Simulated Intravenous versus Inhaled Tobramycin with or without Intravenous Ceftazidime Evaluated against Hypermutable Pseudomonas aeruginosa via a Dynamic Biofilm Model and Mechanism-Based Modeling
Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa, biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with an...
Saved in:
Published in | Antimicrobial agents and chemotherapy Vol. 66; no. 3; p. e0220321 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
15.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa, biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). Two hypermutable P. aeruginosa isolates, CW30 (MIC
, 0.5 mg/liter; MIC
, 2 mg/liter) and CW8 (MIC
, 2 mg/liter; MIC
, 8 mg/liter), were investigated for 120 h in dynamic
biofilm studies. Treatments were intravenous ceftazidime, 9 g/day (33% lung fluid penetration); intravenous tobramycin, 10 mg/kg of body every 24 h (50% lung fluid penetration); inhaled tobramycin, 300 mg every 12 h; and both ceftazidime-tobramycin combinations. Total and less susceptible planktonic and biofilm bacteria were quantified over 120 h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7 log
CFU/ml) and biofilm (>3.8 log
CFU/cm
) bacteria and resistance amplification by 120 h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120 h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation. |
---|---|
AbstractList | Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa, biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). Two hypermutable P. aeruginosa isolates, CW30 (MIC
, 0.5 mg/liter; MIC
, 2 mg/liter) and CW8 (MIC
, 2 mg/liter; MIC
, 8 mg/liter), were investigated for 120 h in dynamic
biofilm studies. Treatments were intravenous ceftazidime, 9 g/day (33% lung fluid penetration); intravenous tobramycin, 10 mg/kg of body every 24 h (50% lung fluid penetration); inhaled tobramycin, 300 mg every 12 h; and both ceftazidime-tobramycin combinations. Total and less susceptible planktonic and biofilm bacteria were quantified over 120 h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7 log
CFU/ml) and biofilm (>3.8 log
CFU/cm
) bacteria and resistance amplification by 120 h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120 h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation. Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa , biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). Two hypermutable P. aeruginosa isolates, CW30 (MIC CAZ , 0.5 mg/liter; MIC TOB , 2 mg/liter) and CW8 (MIC CAZ , 2 mg/liter; MIC TOB , 8 mg/liter), were investigated for 120 h in dynamic in vitro biofilm studies. Treatments were intravenous ceftazidime, 9 g/day (33% lung fluid penetration); intravenous tobramycin, 10 mg/kg of body every 24 h (50% lung fluid penetration); inhaled tobramycin, 300 mg every 12 h; and both ceftazidime-tobramycin combinations. Total and less susceptible planktonic and biofilm bacteria were quantified over 120 h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7 log 10 CFU/ml) and biofilm (>3.8 log 10 CFU/cm 2 ) bacteria and resistance amplification by 120 h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120 h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation. Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). ABSTRACT Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa , biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). Two hypermutable P. aeruginosa isolates, CW30 (MIC CAZ , 0.5 mg/liter; MIC TOB , 2 mg/liter) and CW8 (MIC CAZ , 2 mg/liter; MIC TOB , 8 mg/liter), were investigated for 120 h in dynamic in vitro biofilm studies. Treatments were intravenous ceftazidime, 9 g/day (33% lung fluid penetration); intravenous tobramycin, 10 mg/kg of body every 24 h (50% lung fluid penetration); inhaled tobramycin, 300 mg every 12 h; and both ceftazidime-tobramycin combinations. Total and less susceptible planktonic and biofilm bacteria were quantified over 120 h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7 log 10 CFU/ml) and biofilm (>3.8 log 10 CFU/cm 2 ) bacteria and resistance amplification by 120 h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120 h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation. Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa, biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). Two hypermutable P. aeruginosa isolates, CW30 (MICCAZ, 0.5 mg/liter; MICTOB, 2 mg/liter) and CW8 (MICCAZ, 2 mg/liter; MICTOB, 8 mg/liter), were investigated for 120 h in dynamic in vitro biofilm studies. Treatments were intravenous ceftazidime, 9 g/day (33% lung fluid penetration); intravenous tobramycin, 10 mg/kg of body every 24 h (50% lung fluid penetration); inhaled tobramycin, 300 mg every 12 h; and both ceftazidime-tobramycin combinations. Total and less susceptible planktonic and biofilm bacteria were quantified over 120 h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7 log10 CFU/ml) and biofilm (>3.8 log10 CFU/cm2) bacteria and resistance amplification by 120 h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120 h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation. |
Author | Peleg, Anton Y Zhou, Jieqiang Tait, Jessica R Landersdorfer, Cornelia B Bilal, Hajira Bulitta, Jürgen B Bergen, Phillip J Nation, Roger L Lang, Yinzhi Oliver, Antonio |
Author_xml | – sequence: 1 givenname: Hajira surname: Bilal fullname: Bilal, Hajira organization: Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash Universitygrid.1002.3, Parkville, Victoria, Australia – sequence: 2 givenname: Jessica R surname: Tait fullname: Tait, Jessica R organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash Universitygrid.1002.3, Parkville, Victoria, Australia – sequence: 3 givenname: Yinzhi surname: Lang fullname: Lang, Yinzhi organization: Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Floridagrid.15276.37, Orlando, Florida, USA – sequence: 4 givenname: Jieqiang surname: Zhou fullname: Zhou, Jieqiang organization: Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Floridagrid.15276.37, Orlando, Florida, USA – sequence: 5 givenname: Phillip J surname: Bergen fullname: Bergen, Phillip J organization: Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash Universitygrid.1002.3, Parkville, Victoria, Australia – sequence: 6 givenname: Anton Y surname: Peleg fullname: Peleg, Anton Y organization: Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash Universitygrid.1002.3, Melbourne, Australia – sequence: 7 givenname: Jürgen B orcidid: 0000-0001-7352-3097 surname: Bulitta fullname: Bulitta, Jürgen B organization: Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Floridagrid.15276.37, Orlando, Florida, USA – sequence: 8 givenname: Antonio orcidid: 0000-0001-9327-1894 surname: Oliver fullname: Oliver, Antonio organization: Hospital Universitario Son Espasesgrid.411164.7, Palma de Mallorca, Spain – sequence: 9 givenname: Roger L surname: Nation fullname: Nation, Roger L organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash Universitygrid.1002.3, Parkville, Victoria, Australia – sequence: 10 givenname: Cornelia B orcidid: 0000-0003-0928-4743 surname: Landersdorfer fullname: Landersdorfer, Cornelia B organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash Universitygrid.1002.3, Parkville, Victoria, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35041509$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAUhS1URKeFHWvkJUik-JF4kg0SHQodqRVIlLV149zMuPJjsJNBww_kd5HOlIouWB1Z5_iz7j0-IUchBiTkJWdnnIv6HYA5Y0IwWQj-hMw4a-pCVY06IjPGlCrKmpXH5CTnWzadq4Y9I8eyYiWvWDMjv79ZPzoYsKPLMCTYYohjpltMeZJlWIObrJvYJvA7YwP9aYc1jWmvcRwe3VpgP8Av21mP9GILbtxzYQU25IFe7jaY_DhA65B-zTh20ccAmQKmcWVDzEC3FijQj7sA3hp6bmNvnafXsUNHIXT0Gs0ags2-OIc8sfeODavn5GkPLuOLez0l3z9d3Cwui6svn5eLD1cFlLweikpKLGVveIkc54xzVsueSVBN1bU9F8zUqoXG8Ea2RnFVz5kC6ErVlx2WqpWn5P2Buxlbj53Bu-md3iTrIe10BKsfO8Gu9Spudd0IyRs1AV7fA1L8MWIetLfZoHMQcFqhFkpwoeaqrKfo20PUpJhzwv7hGc70XfV6ql7vq9eCT_E3hzhkL_RtHFOYNvG_7Kt_x3gA__0X8g_D6L8S |
CitedBy_id | crossref_primary_10_1016_j_ijantimicag_2024_107161 crossref_primary_10_3390_ph17030320 crossref_primary_10_1007_s00431_023_05401_6 crossref_primary_10_1016_j_ijantimicag_2023_106887 crossref_primary_10_1093_jac_dkac240 |
Cites_doi | 10.1128/AAC.00469-20 10.1128/AAC.49.8.3382-3386.2005 10.1016/j.cmi.2020.04.034 10.1128/AAC.00028-18 10.1016/S0009-9236(99)70103-7 10.3389/fmicb.2012.00408 10.1016/j.ijmm.2010.08.009 10.1159/000007083 10.2165/11594090-000000000-00000 10.1128/AAC.05682-11 10.1128/AAC.00988-17 10.1016/j.jgar.2021.04.021 10.1007/s00134-004-2171-2 10.1016/j.diagmicrobio.2003.10.016 10.3389/fmicb.2011.00065 10.1086/518605 10.1038/nrmicro862 10.3390/ijms18051062 10.1093/jac/dkv170 10.1128/AAC.04099-14 10.1007/s40268-018-0241-0 10.1016/j.ijantimicag.2007.12.009 10.2217/fmb.12.76 10.1513/AnnalsATS.201311-395FR 10.1089/jamp.2011.0942 10.1016/j.jcf.2016.10.001 10.1093/jac/dkx001 10.1093/jac/dkx293 10.1128/jb.175.18.5798-5805.1993 10.1128/AAC.04232-14 10.1128/AAC.49.2.479-487.2005 10.1128/AAC.00489-08 10.3390/pathogens3030680 10.1093/jac/dkw297 10.1016/j.tim.2016.01.008 10.1002/14651858.CD008319.pub3 10.1128/AAC.02538-18 10.1007/s40262-020-00981-0 10.1128/AAC.01293-19 10.1111/j.1469-0691.2008.02097.x 10.3389/fmicb.2017.01289 10.1164/rccm.200208-855OC 10.1097/MCC.0b013e3282e2a98f 10.1128/CMR.00138-18 10.1093/infdis/159.2.281 10.1186/s12890-016-0339-5 10.1016/j.jcf.2018.02.006 10.1016/j.cmi.2020.02.004 10.3389/fmicb.2019.00913 10.1016/j.prrv.2010.05.003 10.1378/chest.122.1.219 10.1097/00006454-198305000-00007 10.1016/S1473-3099(14)70036-2 10.1007/s40262-013-0036-y 10.1128/AAC.01586-06 10.1093/jac/40.1.125 10.1067/mpd.2001.117785 10.1111/1469-0691.12651 10.1128/AAC.31.3.398 10.1128/AAC.00722-17 10.1128/AAC.01679-19 10.1016/j.bbapap.2008.11.005 10.1128/AAC.00936-09 10.1126/science.288.5469.1251 10.1086/514622 10.1093/jac/dks468 10.1128/AAC.41.1.184 10.1093/jac/dkw293 10.1016/j.ijantimicag.2008.07.010 10.1128/AAC.41.1.95 10.1371/journal.pone.0027842 10.1111/jcpt.12521 10.1128/AAC.02055-17 10.3109/9781420017137.006 |
ContentType | Journal Article |
Copyright | Copyright © 2022 American Society for Microbiology. Copyright © 2022 American Society for Microbiology. 2022 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2022 American Society for Microbiology. – notice: Copyright © 2022 American Society for Microbiology. 2022 American Society for Microbiology |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1128/aac.02203-21 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1098-6596 |
EndPage | e0220321 |
ExternalDocumentID | 10_1128_aac_02203_21 02203-21 35041509 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Department of Health | National Health and Medical Research Council (NHMRC) grantid: GNT1159579; GNT1184428 funderid: https://doi.org/10.13039/501100000925 – fundername: ; grantid: GNT1159579; GNT1184428 |
GroupedDBID | --- .55 0R~ 23M 2WC 39C 4.4 53G 5GY 5RE 5VS 6J9 ACGFO ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CGR CS3 CUY CVF DIK E3Z EBS ECM EIF F5P FRP GX1 H13 HH5 HYE HZ~ H~9 K-O KQ8 L7B LSO NPM O9- OK1 P2P RHF RHI RNS RPM RSF TR2 UHB W2D W8F WH7 WOQ X7M - 0R 55 AAPBV ABFLS ADACO BXI HZ ZA5 AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a418t-533e43fc14e1e7011083f03a695dbf120c86ba9c193bc6168706aad46f4de46b3 |
IEDL.DBID | RPM |
ISSN | 0066-4804 |
IngestDate | Tue Sep 17 21:26:07 EDT 2024 Sat Oct 05 05:48:38 EDT 2024 Thu Sep 12 17:21:39 EDT 2024 Tue Mar 15 18:20:18 EDT 2022 Sat Sep 28 08:21:49 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | mathematical modeling pharmacokinetics Pseudomonas aeruginosa dosage regimen optimization dynamic infection model pharmacodynamics |
Language | English |
License | All Rights Reserved. https://doi.org/10.1128/ASMCopyrightv2 All Rights Reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a418t-533e43fc14e1e7011083f03a695dbf120c86ba9c193bc6168706aad46f4de46b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0003-0928-4743 0000-0001-7352-3097 0000-0001-9327-1894 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923196 |
PMID | 35041509 |
PQID | 2621267648 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8923196 proquest_miscellaneous_2621267648 crossref_primary_10_1128_aac_02203_21 asm2_journals_10_1128_aac_02203_21 pubmed_primary_35041509 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-15 |
PublicationDateYYYYMMDD | 2022-03-15 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Antimicrobial agents and chemotherapy |
PublicationTitleAbbrev | Antimicrob Agents Chemother |
PublicationTitleAlternate | Antimicrob Agents Chemother |
PublicationYear | 2022 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | Geller, DE, Pitlick, WH, Nardella, PA, Tracewell, WG, Ramsey, BW (B18) 2002; 122 Zelenitsky, SA, Karlowsky, JA, Hoban, DJ, Kabani, A, Zhanel, GG (B37) 1998; 44 Cousson, J, Floch, T, Guillard, T, Vernet, V, Raclot, P, Wolak-Thierry, A, Jolly, D (B77) 2015; 59 Hennig, S, Standing, JF, Staatz, CE, Thomson, AH (B67) 2013; 52 B69 Bilal, H, Bergen, PJ, Tait, JR, Wallis, SC, Peleg, AY, Roberts, JA, Oliver, A, Nation, RL, Landersdorfer, CB (B64) 2020; 64 Touw, DJ, Jacobs, FA, Brimicombe, RW, Heijerman, HG, Bakker, W, Briemer, DD (B68) 1997; 41 Malhotra, S, Hayes, D, Wozniak, DJ (B2) 2019; 32 Roberts, JA, Abdul-Aziz, MH, Lipman, J, Mouton, JW, Vinks, AA, Felton, TW, Hope, WW, Farkas, A, Neely, MN, Schentag, JJ, Drusano, G, Frey, OR, Theuretzbacher, U, Kuti, JL (B32) 2014; 14 Bos, AC, Passé, KM, Mouton, JW, Janssens, HM, Tiddens, HAWM (B52) 2017; 16 Landersdorfer, CB, Rees, VE, Yadav, R, Rogers, KE, Kim, TH, Bergen, PJ, Cheah, S-E, Boyce, JD, Peleg, AY, Oliver, A, Shin, BS, Nation, RL, Bulitta, JB (B34) 2018; 62 Smith, NM, Lenhard, JR, Boissonneault, KR, Landersdorfer, CB, Bulitta, JB, Holden, PN, Forrest, A, Nation, RL, Li, J, Tsuji, BT (B61) 2020; 26 Doi, Y, Arakawa, Y (B48) 2007; 45 Langton Hewer, SC, Smyth, AR (B17) 2017; 4 Bilal, H, Bergen, PJ, Kim, TH, Chung, SE, Peleg, AY, Oliver, A, Nation, RL, Landersdorfer, CB (B65) 2019; 63 Rosenfeld, M, Gibson, R, McNamara, S, Emerson, J, McCoy, KS, Shell, R, Borowitz, D, Konstan, MW, Retsch-Bogart, G, Wilmott, RW, Burns, JL, Vicini, P, Montgomery, AB, Ramsey, B (B78) 2001; 139 Gibson, RL, Emerson, J, McNamara, S, Burns, JL, Rosenfeld, M, Yunker, A, Hamblett, N, Accurso, F, Dovey, M, Hiatt, P, Konstan, MW, Moss, R, Retsch-Bogart, G, Wagener, J, Waltz, D, Wilmott, R, Zeitlin, PL, Ramsey, B (B20) 2003; 167 Rao, GG, Ly, NS, Bulitta, JB, Soon, RL, San Roman, MD, Holden, PN, Landersdorfer, CB, Nation, RL, Li, J, Forrest, A, Tsuji, BT (B59) 2016; 71 Mouton, JW, Vinks, AA (B28) 2007; 13 Quon, BS, Goss, CH, Ramsey, BW (B54) 2014; 11 Bulitta, JB, Ly, NS, Yang, JC, Forrest, A, Jusko, WJ, Tsuji, BT (B42) 2009; 53 Albur, M, Noel, A, Bowker, K, MacGowan, A (B79) 2012; 56 Lujan, AM, Macia, MD, Yang, L, Molin, S, Oliver, A, Smania, AM (B7) 2011; 6 Muller, AE, Punt, N, Mouton, JW (B27) 2013; 68 Bensman, TJ, Wang, J, Jayne, J, Fukushima, L, Rao, AP, D'Argenio, DZ, Beringer, PM (B71) 2017; 61 Oliver, A, Cantón, R, Campo, P, Baquero, F, Blázquez, J (B4) 2000; 288 Croisier, D, Martha, B, Piroth, L, Chavanet, P (B41) 2008; 32 Yadav, R, Bergen, PJ, Rogers, KE, Kirkpatrick, CMJ, Wallis, SC, Huang, Y, Bulitta, JB, Paterson, DL, Lipman, J, Nation, RL, Roberts, JA, Landersdorfer, CB (B60) 2019; 64 den Hollander, JG, Horrevorts, AM, van Goor, ML, Verbrugh, HA, Mouton, JW (B36) 1997; 41 Sousa, AM, Pereira, MO (B6) 2014; 3 Poole, K (B13) 2011; 2 Yadav, R, Bulitta, JB, Schneider, EK, Shin, BS, Velkov, T, Nation, RL, Landersdorfer, CB (B45) 2017; 61 Mouton, JW, Punt, N, Vinks, AA (B25) 2007; 51 Bhagirath, AY, Li, Y, Somayajula, D, Dadashi, M, Badr, S, Duan, K (B56) 2016; 16 Magreault, S, Roy, C, Launay, M, Sermet-Gaudelus, I, Jullien, V (B53) 2021; 60 Rees, VE, Bulitta, JB, Oliver, A, Tsuji, BT, Rayner, CR, Nation, RL, Landersdorfer, CB (B33) 2016; 71 Poole, K (B46) 2005; 49 Leggett, JE, Fantin, B, Ebert, S, Totsuka, K, Vogelman, B, Calame, W, Mattie, H, Craig, WA (B22) 1989; 159 Dimelow, R, Wright, JG, MacPherson, M, Newell, P, Das, S (B75) 2018; 18 Bos, AC, Mouton, JW, van Westreenen, M, Andrinopoulou, ER, Janssens, HM, Tiddens, H (B19) 2017; 72 Vinks, AA, Brimicombe, RW, Heijerman, HG, Bakker, W (B72) 1997; 40 Tozuka, Z, Murakawa, T, Nightingale, CH, Ambrose, PG, Drusano, G, Murakami, T (B24) 2007 Carcas, AJ, Garcia-Satue, JL, Zapater, P, Frias-Iniesta, J (B66) 1999; 65 Oliver, A (B5) 2010; 300 Stuart, B, Lin, JH, Mogayzel, PJ (B16) 2010; 11 Onufrak, NJ, Smith, NM, Satlin, MJ, Bulitta, JB, Tan, X, Holden, PN, Nation, RL, Li, J, Forrest, A, Tsuji, BT, Bulman, ZP (B58) 2020; 26 Islam, S, Oh, H, Jalal, S, Karpati, F, Ciofu, O, Høiby, N, Wretlind, B (B47) 2009; 15 Pillai, SK, Moellering, RC, Eliopoulos, GM, Lorian, V (B80) 2005 (B12) 2009 Stephens, D, Garey, N, Isles, A, Levison, H, Gold, R (B57) 1983; 2 Zelenitsky, SA, Iacovides, H, Harding, GK, Ariano, RE (B38) 2004; 49 Tam, VH, Chang, KT, Zhou, J, Ledesma, KR, Phe, K, Gao, S, Van Bambeke, F, Sánchez-Díaz, AM, Zamorano, L, Oliver, A, Cantón, R (B29) 2017; 72 Ciofu, O, Tolker-Nielsen, T (B8) 2019; 10 Tait, JR, Bilal, H, Kim, TH, Oh, A, Peleg, AY, Boyce, JD, Oliver, A, Bergen, PJ, Nation, RL, Landersdorfer, CB (B39) 2021; 26 Morita, Y, Tomida, J, Kawamura, Y (B50) 2012; 3 Nicolau, DP, Siew, L, Armstrong, J, Li, J, Edeki, T, Learoyd, M, Das, S (B76) 2015; 70 Macia, MD, Rojo-Molinero, E, Oliver, A (B14) 2014; 20 Lin, YW, Yu, HH, Zhao, J, Han, ML, Zhu, Y, Akter, J, Wickremasinghe, H, Walpola, H, Wirth, V, Rao, GG, Forrest, A, Velkov, T, Li, J (B62) 2018; 62 B10 Maciá, MD, Blanquer, D, Togores, B, Sauleda, J, Pérez, JL, Oliver, A (B9) 2005; 49 (B63) 2020 Bulitta, JB, Landersdorfer, CB, HüTtner, SJ, Drusano, GL, Kinzig, M, Holzgrabe, U, Stephan, U, SöRgel, F (B70) 2010; 54 Castellani, C, Duff, AJA, Bell, SC, Heijerman, HGM, Munck, A, Ratjen, F, Sermet-Gaudelus, I, Southern, KW, Barben, J, Flume, PA, Hodková, P, Kashirskaya, N, Kirszenbaum, MN, Madge, S, Oxley, H, Plant, B, Schwarzenberg, SJ, Smyth, AR, Taccetti, G, Wagner, TOF, Wolfe, SP, Drevinek, P (B11) 2018; 17 Maselli, DJ, Keyt, H, Restrepo, MI (B55) 2017; 18 Rees, VE, Deveson Lucas, DS, López-Causapé, C, Huang, Y, Kotsimbos, T, Bulitta, JB, Rees, MC, Barugahare, A, Peleg, AY, Nation, RL, Oliver, A, Boyce, JD, Landersdorfer, CB (B35) 2019; 63 Delcour, AH (B49) 2009; 1794 Turnidge, JD (B23) 1998; 27 Bulitta, JB, Ly, NS, Landersdorfer, CB, Wanigaratne, NA, Velkov, T, Yadav, R, Oliver, A, Martin, L, Shin, BS, Forrest, A, Tsuji, BT (B44) 2015; 59 Smith, S, Rowbotham, NJ, Charbek, E (B15) 2018; 10 Mah, TF (B30) 2012; 7 Boselli, E, Breilh, D, Rimmelé, T, Poupelin, J-C, Saux, M-C, Chassard, D, Allaouchiche, B (B74) 2004; 30 Winstanley, C, O'Brien, S, Brockhurst, MA (B3) 2016; 24 Drusano, GL (B31) 2004; 2 Gordin, FM, Rusnak, MG, Sande, MA (B40) 1987; 31 Rodvold, KA, George, JM, Yoo, L (B73) 2011; 50 Ruddy, J, Emerson, J, Moss, R, Genatossio, A, McNamara, S, Burns, JL, Anderson, G, Rosenfeld, M (B21) 2013; 26 McKinnon, PS, Paladino, JA, Schentag, JJ (B26) 2008; 31 Kadurugamuwa, JL, Clarke, AJ, Beveridge, TJ (B43) 1993; 175 Olivares, E, Badel-Berchoux, S, Provot, C, Jaulhac, B, Prevost, G, Bernardi, T, Jehl, F (B51) 2017; 8 Moore, JE, Mastoridis, P (B1) 2017; 42 e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_77_2 e_1_3_3_79_2 Anonymous (e_1_3_3_13_2) 2009 e_1_3_3_16_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 Langton Hewer SC (e_1_3_3_18_2) 2017; 4 e_1_3_3_40_2 e_1_3_3_61_2 Pillai SK (e_1_3_3_81_2) 2005 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_80_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_76_2 e_1_3_3_70_2 e_1_3_3_78_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 CLSI (e_1_3_3_64_2) 2020 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – volume: 64 year: 2020 ident: B64 article-title: Clinically relevant epithelial lining fluid concentrations of meropenem with ciprofloxacin provide synergistic killing and resistance suppression of hypermutable Pseudomonas aeruginosa in a dynamic biofilm model publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00469-20 contributor: fullname: Landersdorfer, CB – volume: 49 start-page: 3382 year: 2005 end-page: 3386 ident: B9 article-title: Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.49.8.3382-3386.2005 contributor: fullname: Oliver, A – year: 2005 ident: B80 article-title: Antimicrobial combinations publication-title: Antibiotics in laboratory medicine. ;Lippincott Williams & Wilkins ;Philadelphia, PA contributor: fullname: Lorian, V – volume: 26 start-page: 1256 year: 2020 end-page: 1256 ident: B58 article-title: In pursuit of the triple crown: mechanism-based pharmacodynamic modelling for the optimization of three-drug combinations against KPC-producing Klebsiella pneumoniae publication-title: Clin Microbiol Infect doi: 10.1016/j.cmi.2020.04.034 contributor: fullname: Bulman, ZP – volume: 62 year: 2018 ident: B62 article-title: Polymyxin B in combination with enrofloxacin exerts synergistic killing against extensively drug-resistant Pseudomonas aeruginosa publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00028-18 contributor: fullname: Li, J – volume: 65 start-page: 245 year: 1999 end-page: 250 ident: B66 article-title: Tobramycin penetration into epithelial lining fluid of patients with pneumonia publication-title: Clin Pharmacol Ther doi: 10.1016/S0009-9236(99)70103-7 contributor: fullname: Frias-Iniesta, J – volume: 3 start-page: 408 year: 2012 ident: B50 article-title: MexXY multidrug efflux system of Pseudomonas aeruginosa publication-title: Front Microbiol doi: 10.3389/fmicb.2012.00408 contributor: fullname: Kawamura, Y – volume: 300 start-page: 563 year: 2010 end-page: 572 ident: B5 article-title: Mutators in cystic fibrosis chronic lung infection: prevalence, mechanisms, and consequences for antimicrobial therapy publication-title: Int J Med Microbiol doi: 10.1016/j.ijmm.2010.08.009 contributor: fullname: Oliver, A – volume: 44 start-page: 1 year: 1998 end-page: 6 ident: B37 article-title: Once versus thrice daily tobramycin alone and in combination with ceftazidime, ciprofloxacin and imipenem in an in vitro pharmacodynamic model publication-title: Chemotherapy doi: 10.1159/000007083 contributor: fullname: Zhanel, GG – volume: 50 start-page: 637 year: 2011 end-page: 664 ident: B73 article-title: Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents publication-title: Clin Pharmacokinet doi: 10.2165/11594090-000000000-00000 contributor: fullname: Yoo, L – volume: 56 start-page: 3441 year: 2012 end-page: 3443 ident: B79 article-title: Bactericidal activity of multiple combinations of tigecycline and colistin against NDM-1-producing Enterobacteriaceae publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.05682-11 contributor: fullname: MacGowan, A – volume: 61 year: 2017 ident: B71 article-title: Pharmacokinetic-pharmacodynamic target attainment analyses to determine optimal dosing of ceftazidime-avibactam for the treatment of acute pulmonary exacerbations in patients with cystic fibrosis publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00988-17 contributor: fullname: Beringer, PM – volume: 26 start-page: 55 year: 2021 end-page: 63 ident: B39 article-title: Pharmacodynamics of ceftazidime plus tobramycin combination dosage regimens against hypermutable Pseudomonas aeruginosa isolates at simulated epithelial lining fluid concentrations in a dynamic in vitro infection model publication-title: J Glob Antimicrob Resist doi: 10.1016/j.jgar.2021.04.021 contributor: fullname: Landersdorfer, CB – volume: 30 start-page: 989 year: 2004 end-page: 991 ident: B74 article-title: Plasma and lung concentrations of ceftazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia publication-title: Intensive Care Med doi: 10.1007/s00134-004-2171-2 contributor: fullname: Allaouchiche, B – volume: 49 start-page: 67 year: 2004 end-page: 70 ident: B38 article-title: Effect of antibiotic sequence on combination regimens against Pseudomonas aeruginosa in a multiple-dose, in vitro infection model publication-title: Diagn Microbiol Infect Dis doi: 10.1016/j.diagmicrobio.2003.10.016 contributor: fullname: Ariano, RE – volume: 2 start-page: 65 year: 2011 ident: B13 article-title: Pseudomonas aeruginosa: resistance to the max publication-title: Front Microbiol doi: 10.3389/fmicb.2011.00065 contributor: fullname: Poole, K – volume: 45 start-page: 88 year: 2007 end-page: 94 ident: B48 article-title: 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides publication-title: Clin Infect Dis doi: 10.1086/518605 contributor: fullname: Arakawa, Y – volume: 2 start-page: 289 year: 2004 end-page: 300 ident: B31 article-title: Antimicrobial pharmacodynamics: critical interactions of “bug and drug publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro862 contributor: fullname: Drusano, GL – volume: 18 start-page: 1062 year: 2017 ident: B55 article-title: Inhaled antibiotic therapy in chronic respiratory diseases publication-title: Int J Mol Sci doi: 10.3390/ijms18051062 contributor: fullname: Restrepo, MI – volume: 70 start-page: 2862 year: 2015 end-page: 2869 ident: B76 article-title: Phase 1 study assessing the steady-state concentration of ceftazidime and avibactam in plasma and epithelial lining fluid following two dosing regimens publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkv170 contributor: fullname: Das, S – volume: 59 start-page: 2315 year: 2015 end-page: 2327 ident: B44 article-title: Two mechanisms of killing of Pseudomonas aeruginosa by tobramycin assessed at multiple inocula via mechanism-based modeling publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.04099-14 contributor: fullname: Tsuji, BT – volume: 18 start-page: 221 year: 2018 end-page: 230 ident: B75 article-title: Population pharmacokinetic modelling of ceftazidime and avibactam in the plasma and epithelial lining fluid of healthy volunteers publication-title: Drugs R D doi: 10.1007/s40268-018-0241-0 contributor: fullname: Das, S – volume: 31 start-page: 345 year: 2008 end-page: 351 ident: B26 article-title: Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2007.12.009 contributor: fullname: Schentag, JJ – volume: 7 start-page: 1061 year: 2012 end-page: 1072 ident: B30 article-title: Biofilm-specific antibiotic resistance publication-title: Future Microbiol doi: 10.2217/fmb.12.76 contributor: fullname: Mah, TF – volume: 11 start-page: 425 year: 2014 end-page: 434 ident: B54 article-title: Inhaled antibiotics for lower airway infections publication-title: Ann Am Thorac Soc doi: 10.1513/AnnalsATS.201311-395FR contributor: fullname: Ramsey, BW – start-page: 129 year: 2007 end-page: 146 ident: B24 article-title: Beta-Lactam pharmacodynamics publication-title: Antimicrobial pharmacodynamics in theory and practice ;2nd ed. ;New York, NY ;Informa Healthcare contributor: fullname: Murakami, T – volume: 26 start-page: 69 year: 2013 end-page: 75 ident: B21 article-title: Sputum tobramycin concentrations in cystic fibrosis patients with repeated administration of inhaled tobramycin publication-title: J Aerosol Med Pulm Drug Deliv doi: 10.1089/jamp.2011.0942 contributor: fullname: Rosenfeld, M – volume: 16 start-page: 13 year: 2017 end-page: 23 ident: B52 article-title: The fate of inhaled antibiotics after deposition in cystic fibrosis: how to get drug to the bug? publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2016.10.001 contributor: fullname: Tiddens, HAWM – volume: 72 start-page: 1421 year: 2017 end-page: 1428 ident: B29 article-title: Determining β-lactam exposure threshold to suppress resistance development in Gram-negative bacteria publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkx001 contributor: fullname: Cantón, R – volume: 72 start-page: 3435 year: 2017 end-page: 3442 ident: B19 article-title: Patient-specific modelling of regional tobramycin concentration levels in airways of patients with cystic fibrosis: can we dose once daily? publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkx293 contributor: fullname: Tiddens, H – volume: 175 start-page: 5798 year: 1993 end-page: 5805 ident: B43 article-title: Surface action of gentamicin on Pseudomonas aeruginosa publication-title: J Bacteriol doi: 10.1128/jb.175.18.5798-5805.1993 contributor: fullname: Beveridge, TJ – volume: 59 start-page: 1905 year: 2015 end-page: 1909 ident: B77 article-title: Lung concentrations of ceftazidime administered by continuous versus intermittent infusion in patients with ventilator-associated pneumonia publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.04232-14 contributor: fullname: Jolly, D – volume: 49 start-page: 479 year: 2005 end-page: 487 ident: B46 article-title: Aminoglycoside resistance in Pseudomonas aeruginosa publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.49.2.479-487.2005 contributor: fullname: Poole, K – volume: 53 start-page: 46 year: 2009 end-page: 56 ident: B42 article-title: Development and qualification of a pharmacodynamic model for the pronounced inoculum effect of ceftazidime against Pseudomonas aeruginosa publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00489-08 contributor: fullname: Tsuji, BT – volume: 3 start-page: 680 year: 2014 end-page: 703 ident: B6 article-title: Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs–a review publication-title: Pathogens (Basel, Switzerland doi: 10.3390/pathogens3030680 contributor: fullname: Pereira, MO – volume: 71 start-page: 3157 year: 2016 end-page: 3167 ident: B33 article-title: Resistance suppression by high-intensity, short-duration aminoglycoside exposure against hypermutable and non-hypermutable Pseudomonas aeruginosa publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkw297 contributor: fullname: Landersdorfer, CB – volume: 24 start-page: 327 year: 2016 end-page: 337 ident: B3 article-title: Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections publication-title: Trends Microbiol doi: 10.1016/j.tim.2016.01.008 contributor: fullname: Brockhurst, MA – volume: 10 start-page: CD008319 year: 2018 ident: B15 article-title: Inhaled antibiotics for pulmonary exacerbations in cystic fibrosis publication-title: Cochrane Database Syst Rev doi: 10.1002/14651858.CD008319.pub3 contributor: fullname: Charbek, E – ident: B69 article-title: Macey RI . 2010 . Berkeley Madonna version 8.3.18 441 . University of California , Berkeley, CA . – volume: 63 year: 2019 ident: B35 article-title: Characterization of hypermutator Pseudomonas aeruginosa isolates from patients with cystic fibrosis in Australia publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02538-18 contributor: fullname: Landersdorfer, CB – volume: 60 start-page: 409 year: 2021 end-page: 445 ident: B53 article-title: Pharmacokinetic and pharmacodynamic optimization of antibiotic therapy in cystic fibrosis patients: current evidences, gaps in knowledge and future directions publication-title: Clin Pharmacokinet doi: 10.1007/s40262-020-00981-0 contributor: fullname: Jullien, V – volume: 63 year: 2019 ident: B65 article-title: Synergistic meropenem-tobramycin combination dosage regimens against clinical hypermutable Pseudomonas aeruginosa at simulated epithelial lining fluid concentrations in a dynamic biofilm model publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01293-19 contributor: fullname: Landersdorfer, CB – volume: 15 start-page: 60 year: 2009 end-page: 66 ident: B47 article-title: Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients publication-title: Clin Microbiol Infect doi: 10.1111/j.1469-0691.2008.02097.x contributor: fullname: Wretlind, B – volume: 8 start-page: 1289 year: 2017 ident: B51 article-title: Tobramycin and amikacin delay adhesion and microcolony formation in Pseudomonas aeruginosa cystic fibrosis isolates publication-title: Front Microbiol doi: 10.3389/fmicb.2017.01289 contributor: fullname: Jehl, F – volume: 167 start-page: 841 year: 2003 end-page: 849 ident: B20 article-title: Significant microbiological effect of inhaled tobramycin in young children with cystic fibrosis publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200208-855OC contributor: fullname: Ramsey, B – volume: 13 start-page: 598 year: 2007 end-page: 606 ident: B28 article-title: Continuous infusion of beta-lactams publication-title: Curr Opin Crit Care doi: 10.1097/MCC.0b013e3282e2a98f contributor: fullname: Vinks, AA – volume: 32 year: 2019 ident: B2 article-title: Cystic fibrosis and Pseudomonas aeruginosa: the host-microbe interface publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00138-18 contributor: fullname: Wozniak, DJ – volume: 159 start-page: 281 year: 1989 end-page: 292 ident: B22 article-title: Comparative antibiotic dose-effect relations at several dosing intervals in murine pneumonitis and thigh-infection models publication-title: J Infect Dis doi: 10.1093/infdis/159.2.281 contributor: fullname: Craig, WA – volume: 16 start-page: 174 year: 2016 ident: B56 article-title: Cystic fibrosis lung environment and Pseudomonas aeruginosa infection publication-title: BMC Pulm Med doi: 10.1186/s12890-016-0339-5 contributor: fullname: Duan, K – volume: 17 start-page: 153 year: 2018 end-page: 178 ident: B11 article-title: ECFS best practice guidelines: the 2018 revision publication-title: J Cyst Fibros doi: 10.1016/j.jcf.2018.02.006 contributor: fullname: Drevinek, P – volume: 26 start-page: 1207 year: 2020 end-page: 1213 ident: B61 article-title: Using machine learning to optimize antibiotic combinations: dosing strategies for meropenem and polymyxin B against carbapenem-resistant Acinetobacter baumannii publication-title: Clin Microbiol Infect doi: 10.1016/j.cmi.2020.02.004 contributor: fullname: Tsuji, BT – volume: 10 start-page: 913 year: 2019 ident: B8 article-title: Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics publication-title: Front Microbiol doi: 10.3389/fmicb.2019.00913 contributor: fullname: Tolker-Nielsen, T – volume: 11 start-page: 177 year: 2010 end-page: 184 ident: B16 article-title: Early eradication of Pseudomonas aeruginosa in patients with cystic fibrosis publication-title: Paediatr Respir Rev doi: 10.1016/j.prrv.2010.05.003 contributor: fullname: Mogayzel, PJ – volume: 122 start-page: 219 year: 2002 end-page: 226 ident: B18 article-title: Pharmacokinetics and bioavailability of aerosolized tobramycin in cystic fibrosis publication-title: Chest doi: 10.1378/chest.122.1.219 contributor: fullname: Ramsey, BW – volume: 2 start-page: 209 year: 1983 end-page: 211 ident: B57 article-title: Efficacy of inhaled tobramycin in the treatment of pulmonary exacerbations in children with cystic fibrosis publication-title: Pediatr Infect Dis doi: 10.1097/00006454-198305000-00007 contributor: fullname: Gold, R – volume: 14 start-page: 498 year: 2014 end-page: 509 ident: B32 article-title: Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(14)70036-2 contributor: fullname: Kuti, JL – volume: 52 start-page: 289 year: 2013 end-page: 301 ident: B67 article-title: Population pharmacokinetics of tobramycin in patients with and without cystic fibrosis publication-title: Clin Pharmacokinet doi: 10.1007/s40262-013-0036-y contributor: fullname: Thomson, AH – volume: 51 start-page: 3449 year: 2007 end-page: 3451 ident: B25 article-title: Concentration-effect relationship of ceftazidime explains why the time above the MIC is 40 percent for a static effect in vivo publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01586-06 contributor: fullname: Vinks, AA – volume: 40 start-page: 125 year: 1997 end-page: 133 ident: B72 article-title: Continuous infusion of ceftazidime in cystic fibrosis patients during home treatment: clinical outcome, microbiology and pharmacokinetics publication-title: J Antimicrob Chemother doi: 10.1093/jac/40.1.125 contributor: fullname: Bakker, W – volume: 139 start-page: 572 year: 2001 end-page: 577 ident: B78 article-title: Serum and lower respiratory tract drug concentrations after tobramycin inhalation in young children with cystic fibrosis publication-title: J Pediatr doi: 10.1067/mpd.2001.117785 contributor: fullname: Ramsey, B – volume: 20 start-page: 981 year: 2014 end-page: 990 ident: B14 article-title: Antimicrobial susceptibility testing in biofilm-growing bacteria publication-title: Clin Microbiol Infect doi: 10.1111/1469-0691.12651 contributor: fullname: Oliver, A – volume: 31 start-page: 398 year: 1987 end-page: 403 ident: B40 article-title: Evaluation of combination chemotherapy in a lightly anesthetized animal model of Pseudomonas pneumonia publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.31.3.398 contributor: fullname: Sande, MA – volume: 61 year: 2017 ident: B45 article-title: Aminoglycoside concentrations required for synergy with carbapenems against Pseudomonas aeruginosa determined via mechanistic studies and modeling publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00722-17 contributor: fullname: Landersdorfer, CB – volume: 64 year: 2019 ident: B60 article-title: Meropenem-tobramycin combination regimens combat carbapenem-resistant Pseudomonas aeruginosa in the hollow-fiber infection model simulating augmented renal clearance in critically ill patients publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01679-19 contributor: fullname: Landersdorfer, CB – volume: 1794 start-page: 808 year: 2009 end-page: 816 ident: B49 article-title: Outer membrane permeability and antibiotic resistance publication-title: Biochim Biophys Acta doi: 10.1016/j.bbapap.2008.11.005 contributor: fullname: Delcour, AH – volume: 54 start-page: 1275 year: 2010 end-page: 1282 ident: B70 article-title: Population pharmacokinetic comparison and pharmacodynamic breakpoints of ceftazidime in cystic fibrosis patients and healthy volunteers publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00936-09 contributor: fullname: SöRgel, F – year: 2009 ident: B12 publication-title: Antibiotic treatment for cystic fibrosis. UK Cystic Fibrosis Trust guidelines ;3rd ed ;Accessed 15 September 2021 ;Cystic Fibrosis Foundation ;London, United Kingdom – volume: 288 start-page: 1251 year: 2000 end-page: 1254 ident: B4 article-title: High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection publication-title: Science doi: 10.1126/science.288.5469.1251 contributor: fullname: Blázquez, J – ident: B10 article-title: West NE , Flume PA . 2019 . Pulmonary exacerbations clinical care guidelines . https://www.cff.org/Care/Clinical-Care-Guidelines/Respiratory-Clinical-Care-Guidelines/Pulmonary-Exacerbations-Clinical-Care-Guidelines/ . – volume: 27 start-page: 10 year: 1998 end-page: 22 ident: B23 article-title: The pharmacodynamics of beta-lactams publication-title: Clin Infect Dis doi: 10.1086/514622 contributor: fullname: Turnidge, JD – volume: 68 start-page: 900 year: 2013 end-page: 906 ident: B27 article-title: Optimal exposures of ceftazidime predict the probability of microbiological and clinical outcome in the treatment of nosocomial pneumonia publication-title: J Antimicrob Chemother doi: 10.1093/jac/dks468 contributor: fullname: Mouton, JW – volume: 41 start-page: 184 year: 1997 end-page: 187 ident: B68 article-title: Pharmacokinetics of aerosolized tobramycin in adult patients with cystic fibrosis publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.41.1.184 contributor: fullname: Briemer, DD – volume: 71 start-page: 3148 year: 2016 end-page: 3156 ident: B59 article-title: Polymyxin B in combination with doripenem against heteroresistant Acinetobacter baumannii: pharmacodynamics of new dosing strategies publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkw293 contributor: fullname: Tsuji, BT – volume: 32 start-page: 494 year: 2008 end-page: 498 ident: B41 article-title: In vivo efficacy of humanised intermittent versus continuous ceftazidime in combination with tobramycin in an experimental model of pseudomonal pneumonia publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2008.07.010 contributor: fullname: Chavanet, P – year: 2020 ident: B63 publication-title: Performance standards for antimicrobial susceptibility testing. ;M100. 30th ed ;CLSI ;Wayne, PA – volume: 41 start-page: 95 year: 1997 end-page: 100 ident: B36 article-title: Synergism between tobramycin and ceftazidime against a resistant Pseudomonas aeruginosa strain, tested in an in vitro pharmacokinetic model publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.41.1.95 contributor: fullname: Mouton, JW – volume: 6 year: 2011 ident: B7 article-title: Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators publication-title: PLoS One doi: 10.1371/journal.pone.0027842 contributor: fullname: Smania, AM – volume: 4 start-page: CD004197 year: 2017 ident: B17 article-title: Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis publication-title: Cochrane Database Syst Rev contributor: fullname: Smyth, AR – volume: 42 start-page: 259 year: 2017 end-page: 267 ident: B1 article-title: Clinical implications of Pseudomonas aeruginosa location in the lungs of patients with cystic fibrosis publication-title: J Clin Pharm Ther doi: 10.1111/jcpt.12521 contributor: fullname: Mastoridis, P – volume: 62 year: 2018 ident: B34 article-title: Optimization of a meropenem-tobramycin combination dosage regimen against hypermutable and nonhypermutable Pseudomonas aeruginosa via mechanism-based modeling and the hollow-fiber infection model publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02055-17 contributor: fullname: Bulitta, JB – ident: e_1_3_3_9_2 doi: 10.3389/fmicb.2019.00913 – ident: e_1_3_3_30_2 doi: 10.1093/jac/dkx001 – ident: e_1_3_3_56_2 doi: 10.3390/ijms18051062 – ident: e_1_3_3_3_2 doi: 10.1128/CMR.00138-18 – ident: e_1_3_3_23_2 doi: 10.1093/infdis/159.2.281 – ident: e_1_3_3_47_2 doi: 10.1128/AAC.49.2.479-487.2005 – ident: e_1_3_3_14_2 doi: 10.3389/fmicb.2011.00065 – ident: e_1_3_3_38_2 doi: 10.1159/000007083 – volume-title: Antibiotics in laboratory medicine. year: 2005 ident: e_1_3_3_81_2 contributor: fullname: Pillai SK – ident: e_1_3_3_39_2 doi: 10.1016/j.diagmicrobio.2003.10.016 – ident: e_1_3_3_43_2 doi: 10.1128/AAC.00489-08 – ident: e_1_3_3_44_2 doi: 10.1128/jb.175.18.5798-5805.1993 – ident: e_1_3_3_66_2 doi: 10.1128/AAC.01293-19 – ident: e_1_3_3_25_2 doi: 10.3109/9781420017137.006 – ident: e_1_3_3_29_2 doi: 10.1097/MCC.0b013e3282e2a98f – ident: e_1_3_3_46_2 doi: 10.1128/AAC.00722-17 – ident: e_1_3_3_62_2 doi: 10.1016/j.cmi.2020.02.004 – ident: e_1_3_3_34_2 doi: 10.1093/jac/dkw297 – ident: e_1_3_3_37_2 doi: 10.1128/AAC.41.1.95 – ident: e_1_3_3_77_2 doi: 10.1093/jac/dkv170 – ident: e_1_3_3_26_2 doi: 10.1128/AAC.01586-06 – ident: e_1_3_3_16_2 doi: 10.1002/14651858.CD008319.pub3 – ident: e_1_3_3_70_2 – ident: e_1_3_3_36_2 doi: 10.1128/AAC.02538-18 – ident: e_1_3_3_20_2 doi: 10.1093/jac/dkx293 – ident: e_1_3_3_7_2 doi: 10.3390/pathogens3030680 – ident: e_1_3_3_5_2 doi: 10.1126/science.288.5469.1251 – ident: e_1_3_3_48_2 doi: 10.1111/j.1469-0691.2008.02097.x – ident: e_1_3_3_40_2 doi: 10.1016/j.jgar.2021.04.021 – ident: e_1_3_3_41_2 doi: 10.1128/AAC.31.3.398 – ident: e_1_3_3_45_2 doi: 10.1128/AAC.04099-14 – ident: e_1_3_3_76_2 doi: 10.1007/s40268-018-0241-0 – ident: e_1_3_3_19_2 doi: 10.1378/chest.122.1.219 – ident: e_1_3_3_6_2 doi: 10.1016/j.ijmm.2010.08.009 – ident: e_1_3_3_59_2 doi: 10.1016/j.cmi.2020.04.034 – ident: e_1_3_3_32_2 doi: 10.1038/nrmicro862 – ident: e_1_3_3_78_2 doi: 10.1128/AAC.04232-14 – ident: e_1_3_3_21_2 doi: 10.1164/rccm.200208-855OC – ident: e_1_3_3_22_2 doi: 10.1089/jamp.2011.0942 – ident: e_1_3_3_63_2 doi: 10.1128/AAC.00028-18 – ident: e_1_3_3_71_2 doi: 10.1128/AAC.00936-09 – ident: e_1_3_3_50_2 doi: 10.1016/j.bbapap.2008.11.005 – ident: e_1_3_3_28_2 doi: 10.1093/jac/dks468 – ident: e_1_3_3_55_2 doi: 10.1513/AnnalsATS.201311-395FR – ident: e_1_3_3_4_2 doi: 10.1016/j.tim.2016.01.008 – ident: e_1_3_3_35_2 doi: 10.1128/AAC.02055-17 – ident: e_1_3_3_31_2 doi: 10.2217/fmb.12.76 – ident: e_1_3_3_57_2 doi: 10.1186/s12890-016-0339-5 – ident: e_1_3_3_72_2 doi: 10.1128/AAC.00988-17 – ident: e_1_3_3_49_2 doi: 10.1086/518605 – ident: e_1_3_3_53_2 doi: 10.1016/j.jcf.2016.10.001 – ident: e_1_3_3_60_2 doi: 10.1093/jac/dkw293 – ident: e_1_3_3_68_2 doi: 10.1007/s40262-013-0036-y – ident: e_1_3_3_67_2 doi: 10.1016/S0009-9236(99)70103-7 – ident: e_1_3_3_33_2 doi: 10.1016/S1473-3099(14)70036-2 – ident: e_1_3_3_10_2 doi: 10.1128/AAC.49.8.3382-3386.2005 – ident: e_1_3_3_27_2 doi: 10.1016/j.ijantimicag.2007.12.009 – ident: e_1_3_3_8_2 doi: 10.1371/journal.pone.0027842 – ident: e_1_3_3_11_2 – ident: e_1_3_3_74_2 doi: 10.2165/11594090-000000000-00000 – ident: e_1_3_3_54_2 doi: 10.1007/s40262-020-00981-0 – ident: e_1_3_3_61_2 doi: 10.1128/AAC.01679-19 – volume-title: Antibiotic treatment for cystic fibrosis. UK Cystic Fibrosis Trust guidelines year: 2009 ident: e_1_3_3_13_2 contributor: fullname: Anonymous – ident: e_1_3_3_73_2 doi: 10.1093/jac/40.1.125 – ident: e_1_3_3_79_2 doi: 10.1067/mpd.2001.117785 – ident: e_1_3_3_80_2 doi: 10.1128/AAC.05682-11 – volume-title: Performance standards for antimicrobial susceptibility testing. year: 2020 ident: e_1_3_3_64_2 contributor: fullname: CLSI – ident: e_1_3_3_12_2 doi: 10.1016/j.jcf.2018.02.006 – ident: e_1_3_3_17_2 doi: 10.1016/j.prrv.2010.05.003 – ident: e_1_3_3_51_2 doi: 10.3389/fmicb.2012.00408 – ident: e_1_3_3_58_2 doi: 10.1097/00006454-198305000-00007 – ident: e_1_3_3_24_2 doi: 10.1086/514622 – ident: e_1_3_3_69_2 doi: 10.1128/AAC.41.1.184 – ident: e_1_3_3_42_2 doi: 10.1016/j.ijantimicag.2008.07.010 – ident: e_1_3_3_75_2 doi: 10.1007/s00134-004-2171-2 – ident: e_1_3_3_15_2 doi: 10.1111/1469-0691.12651 – ident: e_1_3_3_52_2 doi: 10.3389/fmicb.2017.01289 – ident: e_1_3_3_2_2 doi: 10.1111/jcpt.12521 – ident: e_1_3_3_65_2 doi: 10.1128/AAC.00469-20 – volume: 4 start-page: CD004197 year: 2017 ident: e_1_3_3_18_2 article-title: Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis publication-title: Cochrane Database Syst Rev contributor: fullname: Langton Hewer SC |
SSID | ssj0006590 |
Score | 2.4653971 |
Snippet | Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa,... Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa... Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa ,... |
SourceID | pubmedcentral proquest crossref asm2 pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | e0220321 |
SubjectTerms | Anti-Bacterial Agents - pharmacology Anti-Bacterial Agents - therapeutic use Antimicrobial Chemotherapy Biofilms Ceftazidime - pharmacology Ceftazidime - therapeutic use Humans Microbial Sensitivity Tests Pharmacology Pseudomonas aeruginosa Pseudomonas Infections - drug therapy Pseudomonas Infections - microbiology Tobramycin - pharmacology Tobramycin - therapeutic use |
Title | Simulated Intravenous versus Inhaled Tobramycin with or without Intravenous Ceftazidime Evaluated against Hypermutable Pseudomonas aeruginosa via a Dynamic Biofilm Model and Mechanism-Based Modeling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35041509 https://journals.asm.org/doi/10.1128/aac.02203-21 https://search.proquest.com/docview/2621267648 https://pubmed.ncbi.nlm.nih.gov/PMC8923196 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbWSiBeEJTLymUyCPa0rInjOO4jlE0dqKiITtpbdBLbW6QmmZpkUvmB_C6Oc9koiBee8uBr4s8537HPhZB3gIRNCmMcpbXvcGZCB1iTREBAIBlwMPZGd_FVzM_554vgYo8EvS9MY7SfxOlxvs6O8_Sqsa28zpJJbyc2WS5m0rKSqZgMyAAB2qvo3e9XBO3BCo7mcOny3tqdyQngFK1nqe8wmyHGD6x_ujVFHEKZsV3J9Bfd_NNq8jcxdPqIPOz4I_3QzvMx2dP5iNxrM0puR-T-orsrH5HDZRuVentEV3dOVuURPaTLu3jV2yfk5_c0s0m8tKJndsybJmwrtfYa-DjLr1CGKLoqUK_Ottg3tWe3tNg0z6KudlrNtKngR6rSTNOTNpI4NoZLSJGH0jlqvZusrqy_Fl2WulYFbgMoKehNfZnmRQn0JgUK9NM2hyxNKL6ZSdcZtTnb1hRyRRfaOiunZeZ8RAms2hIUwE_J-enJajZ3uvQODnBPVg4STc19k3hcezq0PET6xvVBTAMVG4-5iRQxTBOkmHEiPGFvZAEUF4YrzUXsPyPDvMj1PqEJBxVy6cdgQttbbKTUsQoZsnHXjd0xeWtXOOr2Zxk1qg-TESIiahARMW9M3vfrH123oT7-Ue9ND44I96K9YIFc4yeOmEAiIELB5Zg8b8Fy21MPtjEJd2B0W8HG-d4tQfg38b47uL_475YvyQNmvTasGWLwigyrTa1fI5eq4gMy-PJNHjQ76BdaeyOh |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIKAXBOGV8loQ9FQ39nq93hwhtEqgqSKRSr1ZY-9uaym2q9ipFH4gv4tZP1oC4sLJh33aO-P5ZudFyAdAwCaFMY7S2nc4M6EDrC4iICCQDDgYa9GdnYrJGf96HpzvkKCLhamd9pM4PcyX2WGeXta-lVdZMuz8xIbz2VhaVDISwzvkLvKryzslvf0Bi6C5WsH1HI7Nnb87k0PATdrYUt9htkaMH9gIdeuM2IMyY9uy6S_A-aff5G-C6PgRedgiSPqp2eljsqPzPrnX1JTc9Mn9WWst75P9eZOXenNAF7dhVuUB3afz24zVmyfk5_c0s2W8tKJTu-Z1nbiVWo8NfEzzS5Qiii4K1KyzDc5N7e0tLVb1s1hXW6PG2lTwI1VppulRk0scB8MFpIhE6QT13lW2rmzEFp2Xeq0KZAQoKejV-iLNixLodQoU6JdNDlmaUHwzky4zaqu2LSnkis60DVdOy8z5jDJYNS0ogp-Ss-OjxXjitAUeHOCerByEmpr7JvG49nRokYj0jeuDGAUqNh5zEyliGCUIMuNEeMLaZAEUF4YrzUXsPyO9vMj1C0ITDirk0o_BhHa22EipYxUyxOOuG7sD8t6ecNRyaBnVyg-TEVJEVFNExLwB-didf3TVJPv4R793HXFEyI3WxAK5xk8cMYFQQISCywF53hDLzUwdsQ1IuEVGNx1spu_tFmSAOuN3S_B7_z3yLXkwWcxOopPp6beXZJfZGA7rlBi8Ir1qtdavEVlV8Zuaj34B7P4mAg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BEBUXBOEVnguCnurGXq_XmyOkjRIgVSRaqTdr7N1tLcV2FDuVwg_kdzHrR9uAuHDyYZ_2zni-2XkR8hEQsElhjKO09h3OTOgAq4sICAgkAw7GWnTnJ2J6xr-eB-e3Sn3VTvtJnB7my-wwTy9r38pVlgw7P7HhYj6WFpWMxHClzPAuuYc864pOUW9_wiJorldwTYdLl3c-70wOATdq40t9h9k6MX5go9StQ2IPyoztyqe_QOefvpO3hNHkEXnYokj6udntY3JH531yv6krue2TvXlrMe-T_UWTm3p7QE9vQq3KA7pPFzdZq7dPyK8faWZLeWlFZ3bNqzp5K7VeG_iY5ZcoSRQ9LVC7zrY4N7U3uLRY189iU-2MGmtTwc9UpZmmx00-cRwMF5AiGqVT1H3X2aayUVt0UeqNKpAZoKSg15uLNC9KoFcpUKBH2xyyNKH4ZiZdZtRWbltSyBWdaxuynJaZ8wXlsGpaUAw_JWeT49Px1GmLPDjAPVk5CDc1903ice3p0KIR6RvXBzEKVGw85iZSxDBKEGjGifCEtcsCKC4MV5qL2H9GenmR6xeEJhxUyKUfgwntbLGRUscqZIjJXTd2B-SDPeGo5dIyqhUgJiOkiKimiIh5A_KpO_9o1ST8-Ee_9x1xRMiR1swCucZPHDGBcECEgssBed4Qy_VMHbENSLhDRtcdbLbv3RZkgjrrd0v0L_975DuytziaRN9nJ99ekQfMhnFYv8TgNelV641-g-Cqit_WbPQbCFUnFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulated+Intravenous+versus+Inhaled+Tobramycin+with+or+without+Intravenous+Ceftazidime+Evaluated+against+Hypermutable+Pseudomonas+aeruginosa+via+a+Dynamic+Biofilm+Model+and+Mechanism-Based+Modeling&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Bilal%2C+Hajira&rft.au=Tait%2C+Jessica+R.&rft.au=Lang%2C+Yinzhi&rft.au=Zhou%2C+Jieqiang&rft.date=2022-03-15&rft.pub=American+Society+for+Microbiology&rft.issn=0066-4804&rft.eissn=1098-6596&rft.volume=66&rft.issue=3&rft_id=info:doi/10.1128%2Faac.02203-21&rft_id=info%3Apmid%2F35041509&rft.externalDBID=PMC8923196 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon |