Correlation of bacterial community with phosphorus fraction drives discovery of Actinobacteria involved soil phosphorus transformation during the trichlorfon degradation

Trichlorfon (TCF) is a broad-spectrum phosphorus (P)-containing pesticide, yet its effects on soil P fraction transformation and bacterial communities during the TCF degradation in soils is unknown. In this study, we investigated soil TCF degradation behavior at different contents of 50, 100 and 200...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 302; p. 119043
Main Authors Wang, Peiying, Li, Qiqiang, Ge, Fei, Li, Feng, Liu, Yun, Deng, Songqiang, Zhang, Dayi, Tian, Jiang
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Trichlorfon (TCF) is a broad-spectrum phosphorus (P)-containing pesticide, yet its effects on soil P fraction transformation and bacterial communities during the TCF degradation in soils is unknown. In this study, we investigated soil TCF degradation behavior at different contents of 50, 100 and 200 mg/kg, and analyzed residual TCF contents and metabolites by gas chromatography mass spectrometry after 216-h incubation. Our results suggested that TCF was gradually degraded in soils and was be initially hydrolyzed to dichlorvos via P–C bond cleavage and then other P-containing metabolites. By analyzing different P fractions and soil microbial community composition, we found significant increases of soil available phosphorus contents from 2.76 mg/kg (control) to 3.23 mg/kg (TCF-50), 5.12 mg/kg (TCF-100) and 5.72 mg/kg (TCF-200), respectively. Inorganic CaCl2–P was easily and instantly transformed to primary mineral inorganic P (Pi) forms of HCl–P and citrate-P, while the proportion of enzyme-P (a labile organic P) fluctuated throughout TCF degradation process. Soil available P contents and Pi fractions were significantly correlated with the relative abundance of Actinobacteria. These results highlighted that Actinobacteria is the dominant soil species utilizing TCF as P sources to increase its community richness, and subsequently affect the transformation of P fractions to regulate soil P cycle. Our study gives new understanding on the microorganisms can involve soil P transformation during organophosphorus pesticides degradation in soils, highlighting the importance of bacteria in P transformation and pesticides soil decontamination. [Display omitted] •Soil phosphorus fractions transformation was affected by Trichlorfon addition.•Soil bacteria could utilize Trichlorfon and its metabolites as phosphorus sources.•Actinobacteria was the major soil bacteria to mobilize labile inorganic phosphorus.
AbstractList Trichlorfon (TCF) is a broad-spectrum phosphorus (P)-containing pesticide, yet its effects on soil P fraction transformation and bacterial communities during the TCF degradation in soils is unknown. In this study, we investigated soil TCF degradation behavior at different contents of 50, 100 and 200 mg/kg, and analyzed residual TCF contents and metabolites by gas chromatography mass spectrometry after 216-h incubation. Our results suggested that TCF was gradually degraded in soils and was be initially hydrolyzed to dichlorvos via P-C bond cleavage and then other P-containing metabolites. By analyzing different P fractions and soil microbial community composition, we found significant increases of soil available phosphorus contents from 2.76 mg/kg (control) to 3.23 mg/kg (TCF-50), 5.12 mg/kg (TCF-100) and 5.72 mg/kg (TCF-200), respectively. Inorganic CaCl2-P was easily and instantly transformed to primary mineral inorganic P (Pi) forms of HCl-P and citrate-P, while the proportion of enzyme-P (a labile organic P) fluctuated throughout TCF degradation process. Soil available P contents and Pi fractions were significantly correlated with the relative abundance of Actinobacteria. These results highlighted that Actinobacteria is the dominant soil species utilizing TCF as P sources to increase its community richness, and subsequently affect the transformation of P fractions to regulate soil P cycle. Our study gives new understanding on the microorganisms can involve soil P transformation during organophosphorus pesticides degradation in soils, highlighting the importance of bacteria in P transformation and pesticides soil decontamination.Trichlorfon (TCF) is a broad-spectrum phosphorus (P)-containing pesticide, yet its effects on soil P fraction transformation and bacterial communities during the TCF degradation in soils is unknown. In this study, we investigated soil TCF degradation behavior at different contents of 50, 100 and 200 mg/kg, and analyzed residual TCF contents and metabolites by gas chromatography mass spectrometry after 216-h incubation. Our results suggested that TCF was gradually degraded in soils and was be initially hydrolyzed to dichlorvos via P-C bond cleavage and then other P-containing metabolites. By analyzing different P fractions and soil microbial community composition, we found significant increases of soil available phosphorus contents from 2.76 mg/kg (control) to 3.23 mg/kg (TCF-50), 5.12 mg/kg (TCF-100) and 5.72 mg/kg (TCF-200), respectively. Inorganic CaCl2-P was easily and instantly transformed to primary mineral inorganic P (Pi) forms of HCl-P and citrate-P, while the proportion of enzyme-P (a labile organic P) fluctuated throughout TCF degradation process. Soil available P contents and Pi fractions were significantly correlated with the relative abundance of Actinobacteria. These results highlighted that Actinobacteria is the dominant soil species utilizing TCF as P sources to increase its community richness, and subsequently affect the transformation of P fractions to regulate soil P cycle. Our study gives new understanding on the microorganisms can involve soil P transformation during organophosphorus pesticides degradation in soils, highlighting the importance of bacteria in P transformation and pesticides soil decontamination.
Trichlorfon (TCF) is a broad-spectrum phosphorus (P)-containing pesticide, yet its effects on soil P fraction transformation and bacterial communities during the TCF degradation in soils is unknown. In this study, we investigated soil TCF degradation behavior at different contents of 50, 100 and 200 mg/kg, and analyzed residual TCF contents and metabolites by gas chromatography mass spectrometry after 216-h incubation. Our results suggested that TCF was gradually degraded in soils and was be initially hydrolyzed to dichlorvos via P-C bond cleavage and then other P-containing metabolites. By analyzing different P fractions and soil microbial community composition, we found significant increases of soil available phosphorus contents from 2.76 mg/kg (control) to 3.23 mg/kg (TCF-50), 5.12 mg/kg (TCF-100) and 5.72 mg/kg (TCF-200), respectively. Inorganic CaCl -P was easily and instantly transformed to primary mineral inorganic P (P ) forms of HCl-P and citrate-P, while the proportion of enzyme-P (a labile organic P) fluctuated throughout TCF degradation process. Soil available P contents and P fractions were significantly correlated with the relative abundance of Actinobacteria. These results highlighted that Actinobacteria is the dominant soil species utilizing TCF as P sources to increase its community richness, and subsequently affect the transformation of P fractions to regulate soil P cycle. Our study gives new understanding on the microorganisms can involve soil P transformation during organophosphorus pesticides degradation in soils, highlighting the importance of bacteria in P transformation and pesticides soil decontamination.
Trichlorfon (TCF) is a broad-spectrum phosphorus (P)-containing pesticide, yet its effects on soil P fraction transformation and bacterial communities during the TCF degradation in soils is unknown. In this study, we investigated soil TCF degradation behavior at different contents of 50, 100 and 200 mg/kg, and analyzed residual TCF contents and metabolites by gas chromatography mass spectrometry after 216-h incubation. Our results suggested that TCF was gradually degraded in soils and was be initially hydrolyzed to dichlorvos via P–C bond cleavage and then other P-containing metabolites. By analyzing different P fractions and soil microbial community composition, we found significant increases of soil available phosphorus contents from 2.76 mg/kg (control) to 3.23 mg/kg (TCF-50), 5.12 mg/kg (TCF-100) and 5.72 mg/kg (TCF-200), respectively. Inorganic CaCl₂–P was easily and instantly transformed to primary mineral inorganic P (Pᵢ) forms of HCl–P and citrate-P, while the proportion of enzyme-P (a labile organic P) fluctuated throughout TCF degradation process. Soil available P contents and Pᵢ fractions were significantly correlated with the relative abundance of Actinobacteria. These results highlighted that Actinobacteria is the dominant soil species utilizing TCF as P sources to increase its community richness, and subsequently affect the transformation of P fractions to regulate soil P cycle. Our study gives new understanding on the microorganisms can involve soil P transformation during organophosphorus pesticides degradation in soils, highlighting the importance of bacteria in P transformation and pesticides soil decontamination.
Trichlorfon (TCF) is a broad-spectrum phosphorus (P)-containing pesticide, yet its effects on soil P fraction transformation and bacterial communities during the TCF degradation in soils is unknown. In this study, we investigated soil TCF degradation behavior at different contents of 50, 100 and 200 mg/kg, and analyzed residual TCF contents and metabolites by gas chromatography mass spectrometry after 216-h incubation. Our results suggested that TCF was gradually degraded in soils and was be initially hydrolyzed to dichlorvos via P–C bond cleavage and then other P-containing metabolites. By analyzing different P fractions and soil microbial community composition, we found significant increases of soil available phosphorus contents from 2.76 mg/kg (control) to 3.23 mg/kg (TCF-50), 5.12 mg/kg (TCF-100) and 5.72 mg/kg (TCF-200), respectively. Inorganic CaCl2–P was easily and instantly transformed to primary mineral inorganic P (Pi) forms of HCl–P and citrate-P, while the proportion of enzyme-P (a labile organic P) fluctuated throughout TCF degradation process. Soil available P contents and Pi fractions were significantly correlated with the relative abundance of Actinobacteria. These results highlighted that Actinobacteria is the dominant soil species utilizing TCF as P sources to increase its community richness, and subsequently affect the transformation of P fractions to regulate soil P cycle. Our study gives new understanding on the microorganisms can involve soil P transformation during organophosphorus pesticides degradation in soils, highlighting the importance of bacteria in P transformation and pesticides soil decontamination. [Display omitted] •Soil phosphorus fractions transformation was affected by Trichlorfon addition.•Soil bacteria could utilize Trichlorfon and its metabolites as phosphorus sources.•Actinobacteria was the major soil bacteria to mobilize labile inorganic phosphorus.
ArticleNumber 119043
Author Li, Qiqiang
Ge, Fei
Deng, Songqiang
Li, Feng
Wang, Peiying
Zhang, Dayi
Liu, Yun
Tian, Jiang
Author_xml – sequence: 1
  givenname: Peiying
  surname: Wang
  fullname: Wang, Peiying
  organization: Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
– sequence: 2
  givenname: Qiqiang
  surname: Li
  fullname: Li, Qiqiang
  organization: Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
– sequence: 3
  givenname: Fei
  surname: Ge
  fullname: Ge, Fei
  organization: Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
– sequence: 4
  givenname: Feng
  surname: Li
  fullname: Li, Feng
  organization: Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
– sequence: 5
  givenname: Yun
  surname: Liu
  fullname: Liu, Yun
  organization: Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
– sequence: 6
  givenname: Songqiang
  surname: Deng
  fullname: Deng, Songqiang
  organization: Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou, China
– sequence: 7
  givenname: Dayi
  surname: Zhang
  fullname: Zhang, Dayi
  organization: School of Environment, Tsinghua University, Beijing, China
– sequence: 8
  givenname: Jiang
  surname: Tian
  fullname: Tian, Jiang
  email: tianjiangjames23@xtu.edu.cn
  organization: Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35217138$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAURS1URKeFP0DISzYZ7Dh2YhZI1QhapEpsYG059kvHo8Qe7CTVfBJ_idO0CLEAFpYlv3Pvk--9QGc-eEDoNSVbSqh4d9iCn4-h35akLLeUSlKxZ2hDm5oVoiqrM7QhpZBFXUl6ji5SOhCSEcZeoHPGS1pT1mzQj12IEXo9uuBx6HCrzQjR6R6bMAyTd-MJ37txj4_7kPKJU8JdzNDC2-hmSNi6ZMIM8bQYXOWRD0822Pk59DNYnILrfzcZo_apC3FYV9spOn-Hxz3kiTP7PsRueYa7qO0D8hI973Sf4NXjfYm-ffr4dXdT3H65_ry7ui10RZuxqHlVal3LVldakrYVhPGOCc6NaWRNpQAA3jallqKyomuFztG1BgRYbutSs0v0dvU9xvB9gjSqIf8P-l57CFNSpag5F1w09D9QxhouhWQZffOITu0AVh2jG3Q8qacmMlCtgIkhpQjdL4QStRSuDmotXC2Fq7XwLHv_h8y48SGvHLDr_yX-sIoh5zk7iCoZB96AdRHMqGxwfzf4CftWzuc
CitedBy_id crossref_primary_10_1016_j_ecoenv_2024_116378
crossref_primary_10_1039_D4OB01244E
crossref_primary_10_1016_j_scitotenv_2024_175860
crossref_primary_10_1016_j_jenvman_2023_118340
crossref_primary_10_3389_fmicb_2023_1282609
crossref_primary_10_1016_j_jhazmat_2023_131096
crossref_primary_10_1016_j_rhisph_2023_100790
crossref_primary_10_1016_j_envpol_2022_120953
crossref_primary_10_1016_j_envpol_2023_122408
crossref_primary_10_1111_1365_2745_14463
crossref_primary_10_1039_D3AY01057K
crossref_primary_10_1016_j_jafr_2025_101635
crossref_primary_10_1016_j_scitotenv_2022_157748
Cites_doi 10.1371/journal.pone.0216881
10.1016/j.scitotenv.2015.11.008
10.1016/j.scitotenv.2015.09.009
10.1021/acs.jafc.6b00909
10.1021/acs.jafc.9b08033
10.1021/acs.jafc.9b05765
10.1016/j.resconrec.2017.01.017
10.1016/j.soilbio.2013.08.015
10.1002/jobm.201300576
10.1016/j.jtemb.2016.01.012
10.1023/A:1013351617532
10.1002/ldr.3963
10.1016/j.biortech.2021.125504
10.1128/AEM.00062-07
10.1016/j.ibiod.2010.05.001
10.1016/j.apsoil.2021.104256
10.1016/j.foodchem.2020.128653
10.1007/s11356-018-3889-7
10.1186/s13059-014-0550-8
10.1134/S0026261709060149
10.1016/S1002-0160(18)60017-7
10.1016/j.foreco.2009.04.001
10.1016/j.soilbio.2020.107959
10.1016/j.agee.2016.12.030
10.1016/j.ecoenv.2015.12.018
10.1007/s10532-016-9771-8
10.1016/j.scitotenv.2012.01.004
10.1038/s41587-019-0209-9
10.1016/j.still.2009.07.001
10.1016/j.jclepro.2020.122706
10.1002/fee.1985
10.1016/j.jhazmat.2020.123996
10.1016/j.soilbio.2015.05.016
10.1080/15320383.2011.594110
10.1371/journal.pone.0126080
10.1007/s11356-019-05135-9
10.1016/j.chemosphere.2016.09.070
10.1016/j.chemosphere.2003.10.014
10.1016/j.chemosphere.2010.11.027
10.2136/sssaj1991.03615995005500030046x
10.1007/s11356-019-05811-w
10.1016/j.still.2019.104516
10.1016/j.scitotenv.2019.135080
10.1016/j.ecoenv.2021.112039
10.1016/j.apsoil.2012.06.002
10.1016/j.jhazmat.2020.122293
10.5194/bg-8-2907-2011
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2022.119043
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 35217138
10_1016_j_envpol_2022_119043
S0269749122002573
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5VS
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
XPP
ZMT
~G-
29G
53G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
OHT
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
XJT
XOL
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a418t-7542aa79ba4a90bb6035f3655cc897196eee5b82a964d6fb6a119bce6ed5d72a3
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Fri Jul 11 01:15:54 EDT 2025
Fri Jul 11 03:33:40 EDT 2025
Wed Feb 19 02:26:37 EST 2025
Thu Apr 24 23:13:19 EDT 2025
Tue Jul 01 03:15:19 EDT 2025
Fri Feb 23 02:39:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biodegradation
Organophosphorus pesticides
Bioremediation
Phosphorus cycle
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a418t-7542aa79ba4a90bb6035f3655cc897196eee5b82a964d6fb6a119bce6ed5d72a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35217138
PQID 2633859693
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2675565681
proquest_miscellaneous_2633859693
pubmed_primary_35217138
crossref_primary_10_1016_j_envpol_2022_119043
crossref_citationtrail_10_1016_j_envpol_2022_119043
elsevier_sciencedirect_doi_10_1016_j_envpol_2022_119043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
2022-06-00
2022-Jun-01
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hou, Zhang, Liu, Li, Liu, Lu (bib21) 2021; 338
Wei, Bao, Huang, Chen (bib51) 2017; 237
Wakelin, Mander, Gerard, Jansa, Erb, Young, Condron, O'Callaghan (bib47) 2012; 61
Spohn, Kuzyakov (bib42) 2013; 67
(bib53) 2019
Jiang, Zhang, Zhang, Wang, Qian (bib23) 2015; 10
Tian, Dong, Yu, Zhao, Wang, Chen (bib44) 2016; 64
Guo, Li, Huang, Zhao, Li, Liu, Lv, Zhang, Cao, Tai (bib16) 2020; 275
Oksanen, Blanchet, Kindt, Legendre, Minchin, O’hara, Simpson, Solymos, Stevens, Wagner (bib38) 2018; vol. 2
Ma, Wen, Ma, Macdonald, Hill, Chadwick, Wu, Jones (bib32) 2020; 149
Hinsinger (bib18) 2001; 237
(bib52) 1992
Chávez-Ortiz, Tapia-Torres, Larsen, García-Oliva (bib7) 2022; 169
Duncan, Idalino, da Silva, Moda, da Silva, Matoso, Gomes (bib9) 2020; vol. 28
Majumder, Das (bib33) 2016; 126
Zhang, Tao, Li, Tian, Ke, Wei, Wang, Chen (bib60) 2019; 26
DeLuca, Glanville, Harris, Emmett, Pingree, de Sosa, Cerdá-Moreno, Jones (bib8) 2015; 88
Love, Huber, Anders (bib29) 2014; 15
Feld, Hjelmsø, Nielsen, Jacobsen, Rønn, Ekelund, Krogh, Strobel, Jacobsen (bib10) 2015; 10
Bolyen, Rideout, Dillon, Bokulich, Abnet, Al-Ghalith, Alexander, Alm, Arumugam, Asnicar, Bai, Bisanz, Bittinger, Brejnrod, Brislawn, Brown, Callahan, Caraballo-Rodriguez, Chase, Cope, Da Silva, Diener, Dorrestein, Douglas, Durall, Duvallet, Edwardson, Ernst, Estaki, Fouquier, Gauglitz, Gibbons, Gibson, Gonzalez, Gorlick, Guo, Hillmann, Holmes, Holste, Huttenhower, Huttley, Janssen, Jarmusch, Jiang, Kaehler, Kang, Keefe, Keim, Kelley, Knights, Koester, Kosciolek, Kreps, Langille, Lee, Ley, Liu, Loftfield, Lozupone, Maher, Marotz, Martin, McDonald, McIver, Melnik, Metcalf, Morgan, Morton, Naimey, Navas-Molina, Nothias, Orchanian, Pearson, Peoples, Petras, Preuss, Pruesse, Rasmussen, Rivers, Robeson, Rosenthal, Segata, Shaffer, Shiffer, Sinha, Song, Spear, Swafford, Thompson, Torres, Trinh, Tripathi, Turnbaugh, Ul-Hasan, van der Hooft, Vargas, Vazquez-Baeza, Vogtmann, von Hippel, Walters (bib5) 2019; 37
Huang, Yan, Wang, Fang, Song, Cheng, Li, Ou, Han, Jin, Cao (bib20) 2020; 68
Gai, Li, Zhang, Bian, Yang, Zhong (bib14) 2021
Zhan, Zhang, Ma, Zhang, Wang, Liu, Sun, Xu, Ding, Wei, Li (bib59) 2021; 125433
Tian, Yu, Xue, Zhao, Wang, Chen (bib45) 2016; 27
Yang, Post (bib56) 2011; 8
Bao, Zhang, Yang, Hu, Sun (bib4) 2012; 419
Ahmed, Jing, Kaillou, Qaswar, Khan, Chen, Sun, Huang, Liu, Liu, Sun, Li, Li, Ali, Normatov, Mehmood, Zhang (bib1) 2019; 14
Guan (bib15) 1987
Fuentes, Benimeli, Cuozzo, Amoroso (bib13) 2010; 64
Meason, Idol, Friday, Scowcroft (bib34) 2009; 258
Wang, Garrity, Tiedje, Cole (bib50) 2007; 73
Briceño, Fuentes, Rubilar, Jorquera, Tortella, Palma, Amoroso, Diez (bib6) 2015; 55
Flora (bib11) 2016; 35
Jiang, Zhang, Xing, Lian, Chen, Zhang, Li, Sun, Song (bib22) 2019; 26
Wu, Liu, Ye (bib54) 2009; 78
Shi, Lin, Ma, Zhu, Sun, Lin, Zhang, Zheng, Zhang (bib43) 2021; 403
Fu, Wu, Duan, Zhao, Li (bib12) 2020; 199
Li, Guo, Chen, Zhu, Li, Jiang (bib25) 2009; 19
Li, Ma, Li, Qin, Wu (bib26) 2011; 82
Pandey, Singh (bib39) 2004; 55
Kumar, Kaushik, Dar, Nimesh, Lopez-Chuken, Villarreal-Chiu (bib24) 2018; 28
Alvarez, Saez, Davila Costa, Colin, Fuentes, Cuozzo, Benimeli, Polti, Amoroso (bib2) 2017; 166
Yu, Zhang, Zhou (bib58) 2011; 20
Li, Boiarkina, Yu, Young (bib27) 2019; 26
Pavinato, Merlin, Rosolem (bib40) 2009; 105
Li, Zhu, Guo, Xie, Cheng, Yu, Qian, Yao (bib28) 2021; 344
Van (bib46) 2008; 29
Ohno, Zibilske (bib37) 1991; 55
Newman, Hoilett, Lorenz, Dick, Liles, Ramsier, Kloepper (bib36) 2016; 543
Wu, Zhang, Zhu, Huang, Wang, Zhao, Xu (bib55) 2017; 12
Lwin, Murakami, Hashimoto (bib31) 2017; 122
Huang, Yan, Ou, Zhang, Zhu, Liu, Li, Wang, Han, Cao (bib19) 2020; 711
Nannipieri, Giagnoni, Landi, Renella (bib35) 2011
Yadav, Khan, Sharma, Malik, Sharma (bib57) 2021; 213
Lukowiak, Grzebisz, Sassenrath (bib30) 2016; 542
Wang, Sun (bib49) 2020; 392
Wan, Wu, Ding, Zhang (bib48) 2020; 68
Sims (bib41) 2000
Hébert, Fugère, Gonzalez (bib17) 2019; 17
Pandey (10.1016/j.envpol.2022.119043_bib39) 2004; 55
Alvarez (10.1016/j.envpol.2022.119043_bib2) 2017; 166
Wu (10.1016/j.envpol.2022.119043_bib55) 2017; 12
Fuentes (10.1016/j.envpol.2022.119043_bib13) 2010; 64
Li (10.1016/j.envpol.2022.119043_bib27) 2019; 26
Oksanen (10.1016/j.envpol.2022.119043_bib38) 2018; vol. 2
Duncan (10.1016/j.envpol.2022.119043_bib9) 2020; vol. 28
Spohn (10.1016/j.envpol.2022.119043_bib42) 2013; 67
Ohno (10.1016/j.envpol.2022.119043_bib37) 1991; 55
Majumder (10.1016/j.envpol.2022.119043_bib33) 2016; 126
Wang (10.1016/j.envpol.2022.119043_bib50) 2007; 73
Guan (10.1016/j.envpol.2022.119043_bib15) 1987
Wakelin (10.1016/j.envpol.2022.119043_bib47) 2012; 61
Briceño (10.1016/j.envpol.2022.119043_bib6) 2015; 55
Bao (10.1016/j.envpol.2022.119043_bib4) 2012; 419
Wang (10.1016/j.envpol.2022.119043_bib49) 2020; 392
Wei (10.1016/j.envpol.2022.119043_bib51) 2017; 237
Sims (10.1016/j.envpol.2022.119043_bib41) 2000
Van (10.1016/j.envpol.2022.119043_bib46) 2008; 29
Tian (10.1016/j.envpol.2022.119043_bib44) 2016; 64
Gai (10.1016/j.envpol.2022.119043_bib14) 2021
Pavinato (10.1016/j.envpol.2022.119043_bib40) 2009; 105
(10.1016/j.envpol.2022.119043_bib52) 1992
Yang (10.1016/j.envpol.2022.119043_bib56) 2011; 8
Wan (10.1016/j.envpol.2022.119043_bib48) 2020; 68
Yu (10.1016/j.envpol.2022.119043_bib58) 2011; 20
Shi (10.1016/j.envpol.2022.119043_bib43) 2021; 403
Flora (10.1016/j.envpol.2022.119043_bib11) 2016; 35
Li (10.1016/j.envpol.2022.119043_bib25) 2009; 19
Lukowiak (10.1016/j.envpol.2022.119043_bib30) 2016; 542
Huang (10.1016/j.envpol.2022.119043_bib19) 2020; 711
Hou (10.1016/j.envpol.2022.119043_bib21) 2021; 338
Li (10.1016/j.envpol.2022.119043_bib28) 2021; 344
Yadav (10.1016/j.envpol.2022.119043_bib57) 2021; 213
Newman (10.1016/j.envpol.2022.119043_bib36) 2016; 543
Jiang (10.1016/j.envpol.2022.119043_bib23) 2015; 10
Hinsinger (10.1016/j.envpol.2022.119043_bib18) 2001; 237
Jiang (10.1016/j.envpol.2022.119043_bib22) 2019; 26
Guo (10.1016/j.envpol.2022.119043_bib16) 2020; 275
Chávez-Ortiz (10.1016/j.envpol.2022.119043_bib7) 2022; 169
Li (10.1016/j.envpol.2022.119043_bib26) 2011; 82
Feld (10.1016/j.envpol.2022.119043_bib10) 2015; 10
Zhang (10.1016/j.envpol.2022.119043_bib60) 2019; 26
Wu (10.1016/j.envpol.2022.119043_bib54) 2009; 78
Lwin (10.1016/j.envpol.2022.119043_bib31) 2017; 122
Ma (10.1016/j.envpol.2022.119043_bib32) 2020; 149
Kumar (10.1016/j.envpol.2022.119043_bib24) 2018; 28
Tian (10.1016/j.envpol.2022.119043_bib45) 2016; 27
Ahmed (10.1016/j.envpol.2022.119043_bib1) 2019; 14
Zhan (10.1016/j.envpol.2022.119043_bib59) 2021; 125433
Hébert (10.1016/j.envpol.2022.119043_bib17) 2019; 17
Love (10.1016/j.envpol.2022.119043_bib29) 2014; 15
Bolyen (10.1016/j.envpol.2022.119043_bib5) 2019; 37
Huang (10.1016/j.envpol.2022.119043_bib20) 2020; 68
Nannipieri (10.1016/j.envpol.2022.119043_bib35) 2011
Fu (10.1016/j.envpol.2022.119043_bib12) 2020; 199
(10.1016/j.envpol.2022.119043_bib53) 2019
Meason (10.1016/j.envpol.2022.119043_bib34) 2009; 258
DeLuca (10.1016/j.envpol.2022.119043_bib8) 2015; 88
References_xml – volume: 55
  start-page: 293
  year: 2015
  end-page: 302
  ident: bib6
  article-title: Removal of the insecticide diazinon from liquid media by free and immobilized
  publication-title: J. Basic Microbiol.
– volume: 10
  year: 2015
  ident: bib23
  article-title: Investigation on the Gas-phase decomposition of trichlorfon by GC-MS and theoretical calculation
  publication-title: PLoS One
– volume: 419
  start-page: 144
  year: 2012
  end-page: 150
  ident: bib4
  article-title: Mechanism and kinetics study on the OH-initiated oxidation of organophosphorus pesticide trichlorfon in atmosphere
  publication-title: Sci. Total Environ.
– volume: 543
  start-page: 155
  year: 2016
  end-page: 160
  ident: bib36
  article-title: Glyphosate effects on soil rhizosphere-associated bacterial communities
  publication-title: Sci. Total Environ.
– volume: 26
  start-page: 3954
  year: 2019
  end-page: 3964
  ident: bib27
  article-title: A new thermodynamic approach for struvite product quality prediction
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 8
  start-page: 2907
  year: 2011
  end-page: 2916
  ident: bib56
  article-title: Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method
  publication-title: Biogeosciences
– volume: 542
  start-page: 1062
  year: 2016
  end-page: 1077
  ident: bib30
  article-title: New insights into phosphorus management in agriculture--A crop rotation approach
  publication-title: Sci. Total Environ.
– volume: 67
  start-page: 106
  year: 2013
  end-page: 113
  ident: bib42
  article-title: Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocatione coupling soil zymography with
  publication-title: Soil Biol. Biochem.
– volume: 73
  start-page: 5261
  year: 2007
  end-page: 5267
  ident: bib50
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl. Environ. Microbiol.
– start-page: 123
  year: 1987
  end-page: 339
  ident: bib15
  article-title: Soil Enzyme and its Research Methods
– volume: 78
  start-page: 769
  year: 2009
  end-page: 775
  ident: bib54
  article-title: Characterization of phosphobacteria isolated from eutrophic aquatic ecosystems
  publication-title: Microbiology
– volume: 61
  start-page: 40
  year: 2012
  end-page: 48
  ident: bib47
  article-title: Response of soil microbial communities to contrasted histories of phosphorus fertilisation in pastures
  publication-title: Appl. Soil Ecol.
– volume: 711
  start-page: 135080
  year: 2020
  ident: bib19
  article-title: Chloropicrin fumigation alters the soil phosphorus and the composition of the encoding alkaline phosphatase phoD gene microbial community
  publication-title: Sci. Total Environ.
– start-page: 43
  year: 2019
  end-page: 44
  ident: bib53
  article-title: The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification
– volume: vol. 28
  start-page: 815
  year: 2020
  end-page: 830
  ident: bib9
  article-title: Acute toxicity of the pesticide trichlorfon and inhibition of acetylcholinesterase
  publication-title: Colossoma macropomum (Characiformes: Serrasalmidae). Aquacult
– volume: 199
  start-page: 104516
  year: 2020
  ident: bib12
  article-title: Different life-form plants exert different rhizosphere effects on phosphorus biogeochemistry in subtropical mountainous soils with low and high phosphorus content
  publication-title: Soil. Till. Res.
– volume: 68
  start-page: 5049
  year: 2020
  end-page: 5058
  ident: bib20
  article-title: Effects of dazomet fumigation on soil phosphorus and the composition of phoD-harboring microbial communities
  publication-title: J. Agric. Food Chem.
– volume: 19
  start-page: 1439
  year: 2009
  end-page: 1446
  ident: bib25
  article-title: Isolation of an isocarbophos-degrading strain of
  publication-title: J. Microbiol. Biotechnol.
– volume: 105
  start-page: 149
  year: 2009
  end-page: 155
  ident: bib40
  article-title: Phosphorus fractions in Brazilian Cerrado soils as affected by tillage
  publication-title: Soil. Till. Res.
– volume: 169
  start-page: 104256
  year: 2022
  ident: bib7
  article-title: Glyphosate-based herbicides alter soil carbon and phosphorus dynamics and microbial activity
  publication-title: Appl. Soil Ecol.
– volume: 26
  start-page: 21668
  year: 2019
  end-page: 21681
  ident: bib22
  article-title: Microbial degradation of organophosphorus pesticides: novel degraders, kinetics, functional genes, and genotoxicity assessment
  publication-title: Environ. Sci. Pollut. Res.
– volume: 27
  start-page: 265
  year: 2016
  end-page: 276
  ident: bib45
  article-title: Performance of trichlorfon degradation by a novel
  publication-title: Biodegradation
– volume: 55
  start-page: 197
  year: 2004
  end-page: 205
  ident: bib39
  article-title: Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (
  publication-title: Chemosphere
– start-page: 19
  year: 1992
  end-page: 20
  ident: bib52
  article-title: Trichlorfon
– volume: 213
  start-page: 112039
  year: 2021
  ident: bib57
  article-title: Potential of formulated
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 35
  start-page: 43
  year: 2016
  end-page: 60
  ident: bib11
  article-title: Arsenic and dichlorvos: possible interaction between two environmental contaminants
  publication-title: J. Trace Elem. Med. Biol.
– volume: 126
  start-page: 56
  year: 2016
  end-page: 61
  ident: bib33
  article-title: Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 64
  start-page: 434
  year: 2010
  end-page: 441
  ident: bib13
  article-title: Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides
  publication-title: Int. Biodeterior. Biodegrad.
– volume: 64
  start-page: 4280
  year: 2016
  end-page: 4287
  ident: bib44
  article-title: Biodegradation of the organophosphate trichlorfon and its major degradation products by a novel
  publication-title: J. Agric. Food Chem.
– volume: 20
  start-page: 688
  year: 2011
  end-page: 701
  ident: bib58
  article-title: Using soil available P and activities of soil dehydrogenase and phosphatase as indicators for biodegradation of organophosphorus pesticide methamidophos and glyphosate
  publication-title: Soil Sediment Contam.
– volume: 122
  start-page: 94
  year: 2017
  end-page: 105
  ident: bib31
  article-title: The implications of allocation scenarios for global phosphorus flow from agriculture and wastewater
  publication-title: Resour. Conserv. Recycl.
– volume: 29
  start-page: 1553
  year: 2008
  end-page: 1570
  ident: bib46
  article-title: Bioavailable tests: alternatives to standard soil extractions
  publication-title: Commu. Soil. Sci. Plan.
– volume: 403
  start-page: 123996
  year: 2021
  ident: bib43
  article-title: Degradation of tetracycline antibiotics by
  publication-title: J. Hazard Mater.
– volume: 12
  year: 2017
  ident: bib55
  article-title: Characterizing differences in the phosphorus activation coefficient of three typical cropland soils and the influencing factors under long-term fertilization
  publication-title: PLoS One
– start-page: 215
  year: 2011
  end-page: 243
  ident: bib35
  article-title: Role of phosphatase enzymes in soil
  publication-title: Phosphorus in Action. Soil Biology
– volume: 37
  start-page: 852
  year: 2019
  end-page: 857
  ident: bib5
  article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
  publication-title: Nat. Biotechnol.
– volume: 15
  start-page: 1
  year: 2014
  end-page: 21
  ident: bib29
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
– volume: 10
  year: 2015
  ident: bib10
  article-title: Pesticide side effects in an agricultural soil ecosystem as measured by amoA expression quantification and bacterial diversity changes
  publication-title: PLoS One
– volume: 82
  start-page: 829
  year: 2011
  end-page: 833
  ident: bib26
  article-title: The dissipation rates of trichlorfon and its degradation product dichlorvos in cabbage and soil
  publication-title: Chemosphere
– volume: 344
  start-page: 128653
  year: 2021
  ident: bib28
  article-title: Investigation of the transformation and toxicity of trichlorfon at the molecular level during enzymic hydrolysis of apple juice
  publication-title: Food Chem.
– volume: 237
  start-page: 134
  year: 2017
  end-page: 142
  ident: bib51
  article-title: Effects of long-term fertilization on available P, P composition and phosphatase activities in soil from the Huang-Huai-Hai Plain of China
  publication-title: Agric. Ecosyst. Environ.
– volume: 68
  start-page: 1645
  year: 2020
  end-page: 1653
  ident: bib48
  article-title: Toxicity, biodegradation, and metabolic fate of organophosphorus pesticide ttrichlorfon on the freshwater algae
  publication-title: J. Agric. Food Chem.
– volume: 392
  start-page: 122293
  year: 2020
  ident: bib49
  article-title: Exploring the effects of carbon source level on the degradation of 2, 4, 6-trichlorophenol in the co-metabolism process
  publication-title: J. Hazard Mater.
– volume: 149
  start-page: 107959
  year: 2020
  ident: bib32
  article-title: Long-term farmyard manure application affects soil organic phosphorus cycling: a combined metagenomic and
  publication-title: Soil Biol. Biochem.
– year: 2021
  ident: bib14
  article-title: Changes in soil phosphorus availability and associated microbial properties after chicken farming in Lei bamboo (
  publication-title: Land Degrad. Dev.
– volume: 55
  start-page: 892
  year: 1991
  end-page: 895
  ident: bib37
  article-title: Determination of low concentrations of phosphorus in soil extracts using malachite green
  publication-title: Soil Sci. Soc. Am. J.
– volume: 237
  start-page: 173
  year: 2001
  end-page: 195
  ident: bib18
  article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review
  publication-title: Plant Soil
– volume: vol. 2
  year: 2018
  ident: bib38
  publication-title: Community Ecology Package
– start-page: 13
  year: 2000
  end-page: 14
  ident: bib41
  article-title: Soil test phosphorus, Bray and kurtz P-1
  publication-title: Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters, Southern Cooperative Series Bulletin
– volume: 14
  year: 2019
  ident: bib1
  article-title: Changes in phosphorus fractions associated with soil chemical properties under long-term organic and inorganic fertilization in paddy soils of southern China
  publication-title: PLoS One
– volume: 275
  start-page: 122706
  year: 2020
  ident: bib16
  article-title: Radical-based advanced oxidation for trichlorfon degradation and phosphorus recovery: process feasibility and reaction mechanism
  publication-title: J. Clean. Prod.
– volume: 258
  start-page: 2199
  year: 2009
  end-page: 2206
  ident: bib34
  article-title: Effects of fertilisation on phosphorus pools in the volcanic soil of a managed tropical forest
  publication-title: For. Ecol. Manag.
– volume: 17
  start-page: 48
  year: 2019
  end-page: 56
  ident: bib17
  article-title: The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds
  publication-title: Front. Ecol. Environ.
– volume: 338
  start-page: 125504
  year: 2021
  ident: bib21
  article-title: Study of membrane fouling mechanism during the phenol degradation in microbial fuel cell and membrane bioreactor coupling system
  publication-title: Bioresour. Technol.
– volume: 88
  start-page: 110
  year: 2015
  end-page: 119
  ident: bib8
  article-title: A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes
  publication-title: Soil Biol. Biochem.
– volume: 28
  start-page: 190
  year: 2018
  end-page: 208
  ident: bib24
  article-title: Microbial degradation of organophosphate pesticides: a review
  publication-title: Pedosphere
– volume: 166
  start-page: 41
  year: 2017
  end-page: 62
  ident: bib2
  article-title: : current research and perspectives for bioremediation of pesticides and heavy metals
  publication-title: Chemosphere
– volume: 26
  start-page: 26844
  year: 2019
  end-page: 26854
  ident: bib60
  article-title: Simultaneous degradation of trichlorfon and removal of Cd(II) by
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 125433
  year: 2021
  ident: bib59
  article-title: Phosphorus excess changes rock phosphate solubilization level and bacterial community mediating phosphorus fractions mobilization during composting
  publication-title: Bioresour. Technol.
– volume: 14
  year: 2019
  ident: 10.1016/j.envpol.2022.119043_bib1
  article-title: Changes in phosphorus fractions associated with soil chemical properties under long-term organic and inorganic fertilization in paddy soils of southern China
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0216881
– volume: 543
  start-page: 155
  year: 2016
  ident: 10.1016/j.envpol.2022.119043_bib36
  article-title: Glyphosate effects on soil rhizosphere-associated bacterial communities
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.11.008
– volume: 542
  start-page: 1062
  year: 2016
  ident: 10.1016/j.envpol.2022.119043_bib30
  article-title: New insights into phosphorus management in agriculture--A crop rotation approach
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.09.009
– volume: 64
  start-page: 4280
  year: 2016
  ident: 10.1016/j.envpol.2022.119043_bib44
  article-title: Biodegradation of the organophosphate trichlorfon and its major degradation products by a novel Aspergillus sydowii PA F-2
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.6b00909
– volume: 68
  start-page: 5049
  year: 2020
  ident: 10.1016/j.envpol.2022.119043_bib20
  article-title: Effects of dazomet fumigation on soil phosphorus and the composition of phoD-harboring microbial communities
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b08033
– volume: vol. 2
  year: 2018
  ident: 10.1016/j.envpol.2022.119043_bib38
– volume: 68
  start-page: 1645
  year: 2020
  ident: 10.1016/j.envpol.2022.119043_bib48
  article-title: Toxicity, biodegradation, and metabolic fate of organophosphorus pesticide ttrichlorfon on the freshwater algae Chlamydomonas reinhardtii
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b05765
– volume: 122
  start-page: 94
  year: 2017
  ident: 10.1016/j.envpol.2022.119043_bib31
  article-title: The implications of allocation scenarios for global phosphorus flow from agriculture and wastewater
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2017.01.017
– volume: 67
  start-page: 106
  year: 2013
  ident: 10.1016/j.envpol.2022.119043_bib42
  article-title: Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocatione coupling soil zymography with 14C imaging
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.08.015
– volume: vol. 28
  start-page: 815
  year: 2020
  ident: 10.1016/j.envpol.2022.119043_bib9
  article-title: Acute toxicity of the pesticide trichlorfon and inhibition of acetylcholinesterase
– volume: 55
  start-page: 293
  year: 2015
  ident: 10.1016/j.envpol.2022.119043_bib6
  article-title: Removal of the insecticide diazinon from liquid media by free and immobilized Streptomyces sp. isolated from agricultural soil
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.201300576
– volume: 35
  start-page: 43
  year: 2016
  ident: 10.1016/j.envpol.2022.119043_bib11
  article-title: Arsenic and dichlorvos: possible interaction between two environmental contaminants
  publication-title: J. Trace Elem. Med. Biol.
  doi: 10.1016/j.jtemb.2016.01.012
– volume: 12
  year: 2017
  ident: 10.1016/j.envpol.2022.119043_bib55
  article-title: Characterizing differences in the phosphorus activation coefficient of three typical cropland soils and the influencing factors under long-term fertilization
  publication-title: PLoS One
– volume: 237
  start-page: 173
  year: 2001
  ident: 10.1016/j.envpol.2022.119043_bib18
  article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review
  publication-title: Plant Soil
  doi: 10.1023/A:1013351617532
– year: 2021
  ident: 10.1016/j.envpol.2022.119043_bib14
  article-title: Changes in soil phosphorus availability and associated microbial properties after chicken farming in Lei bamboo (Phyllostachys praecox) forest ecosystems
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.3963
– volume: 338
  start-page: 125504
  year: 2021
  ident: 10.1016/j.envpol.2022.119043_bib21
  article-title: Study of membrane fouling mechanism during the phenol degradation in microbial fuel cell and membrane bioreactor coupling system
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125504
– start-page: 215
  year: 2011
  ident: 10.1016/j.envpol.2022.119043_bib35
  article-title: Role of phosphatase enzymes in soil
– volume: 73
  start-page: 5261
  year: 2007
  ident: 10.1016/j.envpol.2022.119043_bib50
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00062-07
– volume: 64
  start-page: 434
  year: 2010
  ident: 10.1016/j.envpol.2022.119043_bib13
  article-title: Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2010.05.001
– volume: 169
  start-page: 104256
  year: 2022
  ident: 10.1016/j.envpol.2022.119043_bib7
  article-title: Glyphosate-based herbicides alter soil carbon and phosphorus dynamics and microbial activity
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2021.104256
– volume: 344
  start-page: 128653
  year: 2021
  ident: 10.1016/j.envpol.2022.119043_bib28
  article-title: Investigation of the transformation and toxicity of trichlorfon at the molecular level during enzymic hydrolysis of apple juice
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.128653
– volume: 26
  start-page: 3954
  year: 2019
  ident: 10.1016/j.envpol.2022.119043_bib27
  article-title: A new thermodynamic approach for struvite product quality prediction
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-018-3889-7
– volume: 15
  start-page: 1
  year: 2014
  ident: 10.1016/j.envpol.2022.119043_bib29
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 78
  start-page: 769
  year: 2009
  ident: 10.1016/j.envpol.2022.119043_bib54
  article-title: Characterization of phosphobacteria isolated from eutrophic aquatic ecosystems
  publication-title: Microbiology
  doi: 10.1134/S0026261709060149
– volume: 28
  start-page: 190
  year: 2018
  ident: 10.1016/j.envpol.2022.119043_bib24
  article-title: Microbial degradation of organophosphate pesticides: a review
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(18)60017-7
– volume: 258
  start-page: 2199
  year: 2009
  ident: 10.1016/j.envpol.2022.119043_bib34
  article-title: Effects of fertilisation on phosphorus pools in the volcanic soil of a managed tropical forest
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2009.04.001
– volume: 149
  start-page: 107959
  year: 2020
  ident: 10.1016/j.envpol.2022.119043_bib32
  article-title: Long-term farmyard manure application affects soil organic phosphorus cycling: a combined metagenomic and 33P/14C labelling study
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107959
– start-page: 43
  year: 2019
  ident: 10.1016/j.envpol.2022.119043_bib53
– volume: 237
  start-page: 134
  year: 2017
  ident: 10.1016/j.envpol.2022.119043_bib51
  article-title: Effects of long-term fertilization on available P, P composition and phosphatase activities in soil from the Huang-Huai-Hai Plain of China
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.12.030
– volume: 126
  start-page: 56
  year: 2016
  ident: 10.1016/j.envpol.2022.119043_bib33
  article-title: Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2015.12.018
– volume: 27
  start-page: 265
  year: 2016
  ident: 10.1016/j.envpol.2022.119043_bib45
  article-title: Performance of trichlorfon degradation by a novel Bacillus tequilensis strain PA F-3 and its proposed biodegradation pathway
  publication-title: Biodegradation
  doi: 10.1007/s10532-016-9771-8
– volume: 419
  start-page: 144
  year: 2012
  ident: 10.1016/j.envpol.2022.119043_bib4
  article-title: Mechanism and kinetics study on the OH-initiated oxidation of organophosphorus pesticide trichlorfon in atmosphere
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.01.004
– volume: 37
  start-page: 852
  year: 2019
  ident: 10.1016/j.envpol.2022.119043_bib5
  article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0209-9
– volume: 105
  start-page: 149
  year: 2009
  ident: 10.1016/j.envpol.2022.119043_bib40
  article-title: Phosphorus fractions in Brazilian Cerrado soils as affected by tillage
  publication-title: Soil. Till. Res.
  doi: 10.1016/j.still.2009.07.001
– volume: 275
  start-page: 122706
  year: 2020
  ident: 10.1016/j.envpol.2022.119043_bib16
  article-title: Radical-based advanced oxidation for trichlorfon degradation and phosphorus recovery: process feasibility and reaction mechanism
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122706
– volume: 17
  start-page: 48
  year: 2019
  ident: 10.1016/j.envpol.2022.119043_bib17
  article-title: The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds
  publication-title: Front. Ecol. Environ.
  doi: 10.1002/fee.1985
– volume: 403
  start-page: 123996
  year: 2021
  ident: 10.1016/j.envpol.2022.119043_bib43
  article-title: Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.123996
– volume: 88
  start-page: 110
  year: 2015
  ident: 10.1016/j.envpol.2022.119043_bib8
  article-title: A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.05.016
– start-page: 19
  year: 1992
  ident: 10.1016/j.envpol.2022.119043_bib52
– start-page: 123
  year: 1987
  ident: 10.1016/j.envpol.2022.119043_bib15
– volume: 20
  start-page: 688
  year: 2011
  ident: 10.1016/j.envpol.2022.119043_bib58
  article-title: Using soil available P and activities of soil dehydrogenase and phosphatase as indicators for biodegradation of organophosphorus pesticide methamidophos and glyphosate
  publication-title: Soil Sediment Contam.
  doi: 10.1080/15320383.2011.594110
– volume: 10
  year: 2015
  ident: 10.1016/j.envpol.2022.119043_bib10
  article-title: Pesticide side effects in an agricultural soil ecosystem as measured by amoA expression quantification and bacterial diversity changes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0126080
– volume: 26
  start-page: 21668
  year: 2019
  ident: 10.1016/j.envpol.2022.119043_bib22
  article-title: Microbial degradation of organophosphorus pesticides: novel degraders, kinetics, functional genes, and genotoxicity assessment
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-05135-9
– volume: 166
  start-page: 41
  year: 2017
  ident: 10.1016/j.envpol.2022.119043_bib2
  article-title: Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.09.070
– start-page: 13
  year: 2000
  ident: 10.1016/j.envpol.2022.119043_bib41
  article-title: Soil test phosphorus, Bray and kurtz P-1
– volume: 55
  start-page: 197
  year: 2004
  ident: 10.1016/j.envpol.2022.119043_bib39
  article-title: Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2003.10.014
– volume: 82
  start-page: 829
  year: 2011
  ident: 10.1016/j.envpol.2022.119043_bib26
  article-title: The dissipation rates of trichlorfon and its degradation product dichlorvos in cabbage and soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.11.027
– volume: 125433
  year: 2021
  ident: 10.1016/j.envpol.2022.119043_bib59
  article-title: Phosphorus excess changes rock phosphate solubilization level and bacterial community mediating phosphorus fractions mobilization during composting
  publication-title: Bioresour. Technol.
– volume: 55
  start-page: 892
  year: 1991
  ident: 10.1016/j.envpol.2022.119043_bib37
  article-title: Determination of low concentrations of phosphorus in soil extracts using malachite green
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1991.03615995005500030046x
– volume: 26
  start-page: 26844
  year: 2019
  ident: 10.1016/j.envpol.2022.119043_bib60
  article-title: Simultaneous degradation of trichlorfon and removal of Cd(II) by Aspergillus sydowii strain PA F-2
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-019-05811-w
– volume: 199
  start-page: 104516
  year: 2020
  ident: 10.1016/j.envpol.2022.119043_bib12
  article-title: Different life-form plants exert different rhizosphere effects on phosphorus biogeochemistry in subtropical mountainous soils with low and high phosphorus content
  publication-title: Soil. Till. Res.
  doi: 10.1016/j.still.2019.104516
– volume: 711
  start-page: 135080
  year: 2020
  ident: 10.1016/j.envpol.2022.119043_bib19
  article-title: Chloropicrin fumigation alters the soil phosphorus and the composition of the encoding alkaline phosphatase phoD gene microbial community
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135080
– volume: 213
  start-page: 112039
  year: 2021
  ident: 10.1016/j.envpol.2022.119043_bib57
  article-title: Potential of formulated Dyadobacter jiangsuensis strain 12851 for enhanced bioremediation of chlorpyrifos contaminated soil
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2021.112039
– volume: 61
  start-page: 40
  year: 2012
  ident: 10.1016/j.envpol.2022.119043_bib47
  article-title: Response of soil microbial communities to contrasted histories of phosphorus fertilisation in pastures
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2012.06.002
– volume: 19
  start-page: 1439
  year: 2009
  ident: 10.1016/j.envpol.2022.119043_bib25
  article-title: Isolation of an isocarbophos-degrading strain of Arthrobacter sp. scl-2 and identification of the degradation pathway
  publication-title: J. Microbiol. Biotechnol.
– volume: 29
  start-page: 1553
  year: 2008
  ident: 10.1016/j.envpol.2022.119043_bib46
  article-title: Bioavailable tests: alternatives to standard soil extractions
  publication-title: Commu. Soil. Sci. Plan.
– volume: 392
  start-page: 122293
  year: 2020
  ident: 10.1016/j.envpol.2022.119043_bib49
  article-title: Exploring the effects of carbon source level on the degradation of 2, 4, 6-trichlorophenol in the co-metabolism process
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122293
– volume: 10
  year: 2015
  ident: 10.1016/j.envpol.2022.119043_bib23
  article-title: Investigation on the Gas-phase decomposition of trichlorfon by GC-MS and theoretical calculation
  publication-title: PLoS One
– volume: 8
  start-page: 2907
  year: 2011
  ident: 10.1016/j.envpol.2022.119043_bib56
  article-title: Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method
  publication-title: Biogeosciences
  doi: 10.5194/bg-8-2907-2011
SSID ssj0004333
Score 2.4692502
Snippet Trichlorfon (TCF) is a broad-spectrum phosphorus (P)-containing pesticide, yet its effects on soil P fraction transformation and bacterial communities during...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119043
SubjectTerms Actinobacteria
bacterial communities
Biodegradation
Bioremediation
cleavage (chemistry)
community structure
decontamination
dichlorvos
gas chromatography-mass spectrometry
metabolites
Organophosphorus pesticides
Phosphorus cycle
pollution
soil
soil microorganisms
trichlorfon
Title Correlation of bacterial community with phosphorus fraction drives discovery of Actinobacteria involved soil phosphorus transformation during the trichlorfon degradation
URI https://dx.doi.org/10.1016/j.envpol.2022.119043
https://www.ncbi.nlm.nih.gov/pubmed/35217138
https://www.proquest.com/docview/2633859693
https://www.proquest.com/docview/2675565681
Volume 302
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoEDgi2F5VEZCXELu_EzPq5WrRYQvUCl3iI_1UXbZJXsVtoL_4d_iSdO2uVQKnHIIc54ZGXG47H9zQxCH3JLrM41zUiwPmMFU5nWRmXOBOUsmxaBQ-zwt3OxuGBfLvnlAZoPsTAAq-xtf7LpnbXuWyb935ysl8vJ97h7iM6wygngDLiEjJ-MSdDyT7_uYB6MpnLykTgD6iF8rsN4-epmXcMFBCHRdqgpo_ctT_e5n90ydPYMPe39RzxLQ3yODnw1QkezKu6dr3f4I-4Qnd1R-Qg92Us2OELHp3cxbZFDP6nbI_R7DhU6EiYO1wGblMA50tgUPbLZYTiuxeuruo1Ps21xaFJABHYN5K3FENwLYNAdMJjFT1U9sMHLKprAG-9wWy9X-0w2e04zsOoiJnH0SDGUDbha1U2AZkhnkSo_vUAXZ6c_5ousr-CQaZYXmwzK62otldFMq6kxYkp5oIJzawsl4-T33nNTEK0EcyIYoaMUjPXCO-4k0fQYHVZ15V8hzGhgjlotfNxAOiILI6W2hjhbBEh4M0Z0EFxp-_TmUGVjVQ44tp9lEncJ4i6TuMcou-21Tuk9HqCXg06Uf6lpGVegB3q-H1SojDMYrmV05ettWxJBacGVUP-kkRxc7yIfo5dJ_27HG13oXOa0eP3fY3uDHsNbQsC9RYebZuvfRV9rY066yXSCHs0-f12c_wGBuTCf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa69LDtMGzpuqV7acCwm5FYsizrGAQt0rXNZS3Qm6CX0QyZHdhOgfyk_cuKlt1mh67ADr5IFCGYFEVJ_EiEvsWGGBUrGpHcuCjJEhEppUVkdS6sSSZZzgA7fLFI51fJj2t2vYdmPRYGwio72x9semutu5Zx9zfH6-Vy_NOfHrwzLGICcQaM02doH7JTsQHan56ezRcP8EgaKsp7-ggG9Ai6NszLFbfrEt4gCPHmQ0wS-tgO9ZgH2u5EJ6_Rq86FxNMwyzdozxVDdDAt_PH59xZ_x21QZ3tbPkQvd_INDtHh8QOszXPo1nV9gP7MoEhHCIvDZY51yOHsaUwAkDRbDDe2eH1T1v6rNjXOq4CJwLaC1LUY8L0QD7oFBlPfVZQ9G7wsvBW8dRbX5XK1y6TZ8ZuBVQuaxN4pxVA54GZVVjk0Q0aLUPzpLbo6Ob6czaOuiEOkkjhrIqiwqxQXWiVKTLROJ5TlNGXMmExwv_6dc0xnRIk0sWmuU-WloI1LnWWWE0UP0aAoC_ce4YTmiaVGpc6fIS3hmeZcGU2syXLIeTNCtBecNF2Gcyi0sZJ9KNsvGcQtQdwyiHuEovtR65Dh4wl63uuE_EtTpd-Enhj5tVch6RcxvMyowpWbWpKU0oyJVPyThjPwvrN4hN4F_bufr_eiYx7T7Oi_5_YFPZ9fXpzL89PF2Qf0AnpCQNxHNGiqjfvkXa9Gf-6W1h3G0zNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+of+bacterial+community+with+phosphorus+fraction+drives+discovery+of+Actinobacteria+involved+soil+phosphorus+transformation+during+the+trichlorfon+degradation&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Wang%2C+Peiying&rft.au=Li%2C+Qiqiang&rft.au=Ge%2C+Fei&rft.au=Li%2C+Feng&rft.date=2022-06-01&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=302&rft.spage=119043&rft_id=info:doi/10.1016%2Fj.envpol.2022.119043&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon