  doi: 10.1097/CCM.0000000000002769
– ident: e_1_3_1_40_2
  doi: 10.1002/phar.2034
– ident: e_1_3_1_11_2
  doi: 10.1128/AAC.00019-10
– ident: e_1_3_1_65_2
  doi: 10.1007/s40121-019-00277-2
– ident: e_1_3_1_26_2
  doi: 10.1097/IPC.0000000000000191
– volume-title: Package insert
  year: 2003
  ident: e_1_3_1_9_2
– ident: e_1_3_1_6_2
  doi: 10.1128/AAC.50.3.1079-1082.2006
– ident: e_1_3_1_17_2
  doi: 10.1128/AAC.00636-09
– ident: e_1_3_1_51_2
  doi: 10.1128/AAC.01586-12
– ident: e_1_3_1_15_2
  doi: 10.1093/jac/dkx214
– ident: e_1_3_1_10_2
  doi: 10.1111/j.1574-6976.2007.00095.x
– ident: e_1_3_1_34_2
  doi: 10.1128/AAC.00487-10
– ident: e_1_3_1_52_2
  doi: 10.1016/j.clinthera.2014.05.061
– ident: e_1_3_1_63_2
  doi: 10.1128/AAC.00900-19
– ident: e_1_3_1_49_2
  doi: 10.1128/AAC.01516-09
– ident: e_1_3_1_21_2
  doi: 10.1093/jac/dks006
– ident: e_1_3_1_31_2
  doi: 10.1093/ofid/ofz168
– ident: e_1_3_1_38_2
  doi: 10.1128/AAC.00157-18
– ident: e_1_3_1_36_2
  doi: 10.1128/AAC.01525-12
– ident: e_1_3_1_66_2
  doi: 10.1007/s15010-019-01304-7
– ident: e_1_3_1_62_2
  doi: 10.1128/AAC.02483-18
– ident: e_1_3_1_14_2
  doi: 10.1093/jac/dku455
– ident: e_1_3_1_41_2
  doi: 10.1093/cid/ciw709
– ident: e_1_3_1_7_2
  doi: 10.1086/430352
– ident: e_1_3_1_56_2
  doi: 10.1128/AAC.00386-15
– ident: e_1_3_1_46_2
  doi: 10.1128/AAC.01816-17
– ident: e_1_3_1_3_2
  doi: 10.1093/cid/ciz498
– ident: e_1_3_1_24_2
  doi: 10.1128/AAC.02371-13
– ident: e_1_3_1_70_2
  doi: 10.1128/AAC.01666-15
– ident: e_1_3_1_67_2
  doi: 10.1016/j.clinthera.2016.12.005
– ident: e_1_3_1_47_2
  doi: 10.1016/j.jmii.2018.07.006
– ident: e_1_3_1_69_2
  doi: 10.1093/ofid/ofz538
– volume: 6
  start-page: ofz168
  year: 2019
  ident: B30
  article-title: Ceftaroline-associated neutropenia: case series and literature review of incidence, risk factors, and outcomes
  publication-title: Open Forum Infect Dis
  doi: 10.1093/ofid/ofz168
– volume: 32
  start-page: 361
  year: 2008
  end-page: 385
  ident: B9
  article-title: Penicillin-binding proteins and beta-lactam resistance
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2007.00095.x
– volume: 77
  start-page: 1345
  year: 2017
  end-page: 1351
  ident: B29
  article-title: Early use of ceftaroline fosamil in the United States veterans health care system
  publication-title: Drugs
  doi: 10.1007/s40265-017-0785-2
– volume: 60
  start-page: 3970
  year: 2016
  end-page: 3975
  ident: B69
  article-title: Daptomycin in combination with ceftolozane-tazobactam or cefazolin against daptomycin-susceptible and -nonsusceptible Staphylococcus aureus in an in vitro, hollow-fiber model
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01666-15
– volume: 54
  start-page: 1670
  year: 2010
  end-page: 1677
  ident: B10
  article-title: Affinity of ceftaroline and other beta-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00019-10
– volume: 51
  start-page: 641
  year: 2010
  end-page: 650
  ident: B26
  article-title: Integrated analysis of CANVAS 1 and 2: phase 3, multicenter, randomized, double‐blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin‐structure infection
  publication-title: Clin Infect Dis
  doi: 10.1086/655827
– volume: 323
  start-page: 527
  year: 2020
  end-page: 537
  ident: B44
  article-title: Effect of vancomycin or daptomycin with vs without an antistaphylococcal β-lactam on mortality, bacteremia, relapse, or treatment failure in patients with MRSA bacteremia: a randomized clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.2020.0103
– volume: 56
  start-page: 5296
  year: 2012
  end-page: 5302
  ident: B49
  article-title: Addition of ceftaroline to daptomycin after emergence of daptomycin-nonsusceptible Staphylococcus aureus during therapy improves antibacterial activity
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00797-12
– volume: 36
  start-page: 1317
  year: 2014
  end-page: 1333
  ident: B51
  article-title: Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline
  publication-title: Clin Ther
  doi: 10.1016/j.clinthera.2014.05.061
– volume: 69
  start-page: 2112
  year: 2019
  end-page: 2118
  ident: B1
  article-title: Methicillin-susceptible and methicillin-resistant Staphylococcus aureus bacteremia: nationwide estimates of 30-day readmission, in-hospital mortality, length of stay, and cost in the United States
  publication-title: Clin Infect Dis
– volume: 23
  start-page: 39
  year: 2015
  end-page: 43
  ident: B25
  article-title: Ceftaroline fosamil for the treatment of Staphylococcus aureus bacteremia secondary to acute bacterial skin and skin structure infections or community-acquired bacterial pneumonia
  publication-title: Infect Dis Clin Pract (Baltim Md)
  doi: 10.1097/IPC.0000000000000191
– year: 2018
  ident: B46
  article-title: A comparison of safety and outcomes with cefazolin versus nafcillin for methicillin-susceptible Staphylococcus aureus bloodstream infections
  publication-title: J Microbiol Immunol Infect
  doi: 10.1016/j.jmii.2018.07.006
– volume: 7
  start-page: ofz538
  year: 2020
  ident: B68
  article-title: Multicenter cohort of patients with methicillin-resistant Staphylococcus aureus bacteremia receiving daptomycin plus ceftaroline compared to other MRSA treatments
  publication-title: Open Forum Infect Dis
  doi: 10.1093/ofid/ofz538
– volume: 52
  start-page: e18
  year: 2011
  end-page: e55
  ident: B3
  article-title: Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciq146
– volume: 62
  year: 2018
  ident: B45
  article-title: Systematic review and meta-analysis of the safety of antistaphylococcal penicillins compared to cefazolin
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01816-17
– volume: 62
  year: 2018
  ident: B37
  article-title: β-Lactam combinations with vancomycin show synergistic activity against vancomycin-susceptible Staphylococcus aureus, vancomycin-intermediate S. aureus (VISA), and heterogeneous VISA
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00157-18
– volume: 59
  start-page: 4497
  year: 2015
  end-page: 4503
  ident: B55
  article-title: Evaluation of ceftaroline alone and in combination against biofilm-producing methicillin-resistant Staphylococcus aureus with reduced susceptibility to daptomycin and vancomycin in an in vitro pharmacokinetic/pharmacodynamic model
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00386-15
– volume: 62
  start-page: 173
  year: 2016
  end-page: 180
  ident: B42
  article-title: Combination of vancomycin and β-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/civ808
– volume: 50
  start-page: 1079
  year: 2006
  end-page: 1082
  ident: B5
  article-title: Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.50.3.1079-1082.2006
– volume: 70
  start-page: 797
  year: 2015
  end-page: 801
  ident: B13
  article-title: Ceftaroline fosamil salvage therapy: an option for reduced-vancomycin-susceptible MRSA bacteraemia
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dku455
– year: 2020
  ident: B11
  publication-title: Performance standards for antimicrobial susceptibility testing ;30th ed ;CLSI supplement M100 ;Clinical and Laboratory Standards Institute ;Wayne, PA
– volume: 50
  start-page: 643
  year: 2018
  end-page: 647
  ident: B60
  article-title: Daptomycin and combination daptomycin-ceftaroline as salvage therapy for persistent methicillin-resistant Staphylococcus aureus bacteremia
  publication-title: Infect Dis (Lond)
  doi: 10.1080/23744235.2018.1448110
– volume: 70
  start-page: 505
  year: 2015
  end-page: 509
  ident: B56
  article-title: The combination of ceftaroline plus daptomycin allows for therapeutic de-escalation and daptomycin sparing against MRSA
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dku378
– volume: 57
  start-page: 2664
  year: 2013
  end-page: 2668
  ident: B54
  article-title: Evaluation of ceftaroline activity against heteroresistant vancomycin-intermediate Staphylococcus aureus and vancomycin-intermediate methicillin-resistant S. aureus strains in an in vitro pharmacokinetic/pharmacodynamic model: exploring the “seesaw effect.”
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02308-12
– volume: 58
  start-page: 102
  year: 2014
  end-page: 109
  ident: B38
  article-title: β-Lactams enhance vancomycin activity against methicillin-resistant Staphylococcus aureus bacteremia compared to vancomycin alone
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01204-13
– volume: 74
  start-page: 425
  year: 2019
  end-page: 431
  ident: B15
  article-title: Ceftaroline fosamil doses and breakpoints for Staphylococcus aureus in complicated skin and soft tissue infections
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dky439
– volume: 58
  start-page: 2541
  year: 2014
  end-page: 2546
  ident: B23
  article-title: Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02371-13
– volume: 46
  start-page: 12
  year: 2018
  end-page: 20
  ident: B41
  article-title: Vancomycin plus piperacillin-tazobactam and acute kidney injury in adults: a systematic review and meta-analysis
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000002769
– volume: 5
  start-page: 2321
  year: 2004
  end-page: 2331
  ident: B53
  article-title: Daptomycin—a novel antibiotic against Gram-positive pathogens
  publication-title: Expert Opin Pharmacother
  doi: 10.1517/14656566.5.11.2321
– year: 2019
  ident: B2
  article-title: Reduced mortality of Staphylococcus aureus bacteremia in a retrospective cohort study of 2139 patients: 2007–2015
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciz498
– volume: 72
  start-page: 2796
  year: 2017
  end-page: 2803
  ident: B14
  article-title: Ceftaroline efficacy against high-MIC clinical Staphylococcus aureus isolates in an in vitro hollow-fibre infection model
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkx214
– volume: 63
  year: 2019
  ident: B62
  article-title: Is daptomycin plus ceftaroline associated with better clinical outcomes than standard of care monotherapy for Staphylococcus aureus bacteremia?
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00900-19
– volume: 191
  start-page: 2149
  year: 2005
  end-page: 2152
  ident: B6
  article-title: Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact
  publication-title: J Infect Dis
  doi: 10.1086/430352
– volume: 61
  year: 2017
  ident: B59
  article-title: Ceftaroline-resistant, daptomycin-tolerant, and heterogeneous vancomycin-intermediate methicillin-resistant Staphylococcus aureus causing infective endocarditis
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01235-16
– volume: 57
  start-page: 27
  year: 2017
  end-page: 31
  ident: B27
  article-title: Ceftaroline fosamil monotherapy for methicillin-resistant Staphylococcus aureus bacteremia: a comparative clinical outcomes study
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2017.01.019
– volume: 53
  start-page: 4712
  year: 2009
  end-page: 4717
  ident: B16
  article-title: In vitro activity of ceftaroline against methicillin-resistant Staphylococcus aureus and heterogeneous vancomycin-intermediate S. aureus in a hollow fiber model
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00636-09
– ident: B63
  article-title: McCreary E , Geriak M , Zasowski E , Rizvi K , Schulz LT , Ouellette K , Vasina L , Rybak MJ , Zervos M , Sakoulas G , Rose W . 2018 . Multi-centre cohort study of daptomycin plus ceftaroline combination compared to matched standard of care treatment in patients with methicillin-resistant Staphylococcus aureus bacteraemia, abstr P2038. 28th Eur Congr Clin Microbiol Infect Dis, Madrid, Spain.
– volume: 43
  start-page: 1747
  year: 1999
  end-page: 1753
  ident: B32
  article-title: Combinations of vancomycin and β-lactams are synergistic against staphylococci with reduced susceptibilities to vancomycin
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.43.7.1747
– volume: 43
  start-page: 751
  year: 2015
  end-page: 754
  ident: B58
  article-title: Daptomycin non-susceptible, vancomycin-intermediate Staphylococcus aureus endocarditis treated with ceftaroline and daptomycin: case report and brief review of the literature
  publication-title: Infection
  doi: 10.1007/s15010-015-0763-0
– volume: 63
  year: 2019
  ident: B61
  article-title: Clinical data on daptomycin plus ceftaroline versus standard of care monotherapy in the treatment of methicillin-resistant Staphylococcus aureus bacteremia
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02483-18
– volume: 62
  year: 2018
  ident: B67
  article-title: Outcomes of vancomycin plus a β-lactam versus vancomycin only for treatment of methicillin-resistant Staphylococcus aureus bacteremia
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01554-17
– volume: 47
  start-page: 629
  year: 2019
  end-page: 635
  ident: B65
  article-title: Ceftaroline as salvage therapy for complicated MRSA bacteremia: case series and analysis
  publication-title: Infection
  doi: 10.1007/s15010-019-01304-7
– volume: 37
  start-page: 1347
  year: 2017
  end-page: 1356
  ident: B39
  article-title: Early administration of adjuvant β-lactam therapy in combination with vancomycin among patients with methicillin-resistant Staphylococcus aureus bloodstream infection: a retrospective, multicenter analysis
  publication-title: Pharmacotherapy
  doi: 10.1002/phar.2034
– year: 2011
  ident: B47
  article-title: Teflaro (ceftaroline fosamil)
  publication-title: Package insert ;Forest Pharmaceuticals, Inc ;St. Louis, MO
– year: 2019
  ident: B43
  article-title: Daptomycin plus β-lactam combination therapy for methicillin-resistant Staphylococcus aureus bloodstream infections: a retrospective, comparative cohort study
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciz746
– volume: 64
  start-page: 116
  year: 2017
  end-page: 123
  ident: B40
  article-title: Risk of acute kidney injury in patients on concomitant vancomycin and piperacillin-tazobactam compared to those on vancomycin and cefepime
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciw709
– volume: 56
  start-page: 6192
  year: 2012
  end-page: 6200
  ident: B35
  article-title: β-Lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01525-12
– volume: 3
  start-page: 35
  year: 2014
  end-page: 43
  ident: B7
  article-title: Observation of “seesaw effect” with vancomycin, teicoplanin, daptomycin and ceftaroline in 150 unique MRSA strains
  publication-title: Infect Dis Ther
  doi: 10.1007/s40121-014-0023-0
– volume: 2
  start-page: 970
  year: 2013
  end-page: 980
  ident: B52
  article-title: A review on daptomycin; the first US-FDA approved lipopeptide antibiotics
  publication-title: J Sci Innovative Res
– volume: 50
  start-page: 2548
  year: 2012
  end-page: 2552
  ident: B4
  article-title: Relationship between vancomycin-resistant Staphylococcus aureus, vancomycin-intermediate S. aureus, high vancomycin MIC, and outcome in serious S. aureus infections
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.00775-12
– volume: 179
  start-page: 2557
  year: 1997
  end-page: 2566
  ident: B31
  article-title: Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant of Staphylococcus aureus
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.8.2557-2566.1997
– volume: 53
  start-page: 158
  year: 2011
  end-page: 163
  ident: B36
  article-title: Use of antistaphylococcal beta-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: role of enhanced daptomycin binding
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/cir340
– volume: 58
  start-page: 6496
  year: 2014
  end-page: 6500
  ident: B18
  article-title: Ceftaroline-fosamil efficacy against methicillin-resistant Staphylococcus aureus in a rabbit prosthetic joint infection model
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.03600-14
– volume: 67
  start-page: 1267
  year: 2012
  end-page: 1270
  ident: B20
  article-title: Methicillin-resistant Staphylococcus aureus bacteraemia and endocarditis treated with ceftaroline salvage therapy
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dks006
– volume: 54
  start-page: 3161
  year: 2010
  end-page: 3169
  ident: B33
  article-title: Daptomycin-oxacillin combinations in treatment of experimental endocarditis caused by daptomycin-nonsusceptible strains of methicillin-resistant Staphylococcus aureus with evolving oxacillin susceptibility (the “seesaw effect”)
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00487-10
– volume: 65
  start-page: 1749
  year: 2010
  end-page: 1752
  ident: B17
  article-title: Efficacy of the new cephalosporin ceftaroline in the treatment of experimental methicillin-resistant Staphylococcus aureus acute osteomyelitis
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkq193
– volume: 9
  start-page: 77
  year: 2020
  end-page: 87
  ident: B64
  article-title: Comparing the outcomes of ceftaroline plus vancomycin or daptomycin combination therapy versus monotherapy in adults with complicated and prolonged methicillin-resistant Staphylococcus aureus bacteremia initially treated with supplemental ceftaroline
  publication-title: Infect Dis Ther
  doi: 10.1007/s40121-019-00277-2
– volume: 39
  start-page: 212
  year: 2017
  end-page: 218
  ident: B66
  article-title: Combination therapy with vancomycin and ceftaroline for refractory methicillin-resistant Staphylococcus aureus bacteremia: a case series
  publication-title: Clin Ther
  doi: 10.1016/j.clinthera.2016.12.005
– volume: 44
  start-page: 557
  year: 2014
  end-page: 563
  ident: B24
  article-title: Use of ceftaroline after glycopeptide failure to eradicate meticillin-resistant Staphylococcus aureus bacteraemia with elevated vancomycin minimum inhibitory concentrations
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2014.07.024
– volume: 48
  start-page: 2871
  year: 2004
  end-page: 2875
  ident: B34
  article-title: Synergy of daptomycin with oxacillin and other beta-lactams against methicillin-resistant Staphylococcus aureus
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.48.8.2871-2875.2004
– year: 2003
  ident: B8
  article-title: Cubicin (daptomycin)
  publication-title: Package insert ;Merck & Co, Inc ;Whitehouse Station, NJ
– volume: 57
  start-page: 66
  year: 2013
  end-page: 73
  ident: B50
  article-title: Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01586-12
– volume: 61
  year: 2017
  ident: B28
  article-title: Multicenter observational study of ceftaroline fosamil for methicillin-resistant Staphylococcus aureus bloodstream infections
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02015-16
– volume: 42
  start-page: 450
  year: 2013
  end-page: 455
  ident: B22
  article-title: Ceftaroline for meticillin-resistant Staphylococcus aureus bacteraemia: case series and review of the literature
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2013.07.005
– volume: 54
  start-page: 3027
  year: 2010
  end-page: 3030
  ident: B48
  article-title: In vitro activity of ceftaroline against community-associated methicillin-resistant, vancomycin-intermediate, vancomycin-resistant, and daptomycin-nonsusceptible Staphylococcus aureus isolates
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01516-09
– volume: 51
  start-page: 3397
  year: 2007
  end-page: 3400
  ident: B19
  article-title: In vivo efficacy of ceftaroline (PPI-0903), a new broad-spectrum cephalosporin, compared with linezolid and vancomycin against methicillin-resistant and vancomycin-intermediate Staphylococcus aureus in a rabbit endocarditis model
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01242-06
– volume: 19
  start-page: 42
  year: 2013
  end-page: 49
  ident: B21
  article-title: The use of ceftaroline fosamil in methicillin-resistant Staphylococcus aureus endocarditis and deep-seated MRSA infections: a retrospective case series of 10 patients
  publication-title: J Infect Chemother
  doi: 10.1007/s10156-012-0449-9
– volume: 70
  start-page: 2053
  year: 2015
  end-page: 2056
  ident: B12
  article-title: Activity of ceftaroline and comparator agents tested against Staphylococcus aureus from patients with bloodstream infections in US medical centres (2009–13)
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkv076
– volume: 23
  start-page: 155
  year: 2015
  end-page: 157
  ident: B57
  article-title: Successful salvage therapy using daptomycin and ceftaroline after the emergence of daptomycin nonsusceptible Staphylococcus aureus endocarditis and infected pacemaker/implantable cardioverter-defibrillator
  publication-title: Infect Dis Clin Pract
  doi: 10.1097/IPC.0000000000000222
SSID ssj0006590
Score 2.45839
SecondaryResourceType review_article
Snippet Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with...
Methicillin-resistant (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials...
Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with...
SourceID pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Editor's Pick
Minireview
Title The Emerging Role of β-Lactams in the Treatment of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections
URI https://www.ncbi.nlm.nih.gov/pubmed/32312776
https://journals.asm.org/doi/10.1128/AAC.00468-20
https://www.proquest.com/docview/2393037900
https://pubmed.ncbi.nlm.nih.gov/PMC7317994
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIqpeEAQo4aUFkV5SB2dtZ51jGhWVR1BUpVJv1tpeE0vEqRIHKfws_gNXfhMzu-tHSipBL07kndirzLfj2fHMN4S87TMe-47jWmHSiyxXONwSA8atOEJ0-WAeVfu28Zf-2YX78dK7bDR-1bKW1nnYjX7srCu5jVbhHOgVq2T_Q7PlReEEfAf9whE0DMd_1jFGlVSjoXOTJ9genbZPmPVZRDmyLZg8xmmZUI45LxKz3DHSklnncoUuJAyA3wn_OTzcFlG0XnXEeinh4wQz27GiRMzBmOjMLRPhKzmY83SeKkInJB74qmrmVLncTM5NgVeVa6yaBCnzsoH5jrrVwBLsDSYeKQipQEI5VhYsmvbknWG3wqOJeGPLsFlqAgwmjsGw3Y2lS41rpQNo02rZquO0YqOqW_F-33J93ba4K7XhRl7Uvqe74xaWXfOjGwTz3Q8MhkUQw-Goi5EChFddDNR9NVfgccAPZpxfY-1WfsBkPOIOEuu5d8hdkNE7-w-fSocApqUrocy0i_oL5r-r3_iA7Bd3Af9ArOZs21f6awN0PY-35hhNH5D7ZkdDhxqeD0lDZk1yT_c43TTJ_thkbzTJ0UTzpG-O6bQq-1sd0yM6qRjUN4_IdximBbApApsuEvr7ZwFqmmYUYEBLUOPwTlDTbVBTDWpaAzWtQP2YXLw_nY7OLNMgxBJuz88tX0bcc2PYtQiPO0lP2jziPRm7LHTjQezIge9FnkxYwjyRgC_OHC-JkZMSnFJbJM4TspctMvmU0F4Err9IBiKSnit9FnLBbDcRaKxC2JO3yBvUSGBW_ypQm2fmB6DBQGkwYHaLdAp9BZGh2MdOL99ukG6X0leaWuYGudeF6gOw_fhCT2RysV4FSF9oO3xgg8yhhkJ5pQJKLcK3QFIKIK_89kiWzhS_vEHzs1v_8jk5qFb4C7KXL9fyJfjuefhKrYw_kn7zEw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Emerging+Role+of+%CE%B2-Lactams+in+the+Treatment+of+Methicillin-Resistant+Staphylococcus+aureus+Bloodstream+Infections&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Molina%2C+Kyle+C.&rft.au=Morrisette%2C+Taylor&rft.au=Miller%2C+Matthew+A.&rft.au=Huang%2C+Vanthida&rft.date=2020-06-23&rft.pub=American+Society+for+Microbiology&rft.issn=0066-4804&rft.eissn=1098-6596&rft.volume=64&rft.issue=7&rft_id=info:doi/10.1128%2FAAC.00468-20&rft_id=info%3Apmid%2F32312776&rft.externalDocID=PMC7317994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon