Detection and remediation of mercury contaminated environment by nanotechnology: Progress and challenges
Hg pollution is a global concern due to its high ecotoxicity and health risk to human beings. A comprehensive understanding of the fast-developed technology applied in determining and controlling Hg pollution is beneficial for risk assessment and field remediation. Herein, we mainly assembled the re...
Saved in:
Published in | Environmental pollution (1987) Vol. 293; p. 118557 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hg pollution is a global concern due to its high ecotoxicity and health risk to human beings. A comprehensive understanding of the fast-developed technology applied in determining and controlling Hg pollution is beneficial for risk assessment and field remediation. Herein, we mainly assembled the recent progress on Hg treatment in the environment by nanotechnology. The advantages and disadvantages of the conventional and nanotechnology-based methods commonly used in water-/soil-Hg remediation were compared and summarized. Specifically, green nanomaterials derived from plant tissues (e.g., nanocellulose) have prominent merits in remediation of Hg contaminated environments, including high efficiency in Hg removal, low cost, environment-friendly, and easily degradable. Based on the theories of Hg biogeochemistry and existed researches, four promising pathways are proposed, 1) developing surface-modified green nanocellulose with high selectivity and affinity towards Hg; 2) designing effective dispersants in preventing nanocellulose from agglomeration in soil; 3) mediating soil properties by adding green nanomaterials-based fertilizers; 4) improving plant-Hg-extract capacity with green nanomaterials addition. Briefly, more efficient and available approaches are still expected to be developed and implemented in the natural environment for Hg remediation. |
---|---|
AbstractList | Hg pollution is a global concern due to its high ecotoxicity and health risk to human beings. A comprehensive understanding of the fast-developed technology applied in determining and controlling Hg pollution is beneficial for risk assessment and field remediation. Herein, we mainly assembled the recent progress on Hg treatment in the environment by nanotechnology. The advantages and disadvantages of the conventional and nanotechnology-based methods commonly used in water-/soil-Hg remediation were compared and summarized. Specifically, green nanomaterials derived from plant tissues (e.g., nanocellulose) have prominent merits in remediation of Hg contaminated environments, including high efficiency in Hg removal, low cost, environment-friendly, and easily degradable. Based on the theories of Hg biogeochemistry and existed researches, four promising pathways are proposed, 1) developing surface-modified green nanocellulose with high selectivity and affinity towards Hg; 2) designing effective dispersants in preventing nanocellulose from agglomeration in soil; 3) mediating soil properties by adding green nanomaterials-based fertilizers; 4) improving plant-Hg-extract capacity with green nanomaterials addition. Briefly, more efficient and available approaches are still expected to be developed and implemented in the natural environment for Hg remediation. Hg pollution is a global concern due to its high ecotoxicity and health risk to human beings. A comprehensive understanding of the fast-developed technology applied in determining and controlling Hg pollution is beneficial for risk assessment and field remediation. Herein, we mainly assembled the recent progress on Hg treatment in the environment by nanotechnology. The advantages and disadvantages of the conventional and nanotechnology-based methods commonly used in water-/soil-Hg remediation were compared and summarized. Specifically, green nanomaterials derived from plant tissues (e.g., nanocellulose) have prominent merits in remediation of Hg contaminated environments, including high efficiency in Hg removal, low cost, environment-friendly, and easily degradable. Based on the theories of Hg biogeochemistry and existed researches, four promising pathways are proposed, 1) developing surface-modified green nanocellulose with high selectivity and affinity towards Hg; 2) designing effective dispersants in preventing nanocellulose from agglomeration in soil; 3) mediating soil properties by adding green nanomaterials-based fertilizers; 4) improving plant-Hg-extract capacity with green nanomaterials addition. Briefly, more efficient and available approaches are still expected to be developed and implemented in the natural environment for Hg remediation.Hg pollution is a global concern due to its high ecotoxicity and health risk to human beings. A comprehensive understanding of the fast-developed technology applied in determining and controlling Hg pollution is beneficial for risk assessment and field remediation. Herein, we mainly assembled the recent progress on Hg treatment in the environment by nanotechnology. The advantages and disadvantages of the conventional and nanotechnology-based methods commonly used in water-/soil-Hg remediation were compared and summarized. Specifically, green nanomaterials derived from plant tissues (e.g., nanocellulose) have prominent merits in remediation of Hg contaminated environments, including high efficiency in Hg removal, low cost, environment-friendly, and easily degradable. Based on the theories of Hg biogeochemistry and existed researches, four promising pathways are proposed, 1) developing surface-modified green nanocellulose with high selectivity and affinity towards Hg; 2) designing effective dispersants in preventing nanocellulose from agglomeration in soil; 3) mediating soil properties by adding green nanomaterials-based fertilizers; 4) improving plant-Hg-extract capacity with green nanomaterials addition. Briefly, more efficient and available approaches are still expected to be developed and implemented in the natural environment for Hg remediation. |
ArticleNumber | 118557 |
Author | Zhang, Jing Xu, Diandou Zhu, Nali Gao, Yuxi Chen, Hanqing Zhao, Jiating Liu, Yonghua Li, Yufeng |
Author_xml | – sequence: 1 givenname: Yonghua surname: Liu fullname: Liu, Yonghua organization: School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, 030000, Shanxi, China – sequence: 2 givenname: Hanqing orcidid: 0000-0001-5442-2071 surname: Chen fullname: Chen, Hanqing organization: Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China – sequence: 3 givenname: Nali surname: Zhu fullname: Zhu, Nali organization: School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China – sequence: 4 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, 030000, Shanxi, China – sequence: 5 givenname: Yufeng orcidid: 0000-0002-5013-5849 surname: Li fullname: Li, Yufeng organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China – sequence: 6 givenname: Diandou surname: Xu fullname: Xu, Diandou organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China – sequence: 7 givenname: Yuxi orcidid: 0000-0002-9574-6299 surname: Gao fullname: Gao, Yuxi organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China – sequence: 8 givenname: Jiating surname: Zhao fullname: Zhao, Jiating email: zhaojt@ihep.ac.cn organization: CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34813883$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtr3DAYRUVJaCZp_0EpXnbjqV6W5SwCJUkfEEgW7VrI8qcZDbY0kTSB-ffRjNMuumizMoJzr6x7ztGJDx4Q-kDwkmAiPm-W4J-2YVxSTMmSENk07Ru0ILJlteCUn6AFpqKrW96RM3Se0gZjzBljb9EZ45IwKdkCrW8gg8ku-Er7oYowweD08RxsNUE0u7ivTPBZT87rDENVrnUx-Al8rvp95bUPpWLtwxhW-8vqIYZVhJSOfWatxxH8CtI7dGr1mOD9y_cC_fp6-_P6e313_-3H9Ze7WnMicy0Ml6b8vrCE91p3lA6SDNa0lje2abnBphGEtlp0ssdge2O6kilPs9QIObAL9Gnu3cbwuIOU1eSSgXHUHsIuKSqYaBtRRnkFikknO0IP6McXdNeXhdQ2uknHvfo9ZAH4DJgYUopg_yAEq4MvtVGzL3XwpWZfJXb5V8y4fJw_R-3G_4Wv5jCUPZ8cRJWMA2-KwVicqiG4fxc8A2SAtKc |
CitedBy_id | crossref_primary_10_1002_adfm_202302809 crossref_primary_10_1016_j_ecoenv_2024_116420 crossref_primary_10_1007_s12210_022_01064_x crossref_primary_10_3390_ijms24055009 crossref_primary_10_1016_j_clce_2022_100020 crossref_primary_10_1080_15226514_2024_2335207 crossref_primary_10_1016_j_coesh_2023_100453 crossref_primary_10_1016_j_ecoenv_2024_116616 crossref_primary_10_1016_j_jece_2022_108482 crossref_primary_10_1039_D4NR00886C crossref_primary_10_3390_su15021018 crossref_primary_10_1007_s12012_025_09966_6 crossref_primary_10_1016_j_ceramint_2024_04_283 crossref_primary_10_1007_s11581_024_05757_1 crossref_primary_10_1016_j_arabjc_2023_104997 crossref_primary_10_1007_s11356_023_30636_z crossref_primary_10_3390_w15081600 crossref_primary_10_1016_j_plaphy_2022_07_015 crossref_primary_10_1016_j_cej_2023_147690 crossref_primary_10_53623_idwm_v4i2_534 crossref_primary_10_1016_j_colsurfa_2024_133923 crossref_primary_10_1039_D2NR03887K |
Cites_doi | 10.1016/0304-3894(95)00059-4 10.1016/j.aca.2012.03.047 10.1016/j.molliq.2015.01.014 10.1016/j.chemosphere.2014.08.012 10.1021/acs.est.0c07321 10.1252/jcej.16we218 10.1289/ehp.1001915 10.1016/j.jhazmat.2010.04.105 10.3390/su9050790 10.1641/B570106 10.1016/j.bios.2011.03.033 10.1016/j.progpolymsci.2013.02.003 10.1016/j.gexplo.2016.11.021 10.1016/j.jconhyd.2010.09.003 10.1016/j.microc.2019.104332 10.1016/S0584-8547(01)00393-7 10.1016/j.scitotenv.2019.134341 10.1039/C7EN00628D 10.1016/j.btre.2017.03.002 10.1038/s41467-019-13221-2 10.1021/acs.est.9b05685 10.1039/C7NR00400A 10.1016/j.scitotenv.2012.02.023 10.1039/D0EN00091D 10.4236/ojab.2012.13006 10.1021/ac500517h 10.13189/eer.2013.010102 10.1002/gbc.20040 10.1016/j.molliq.2018.03.012 10.1016/j.apt.2011.01.004 10.1016/j.chemosphere.2021.130792 10.1016/j.addr.2008.03.013 10.1016/j.ccr.2017.11.003 10.1016/j.cej.2014.12.109 10.1897/07-282.1 10.1088/0957-4484/23/29/294007 10.1021/es305071v 10.1021/ar300029v 10.1021/es903684r 10.1016/j.jcis.2010.01.087 10.1016/j.snb.2019.03.089 10.1039/c3ja30300d 10.1021/am3001538 10.1016/j.envpol.2017.05.070 10.1016/j.snb.2015.09.057 10.1088/1755-1315/624/1/012212 10.1016/j.cej.2010.11.035 10.1016/j.jenvman.2018.07.049 10.1007/s10311-020-00987-x 10.1039/C9EN01294J 10.1016/j.scitotenv.2017.11.213 10.1016/j.matlet.2013.01.094 10.1016/j.jhazmat.2009.03.042 10.1016/j.jelechem.2013.06.014 10.1016/j.snb.2017.07.033 10.1080/23308249.2017.1362370 10.1021/acs.est.0c01132 10.1016/j.gexplo.2018.07.017 10.1016/j.bios.2017.11.034 10.2166/wst.2010.897 10.1080/10934529.2019.1681219 10.1016/j.jhazmat.2015.06.012 10.1016/j.envint.2012.08.006 10.1016/j.scitotenv.2017.02.011 10.1016/j.cej.2018.11.158 10.1016/j.scitotenv.2011.09.024 10.1007/s11104-019-04346-w 10.1016/S0168-6445(03)00046-9 10.1039/c0nj00039f 10.1016/j.jenvman.2020.111263 10.1039/C5NR08465B 10.1016/j.jes.2019.02.018 10.1016/j.jhazmat.2015.07.055 10.1021/acs.est.7b05452 10.1016/j.scitotenv.2018.07.225 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2021.118557 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 34813883 10_1016_j_envpol_2021_118557 S0269749121021394 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5VS 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SCU SDF SDG SDP SES SPCBC SSH SSJ SSZ T5K TWZ WH7 XPP ZMT ~G- 29G 53G 6TJ AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ OHT R2- RIG SEN SEW VH1 WUQ XJT XOL AFKWA AJOXV AMFUW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a418t-6c48c6426f14baa922d81dfc7f45f574c0c56127a698b0efbcc96c4000f2c68d3 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Thu Jul 10 20:25:45 EDT 2025 Fri Jul 11 02:36:06 EDT 2025 Wed Feb 19 02:28:08 EST 2025 Tue Jul 01 03:15:16 EDT 2025 Thu Apr 24 22:51:54 EDT 2025 Sun Apr 06 06:59:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Removal Immobilization Remediation Mercury Nanotechnology |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a418t-6c48c6426f14baa922d81dfc7f45f574c0c56127a698b0efbcc96c4000f2c68d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5442-2071 0000-0002-5013-5849 0000-0002-9574-6299 |
PMID | 34813883 |
PQID | 2601989121 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636756491 proquest_miscellaneous_2601989121 pubmed_primary_34813883 crossref_primary_10_1016_j_envpol_2021_118557 crossref_citationtrail_10_1016_j_envpol_2021_118557 elsevier_sciencedirect_doi_10_1016_j_envpol_2021_118557 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-15 |
PublicationDateYYYYMMDD | 2022-01-15 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Xu, Qu, Zhao, Mei, Quan, Yan (bib79) 2015; 299 Amos, Jacob, Streets, Sunderland (bib4) 2013; 27 Bhattacharya, Mukherjee (bib12) 2008; 60 Gong, Liu, Xiong, Kaback, Zhao (bib28) 2012; 23 Ma, Zhang, Xu, Hou, Li, Gu (bib45) 2014; 117 Babamiri, Salimi, Hallaj (bib9) 2018; 102 Lu, Yue, Qiu, Guo, Zhang (bib44) 2017; 50 Faghiri, Ghorbani (bib23) 2020; 152 Qiu, Feng, Jiang (bib53) 2012; 421–422 Wasay, Arnfalk, Tokunaga (bib76) 1995; 44 Xu, Zeng, Huang, Feng, Hu, Zhao, Lai, Wei, Huang, Xie, Liu (bib78) 2012; 424 Yan, Herzing, Kiely, Zhang (bib81) 2010; 118 Duhan, Kumar, Kumar, Kaur, Nehra, Duhan (bib22) 2017; 15 Pala, Brock (bib51) 2012; 4 Konate, He, Zhang, Ma, Zhang, Alugongo, Rui (bib35) 2017; 9 de Wuilloud, Wuilloud, Silva, Olsina, Martinez (bib17) 2002; 57 Kango, Kalia, Celli, Njuguna, Habibi, Kumar (bib32) 2013; 38 Zhang, Feng, Larssen, Qiu, Vogt (bib83) 2010; 118 Costas-Mora, Romero, Lavilla, Bendicho (bib15) 2014; 86 Wang, Song, Qian, Zhang, Pan, Gadd (bib70) 2018; 5 Ma, Peng, Hou, Wu, Zhang, Li, Gu (bib46) 2015; 300 Sanchez, Joson, Vega (bib58) 2020; 55 Shirzadmehr, Afkhami, Madrakian (bib60) 2015; 204 Wang, Dinh, Qi, Wang, Yang, Zhou, Liang (bib72) 2019; 446 Nanseu-Njiki, Tchamango, Ngom, Darchen, Ngameni (bib48) 2009; 168 Wang, Zhang, Wen, Liu, Wang, Yang, Sun, Feng, Dong, Sun (bib74) 2020; 699 Yadav, Garg, Chhillar, Rana (bib80) 2021; 280 Balshaw, Edwards, Daughtry, Ross (bib10) 2007; 22 Wang, Li, Zhang, Liu, Zuo, Li (bib68) 2010; 34 Gao, Bonzongo, Bitton, Li, Wu (bib24) 2008; 27 Li, Hashimoto, Riya, Terada, Hou, Shibagaki, Hosomi (bib38) 2019; 359 Arshadi, Faraji, Amiri (bib7) 2015; 266 Liu, Zhang, Cheng, He, Chen, Zhang, Cao, Shen, Zhang, Tao, Wang (bib41) 2019; 10 Wang, Xing, Xie, Meng, Xia, Feng (bib71) 2019; 646 Yan, Shi, Zheng, Yun, Zhou, Chen (bib82) 2016; 224 Amin, Khan, Sarwar, Nawab, Khan (bib3) 2021; 23 Zhao, Liang, Zhu, Wang, Li, Li, Zheng, Zhang, Gao, Chai (bib84) 2020; 7 Aleshina, Drozdova, Sizova (bib1) 2021; 624 Chandrasoma, Hamid, Bruce, Bruce, Tripp (bib14) 2012; 728 de Almeida Rodrigues, Ferrari, Dos Santos, Conte Junior (bib16) 2019; 84 Ghasemi, Seif, Ahmadi, Zargar, Rashidi, Rouzbahani (bib25) 2012; 23 Nicklisch, Bonito, Sandin, Hamdoun (bib49) 2017; 229 Park, Wang, Su (bib52) 2018 Sadegh, Ali, Makhlouf, Chong, Alharbi, Agarwal, Gupta (bib55) 2018; 258 Qu, Brame, Li, Alvarez (bib54) 2013; 46 Vicente-Martínez, Caravaca, Soto-Meca (bib67) 2020; 18 Girginova, Daniel-da-Silva, Lopes, Figueira, Otero, Amaral, Pereira, Trindade (bib27) 2010; 345 Li, Wang, Fu, Qu, Chen, Tao, Zhu (bib39) 2020; 54 Driscoll, Mason, Chan, Jacob, Pirrone (bib21) 2013; 47 Manceau, Wang, Rovezzi, Glatzel, Feng (bib47) 2018; 52 Song, Li, Ding, Li, Zhu, He, Feng (bib61) 2018; 194 Guo, Wang, Qu, Shao, Jiang (bib30) 2011; 26 Ding, Zhai, Bond, Zhang (bib18) 2013; 704 Kumar (bib36) 2017; 26 Subana, Manjunatha, Manmadha Rao, Venkateswarlu, Nagaraju, Suresh (bib62) 2020; 21 Li, Feng, Yuan, Chan, Qiu, Sun, Zhu (bib37) 2012; 49 Grilo, Mendes, Coelho, Pereira, Pardal, Cardoso (bib29) 2015; vol. 226 Wang, Shaheen, Jing, Anderson, Swertz, Wang, Feng, Rinklebe (bib75) 2021; 55 Suresh, Pelletier, Wang, Moon, Gu, Mortensen, Allison, Joy, Phelps, Doktycz (bib63) 2010; 44 Anand, Gopalan, Kang, Lee (bib5) 2013; 28 Driscoll, Han, Chen, Evers, Lambert, Holsen, Kamman, Munson (bib20) 2007; 57 Gil-Diaz, Alonso, Rodriguez-Valdes, Gallego, Lobo (bib26) 2017; 584–585 Ambashta, Sillanpaa (bib2) 2010; 180 Karimi, Samimi (bib33) 2019; 222 Dou, Dupont, Pan, Chen (bib19) 2011; 166 Tawabini, Al-Khaldi, Atieh, Khaled (bib65) 2010; 61 Li, Zhu, Liang, Bai, Zheng, Zhao, Li, Zhang, Gao (bib40) 2020; 7 Wang, Feng, Anderson, Xing, Shang (bib69) 2012; 221–222 Xie, Huo, Su, Yang, Yin, Yan, Jin (bib77) 2012; 1 Barkay, Miller, Summers (bib11) 2003; 27 Samanta, Medintz (bib57) 2016; 8 Zhou, Yan, Zhao, Yang, Chen, Hu, Jiang, Liu (bib85) 2018; 254 Jiang, Jian-Bo, Xin-Bin (bib31) 2006; 40 Chakraborti, Sinha, Ghosh, Pal (bib13) 2013; 97 Lu, Astruc (bib43) 2018; 356 Safari, Ghanemi, Buazar (bib56) 2020; 276 Azimi, Moghaddam (bib8) 2013; 1 Tauanov, Tsakiridis, Mikhalovsky, Inglezakis (bib64) 2018; 224 Wang, Shaheen, Anderson, Xing, Liu, Xia, Feng, Rinklebe (bib73) 2020; 54 Khalid, Shahid, Niazi, Murtaza, Bibi, Dumat (bib34) 2017; 182 O'Connor, Peng, Li, Wang, Duan, Mulder, Cornelissen, Cheng, Yang, Hou (bib50) 2018; 621 Van Rie, Thielemans (bib66) 2017; 9 Araújo, Castro, Fiúza (bib6) 2015; 2 Sánchez-Calvo, Fernández-Abedul, Blanco-López, Costa-García (bib59) 2019; 290 Nanseu-Njiki (10.1016/j.envpol.2021.118557_bib48) 2009; 168 Azimi (10.1016/j.envpol.2021.118557_bib8) 2013; 1 Sadegh (10.1016/j.envpol.2021.118557_bib55) 2018; 258 Shirzadmehr (10.1016/j.envpol.2021.118557_bib60) 2015; 204 Song (10.1016/j.envpol.2021.118557_bib61) 2018; 194 O'Connor (10.1016/j.envpol.2021.118557_bib50) 2018; 621 Wang (10.1016/j.envpol.2021.118557_bib71) 2019; 646 Qu (10.1016/j.envpol.2021.118557_bib54) 2013; 46 Tawabini (10.1016/j.envpol.2021.118557_bib65) 2010; 61 Aleshina (10.1016/j.envpol.2021.118557_bib1) 2021; 624 Gong (10.1016/j.envpol.2021.118557_bib28) 2012; 23 Kango (10.1016/j.envpol.2021.118557_bib32) 2013; 38 Dou (10.1016/j.envpol.2021.118557_bib19) 2011; 166 Duhan (10.1016/j.envpol.2021.118557_bib22) 2017; 15 Chakraborti (10.1016/j.envpol.2021.118557_bib13) 2013; 97 de Almeida Rodrigues (10.1016/j.envpol.2021.118557_bib16) 2019; 84 Wang (10.1016/j.envpol.2021.118557_bib70) 2018; 5 Li (10.1016/j.envpol.2021.118557_bib39) 2020; 54 Wang (10.1016/j.envpol.2021.118557_bib75) 2021; 55 Yadav (10.1016/j.envpol.2021.118557_bib80) 2021; 280 Liu (10.1016/j.envpol.2021.118557_bib41) 2019; 10 Subana (10.1016/j.envpol.2021.118557_bib62) 2020; 21 Guo (10.1016/j.envpol.2021.118557_bib30) 2011; 26 Arshadi (10.1016/j.envpol.2021.118557_bib7) 2015; 266 Konate (10.1016/j.envpol.2021.118557_bib35) 2017; 9 Vicente-Martínez (10.1016/j.envpol.2021.118557_bib67) 2020; 18 Driscoll (10.1016/j.envpol.2021.118557_bib20) 2007; 57 Xie (10.1016/j.envpol.2021.118557_bib77) 2012; 1 Li (10.1016/j.envpol.2021.118557_bib40) 2020; 7 Pala (10.1016/j.envpol.2021.118557_bib51) 2012; 4 de Wuilloud (10.1016/j.envpol.2021.118557_bib17) 2002; 57 Amos (10.1016/j.envpol.2021.118557_bib4) 2013; 27 Lu (10.1016/j.envpol.2021.118557_bib44) 2017; 50 Van Rie (10.1016/j.envpol.2021.118557_bib66) 2017; 9 Wang (10.1016/j.envpol.2021.118557_bib73) 2020; 54 Costas-Mora (10.1016/j.envpol.2021.118557_bib15) 2014; 86 Lu (10.1016/j.envpol.2021.118557_bib43) 2018; 356 Sánchez-Calvo (10.1016/j.envpol.2021.118557_bib59) 2019; 290 Wang (10.1016/j.envpol.2021.118557_bib72) 2019; 446 Chandrasoma (10.1016/j.envpol.2021.118557_bib14) 2012; 728 Anand (10.1016/j.envpol.2021.118557_bib5) 2013; 28 Ambashta (10.1016/j.envpol.2021.118557_bib2) 2010; 180 Driscoll (10.1016/j.envpol.2021.118557_bib21) 2013; 47 Safari (10.1016/j.envpol.2021.118557_bib56) 2020; 276 Wang (10.1016/j.envpol.2021.118557_bib74) 2020; 699 Wasay (10.1016/j.envpol.2021.118557_bib76) 1995; 44 Bhattacharya (10.1016/j.envpol.2021.118557_bib12) 2008; 60 Zhou (10.1016/j.envpol.2021.118557_bib85) 2018; 254 Manceau (10.1016/j.envpol.2021.118557_bib47) 2018; 52 Balshaw (10.1016/j.envpol.2021.118557_bib10) 2007; 22 Ding (10.1016/j.envpol.2021.118557_bib18) 2013; 704 Nicklisch (10.1016/j.envpol.2021.118557_bib49) 2017; 229 Qiu (10.1016/j.envpol.2021.118557_bib53) 2012; 421–422 Faghiri (10.1016/j.envpol.2021.118557_bib23) 2020; 152 Ma (10.1016/j.envpol.2021.118557_bib46) 2015; 300 Wang (10.1016/j.envpol.2021.118557_bib68) 2010; 34 Khalid (10.1016/j.envpol.2021.118557_bib34) 2017; 182 Zhang (10.1016/j.envpol.2021.118557_bib83) 2010; 118 Sanchez (10.1016/j.envpol.2021.118557_bib58) 2020; 55 Karimi (10.1016/j.envpol.2021.118557_bib33) 2019; 222 Ma (10.1016/j.envpol.2021.118557_bib45) 2014; 117 Jiang (10.1016/j.envpol.2021.118557_bib31) 2006; 40 Samanta (10.1016/j.envpol.2021.118557_bib57) 2016; 8 Tauanov (10.1016/j.envpol.2021.118557_bib64) 2018; 224 Grilo (10.1016/j.envpol.2021.118557_bib29) 2015; vol. 226 Yan (10.1016/j.envpol.2021.118557_bib81) 2010; 118 Wang (10.1016/j.envpol.2021.118557_bib69) 2012; 221–222 Xu (10.1016/j.envpol.2021.118557_bib78) 2012; 424 Li (10.1016/j.envpol.2021.118557_bib38) 2019; 359 Kumar (10.1016/j.envpol.2021.118557_bib36) 2017; 26 Yan (10.1016/j.envpol.2021.118557_bib82) 2016; 224 Babamiri (10.1016/j.envpol.2021.118557_bib9) 2018; 102 Barkay (10.1016/j.envpol.2021.118557_bib11) 2003; 27 Ghasemi (10.1016/j.envpol.2021.118557_bib25) 2012; 23 Xu (10.1016/j.envpol.2021.118557_bib79) 2015; 299 Zhao (10.1016/j.envpol.2021.118557_bib84) 2020; 7 Suresh (10.1016/j.envpol.2021.118557_bib63) 2010; 44 Gil-Diaz (10.1016/j.envpol.2021.118557_bib26) 2017; 584–585 Girginova (10.1016/j.envpol.2021.118557_bib27) 2010; 345 Park (10.1016/j.envpol.2021.118557_bib52) 2018 Amin (10.1016/j.envpol.2021.118557_bib3) 2021; 23 Araújo (10.1016/j.envpol.2021.118557_bib6) 2015; 2 Gao (10.1016/j.envpol.2021.118557_bib24) 2008; 27 Li (10.1016/j.envpol.2021.118557_bib37) 2012; 49 |
References_xml | – volume: 9 year: 2017 ident: bib35 article-title: Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling publication-title: Sustainability – volume: 624 year: 2021 ident: bib1 article-title: Evaluation of antitoxic ability of carbon nanomaterials with respect to Hg2 + mercury ions using Escherichia coli cells publication-title: IOP Conf. Ser. Earth Environ. Sci. – volume: 182 start-page: 247 year: 2017 end-page: 268 ident: bib34 article-title: A comparison of technologies for remediation of heavy metal contaminated soils publication-title: J. Geochem. Explor. – volume: 1 start-page: 44 year: 2012 end-page: 52 ident: bib77 article-title: Sensitive colorimetric and fluorescent detection of mercury using fluorescein derivations publication-title: Open J. Appl. Biosens. – volume: 10 year: 2019 ident: bib41 article-title: Rice life cycle-based global mercury biotransport and human methylmercury exposure publication-title: Nat. Commun. – volume: 22 start-page: 91 year: 2007 end-page: 113 ident: bib10 article-title: Mercury in seafood: mechanisms of accumulation and consequences for consumer health publication-title: Rev. Environ. Health – volume: 18 start-page: 975 year: 2020 end-page: 981 ident: bib67 article-title: Total removal of Hg (II) from wastewater using magnetic nanoparticles coated with nanometric Ag and functionalized with sodium 2-mercaptoethane sulfonate publication-title: Environ. Chem. Lett. – volume: 60 start-page: 1289 year: 2008 end-page: 1306 ident: bib12 article-title: Biological properties of "naked" metal nanoparticles publication-title: Adv. Drug Deliv. Rev. – volume: 290 start-page: 87 year: 2019 end-page: 92 ident: bib59 article-title: Paper-based electrochemical transducer modified with nanomaterials for mercury determination in environmental waters publication-title: Sensor. Actuator. B Chem. – volume: 224 start-page: 164 year: 2018 end-page: 171 ident: bib64 article-title: Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water publication-title: J. Environ. Manag. – volume: 2 start-page: 315 year: 2015 end-page: 320 ident: bib6 article-title: The use of nanoparticles in soil and water remediation processes publication-title: Mater. Today: Proc. – volume: vol. 226 year: 2015 ident: bib29 publication-title: Kinetics of Mercury Accumulation and Elimination in Edible Glass Eel (Anguilla anguilla) and Potential Health Public Risks. Water, Air – volume: 21 year: 2020 ident: bib62 article-title: Surface functionalized magnetic α-Fe2O3 nanoparticles: synthesis, characterization and Hg2+ ion removal in water publication-title: Surf. Interface. – volume: 26 start-page: 4064 year: 2011 end-page: 4069 ident: bib30 article-title: Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles publication-title: Biosens. Bioelectron. – volume: 300 start-page: 546 year: 2015 end-page: 552 ident: bib46 article-title: Citric acid facilitated thermal treatment: an innovative method for the remediation of mercury contaminated soil publication-title: J. Hazard Mater. – volume: 280 year: 2021 ident: bib80 article-title: Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: a review publication-title: Chemosphere – volume: 204 start-page: 227 year: 2015 end-page: 235 ident: bib60 article-title: A new nano-composite potentiometric sensor containing an Hg2+-ion imprinted polymer for the trace determination of mercury ions in different matrices publication-title: J. Mol. Liq. – volume: 254 start-page: 8 year: 2018 end-page: 15 ident: bib85 article-title: Highly selective and sensitive detection of Hg2+ based on fluorescence enhancement of Mn-doped ZnSe QDs by Hg2+-Mn2+ replacement publication-title: Sensor. Actuator. B Chem. – volume: 584–585 start-page: 1324 year: 2017 end-page: 1332 ident: bib26 article-title: Comparing different commercial zero valent iron nanoparticles to immobilize as and Hg in brownfield soil publication-title: Sci. Total Environ. – volume: 40 start-page: 3673 year: 2006 end-page: 3678 ident: bib31 article-title: Mercury pollution in China. An overview of the past and current sources of the toxic metal publication-title: Environ. Sci. Technol. – volume: 97 start-page: 78 year: 2013 end-page: 80 ident: bib13 article-title: Interfacing water soluble nanomaterials with fluorescence chemosensing: graphene quantum dot to detect Hg2+ in 100% aqueous solution publication-title: Mater. Lett. – volume: 55 start-page: 216 year: 2020 end-page: 223 ident: bib58 article-title: Studying absorbance properties and mercury remediation capabilities of gold-graphene oxide-iron oxide (Au-GO-Fe3O4) nanoparticle systems publication-title: J. Environ. Sci. Heal. A. – volume: 86 start-page: 4536 year: 2014 end-page: 4543 ident: bib15 article-title: In situ building of a nanoprobe based on fluorescent carbon dots for methylmercury detection publication-title: Anal. Chem. – volume: 424 start-page: 1 year: 2012 end-page: 10 ident: bib78 article-title: Use of iron oxide nanomaterials in wastewater treatment: a review publication-title: Sci. Total Environ. – volume: 15 start-page: 11 year: 2017 end-page: 23 ident: bib22 article-title: Nanotechnology: the new perspective in precision agriculture publication-title: Biotechnol. Rep. (Amst) – volume: 7 start-page: 1807 year: 2020 end-page: 1817 ident: bib40 article-title: Silica nanoparticles alleviate mercury toxicity via immobilization and inactivation of Hg(ii) in soybean (Glycine max) publication-title: Environ. Sci. Nano – volume: 9 start-page: 8525 year: 2017 end-page: 8554 ident: bib66 article-title: Cellulose-gold nanoparticle hybrid materials publication-title: Nanoscale – volume: 5 start-page: 456 year: 2018 end-page: 466 ident: bib70 article-title: Stabilizing interaction of exopolymers with nano-Se and impact on mercury immobilization in soil and groundwater publication-title: Environ. Sci. Nano – volume: 27 start-page: 355 year: 2003 end-page: 384 ident: bib11 article-title: Bacterial mercury resistance from atoms to ecosystems publication-title: FEMS Microbiol. Rev. – volume: 299 start-page: 86 year: 2015 end-page: 93 ident: bib79 article-title: Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury publication-title: J. Hazard Mater. – volume: 23 start-page: 148 year: 2012 end-page: 156 ident: bib25 article-title: Thermodynamic and kinetic studies for the adsorption of Hg(II) by nano-TiO2 from aqueous solution publication-title: Adv. Powder Technol. – volume: 345 start-page: 234 year: 2010 end-page: 240 ident: bib27 article-title: Silica coated magnetite particles for magnetic removal of Hg2+ from water publication-title: J. Colloid Interface Sci. – start-page: 849 year: 2018 end-page: 882 ident: bib52 article-title: Recent Developments in Engineered Nanomaterials for Water Treatment and Environmental Remediation, Handbook of Nanomaterials for Industrial Applications – volume: 421–422 start-page: 59 year: 2012 end-page: 72 ident: bib53 article-title: Synthesis of current data for Hg in areas of geologic resource extraction contamination and aquatic systems in China publication-title: Sci. Total Environ. – volume: 57 start-page: 17 year: 2007 end-page: 28 ident: bib20 article-title: Mercury contamination in forest and freshwater ecosystems in the Northeastern United States publication-title: Bioscience – volume: 117 start-page: 388 year: 2014 end-page: 393 ident: bib45 article-title: Mercury removal from contaminated soil by thermal treatment with FeCl(3) at reduced temperature publication-title: Chemosphere – volume: 23 start-page: 294007 year: 2012 ident: bib28 article-title: Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles publication-title: Nanotechnology – volume: 646 start-page: 1615 year: 2019 end-page: 1623 ident: bib71 article-title: The use of calcium carbonate-enriched clay minerals and diammonium phosphate as novel immobilization agents for mercury remediation: spectral investigations and field applications publication-title: Sci. Total Environ. – volume: 57 start-page: 365 year: 2002 end-page: 374 ident: bib17 article-title: Sensitive determination of mercury in tap water by cloud point extraction pre-concentration and flow injection-cold vapor-inductively coupled plasma optical emission spectrometry publication-title: Spectrochim. Ac. Tab. – volume: 1 start-page: 12 year: 2013 end-page: 20 ident: bib8 article-title: Effect of mercury pollution on the urban environment and human health publication-title: Ecol. Env. Res. – volume: 180 start-page: 38 year: 2010 end-page: 49 ident: bib2 article-title: Water purification using magnetic assistance: a review publication-title: J. Hazard Mater. – volume: 61 start-page: 591 year: 2010 end-page: 598 ident: bib65 article-title: Removal of mercury from water by multi-walled carbon nanotubes publication-title: Water Sci. Technol. – volume: 152 year: 2020 ident: bib23 article-title: Synthesis of graphene oxide nanosheets from sugar beet bagasse and its application for colorimetric and naked eye detection of trace Hg2+ in the environmental water samples publication-title: Microchem. J. – volume: 28 year: 2013 ident: bib5 article-title: Development of a surface plasmon assisted label-free calorimetric method for sensitive detection of mercury based on functionalized gold nanorods publication-title: J. Anal. At. Spectrom. – volume: 55 start-page: 10133 year: 2021 end-page: 10141 ident: bib75 article-title: Mobilization, methylation, and demethylation of mercury in a paddy soil under systematic redox changes publication-title: Environ. Sci. Technol. – volume: 704 start-page: 96 year: 2013 end-page: 101 ident: bib18 article-title: Polystyrenesulfonate doped poly(Hydroxymethyl 3,4-Ethylenedioxythiophene) stabilized Au nanoparticle modified glassy carbon electrode as a reusable sensor for mercury(II) detection in chloride media publication-title: Electroanal. Chem. – volume: 356 start-page: 147 year: 2018 end-page: 164 ident: bib43 article-title: Nanomaterials for removal of toxic elements from water publication-title: Coord. Chem. Rev. – volume: 699 start-page: 134341 year: 2020 ident: bib74 article-title: Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid publication-title: Sci. Total Environ. – volume: 84 start-page: 205 year: 2019 end-page: 218 ident: bib16 article-title: Mercury in aquatic fauna contamination: a systematic review on its dynamics and potential health risks publication-title: J. Environ. Sci. (China) – volume: 621 start-page: 819 year: 2018 end-page: 826 ident: bib50 article-title: Sulfur-modified rice husk biochar: a green method for the remediation of mercury contaminated soil publication-title: Sci. Total Environ. – volume: 34 year: 2010 ident: bib68 article-title: A highly selective regenerable optical sensor for detection of mercury(ii) ion in water using organic–inorganic hybrid nanomaterials containing pyrene publication-title: New J. Chem. – volume: 166 start-page: 631 year: 2011 end-page: 638 ident: bib19 article-title: Removal of aqueous toxic Hg(II) by synthesized TiO publication-title: Chem. Eng. J. – volume: 118 start-page: 1183 year: 2010 end-page: 1188 ident: bib83 article-title: In inland China, rice, rather than fish, is the major pathway for methylmercury exposure publication-title: Environ. Health Perspect. – volume: 276 year: 2020 ident: bib56 article-title: Selenium functionalized magnetic nanocomposite as an effective mercury (II) ion scavenger from environmental water and industrial wastewater samples publication-title: J. Environ. Manag. – volume: 7 start-page: 1115 year: 2020 end-page: 1125 ident: bib84 article-title: Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant publication-title: Environ. Sci. Nano – volume: 229 start-page: 87 year: 2017 end-page: 93 ident: bib49 article-title: Mercury levels of yellowfin tuna (Thunnus albacares) are associated with capture location publication-title: Environ. Pollut. – volume: 728 start-page: 57 year: 2012 end-page: 63 ident: bib14 article-title: An infrared spectroscopic based method for mercury(II) detection in aqueous solutions publication-title: Anal. Chim. Acta – volume: 221–222 start-page: 1 year: 2012 end-page: 18 ident: bib69 article-title: Remediation of mercury contaminated sites - a review publication-title: J. Hazard Mater. – volume: 102 start-page: 328 year: 2018 end-page: 335 ident: bib9 article-title: Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg2+ via CdTe@CdS/dendrimer probe and Au nanoparticle quencher publication-title: Biosens. Bioelectron. – volume: 23 year: 2021 ident: bib3 article-title: Mercury methylation and its accumulation in rice and paddy soil in degraded lands: a critical review publication-title: Environ. Technol. Inno. – volume: 222 year: 2019 ident: bib33 article-title: Green and simple synthesis route of Ag@AgCl nanomaterial using green marine crude extract and its application for sensitive and selective determination of mercury publication-title: Spectrochim. Ac. T. A.A. – volume: 44 start-page: 93 year: 1995 end-page: 102 ident: bib76 article-title: Remediation of a soil polluted by mercury with acidic potassium iodide publication-title: J. Hazard Mater. – volume: 118 start-page: 96 year: 2010 end-page: 104 ident: bib81 article-title: Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water publication-title: J. Contam. Hydrol. – volume: 38 start-page: 1232 year: 2013 end-page: 1261 ident: bib32 article-title: Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review publication-title: Prog. Polym. Sci. – volume: 47 start-page: 4967 year: 2013 end-page: 4983 ident: bib21 article-title: Mercury as a global pollutant: sources, pathways, and effects publication-title: Environ. Sci. Technol. – volume: 46 start-page: 834 year: 2013 end-page: 843 ident: bib54 article-title: Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse publication-title: Acc. Chem. Res. – volume: 258 start-page: 345 year: 2018 end-page: 353 ident: bib55 article-title: MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency publication-title: J. Mol. Liq. – volume: 8 start-page: 9037 year: 2016 end-page: 9095 ident: bib57 article-title: Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology publication-title: Nanoscale – volume: 446 start-page: 111 year: 2019 end-page: 123 ident: bib72 article-title: Radicular and foliar uptake, and xylem- and phloem-mediated transport of selenium in maize (Zea mays L.): a comparison of five Se exogenous species publication-title: Plant Soil – volume: 359 start-page: 385 year: 2019 end-page: 392 ident: bib38 article-title: Removal and immobilization of heavy metals in contaminated soils by chlorination and thermal treatment on an industrial-scale publication-title: Chem. Eng. J. – volume: 168 start-page: 1430 year: 2009 end-page: 1436 ident: bib48 article-title: Mercury(II) removal from water by electrocoagulation using aluminium and iron electrodes publication-title: J. Hazard Mater. – volume: 224 start-page: 926 year: 2016 end-page: 935 ident: bib82 article-title: Carbon dots as nanosensor for sensitive and selective detection of Hg2+ and l-cysteine by means of fluorescence “Off–On” switching publication-title: Sensor. Actuator. B Chem. – volume: 26 start-page: 111 year: 2017 end-page: 120 ident: bib36 article-title: Mercury concentrations in fresh and canned tuna: a review publication-title: Rev. Fish. Sci. Aquac. – volume: 27 start-page: 410 year: 2013 end-page: 421 ident: bib4 article-title: Legacy impacts of all-time anthropogenic emissions on the global mercury cycle publication-title: Global Biogeochem. Cycles – volume: 194 start-page: 81 year: 2018 end-page: 87 ident: bib61 article-title: Environmental mercury pollution by an abandoned chlor-alkali plant in Southwest China publication-title: J. Geochem. Explor. – volume: 4 start-page: 2160 year: 2012 end-page: 2167 ident: bib51 article-title: ZnS nanoparticle gels for remediation of Pb2+ and Hg2+ polluted water publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 18 year: 2012 end-page: 23 ident: bib37 article-title: Rice consumption contributes to low level methylmercury exposure in southern China publication-title: Environ. Int. – volume: 44 start-page: 5210 year: 2010 end-page: 5215 ident: bib63 article-title: Silver nanocrystallites: biofabrication using shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria publication-title: Environ. Sci. Technol. – volume: 50 start-page: 155 year: 2017 end-page: 160 ident: bib44 article-title: Na2S solution remediation for heavy mercury contaminated soil publication-title: J. Chem. Eng. Jpn. – volume: 266 start-page: 345 year: 2015 end-page: 355 ident: bib7 article-title: Modification of aluminum–silicate nanoparticles by melamine-based dendrimer l-cysteine methyl esters for adsorptive characteristic of Hg(II) ions from the synthetic and Persian Gulf water publication-title: Chem. Eng. J. – volume: 27 start-page: 808 year: 2008 end-page: 810 ident: bib24 article-title: Nanowastes and the environment: using mercury as an example pollutant to assess the environmental fate of chemicals adsorbed onto manufactured nanomaterials publication-title: Environ. Toxicol. Chem. – volume: 52 start-page: 3935 year: 2018 end-page: 3948 ident: bib47 article-title: Biogenesis of mercury-sulfur nanoparticles in plant leaves from atmospheric gaseous mercury publication-title: Environ. Sci. Technol. – volume: 54 start-page: 11137 year: 2020 end-page: 11145 ident: bib39 article-title: Dissolved black carbon facilitates photoreduction of Hg(II) to Hg(0) and reduces mercury uptake by lettuce (Lactuca sativa L.) publication-title: Environ. Sci. Technol. – volume: 54 start-page: 2698 year: 2020 end-page: 2706 ident: bib73 article-title: Nanoactivated carbon reduces mercury mobility and uptake by Oryza sativa L: mechanistic investigation using spectroscopic and microscopic techniques publication-title: Environ. Sci. Technol. – volume: 44 start-page: 93 year: 1995 ident: 10.1016/j.envpol.2021.118557_bib76 article-title: Remediation of a soil polluted by mercury with acidic potassium iodide publication-title: J. Hazard Mater. doi: 10.1016/0304-3894(95)00059-4 – volume: 728 start-page: 57 year: 2012 ident: 10.1016/j.envpol.2021.118557_bib14 article-title: An infrared spectroscopic based method for mercury(II) detection in aqueous solutions publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2012.03.047 – volume: 204 start-page: 227 year: 2015 ident: 10.1016/j.envpol.2021.118557_bib60 article-title: A new nano-composite potentiometric sensor containing an Hg2+-ion imprinted polymer for the trace determination of mercury ions in different matrices publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2015.01.014 – volume: 22 start-page: 91 year: 2007 ident: 10.1016/j.envpol.2021.118557_bib10 article-title: Mercury in seafood: mechanisms of accumulation and consequences for consumer health publication-title: Rev. Environ. Health – volume: 117 start-page: 388 year: 2014 ident: 10.1016/j.envpol.2021.118557_bib45 article-title: Mercury removal from contaminated soil by thermal treatment with FeCl(3) at reduced temperature publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.08.012 – start-page: 849 year: 2018 ident: 10.1016/j.envpol.2021.118557_bib52 – volume: 55 start-page: 10133 year: 2021 ident: 10.1016/j.envpol.2021.118557_bib75 article-title: Mobilization, methylation, and demethylation of mercury in a paddy soil under systematic redox changes publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c07321 – volume: 50 start-page: 155 year: 2017 ident: 10.1016/j.envpol.2021.118557_bib44 article-title: Na2S solution remediation for heavy mercury contaminated soil publication-title: J. Chem. Eng. Jpn. doi: 10.1252/jcej.16we218 – volume: 118 start-page: 1183 year: 2010 ident: 10.1016/j.envpol.2021.118557_bib83 article-title: In inland China, rice, rather than fish, is the major pathway for methylmercury exposure publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1001915 – volume: 180 start-page: 38 year: 2010 ident: 10.1016/j.envpol.2021.118557_bib2 article-title: Water purification using magnetic assistance: a review publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2010.04.105 – volume: 9 year: 2017 ident: 10.1016/j.envpol.2021.118557_bib35 article-title: Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling publication-title: Sustainability doi: 10.3390/su9050790 – volume: 57 start-page: 17 year: 2007 ident: 10.1016/j.envpol.2021.118557_bib20 article-title: Mercury contamination in forest and freshwater ecosystems in the Northeastern United States publication-title: Bioscience doi: 10.1641/B570106 – volume: 26 start-page: 4064 year: 2011 ident: 10.1016/j.envpol.2021.118557_bib30 article-title: Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.03.033 – volume: 38 start-page: 1232 year: 2013 ident: 10.1016/j.envpol.2021.118557_bib32 article-title: Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2013.02.003 – volume: 182 start-page: 247 year: 2017 ident: 10.1016/j.envpol.2021.118557_bib34 article-title: A comparison of technologies for remediation of heavy metal contaminated soils publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2016.11.021 – volume: 118 start-page: 96 year: 2010 ident: 10.1016/j.envpol.2021.118557_bib81 article-title: Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2010.09.003 – volume: 152 year: 2020 ident: 10.1016/j.envpol.2021.118557_bib23 article-title: Synthesis of graphene oxide nanosheets from sugar beet bagasse and its application for colorimetric and naked eye detection of trace Hg2+ in the environmental water samples publication-title: Microchem. J. doi: 10.1016/j.microc.2019.104332 – volume: 57 start-page: 365 year: 2002 ident: 10.1016/j.envpol.2021.118557_bib17 article-title: Sensitive determination of mercury in tap water by cloud point extraction pre-concentration and flow injection-cold vapor-inductively coupled plasma optical emission spectrometry publication-title: Spectrochim. Ac. Tab. doi: 10.1016/S0584-8547(01)00393-7 – volume: 699 start-page: 134341 year: 2020 ident: 10.1016/j.envpol.2021.118557_bib74 article-title: Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134341 – volume: 5 start-page: 456 year: 2018 ident: 10.1016/j.envpol.2021.118557_bib70 article-title: Stabilizing interaction of exopolymers with nano-Se and impact on mercury immobilization in soil and groundwater publication-title: Environ. Sci. Nano doi: 10.1039/C7EN00628D – volume: 15 start-page: 11 year: 2017 ident: 10.1016/j.envpol.2021.118557_bib22 article-title: Nanotechnology: the new perspective in precision agriculture publication-title: Biotechnol. Rep. (Amst) doi: 10.1016/j.btre.2017.03.002 – volume: 10 year: 2019 ident: 10.1016/j.envpol.2021.118557_bib41 article-title: Rice life cycle-based global mercury biotransport and human methylmercury exposure publication-title: Nat. Commun. doi: 10.1038/s41467-019-13221-2 – volume: 222 year: 2019 ident: 10.1016/j.envpol.2021.118557_bib33 article-title: Green and simple synthesis route of Ag@AgCl nanomaterial using green marine crude extract and its application for sensitive and selective determination of mercury publication-title: Spectrochim. Ac. T. A.A. – volume: 54 start-page: 2698 year: 2020 ident: 10.1016/j.envpol.2021.118557_bib73 article-title: Nanoactivated carbon reduces mercury mobility and uptake by Oryza sativa L: mechanistic investigation using spectroscopic and microscopic techniques publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b05685 – volume: 9 start-page: 8525 year: 2017 ident: 10.1016/j.envpol.2021.118557_bib66 article-title: Cellulose-gold nanoparticle hybrid materials publication-title: Nanoscale doi: 10.1039/C7NR00400A – volume: 424 start-page: 1 year: 2012 ident: 10.1016/j.envpol.2021.118557_bib78 article-title: Use of iron oxide nanomaterials in wastewater treatment: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.02.023 – volume: 7 start-page: 1807 year: 2020 ident: 10.1016/j.envpol.2021.118557_bib40 article-title: Silica nanoparticles alleviate mercury toxicity via immobilization and inactivation of Hg(ii) in soybean (Glycine max) publication-title: Environ. Sci. Nano doi: 10.1039/D0EN00091D – volume: 1 start-page: 44 year: 2012 ident: 10.1016/j.envpol.2021.118557_bib77 article-title: Sensitive colorimetric and fluorescent detection of mercury using fluorescein derivations publication-title: Open J. Appl. Biosens. doi: 10.4236/ojab.2012.13006 – volume: 86 start-page: 4536 year: 2014 ident: 10.1016/j.envpol.2021.118557_bib15 article-title: In situ building of a nanoprobe based on fluorescent carbon dots for methylmercury detection publication-title: Anal. Chem. doi: 10.1021/ac500517h – volume: 1 start-page: 12 year: 2013 ident: 10.1016/j.envpol.2021.118557_bib8 article-title: Effect of mercury pollution on the urban environment and human health publication-title: Ecol. Env. Res. doi: 10.13189/eer.2013.010102 – volume: 27 start-page: 410 year: 2013 ident: 10.1016/j.envpol.2021.118557_bib4 article-title: Legacy impacts of all-time anthropogenic emissions on the global mercury cycle publication-title: Global Biogeochem. Cycles doi: 10.1002/gbc.20040 – volume: 258 start-page: 345 year: 2018 ident: 10.1016/j.envpol.2021.118557_bib55 article-title: MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.03.012 – volume: 23 start-page: 148 year: 2012 ident: 10.1016/j.envpol.2021.118557_bib25 article-title: Thermodynamic and kinetic studies for the adsorption of Hg(II) by nano-TiO2 from aqueous solution publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2011.01.004 – volume: 280 year: 2021 ident: 10.1016/j.envpol.2021.118557_bib80 article-title: Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130792 – volume: 60 start-page: 1289 year: 2008 ident: 10.1016/j.envpol.2021.118557_bib12 article-title: Biological properties of "naked" metal nanoparticles publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2008.03.013 – volume: 356 start-page: 147 year: 2018 ident: 10.1016/j.envpol.2021.118557_bib43 article-title: Nanomaterials for removal of toxic elements from water publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.11.003 – volume: 266 start-page: 345 year: 2015 ident: 10.1016/j.envpol.2021.118557_bib7 article-title: Modification of aluminum–silicate nanoparticles by melamine-based dendrimer l-cysteine methyl esters for adsorptive characteristic of Hg(II) ions from the synthetic and Persian Gulf water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.12.109 – volume: 27 start-page: 808 year: 2008 ident: 10.1016/j.envpol.2021.118557_bib24 article-title: Nanowastes and the environment: using mercury as an example pollutant to assess the environmental fate of chemicals adsorbed onto manufactured nanomaterials publication-title: Environ. Toxicol. Chem. doi: 10.1897/07-282.1 – volume: 23 start-page: 294007 year: 2012 ident: 10.1016/j.envpol.2021.118557_bib28 article-title: Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles publication-title: Nanotechnology doi: 10.1088/0957-4484/23/29/294007 – volume: 47 start-page: 4967 year: 2013 ident: 10.1016/j.envpol.2021.118557_bib21 article-title: Mercury as a global pollutant: sources, pathways, and effects publication-title: Environ. Sci. Technol. doi: 10.1021/es305071v – volume: 46 start-page: 834 year: 2013 ident: 10.1016/j.envpol.2021.118557_bib54 article-title: Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse publication-title: Acc. Chem. Res. doi: 10.1021/ar300029v – volume: 44 start-page: 5210 year: 2010 ident: 10.1016/j.envpol.2021.118557_bib63 article-title: Silver nanocrystallites: biofabrication using shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria publication-title: Environ. Sci. Technol. doi: 10.1021/es903684r – volume: 345 start-page: 234 year: 2010 ident: 10.1016/j.envpol.2021.118557_bib27 article-title: Silica coated magnetite particles for magnetic removal of Hg2+ from water publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.01.087 – volume: 290 start-page: 87 year: 2019 ident: 10.1016/j.envpol.2021.118557_bib59 article-title: Paper-based electrochemical transducer modified with nanomaterials for mercury determination in environmental waters publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2019.03.089 – volume: 21 year: 2020 ident: 10.1016/j.envpol.2021.118557_bib62 article-title: Surface functionalized magnetic α-Fe2O3 nanoparticles: synthesis, characterization and Hg2+ ion removal in water publication-title: Surf. Interface. – volume: 28 year: 2013 ident: 10.1016/j.envpol.2021.118557_bib5 article-title: Development of a surface plasmon assisted label-free calorimetric method for sensitive detection of mercury based on functionalized gold nanorods publication-title: J. Anal. At. Spectrom. doi: 10.1039/c3ja30300d – volume: 4 start-page: 2160 year: 2012 ident: 10.1016/j.envpol.2021.118557_bib51 article-title: ZnS nanoparticle gels for remediation of Pb2+ and Hg2+ polluted water publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3001538 – volume: 229 start-page: 87 year: 2017 ident: 10.1016/j.envpol.2021.118557_bib49 article-title: Mercury levels of yellowfin tuna (Thunnus albacares) are associated with capture location publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.05.070 – volume: 224 start-page: 926 year: 2016 ident: 10.1016/j.envpol.2021.118557_bib82 article-title: Carbon dots as nanosensor for sensitive and selective detection of Hg2+ and l-cysteine by means of fluorescence “Off–On” switching publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2015.09.057 – volume: 624 year: 2021 ident: 10.1016/j.envpol.2021.118557_bib1 article-title: Evaluation of antitoxic ability of carbon nanomaterials with respect to Hg2 + mercury ions using Escherichia coli cells publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/624/1/012212 – volume: 166 start-page: 631 year: 2011 ident: 10.1016/j.envpol.2021.118557_bib19 article-title: Removal of aqueous toxic Hg(II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.11.035 – volume: 224 start-page: 164 year: 2018 ident: 10.1016/j.envpol.2021.118557_bib64 article-title: Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.07.049 – volume: 18 start-page: 975 year: 2020 ident: 10.1016/j.envpol.2021.118557_bib67 article-title: Total removal of Hg (II) from wastewater using magnetic nanoparticles coated with nanometric Ag and functionalized with sodium 2-mercaptoethane sulfonate publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-020-00987-x – volume: 7 start-page: 1115 year: 2020 ident: 10.1016/j.envpol.2021.118557_bib84 article-title: Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant publication-title: Environ. Sci. Nano doi: 10.1039/C9EN01294J – volume: 621 start-page: 819 year: 2018 ident: 10.1016/j.envpol.2021.118557_bib50 article-title: Sulfur-modified rice husk biochar: a green method for the remediation of mercury contaminated soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.213 – volume: 97 start-page: 78 year: 2013 ident: 10.1016/j.envpol.2021.118557_bib13 article-title: Interfacing water soluble nanomaterials with fluorescence chemosensing: graphene quantum dot to detect Hg2+ in 100% aqueous solution publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.01.094 – volume: 168 start-page: 1430 year: 2009 ident: 10.1016/j.envpol.2021.118557_bib48 article-title: Mercury(II) removal from water by electrocoagulation using aluminium and iron electrodes publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2009.03.042 – volume: 704 start-page: 96 year: 2013 ident: 10.1016/j.envpol.2021.118557_bib18 article-title: Polystyrenesulfonate doped poly(Hydroxymethyl 3,4-Ethylenedioxythiophene) stabilized Au nanoparticle modified glassy carbon electrode as a reusable sensor for mercury(II) detection in chloride media publication-title: Electroanal. Chem. doi: 10.1016/j.jelechem.2013.06.014 – volume: 254 start-page: 8 year: 2018 ident: 10.1016/j.envpol.2021.118557_bib85 article-title: Highly selective and sensitive detection of Hg2+ based on fluorescence enhancement of Mn-doped ZnSe QDs by Hg2+-Mn2+ replacement publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2017.07.033 – volume: 26 start-page: 111 year: 2017 ident: 10.1016/j.envpol.2021.118557_bib36 article-title: Mercury concentrations in fresh and canned tuna: a review publication-title: Rev. Fish. Sci. Aquac. doi: 10.1080/23308249.2017.1362370 – volume: 54 start-page: 11137 year: 2020 ident: 10.1016/j.envpol.2021.118557_bib39 article-title: Dissolved black carbon facilitates photoreduction of Hg(II) to Hg(0) and reduces mercury uptake by lettuce (Lactuca sativa L.) publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c01132 – volume: 2 start-page: 315 year: 2015 ident: 10.1016/j.envpol.2021.118557_bib6 article-title: The use of nanoparticles in soil and water remediation processes publication-title: Mater. Today: Proc. – volume: 194 start-page: 81 year: 2018 ident: 10.1016/j.envpol.2021.118557_bib61 article-title: Environmental mercury pollution by an abandoned chlor-alkali plant in Southwest China publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2018.07.017 – volume: 102 start-page: 328 year: 2018 ident: 10.1016/j.envpol.2021.118557_bib9 article-title: Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg2+ via CdTe@CdS/dendrimer probe and Au nanoparticle quencher publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.11.034 – volume: 61 start-page: 591 year: 2010 ident: 10.1016/j.envpol.2021.118557_bib65 article-title: Removal of mercury from water by multi-walled carbon nanotubes publication-title: Water Sci. Technol. doi: 10.2166/wst.2010.897 – volume: 221–222 start-page: 1 year: 2012 ident: 10.1016/j.envpol.2021.118557_bib69 article-title: Remediation of mercury contaminated sites - a review publication-title: J. Hazard Mater. – volume: vol. 226 year: 2015 ident: 10.1016/j.envpol.2021.118557_bib29 – volume: 55 start-page: 216 year: 2020 ident: 10.1016/j.envpol.2021.118557_bib58 article-title: Studying absorbance properties and mercury remediation capabilities of gold-graphene oxide-iron oxide (Au-GO-Fe3O4) nanoparticle systems publication-title: J. Environ. Sci. Heal. A. doi: 10.1080/10934529.2019.1681219 – volume: 299 start-page: 86 year: 2015 ident: 10.1016/j.envpol.2021.118557_bib79 article-title: Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2015.06.012 – volume: 49 start-page: 18 year: 2012 ident: 10.1016/j.envpol.2021.118557_bib37 article-title: Rice consumption contributes to low level methylmercury exposure in southern China publication-title: Environ. Int. doi: 10.1016/j.envint.2012.08.006 – volume: 584–585 start-page: 1324 year: 2017 ident: 10.1016/j.envpol.2021.118557_bib26 article-title: Comparing different commercial zero valent iron nanoparticles to immobilize as and Hg in brownfield soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.02.011 – volume: 359 start-page: 385 year: 2019 ident: 10.1016/j.envpol.2021.118557_bib38 article-title: Removal and immobilization of heavy metals in contaminated soils by chlorination and thermal treatment on an industrial-scale publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.158 – volume: 421–422 start-page: 59 year: 2012 ident: 10.1016/j.envpol.2021.118557_bib53 article-title: Synthesis of current data for Hg in areas of geologic resource extraction contamination and aquatic systems in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.09.024 – volume: 446 start-page: 111 year: 2019 ident: 10.1016/j.envpol.2021.118557_bib72 article-title: Radicular and foliar uptake, and xylem- and phloem-mediated transport of selenium in maize (Zea mays L.): a comparison of five Se exogenous species publication-title: Plant Soil doi: 10.1007/s11104-019-04346-w – volume: 27 start-page: 355 year: 2003 ident: 10.1016/j.envpol.2021.118557_bib11 article-title: Bacterial mercury resistance from atoms to ecosystems publication-title: FEMS Microbiol. Rev. doi: 10.1016/S0168-6445(03)00046-9 – volume: 34 year: 2010 ident: 10.1016/j.envpol.2021.118557_bib68 article-title: A highly selective regenerable optical sensor for detection of mercury(ii) ion in water using organic–inorganic hybrid nanomaterials containing pyrene publication-title: New J. Chem. doi: 10.1039/c0nj00039f – volume: 40 start-page: 3673 year: 2006 ident: 10.1016/j.envpol.2021.118557_bib31 article-title: Mercury pollution in China. An overview of the past and current sources of the toxic metal publication-title: Environ. Sci. Technol. – volume: 276 year: 2020 ident: 10.1016/j.envpol.2021.118557_bib56 article-title: Selenium functionalized magnetic nanocomposite as an effective mercury (II) ion scavenger from environmental water and industrial wastewater samples publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111263 – volume: 8 start-page: 9037 year: 2016 ident: 10.1016/j.envpol.2021.118557_bib57 article-title: Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology publication-title: Nanoscale doi: 10.1039/C5NR08465B – volume: 84 start-page: 205 year: 2019 ident: 10.1016/j.envpol.2021.118557_bib16 article-title: Mercury in aquatic fauna contamination: a systematic review on its dynamics and potential health risks publication-title: J. Environ. Sci. (China) doi: 10.1016/j.jes.2019.02.018 – volume: 23 year: 2021 ident: 10.1016/j.envpol.2021.118557_bib3 article-title: Mercury methylation and its accumulation in rice and paddy soil in degraded lands: a critical review publication-title: Environ. Technol. Inno. – volume: 300 start-page: 546 year: 2015 ident: 10.1016/j.envpol.2021.118557_bib46 article-title: Citric acid facilitated thermal treatment: an innovative method for the remediation of mercury contaminated soil publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2015.07.055 – volume: 52 start-page: 3935 year: 2018 ident: 10.1016/j.envpol.2021.118557_bib47 article-title: Biogenesis of mercury-sulfur nanoparticles in plant leaves from atmospheric gaseous mercury publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05452 – volume: 646 start-page: 1615 year: 2019 ident: 10.1016/j.envpol.2021.118557_bib71 article-title: The use of calcium carbonate-enriched clay minerals and diammonium phosphate as novel immobilization agents for mercury remediation: spectral investigations and field applications publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.225 |
SSID | ssj0004333 |
Score | 2.4821055 |
SecondaryResourceType | review_article |
Snippet | Hg pollution is a global concern due to its high ecotoxicity and health risk to human beings. A comprehensive understanding of the fast-developed technology... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118557 |
SubjectTerms | biogeochemistry cellulose dispersants ecotoxicology Environmental Restoration and Remediation Fertilizers Humans Immobilization Mercury Mercury - analysis Nanotechnology pollution Remediation Removal risk risk assessment Soil Soil Pollutants - analysis |
Title | Detection and remediation of mercury contaminated environment by nanotechnology: Progress and challenges |
URI | https://dx.doi.org/10.1016/j.envpol.2021.118557 https://www.ncbi.nlm.nih.gov/pubmed/34813883 https://www.proquest.com/docview/2601989121 https://www.proquest.com/docview/2636756491 |
Volume | 293 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KfdEH0avV86NEEN_i3e4mu1nfjtpyKhZBC30L2Xxgi80eva3QF_92Z7K71wpqwdclCSEzmflN9jczAK9qGRC1h4I7er4Xrmq4saXkTsmmrIUN0lG-86ejcnksPpzIky3YH3NhiFY52P7epidrPXyZDac5W52ezr5g9IBguE4VsBDHUE1QISrS8jc_r2keoujbyeNgTqPH9LnE8fLxx6qlHxB5hrZDSXJSf3ZPf4OfyQ0dPoD7A35ki36LD2HLxwnsLCLGzudX7DVLjM70VD6BezeKDU5g9-A6pw1XGC71ege-vfNdImRFZqJj9GDoeoGxNrBzf2Hx3Blx2g3xZhCishvpcay5YtHEttu80b9ln4n0hSY0rWfHdi3rR3B8ePB1f8mHBgzciEx1vLRCWQxQypCJxpg6zx3C22CrIGSQlbBzS801K1PWqpn70Fhb4xw89ZDbUrliF7ZjG_0TYLJ2ucyFrTziCWmUsT7DWAoXk4iRTJhCMZ67tkN1cmqS8V2PNLQz3UtLk7R0L60p8M2sVV-d45bx1ShS_ZuWaXQgt8x8OWqAxgtIf1VM9O3lWlNNtlqRGv5rTIGBWYnqN4XHvfps9kuZ0IVSxdP_3tszuJtTUsY845l8DtvdxaV_gVCpa_bSXdiDO4v3H5dHvwAJLBWQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOCLYUlqeRgFvYTWInDhKHirba0oeQaKXejOPYolXrrLopaC_8Kf4gM06yLRJQCanXKB5ZnvH4G_ubGYBXhXCI2l0aVXR9z6u8jLTJRFRJUWYFN05UlO-8u5dNDvjHQ3G4BD_7XBiiVXa-v_XpwVt3X0bdao6mR0ejzxg9IBguQgUsxDG8Y1Zu2_l3jNtm77fWUcmvk2RzY__DJOpaC0Sax7KJMsOlQeiduZiXWhdJUiFwcyZ3XDiRczM21DYy11khy7F1pTEFjkH_4RKTySpFuTfgJkd3QW0T3v644JXwtO1fj7OLaHp9vl4glVn_bVrTi0cSo7OSgk7FP5-Hf8O74dzbvAd3O8DK1to1uQ9L1g9gZc1jsH46Z29YoJCGu_kB3LlU3XAAqxsXSXQoofMisxX4um6bwADzTPuK0Q1l1VoIqx07tWcGFc2IRK-JqIOYmF3Kx2PlnHnt62bxKPCOfSKWGfrsIM_0_WFmD-DgWtSyCsu-9vYRMFFUiUi4yS0CGKGlNjbG4A2FCQRl2g0h7dddma4cOnXlOFE97-1YtdpSpC3VamsI0WLUtC0HcsX_ea9S9ZtZKzyxrhj5srcAhTuennG0t_X5TFERuEKS3f_rnxQjwQzNbwgPW_NZzJdSr1Mp08f_PbcXcGuyv7ujdrb2tp_A7YQyQsZxFIunsNycndtniNOa8nnYFwy-XPdG_AUzpFFY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+remediation+of+mercury+contaminated+environment+by+nanotechnology%3A+Progress+and+challenges&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Liu%2C+Yonghua&rft.au=Chen%2C+Hanqing&rft.au=Zhu%2C+Nali&rft.au=Zhang%2C+Jing&rft.date=2022-01-15&rft.pub=Elsevier+Ltd&rft.issn=0269-7491&rft.volume=293&rft_id=info:doi/10.1016%2Fj.envpol.2021.118557&rft.externalDocID=S0269749121021394 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |