Simulated Intravenous versus Inhaled Tobramycin with or without Intravenous Ceftazidime Evaluated against Hypermutable Pseudomonas aeruginosa via a Dynamic Biofilm Model and Mechanism-Based Modeling

Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa, biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with an...

Full description

Saved in:
Bibliographic Details
Published inAntimicrobial agents and chemotherapy Vol. 66; no. 3; p. e0220321
Main Authors Bilal, Hajira, Tait, Jessica R, Lang, Yinzhi, Zhou, Jieqiang, Bergen, Phillip J, Peleg, Anton Y, Bulitta, Jürgen B, Oliver, Antonio, Nation, Roger L, Landersdorfer, Cornelia B
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 15.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa, biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). Two hypermutable P. aeruginosa isolates, CW30 (MIC , 0.5 mg/liter; MIC , 2 mg/liter) and CW8 (MIC , 2 mg/liter; MIC , 8 mg/liter), were investigated for 120 h in dynamic biofilm studies. Treatments were intravenous ceftazidime, 9 g/day (33% lung fluid penetration); intravenous tobramycin, 10 mg/kg of body every 24 h (50% lung fluid penetration); inhaled tobramycin, 300 mg every 12 h; and both ceftazidime-tobramycin combinations. Total and less susceptible planktonic and biofilm bacteria were quantified over 120 h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7 log CFU/ml) and biofilm (>3.8 log CFU/cm ) bacteria and resistance amplification by 120 h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120 h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation.
AbstractList Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa, biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). Two hypermutable P. aeruginosa isolates, CW30 (MIC , 0.5 mg/liter; MIC , 2 mg/liter) and CW8 (MIC , 2 mg/liter; MIC , 8 mg/liter), were investigated for 120 h in dynamic biofilm studies. Treatments were intravenous ceftazidime, 9 g/day (33% lung fluid penetration); intravenous tobramycin, 10 mg/kg of body every 24 h (50% lung fluid penetration); inhaled tobramycin, 300 mg every 12 h; and both ceftazidime-tobramycin combinations. Total and less susceptible planktonic and biofilm bacteria were quantified over 120 h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7 log CFU/ml) and biofilm (>3.8 log CFU/cm ) bacteria and resistance amplification by 120 h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120 h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation.
Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa , biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). Two hypermutable P. aeruginosa isolates, CW30 (MIC CAZ , 0.5 mg/liter; MIC TOB , 2 mg/liter) and CW8 (MIC CAZ , 2 mg/liter; MIC TOB , 8 mg/liter), were investigated for 120 h in dynamic in vitro biofilm studies. Treatments were intravenous ceftazidime, 9 g/day (33% lung fluid penetration); intravenous tobramycin, 10 mg/kg of body every 24 h (50% lung fluid penetration); inhaled tobramycin, 300 mg every 12 h; and both ceftazidime-tobramycin combinations. Total and less susceptible planktonic and biofilm bacteria were quantified over 120 h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7 log 10 CFU/ml) and biofilm (>3.8 log 10 CFU/cm 2 ) bacteria and resistance amplification by 120 h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120 h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation.
Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). ABSTRACT Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa , biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). Two hypermutable P. aeruginosa isolates, CW30 (MIC CAZ , 0.5 mg/liter; MIC TOB , 2 mg/liter) and CW8 (MIC CAZ , 2 mg/liter; MIC TOB , 8 mg/liter), were investigated for 120 h in dynamic in vitro biofilm studies. Treatments were intravenous ceftazidime, 9 g/day (33% lung fluid penetration); intravenous tobramycin, 10 mg/kg of body every 24 h (50% lung fluid penetration); inhaled tobramycin, 300 mg every 12 h; and both ceftazidime-tobramycin combinations. Total and less susceptible planktonic and biofilm bacteria were quantified over 120 h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7 log 10 CFU/ml) and biofilm (>3.8 log 10 CFU/cm 2 ) bacteria and resistance amplification by 120 h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120 h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation.
Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa, biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin (TOB) with and without intravenous ceftazidime (CAZ). Two hypermutable P. aeruginosa isolates, CW30 (MICCAZ, 0.5 mg/liter; MICTOB, 2 mg/liter) and CW8 (MICCAZ, 2 mg/liter; MICTOB, 8 mg/liter), were investigated for 120 h in dynamic in vitro biofilm studies. Treatments were intravenous ceftazidime, 9 g/day (33% lung fluid penetration); intravenous tobramycin, 10 mg/kg of body every 24 h (50% lung fluid penetration); inhaled tobramycin, 300 mg every 12 h; and both ceftazidime-tobramycin combinations. Total and less susceptible planktonic and biofilm bacteria were quantified over 120 h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7 log10 CFU/ml) and biofilm (>3.8 log10 CFU/cm2) bacteria and resistance amplification by 120 h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120 h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation.
Author Peleg, Anton Y
Zhou, Jieqiang
Tait, Jessica R
Landersdorfer, Cornelia B
Bilal, Hajira
Bulitta, Jürgen B
Bergen, Phillip J
Nation, Roger L
Lang, Yinzhi
Oliver, Antonio
Author_xml – sequence: 1
  givenname: Hajira
  surname: Bilal
  fullname: Bilal, Hajira
  organization: Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash Universitygrid.1002.3, Parkville, Victoria, Australia
– sequence: 2
  givenname: Jessica R
  surname: Tait
  fullname: Tait, Jessica R
  organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash Universitygrid.1002.3, Parkville, Victoria, Australia
– sequence: 3
  givenname: Yinzhi
  surname: Lang
  fullname: Lang, Yinzhi
  organization: Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Floridagrid.15276.37, Orlando, Florida, USA
– sequence: 4
  givenname: Jieqiang
  surname: Zhou
  fullname: Zhou, Jieqiang
  organization: Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Floridagrid.15276.37, Orlando, Florida, USA
– sequence: 5
  givenname: Phillip J
  surname: Bergen
  fullname: Bergen, Phillip J
  organization: Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash Universitygrid.1002.3, Parkville, Victoria, Australia
– sequence: 6
  givenname: Anton Y
  surname: Peleg
  fullname: Peleg, Anton Y
  organization: Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash Universitygrid.1002.3, Melbourne, Australia
– sequence: 7
  givenname: Jürgen B
  orcidid: 0000-0001-7352-3097
  surname: Bulitta
  fullname: Bulitta, Jürgen B
  organization: Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Floridagrid.15276.37, Orlando, Florida, USA
– sequence: 8
  givenname: Antonio
  orcidid: 0000-0001-9327-1894
  surname: Oliver
  fullname: Oliver, Antonio
  organization: Hospital Universitario Son Espasesgrid.411164.7, Palma de Mallorca, Spain
– sequence: 9
  givenname: Roger L
  surname: Nation
  fullname: Nation, Roger L
  organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash Universitygrid.1002.3, Parkville, Victoria, Australia
– sequence: 10
  givenname: Cornelia B
  orcidid: 0000-0003-0928-4743
  surname: Landersdorfer
  fullname: Landersdorfer, Cornelia B
  organization: Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash Universitygrid.1002.3, Parkville, Victoria, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35041509$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAUhS1URKeFHWvkJUik-JF4kg0SHQodqRVIlLV149zMuPJjsJNBww_kd5HOlIouWB1Z5_iz7j0-IUchBiTkJWdnnIv6HYA5Y0IwWQj-hMw4a-pCVY06IjPGlCrKmpXH5CTnWzadq4Y9I8eyYiWvWDMjv79ZPzoYsKPLMCTYYohjpltMeZJlWIObrJvYJvA7YwP9aYc1jWmvcRwe3VpgP8Av21mP9GILbtxzYQU25IFe7jaY_DhA65B-zTh20ccAmQKmcWVDzEC3FijQj7sA3hp6bmNvnafXsUNHIXT0Gs0ags2-OIc8sfeODavn5GkPLuOLez0l3z9d3Cwui6svn5eLD1cFlLweikpKLGVveIkc54xzVsueSVBN1bU9F8zUqoXG8Ea2RnFVz5kC6ErVlx2WqpWn5P2Buxlbj53Bu-md3iTrIe10BKsfO8Gu9Spudd0IyRs1AV7fA1L8MWIetLfZoHMQcFqhFkpwoeaqrKfo20PUpJhzwv7hGc70XfV6ql7vq9eCT_E3hzhkL_RtHFOYNvG_7Kt_x3gA__0X8g_D6L8S
CitedBy_id crossref_primary_10_1016_j_ijantimicag_2024_107161
crossref_primary_10_3390_ph17030320
crossref_primary_10_1007_s00431_023_05401_6
crossref_primary_10_1016_j_ijantimicag_2023_106887
crossref_primary_10_1093_jac_dkac240
Cites_doi 10.1128/AAC.00469-20
10.1128/AAC.49.8.3382-3386.2005
10.1016/j.cmi.2020.04.034
10.1128/AAC.00028-18
10.1016/S0009-9236(99)70103-7
10.3389/fmicb.2012.00408
10.1016/j.ijmm.2010.08.009
10.1159/000007083
10.2165/11594090-000000000-00000
10.1128/AAC.05682-11
10.1128/AAC.00988-17
10.1016/j.jgar.2021.04.021
10.1007/s00134-004-2171-2
10.1016/j.diagmicrobio.2003.10.016
10.3389/fmicb.2011.00065
10.1086/518605
10.1038/nrmicro862
10.3390/ijms18051062
10.1093/jac/dkv170
10.1128/AAC.04099-14
10.1007/s40268-018-0241-0
10.1016/j.ijantimicag.2007.12.009
10.2217/fmb.12.76
10.1513/AnnalsATS.201311-395FR
10.1089/jamp.2011.0942
10.1016/j.jcf.2016.10.001
10.1093/jac/dkx001
10.1093/jac/dkx293
10.1128/jb.175.18.5798-5805.1993
10.1128/AAC.04232-14
10.1128/AAC.49.2.479-487.2005
10.1128/AAC.00489-08
10.3390/pathogens3030680
10.1093/jac/dkw297
10.1016/j.tim.2016.01.008
10.1002/14651858.CD008319.pub3
10.1128/AAC.02538-18
10.1007/s40262-020-00981-0
10.1128/AAC.01293-19
10.1111/j.1469-0691.2008.02097.x
10.3389/fmicb.2017.01289
10.1164/rccm.200208-855OC
10.1097/MCC.0b013e3282e2a98f
10.1128/CMR.00138-18
10.1093/infdis/159.2.281
10.1186/s12890-016-0339-5
10.1016/j.jcf.2018.02.006
10.1016/j.cmi.2020.02.004
10.3389/fmicb.2019.00913
10.1016/j.prrv.2010.05.003
10.1378/chest.122.1.219
10.1097/00006454-198305000-00007
10.1016/S1473-3099(14)70036-2
10.1007/s40262-013-0036-y
10.1128/AAC.01586-06
10.1093/jac/40.1.125
10.1067/mpd.2001.117785
10.1111/1469-0691.12651
10.1128/AAC.31.3.398
10.1128/AAC.00722-17
10.1128/AAC.01679-19
10.1016/j.bbapap.2008.11.005
10.1128/AAC.00936-09
10.1126/science.288.5469.1251
10.1086/514622
10.1093/jac/dks468
10.1128/AAC.41.1.184
10.1093/jac/dkw293
10.1016/j.ijantimicag.2008.07.010
10.1128/AAC.41.1.95
10.1371/journal.pone.0027842
10.1111/jcpt.12521
10.1128/AAC.02055-17
10.3109/9781420017137.006
ContentType Journal Article
Copyright Copyright © 2022 American Society for Microbiology.
Copyright © 2022 American Society for Microbiology. 2022 American Society for Microbiology
Copyright_xml – notice: Copyright © 2022 American Society for Microbiology.
– notice: Copyright © 2022 American Society for Microbiology. 2022 American Society for Microbiology
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1128/aac.02203-21
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1098-6596
EndPage e0220321
ExternalDocumentID 10_1128_aac_02203_21
02203-21
35041509
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Department of Health | National Health and Medical Research Council (NHMRC)
  grantid: GNT1159579; GNT1184428
  funderid: https://doi.org/10.13039/501100000925
– fundername: ;
  grantid: GNT1159579; GNT1184428
GroupedDBID ---
.55
0R~
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
6J9
ACGFO
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
F5P
FRP
GX1
H13
HH5
HYE
HZ~
H~9
K-O
KQ8
L7B
LSO
NPM
O9-
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TR2
UHB
W2D
W8F
WH7
WOQ
X7M
-
0R
55
AAPBV
ABFLS
ADACO
BXI
HZ
ZA5
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a418t-533e43fc14e1e7011083f03a695dbf120c86ba9c193bc6168706aad46f4de46b3
IEDL.DBID RPM
ISSN 0066-4804
IngestDate Tue Sep 17 21:26:07 EDT 2024
Sat Oct 05 05:48:38 EDT 2024
Thu Sep 12 17:21:39 EDT 2024
Tue Mar 15 18:20:18 EDT 2022
Sat Sep 28 08:21:49 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords mathematical modeling
pharmacokinetics
Pseudomonas aeruginosa
dosage regimen optimization
dynamic infection model
pharmacodynamics
Language English
License All Rights Reserved. https://doi.org/10.1128/ASMCopyrightv2
All Rights Reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a418t-533e43fc14e1e7011083f03a695dbf120c86ba9c193bc6168706aad46f4de46b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0003-0928-4743
0000-0001-7352-3097
0000-0001-9327-1894
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923196
PMID 35041509
PQID 2621267648
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8923196
proquest_miscellaneous_2621267648
crossref_primary_10_1128_aac_02203_21
asm2_journals_10_1128_aac_02203_21
pubmed_primary_35041509
PublicationCentury 2000
PublicationDate 2022-03-15
PublicationDateYYYYMMDD 2022-03-15
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Antimicrobial agents and chemotherapy
PublicationTitleAbbrev Antimicrob Agents Chemother
PublicationTitleAlternate Antimicrob Agents Chemother
PublicationYear 2022
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Geller, DE, Pitlick, WH, Nardella, PA, Tracewell, WG, Ramsey, BW (B18) 2002; 122
Zelenitsky, SA, Karlowsky, JA, Hoban, DJ, Kabani, A, Zhanel, GG (B37) 1998; 44
Cousson, J, Floch, T, Guillard, T, Vernet, V, Raclot, P, Wolak-Thierry, A, Jolly, D (B77) 2015; 59
Hennig, S, Standing, JF, Staatz, CE, Thomson, AH (B67) 2013; 52
B69
Bilal, H, Bergen, PJ, Tait, JR, Wallis, SC, Peleg, AY, Roberts, JA, Oliver, A, Nation, RL, Landersdorfer, CB (B64) 2020; 64
Touw, DJ, Jacobs, FA, Brimicombe, RW, Heijerman, HG, Bakker, W, Briemer, DD (B68) 1997; 41
Malhotra, S, Hayes, D, Wozniak, DJ (B2) 2019; 32
Roberts, JA, Abdul-Aziz, MH, Lipman, J, Mouton, JW, Vinks, AA, Felton, TW, Hope, WW, Farkas, A, Neely, MN, Schentag, JJ, Drusano, G, Frey, OR, Theuretzbacher, U, Kuti, JL (B32) 2014; 14
Bos, AC, Passé, KM, Mouton, JW, Janssens, HM, Tiddens, HAWM (B52) 2017; 16
Landersdorfer, CB, Rees, VE, Yadav, R, Rogers, KE, Kim, TH, Bergen, PJ, Cheah, S-E, Boyce, JD, Peleg, AY, Oliver, A, Shin, BS, Nation, RL, Bulitta, JB (B34) 2018; 62
Smith, NM, Lenhard, JR, Boissonneault, KR, Landersdorfer, CB, Bulitta, JB, Holden, PN, Forrest, A, Nation, RL, Li, J, Tsuji, BT (B61) 2020; 26
Doi, Y, Arakawa, Y (B48) 2007; 45
Langton Hewer, SC, Smyth, AR (B17) 2017; 4
Bilal, H, Bergen, PJ, Kim, TH, Chung, SE, Peleg, AY, Oliver, A, Nation, RL, Landersdorfer, CB (B65) 2019; 63
Rosenfeld, M, Gibson, R, McNamara, S, Emerson, J, McCoy, KS, Shell, R, Borowitz, D, Konstan, MW, Retsch-Bogart, G, Wilmott, RW, Burns, JL, Vicini, P, Montgomery, AB, Ramsey, B (B78) 2001; 139
Gibson, RL, Emerson, J, McNamara, S, Burns, JL, Rosenfeld, M, Yunker, A, Hamblett, N, Accurso, F, Dovey, M, Hiatt, P, Konstan, MW, Moss, R, Retsch-Bogart, G, Wagener, J, Waltz, D, Wilmott, R, Zeitlin, PL, Ramsey, B (B20) 2003; 167
Rao, GG, Ly, NS, Bulitta, JB, Soon, RL, San Roman, MD, Holden, PN, Landersdorfer, CB, Nation, RL, Li, J, Forrest, A, Tsuji, BT (B59) 2016; 71
Mouton, JW, Vinks, AA (B28) 2007; 13
Quon, BS, Goss, CH, Ramsey, BW (B54) 2014; 11
Bulitta, JB, Ly, NS, Yang, JC, Forrest, A, Jusko, WJ, Tsuji, BT (B42) 2009; 53
Albur, M, Noel, A, Bowker, K, MacGowan, A (B79) 2012; 56
Lujan, AM, Macia, MD, Yang, L, Molin, S, Oliver, A, Smania, AM (B7) 2011; 6
Muller, AE, Punt, N, Mouton, JW (B27) 2013; 68
Bensman, TJ, Wang, J, Jayne, J, Fukushima, L, Rao, AP, D'Argenio, DZ, Beringer, PM (B71) 2017; 61
Oliver, A, Cantón, R, Campo, P, Baquero, F, Blázquez, J (B4) 2000; 288
Croisier, D, Martha, B, Piroth, L, Chavanet, P (B41) 2008; 32
Yadav, R, Bergen, PJ, Rogers, KE, Kirkpatrick, CMJ, Wallis, SC, Huang, Y, Bulitta, JB, Paterson, DL, Lipman, J, Nation, RL, Roberts, JA, Landersdorfer, CB (B60) 2019; 64
den Hollander, JG, Horrevorts, AM, van Goor, ML, Verbrugh, HA, Mouton, JW (B36) 1997; 41
Sousa, AM, Pereira, MO (B6) 2014; 3
Poole, K (B13) 2011; 2
Yadav, R, Bulitta, JB, Schneider, EK, Shin, BS, Velkov, T, Nation, RL, Landersdorfer, CB (B45) 2017; 61
Mouton, JW, Punt, N, Vinks, AA (B25) 2007; 51
Bhagirath, AY, Li, Y, Somayajula, D, Dadashi, M, Badr, S, Duan, K (B56) 2016; 16
Magreault, S, Roy, C, Launay, M, Sermet-Gaudelus, I, Jullien, V (B53) 2021; 60
Rees, VE, Bulitta, JB, Oliver, A, Tsuji, BT, Rayner, CR, Nation, RL, Landersdorfer, CB (B33) 2016; 71
Poole, K (B46) 2005; 49
Leggett, JE, Fantin, B, Ebert, S, Totsuka, K, Vogelman, B, Calame, W, Mattie, H, Craig, WA (B22) 1989; 159
Dimelow, R, Wright, JG, MacPherson, M, Newell, P, Das, S (B75) 2018; 18
Bos, AC, Mouton, JW, van Westreenen, M, Andrinopoulou, ER, Janssens, HM, Tiddens, H (B19) 2017; 72
Vinks, AA, Brimicombe, RW, Heijerman, HG, Bakker, W (B72) 1997; 40
Tozuka, Z, Murakawa, T, Nightingale, CH, Ambrose, PG, Drusano, G, Murakami, T (B24) 2007
Carcas, AJ, Garcia-Satue, JL, Zapater, P, Frias-Iniesta, J (B66) 1999; 65
Oliver, A (B5) 2010; 300
Stuart, B, Lin, JH, Mogayzel, PJ (B16) 2010; 11
Onufrak, NJ, Smith, NM, Satlin, MJ, Bulitta, JB, Tan, X, Holden, PN, Nation, RL, Li, J, Forrest, A, Tsuji, BT, Bulman, ZP (B58) 2020; 26
Islam, S, Oh, H, Jalal, S, Karpati, F, Ciofu, O, Høiby, N, Wretlind, B (B47) 2009; 15
Pillai, SK, Moellering, RC, Eliopoulos, GM, Lorian, V (B80) 2005
(B12) 2009
Stephens, D, Garey, N, Isles, A, Levison, H, Gold, R (B57) 1983; 2
Zelenitsky, SA, Iacovides, H, Harding, GK, Ariano, RE (B38) 2004; 49
Tam, VH, Chang, KT, Zhou, J, Ledesma, KR, Phe, K, Gao, S, Van Bambeke, F, Sánchez-Díaz, AM, Zamorano, L, Oliver, A, Cantón, R (B29) 2017; 72
Ciofu, O, Tolker-Nielsen, T (B8) 2019; 10
Tait, JR, Bilal, H, Kim, TH, Oh, A, Peleg, AY, Boyce, JD, Oliver, A, Bergen, PJ, Nation, RL, Landersdorfer, CB (B39) 2021; 26
Morita, Y, Tomida, J, Kawamura, Y (B50) 2012; 3
Nicolau, DP, Siew, L, Armstrong, J, Li, J, Edeki, T, Learoyd, M, Das, S (B76) 2015; 70
Macia, MD, Rojo-Molinero, E, Oliver, A (B14) 2014; 20
Lin, YW, Yu, HH, Zhao, J, Han, ML, Zhu, Y, Akter, J, Wickremasinghe, H, Walpola, H, Wirth, V, Rao, GG, Forrest, A, Velkov, T, Li, J (B62) 2018; 62
B10
Maciá, MD, Blanquer, D, Togores, B, Sauleda, J, Pérez, JL, Oliver, A (B9) 2005; 49
(B63) 2020
Bulitta, JB, Landersdorfer, CB, HüTtner, SJ, Drusano, GL, Kinzig, M, Holzgrabe, U, Stephan, U, SöRgel, F (B70) 2010; 54
Castellani, C, Duff, AJA, Bell, SC, Heijerman, HGM, Munck, A, Ratjen, F, Sermet-Gaudelus, I, Southern, KW, Barben, J, Flume, PA, Hodková, P, Kashirskaya, N, Kirszenbaum, MN, Madge, S, Oxley, H, Plant, B, Schwarzenberg, SJ, Smyth, AR, Taccetti, G, Wagner, TOF, Wolfe, SP, Drevinek, P (B11) 2018; 17
Maselli, DJ, Keyt, H, Restrepo, MI (B55) 2017; 18
Rees, VE, Deveson Lucas, DS, López-Causapé, C, Huang, Y, Kotsimbos, T, Bulitta, JB, Rees, MC, Barugahare, A, Peleg, AY, Nation, RL, Oliver, A, Boyce, JD, Landersdorfer, CB (B35) 2019; 63
Delcour, AH (B49) 2009; 1794
Turnidge, JD (B23) 1998; 27
Bulitta, JB, Ly, NS, Landersdorfer, CB, Wanigaratne, NA, Velkov, T, Yadav, R, Oliver, A, Martin, L, Shin, BS, Forrest, A, Tsuji, BT (B44) 2015; 59
Smith, S, Rowbotham, NJ, Charbek, E (B15) 2018; 10
Mah, TF (B30) 2012; 7
Boselli, E, Breilh, D, Rimmelé, T, Poupelin, J-C, Saux, M-C, Chassard, D, Allaouchiche, B (B74) 2004; 30
Winstanley, C, O'Brien, S, Brockhurst, MA (B3) 2016; 24
Drusano, GL (B31) 2004; 2
Gordin, FM, Rusnak, MG, Sande, MA (B40) 1987; 31
Rodvold, KA, George, JM, Yoo, L (B73) 2011; 50
Ruddy, J, Emerson, J, Moss, R, Genatossio, A, McNamara, S, Burns, JL, Anderson, G, Rosenfeld, M (B21) 2013; 26
McKinnon, PS, Paladino, JA, Schentag, JJ (B26) 2008; 31
Kadurugamuwa, JL, Clarke, AJ, Beveridge, TJ (B43) 1993; 175
Olivares, E, Badel-Berchoux, S, Provot, C, Jaulhac, B, Prevost, G, Bernardi, T, Jehl, F (B51) 2017; 8
Moore, JE, Mastoridis, P (B1) 2017; 42
e_1_3_3_50_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_77_2
e_1_3_3_79_2
Anonymous (e_1_3_3_13_2) 2009
e_1_3_3_16_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
Langton Hewer SC (e_1_3_3_18_2) 2017; 4
e_1_3_3_40_2
e_1_3_3_61_2
Pillai SK (e_1_3_3_81_2) 2005
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_80_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_76_2
e_1_3_3_70_2
e_1_3_3_78_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
CLSI (e_1_3_3_64_2) 2020
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – volume: 64
  year: 2020
  ident: B64
  article-title: Clinically relevant epithelial lining fluid concentrations of meropenem with ciprofloxacin provide synergistic killing and resistance suppression of hypermutable Pseudomonas aeruginosa in a dynamic biofilm model
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00469-20
  contributor:
    fullname: Landersdorfer, CB
– volume: 49
  start-page: 3382
  year: 2005
  end-page: 3386
  ident: B9
  article-title: Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.49.8.3382-3386.2005
  contributor:
    fullname: Oliver, A
– year: 2005
  ident: B80
  article-title: Antimicrobial combinations
  publication-title: Antibiotics in laboratory medicine. ;Lippincott Williams & Wilkins ;Philadelphia, PA
  contributor:
    fullname: Lorian, V
– volume: 26
  start-page: 1256
  year: 2020
  end-page: 1256
  ident: B58
  article-title: In pursuit of the triple crown: mechanism-based pharmacodynamic modelling for the optimization of three-drug combinations against KPC-producing Klebsiella pneumoniae
  publication-title: Clin Microbiol Infect
  doi: 10.1016/j.cmi.2020.04.034
  contributor:
    fullname: Bulman, ZP
– volume: 62
  year: 2018
  ident: B62
  article-title: Polymyxin B in combination with enrofloxacin exerts synergistic killing against extensively drug-resistant Pseudomonas aeruginosa
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00028-18
  contributor:
    fullname: Li, J
– volume: 65
  start-page: 245
  year: 1999
  end-page: 250
  ident: B66
  article-title: Tobramycin penetration into epithelial lining fluid of patients with pneumonia
  publication-title: Clin Pharmacol Ther
  doi: 10.1016/S0009-9236(99)70103-7
  contributor:
    fullname: Frias-Iniesta, J
– volume: 3
  start-page: 408
  year: 2012
  ident: B50
  article-title: MexXY multidrug efflux system of Pseudomonas aeruginosa
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2012.00408
  contributor:
    fullname: Kawamura, Y
– volume: 300
  start-page: 563
  year: 2010
  end-page: 572
  ident: B5
  article-title: Mutators in cystic fibrosis chronic lung infection: prevalence, mechanisms, and consequences for antimicrobial therapy
  publication-title: Int J Med Microbiol
  doi: 10.1016/j.ijmm.2010.08.009
  contributor:
    fullname: Oliver, A
– volume: 44
  start-page: 1
  year: 1998
  end-page: 6
  ident: B37
  article-title: Once versus thrice daily tobramycin alone and in combination with ceftazidime, ciprofloxacin and imipenem in an in vitro pharmacodynamic model
  publication-title: Chemotherapy
  doi: 10.1159/000007083
  contributor:
    fullname: Zhanel, GG
– volume: 50
  start-page: 637
  year: 2011
  end-page: 664
  ident: B73
  article-title: Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents
  publication-title: Clin Pharmacokinet
  doi: 10.2165/11594090-000000000-00000
  contributor:
    fullname: Yoo, L
– volume: 56
  start-page: 3441
  year: 2012
  end-page: 3443
  ident: B79
  article-title: Bactericidal activity of multiple combinations of tigecycline and colistin against NDM-1-producing Enterobacteriaceae
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.05682-11
  contributor:
    fullname: MacGowan, A
– volume: 61
  year: 2017
  ident: B71
  article-title: Pharmacokinetic-pharmacodynamic target attainment analyses to determine optimal dosing of ceftazidime-avibactam for the treatment of acute pulmonary exacerbations in patients with cystic fibrosis
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00988-17
  contributor:
    fullname: Beringer, PM
– volume: 26
  start-page: 55
  year: 2021
  end-page: 63
  ident: B39
  article-title: Pharmacodynamics of ceftazidime plus tobramycin combination dosage regimens against hypermutable Pseudomonas aeruginosa isolates at simulated epithelial lining fluid concentrations in a dynamic in vitro infection model
  publication-title: J Glob Antimicrob Resist
  doi: 10.1016/j.jgar.2021.04.021
  contributor:
    fullname: Landersdorfer, CB
– volume: 30
  start-page: 989
  year: 2004
  end-page: 991
  ident: B74
  article-title: Plasma and lung concentrations of ceftazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-004-2171-2
  contributor:
    fullname: Allaouchiche, B
– volume: 49
  start-page: 67
  year: 2004
  end-page: 70
  ident: B38
  article-title: Effect of antibiotic sequence on combination regimens against Pseudomonas aeruginosa in a multiple-dose, in vitro infection model
  publication-title: Diagn Microbiol Infect Dis
  doi: 10.1016/j.diagmicrobio.2003.10.016
  contributor:
    fullname: Ariano, RE
– volume: 2
  start-page: 65
  year: 2011
  ident: B13
  article-title: Pseudomonas aeruginosa: resistance to the max
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2011.00065
  contributor:
    fullname: Poole, K
– volume: 45
  start-page: 88
  year: 2007
  end-page: 94
  ident: B48
  article-title: 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides
  publication-title: Clin Infect Dis
  doi: 10.1086/518605
  contributor:
    fullname: Arakawa, Y
– volume: 2
  start-page: 289
  year: 2004
  end-page: 300
  ident: B31
  article-title: Antimicrobial pharmacodynamics: critical interactions of “bug and drug
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro862
  contributor:
    fullname: Drusano, GL
– volume: 18
  start-page: 1062
  year: 2017
  ident: B55
  article-title: Inhaled antibiotic therapy in chronic respiratory diseases
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18051062
  contributor:
    fullname: Restrepo, MI
– volume: 70
  start-page: 2862
  year: 2015
  end-page: 2869
  ident: B76
  article-title: Phase 1 study assessing the steady-state concentration of ceftazidime and avibactam in plasma and epithelial lining fluid following two dosing regimens
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkv170
  contributor:
    fullname: Das, S
– volume: 59
  start-page: 2315
  year: 2015
  end-page: 2327
  ident: B44
  article-title: Two mechanisms of killing of Pseudomonas aeruginosa by tobramycin assessed at multiple inocula via mechanism-based modeling
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.04099-14
  contributor:
    fullname: Tsuji, BT
– volume: 18
  start-page: 221
  year: 2018
  end-page: 230
  ident: B75
  article-title: Population pharmacokinetic modelling of ceftazidime and avibactam in the plasma and epithelial lining fluid of healthy volunteers
  publication-title: Drugs R D
  doi: 10.1007/s40268-018-0241-0
  contributor:
    fullname: Das, S
– volume: 31
  start-page: 345
  year: 2008
  end-page: 351
  ident: B26
  article-title: Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2007.12.009
  contributor:
    fullname: Schentag, JJ
– volume: 7
  start-page: 1061
  year: 2012
  end-page: 1072
  ident: B30
  article-title: Biofilm-specific antibiotic resistance
  publication-title: Future Microbiol
  doi: 10.2217/fmb.12.76
  contributor:
    fullname: Mah, TF
– volume: 11
  start-page: 425
  year: 2014
  end-page: 434
  ident: B54
  article-title: Inhaled antibiotics for lower airway infections
  publication-title: Ann Am Thorac Soc
  doi: 10.1513/AnnalsATS.201311-395FR
  contributor:
    fullname: Ramsey, BW
– start-page: 129
  year: 2007
  end-page: 146
  ident: B24
  article-title: Beta-Lactam pharmacodynamics
  publication-title: Antimicrobial pharmacodynamics in theory and practice ;2nd ed. ;New York, NY ;Informa Healthcare
  contributor:
    fullname: Murakami, T
– volume: 26
  start-page: 69
  year: 2013
  end-page: 75
  ident: B21
  article-title: Sputum tobramycin concentrations in cystic fibrosis patients with repeated administration of inhaled tobramycin
  publication-title: J Aerosol Med Pulm Drug Deliv
  doi: 10.1089/jamp.2011.0942
  contributor:
    fullname: Rosenfeld, M
– volume: 16
  start-page: 13
  year: 2017
  end-page: 23
  ident: B52
  article-title: The fate of inhaled antibiotics after deposition in cystic fibrosis: how to get drug to the bug?
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2016.10.001
  contributor:
    fullname: Tiddens, HAWM
– volume: 72
  start-page: 1421
  year: 2017
  end-page: 1428
  ident: B29
  article-title: Determining β-lactam exposure threshold to suppress resistance development in Gram-negative bacteria
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkx001
  contributor:
    fullname: Cantón, R
– volume: 72
  start-page: 3435
  year: 2017
  end-page: 3442
  ident: B19
  article-title: Patient-specific modelling of regional tobramycin concentration levels in airways of patients with cystic fibrosis: can we dose once daily?
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkx293
  contributor:
    fullname: Tiddens, H
– volume: 175
  start-page: 5798
  year: 1993
  end-page: 5805
  ident: B43
  article-title: Surface action of gentamicin on Pseudomonas aeruginosa
  publication-title: J Bacteriol
  doi: 10.1128/jb.175.18.5798-5805.1993
  contributor:
    fullname: Beveridge, TJ
– volume: 59
  start-page: 1905
  year: 2015
  end-page: 1909
  ident: B77
  article-title: Lung concentrations of ceftazidime administered by continuous versus intermittent infusion in patients with ventilator-associated pneumonia
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.04232-14
  contributor:
    fullname: Jolly, D
– volume: 49
  start-page: 479
  year: 2005
  end-page: 487
  ident: B46
  article-title: Aminoglycoside resistance in Pseudomonas aeruginosa
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.49.2.479-487.2005
  contributor:
    fullname: Poole, K
– volume: 53
  start-page: 46
  year: 2009
  end-page: 56
  ident: B42
  article-title: Development and qualification of a pharmacodynamic model for the pronounced inoculum effect of ceftazidime against Pseudomonas aeruginosa
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00489-08
  contributor:
    fullname: Tsuji, BT
– volume: 3
  start-page: 680
  year: 2014
  end-page: 703
  ident: B6
  article-title: Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs–a review
  publication-title: Pathogens (Basel, Switzerland
  doi: 10.3390/pathogens3030680
  contributor:
    fullname: Pereira, MO
– volume: 71
  start-page: 3157
  year: 2016
  end-page: 3167
  ident: B33
  article-title: Resistance suppression by high-intensity, short-duration aminoglycoside exposure against hypermutable and non-hypermutable Pseudomonas aeruginosa
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkw297
  contributor:
    fullname: Landersdorfer, CB
– volume: 24
  start-page: 327
  year: 2016
  end-page: 337
  ident: B3
  article-title: Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2016.01.008
  contributor:
    fullname: Brockhurst, MA
– volume: 10
  start-page: CD008319
  year: 2018
  ident: B15
  article-title: Inhaled antibiotics for pulmonary exacerbations in cystic fibrosis
  publication-title: Cochrane Database Syst Rev
  doi: 10.1002/14651858.CD008319.pub3
  contributor:
    fullname: Charbek, E
– ident: B69
  article-title: Macey RI . 2010 . Berkeley Madonna version 8.3.18 441 . University of California , Berkeley, CA .
– volume: 63
  year: 2019
  ident: B35
  article-title: Characterization of hypermutator Pseudomonas aeruginosa isolates from patients with cystic fibrosis in Australia
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02538-18
  contributor:
    fullname: Landersdorfer, CB
– volume: 60
  start-page: 409
  year: 2021
  end-page: 445
  ident: B53
  article-title: Pharmacokinetic and pharmacodynamic optimization of antibiotic therapy in cystic fibrosis patients: current evidences, gaps in knowledge and future directions
  publication-title: Clin Pharmacokinet
  doi: 10.1007/s40262-020-00981-0
  contributor:
    fullname: Jullien, V
– volume: 63
  year: 2019
  ident: B65
  article-title: Synergistic meropenem-tobramycin combination dosage regimens against clinical hypermutable Pseudomonas aeruginosa at simulated epithelial lining fluid concentrations in a dynamic biofilm model
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01293-19
  contributor:
    fullname: Landersdorfer, CB
– volume: 15
  start-page: 60
  year: 2009
  end-page: 66
  ident: B47
  article-title: Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients
  publication-title: Clin Microbiol Infect
  doi: 10.1111/j.1469-0691.2008.02097.x
  contributor:
    fullname: Wretlind, B
– volume: 8
  start-page: 1289
  year: 2017
  ident: B51
  article-title: Tobramycin and amikacin delay adhesion and microcolony formation in Pseudomonas aeruginosa cystic fibrosis isolates
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.01289
  contributor:
    fullname: Jehl, F
– volume: 167
  start-page: 841
  year: 2003
  end-page: 849
  ident: B20
  article-title: Significant microbiological effect of inhaled tobramycin in young children with cystic fibrosis
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200208-855OC
  contributor:
    fullname: Ramsey, B
– volume: 13
  start-page: 598
  year: 2007
  end-page: 606
  ident: B28
  article-title: Continuous infusion of beta-lactams
  publication-title: Curr Opin Crit Care
  doi: 10.1097/MCC.0b013e3282e2a98f
  contributor:
    fullname: Vinks, AA
– volume: 32
  year: 2019
  ident: B2
  article-title: Cystic fibrosis and Pseudomonas aeruginosa: the host-microbe interface
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.00138-18
  contributor:
    fullname: Wozniak, DJ
– volume: 159
  start-page: 281
  year: 1989
  end-page: 292
  ident: B22
  article-title: Comparative antibiotic dose-effect relations at several dosing intervals in murine pneumonitis and thigh-infection models
  publication-title: J Infect Dis
  doi: 10.1093/infdis/159.2.281
  contributor:
    fullname: Craig, WA
– volume: 16
  start-page: 174
  year: 2016
  ident: B56
  article-title: Cystic fibrosis lung environment and Pseudomonas aeruginosa infection
  publication-title: BMC Pulm Med
  doi: 10.1186/s12890-016-0339-5
  contributor:
    fullname: Duan, K
– volume: 17
  start-page: 153
  year: 2018
  end-page: 178
  ident: B11
  article-title: ECFS best practice guidelines: the 2018 revision
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2018.02.006
  contributor:
    fullname: Drevinek, P
– volume: 26
  start-page: 1207
  year: 2020
  end-page: 1213
  ident: B61
  article-title: Using machine learning to optimize antibiotic combinations: dosing strategies for meropenem and polymyxin B against carbapenem-resistant Acinetobacter baumannii
  publication-title: Clin Microbiol Infect
  doi: 10.1016/j.cmi.2020.02.004
  contributor:
    fullname: Tsuji, BT
– volume: 10
  start-page: 913
  year: 2019
  ident: B8
  article-title: Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.00913
  contributor:
    fullname: Tolker-Nielsen, T
– volume: 11
  start-page: 177
  year: 2010
  end-page: 184
  ident: B16
  article-title: Early eradication of Pseudomonas aeruginosa in patients with cystic fibrosis
  publication-title: Paediatr Respir Rev
  doi: 10.1016/j.prrv.2010.05.003
  contributor:
    fullname: Mogayzel, PJ
– volume: 122
  start-page: 219
  year: 2002
  end-page: 226
  ident: B18
  article-title: Pharmacokinetics and bioavailability of aerosolized tobramycin in cystic fibrosis
  publication-title: Chest
  doi: 10.1378/chest.122.1.219
  contributor:
    fullname: Ramsey, BW
– volume: 2
  start-page: 209
  year: 1983
  end-page: 211
  ident: B57
  article-title: Efficacy of inhaled tobramycin in the treatment of pulmonary exacerbations in children with cystic fibrosis
  publication-title: Pediatr Infect Dis
  doi: 10.1097/00006454-198305000-00007
  contributor:
    fullname: Gold, R
– volume: 14
  start-page: 498
  year: 2014
  end-page: 509
  ident: B32
  article-title: Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(14)70036-2
  contributor:
    fullname: Kuti, JL
– volume: 52
  start-page: 289
  year: 2013
  end-page: 301
  ident: B67
  article-title: Population pharmacokinetics of tobramycin in patients with and without cystic fibrosis
  publication-title: Clin Pharmacokinet
  doi: 10.1007/s40262-013-0036-y
  contributor:
    fullname: Thomson, AH
– volume: 51
  start-page: 3449
  year: 2007
  end-page: 3451
  ident: B25
  article-title: Concentration-effect relationship of ceftazidime explains why the time above the MIC is 40 percent for a static effect in vivo
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01586-06
  contributor:
    fullname: Vinks, AA
– volume: 40
  start-page: 125
  year: 1997
  end-page: 133
  ident: B72
  article-title: Continuous infusion of ceftazidime in cystic fibrosis patients during home treatment: clinical outcome, microbiology and pharmacokinetics
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/40.1.125
  contributor:
    fullname: Bakker, W
– volume: 139
  start-page: 572
  year: 2001
  end-page: 577
  ident: B78
  article-title: Serum and lower respiratory tract drug concentrations after tobramycin inhalation in young children with cystic fibrosis
  publication-title: J Pediatr
  doi: 10.1067/mpd.2001.117785
  contributor:
    fullname: Ramsey, B
– volume: 20
  start-page: 981
  year: 2014
  end-page: 990
  ident: B14
  article-title: Antimicrobial susceptibility testing in biofilm-growing bacteria
  publication-title: Clin Microbiol Infect
  doi: 10.1111/1469-0691.12651
  contributor:
    fullname: Oliver, A
– volume: 31
  start-page: 398
  year: 1987
  end-page: 403
  ident: B40
  article-title: Evaluation of combination chemotherapy in a lightly anesthetized animal model of Pseudomonas pneumonia
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.31.3.398
  contributor:
    fullname: Sande, MA
– volume: 61
  year: 2017
  ident: B45
  article-title: Aminoglycoside concentrations required for synergy with carbapenems against Pseudomonas aeruginosa determined via mechanistic studies and modeling
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00722-17
  contributor:
    fullname: Landersdorfer, CB
– volume: 64
  year: 2019
  ident: B60
  article-title: Meropenem-tobramycin combination regimens combat carbapenem-resistant Pseudomonas aeruginosa in the hollow-fiber infection model simulating augmented renal clearance in critically ill patients
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01679-19
  contributor:
    fullname: Landersdorfer, CB
– volume: 1794
  start-page: 808
  year: 2009
  end-page: 816
  ident: B49
  article-title: Outer membrane permeability and antibiotic resistance
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbapap.2008.11.005
  contributor:
    fullname: Delcour, AH
– volume: 54
  start-page: 1275
  year: 2010
  end-page: 1282
  ident: B70
  article-title: Population pharmacokinetic comparison and pharmacodynamic breakpoints of ceftazidime in cystic fibrosis patients and healthy volunteers
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00936-09
  contributor:
    fullname: SöRgel, F
– year: 2009
  ident: B12
  publication-title: Antibiotic treatment for cystic fibrosis. UK Cystic Fibrosis Trust guidelines ;3rd ed ;Accessed 15 September 2021 ;Cystic Fibrosis Foundation ;London, United Kingdom
– volume: 288
  start-page: 1251
  year: 2000
  end-page: 1254
  ident: B4
  article-title: High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection
  publication-title: Science
  doi: 10.1126/science.288.5469.1251
  contributor:
    fullname: Blázquez, J
– ident: B10
  article-title: West NE , Flume PA . 2019 . Pulmonary exacerbations clinical care guidelines . https://www.cff.org/Care/Clinical-Care-Guidelines/Respiratory-Clinical-Care-Guidelines/Pulmonary-Exacerbations-Clinical-Care-Guidelines/ .
– volume: 27
  start-page: 10
  year: 1998
  end-page: 22
  ident: B23
  article-title: The pharmacodynamics of beta-lactams
  publication-title: Clin Infect Dis
  doi: 10.1086/514622
  contributor:
    fullname: Turnidge, JD
– volume: 68
  start-page: 900
  year: 2013
  end-page: 906
  ident: B27
  article-title: Optimal exposures of ceftazidime predict the probability of microbiological and clinical outcome in the treatment of nosocomial pneumonia
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dks468
  contributor:
    fullname: Mouton, JW
– volume: 41
  start-page: 184
  year: 1997
  end-page: 187
  ident: B68
  article-title: Pharmacokinetics of aerosolized tobramycin in adult patients with cystic fibrosis
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.41.1.184
  contributor:
    fullname: Briemer, DD
– volume: 71
  start-page: 3148
  year: 2016
  end-page: 3156
  ident: B59
  article-title: Polymyxin B in combination with doripenem against heteroresistant Acinetobacter baumannii: pharmacodynamics of new dosing strategies
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkw293
  contributor:
    fullname: Tsuji, BT
– volume: 32
  start-page: 494
  year: 2008
  end-page: 498
  ident: B41
  article-title: In vivo efficacy of humanised intermittent versus continuous ceftazidime in combination with tobramycin in an experimental model of pseudomonal pneumonia
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2008.07.010
  contributor:
    fullname: Chavanet, P
– year: 2020
  ident: B63
  publication-title: Performance standards for antimicrobial susceptibility testing. ;M100. 30th ed ;CLSI ;Wayne, PA
– volume: 41
  start-page: 95
  year: 1997
  end-page: 100
  ident: B36
  article-title: Synergism between tobramycin and ceftazidime against a resistant Pseudomonas aeruginosa strain, tested in an in vitro pharmacokinetic model
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.41.1.95
  contributor:
    fullname: Mouton, JW
– volume: 6
  year: 2011
  ident: B7
  article-title: Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0027842
  contributor:
    fullname: Smania, AM
– volume: 4
  start-page: CD004197
  year: 2017
  ident: B17
  article-title: Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis
  publication-title: Cochrane Database Syst Rev
  contributor:
    fullname: Smyth, AR
– volume: 42
  start-page: 259
  year: 2017
  end-page: 267
  ident: B1
  article-title: Clinical implications of Pseudomonas aeruginosa location in the lungs of patients with cystic fibrosis
  publication-title: J Clin Pharm Ther
  doi: 10.1111/jcpt.12521
  contributor:
    fullname: Mastoridis, P
– volume: 62
  year: 2018
  ident: B34
  article-title: Optimization of a meropenem-tobramycin combination dosage regimen against hypermutable and nonhypermutable Pseudomonas aeruginosa via mechanism-based modeling and the hollow-fiber infection model
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02055-17
  contributor:
    fullname: Bulitta, JB
– ident: e_1_3_3_9_2
  doi: 10.3389/fmicb.2019.00913
– ident: e_1_3_3_30_2
  doi: 10.1093/jac/dkx001
– ident: e_1_3_3_56_2
  doi: 10.3390/ijms18051062
– ident: e_1_3_3_3_2
  doi: 10.1128/CMR.00138-18
– ident: e_1_3_3_23_2
  doi: 10.1093/infdis/159.2.281
– ident: e_1_3_3_47_2
  doi: 10.1128/AAC.49.2.479-487.2005
– ident: e_1_3_3_14_2
  doi: 10.3389/fmicb.2011.00065
– ident: e_1_3_3_38_2
  doi: 10.1159/000007083
– volume-title: Antibiotics in laboratory medicine.
  year: 2005
  ident: e_1_3_3_81_2
  contributor:
    fullname: Pillai SK
– ident: e_1_3_3_39_2
  doi: 10.1016/j.diagmicrobio.2003.10.016
– ident: e_1_3_3_43_2
  doi: 10.1128/AAC.00489-08
– ident: e_1_3_3_44_2
  doi: 10.1128/jb.175.18.5798-5805.1993
– ident: e_1_3_3_66_2
  doi: 10.1128/AAC.01293-19
– ident: e_1_3_3_25_2
  doi: 10.3109/9781420017137.006
– ident: e_1_3_3_29_2
  doi: 10.1097/MCC.0b013e3282e2a98f
– ident: e_1_3_3_46_2
  doi: 10.1128/AAC.00722-17
– ident: e_1_3_3_62_2
  doi: 10.1016/j.cmi.2020.02.004
– ident: e_1_3_3_34_2
  doi: 10.1093/jac/dkw297
– ident: e_1_3_3_37_2
  doi: 10.1128/AAC.41.1.95
– ident: e_1_3_3_77_2
  doi: 10.1093/jac/dkv170
– ident: e_1_3_3_26_2
  doi: 10.1128/AAC.01586-06
– ident: e_1_3_3_16_2
  doi: 10.1002/14651858.CD008319.pub3
– ident: e_1_3_3_70_2
– ident: e_1_3_3_36_2
  doi: 10.1128/AAC.02538-18
– ident: e_1_3_3_20_2
  doi: 10.1093/jac/dkx293
– ident: e_1_3_3_7_2
  doi: 10.3390/pathogens3030680
– ident: e_1_3_3_5_2
  doi: 10.1126/science.288.5469.1251
– ident: e_1_3_3_48_2
  doi: 10.1111/j.1469-0691.2008.02097.x
– ident: e_1_3_3_40_2
  doi: 10.1016/j.jgar.2021.04.021
– ident: e_1_3_3_41_2
  doi: 10.1128/AAC.31.3.398
– ident: e_1_3_3_45_2
  doi: 10.1128/AAC.04099-14
– ident: e_1_3_3_76_2
  doi: 10.1007/s40268-018-0241-0
– ident: e_1_3_3_19_2
  doi: 10.1378/chest.122.1.219
– ident: e_1_3_3_6_2
  doi: 10.1016/j.ijmm.2010.08.009
– ident: e_1_3_3_59_2
  doi: 10.1016/j.cmi.2020.04.034
– ident: e_1_3_3_32_2
  doi: 10.1038/nrmicro862
– ident: e_1_3_3_78_2
  doi: 10.1128/AAC.04232-14
– ident: e_1_3_3_21_2
  doi: 10.1164/rccm.200208-855OC
– ident: e_1_3_3_22_2
  doi: 10.1089/jamp.2011.0942
– ident: e_1_3_3_63_2
  doi: 10.1128/AAC.00028-18
– ident: e_1_3_3_71_2
  doi: 10.1128/AAC.00936-09
– ident: e_1_3_3_50_2
  doi: 10.1016/j.bbapap.2008.11.005
– ident: e_1_3_3_28_2
  doi: 10.1093/jac/dks468
– ident: e_1_3_3_55_2
  doi: 10.1513/AnnalsATS.201311-395FR
– ident: e_1_3_3_4_2
  doi: 10.1016/j.tim.2016.01.008
– ident: e_1_3_3_35_2
  doi: 10.1128/AAC.02055-17
– ident: e_1_3_3_31_2
  doi: 10.2217/fmb.12.76
– ident: e_1_3_3_57_2
  doi: 10.1186/s12890-016-0339-5
– ident: e_1_3_3_72_2
  doi: 10.1128/AAC.00988-17
– ident: e_1_3_3_49_2
  doi: 10.1086/518605
– ident: e_1_3_3_53_2
  doi: 10.1016/j.jcf.2016.10.001
– ident: e_1_3_3_60_2
  doi: 10.1093/jac/dkw293
– ident: e_1_3_3_68_2
  doi: 10.1007/s40262-013-0036-y
– ident: e_1_3_3_67_2
  doi: 10.1016/S0009-9236(99)70103-7
– ident: e_1_3_3_33_2
  doi: 10.1016/S1473-3099(14)70036-2
– ident: e_1_3_3_10_2
  doi: 10.1128/AAC.49.8.3382-3386.2005
– ident: e_1_3_3_27_2
  doi: 10.1016/j.ijantimicag.2007.12.009
– ident: e_1_3_3_8_2
  doi: 10.1371/journal.pone.0027842
– ident: e_1_3_3_11_2
– ident: e_1_3_3_74_2
  doi: 10.2165/11594090-000000000-00000
– ident: e_1_3_3_54_2
  doi: 10.1007/s40262-020-00981-0
– ident: e_1_3_3_61_2
  doi: 10.1128/AAC.01679-19
– volume-title: Antibiotic treatment for cystic fibrosis. UK Cystic Fibrosis Trust guidelines
  year: 2009
  ident: e_1_3_3_13_2
  contributor:
    fullname: Anonymous
– ident: e_1_3_3_73_2
  doi: 10.1093/jac/40.1.125
– ident: e_1_3_3_79_2
  doi: 10.1067/mpd.2001.117785
– ident: e_1_3_3_80_2
  doi: 10.1128/AAC.05682-11
– volume-title: Performance standards for antimicrobial susceptibility testing.
  year: 2020
  ident: e_1_3_3_64_2
  contributor:
    fullname: CLSI
– ident: e_1_3_3_12_2
  doi: 10.1016/j.jcf.2018.02.006
– ident: e_1_3_3_17_2
  doi: 10.1016/j.prrv.2010.05.003
– ident: e_1_3_3_51_2
  doi: 10.3389/fmicb.2012.00408
– ident: e_1_3_3_58_2
  doi: 10.1097/00006454-198305000-00007
– ident: e_1_3_3_24_2
  doi: 10.1086/514622
– ident: e_1_3_3_69_2
  doi: 10.1128/AAC.41.1.184
– ident: e_1_3_3_42_2
  doi: 10.1016/j.ijantimicag.2008.07.010
– ident: e_1_3_3_75_2
  doi: 10.1007/s00134-004-2171-2
– ident: e_1_3_3_15_2
  doi: 10.1111/1469-0691.12651
– ident: e_1_3_3_52_2
  doi: 10.3389/fmicb.2017.01289
– ident: e_1_3_3_2_2
  doi: 10.1111/jcpt.12521
– ident: e_1_3_3_65_2
  doi: 10.1128/AAC.00469-20
– volume: 4
  start-page: CD004197
  year: 2017
  ident: e_1_3_3_18_2
  article-title: Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis
  publication-title: Cochrane Database Syst Rev
  contributor:
    fullname: Langton Hewer SC
SSID ssj0006590
Score 2.4653971
Snippet Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa,...
Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa...
Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa ,...
SourceID pubmedcentral
proquest
crossref
asm2
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage e0220321
SubjectTerms Anti-Bacterial Agents - pharmacology
Anti-Bacterial Agents - therapeutic use
Antimicrobial Chemotherapy
Biofilms
Ceftazidime - pharmacology
Ceftazidime - therapeutic use
Humans
Microbial Sensitivity Tests
Pharmacology
Pseudomonas aeruginosa
Pseudomonas Infections - drug therapy
Pseudomonas Infections - microbiology
Tobramycin - pharmacology
Tobramycin - therapeutic use
Title Simulated Intravenous versus Inhaled Tobramycin with or without Intravenous Ceftazidime Evaluated against Hypermutable Pseudomonas aeruginosa via a Dynamic Biofilm Model and Mechanism-Based Modeling
URI https://www.ncbi.nlm.nih.gov/pubmed/35041509
https://journals.asm.org/doi/10.1128/aac.02203-21
https://search.proquest.com/docview/2621267648
https://pubmed.ncbi.nlm.nih.gov/PMC8923196
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbWSiBeEJTLymUyCPa0rInjOO4jlE0dqKiITtpbdBLbW6QmmZpkUvmB_C6Oc9koiBee8uBr4s8537HPhZB3gIRNCmMcpbXvcGZCB1iTREBAIBlwMPZGd_FVzM_554vgYo8EvS9MY7SfxOlxvs6O8_Sqsa28zpJJbyc2WS5m0rKSqZgMyAAB2qvo3e9XBO3BCo7mcOny3tqdyQngFK1nqe8wmyHGD6x_ujVFHEKZsV3J9Bfd_NNq8jcxdPqIPOz4I_3QzvMx2dP5iNxrM0puR-T-orsrH5HDZRuVentEV3dOVuURPaTLu3jV2yfk5_c0s0m8tKJndsybJmwrtfYa-DjLr1CGKLoqUK_Ottg3tWe3tNg0z6KudlrNtKngR6rSTNOTNpI4NoZLSJGH0jlqvZusrqy_Fl2WulYFbgMoKehNfZnmRQn0JgUK9NM2hyxNKL6ZSdcZtTnb1hRyRRfaOiunZeZ8RAms2hIUwE_J-enJajZ3uvQODnBPVg4STc19k3hcezq0PET6xvVBTAMVG4-5iRQxTBOkmHEiPGFvZAEUF4YrzUXsPyPDvMj1PqEJBxVy6cdgQttbbKTUsQoZsnHXjd0xeWtXOOr2Zxk1qg-TESIiahARMW9M3vfrH123oT7-Ue9ND44I96K9YIFc4yeOmEAiIELB5Zg8b8Fy21MPtjEJd2B0W8HG-d4tQfg38b47uL_475YvyQNmvTasGWLwigyrTa1fI5eq4gMy-PJNHjQ76BdaeyOh
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIKAXBOGV8loQ9FQ39nq93hwhtEqgqSKRSr1ZY-9uaym2q9ipFH4gv4tZP1oC4sLJh33aO-P5ZudFyAdAwCaFMY7S2nc4M6EDrC4iICCQDDgYa9GdnYrJGf96HpzvkKCLhamd9pM4PcyX2WGeXta-lVdZMuz8xIbz2VhaVDISwzvkLvKryzslvf0Bi6C5WsH1HI7Nnb87k0PATdrYUt9htkaMH9gIdeuM2IMyY9uy6S_A-aff5G-C6PgRedgiSPqp2eljsqPzPrnX1JTc9Mn9WWst75P9eZOXenNAF7dhVuUB3afz24zVmyfk5_c0s2W8tKJTu-Z1nbiVWo8NfEzzS5Qiii4K1KyzDc5N7e0tLVb1s1hXW6PG2lTwI1VppulRk0scB8MFpIhE6QT13lW2rmzEFp2Xeq0KZAQoKejV-iLNixLodQoU6JdNDlmaUHwzky4zaqu2LSnkis60DVdOy8z5jDJYNS0ogp-Ss-OjxXjitAUeHOCerByEmpr7JvG49nRokYj0jeuDGAUqNh5zEyliGCUIMuNEeMLaZAEUF4YrzUXsPyO9vMj1C0ITDirk0o_BhHa22EipYxUyxOOuG7sD8t6ecNRyaBnVyg-TEVJEVFNExLwB-didf3TVJPv4R793HXFEyI3WxAK5xk8cMYFQQISCywF53hDLzUwdsQ1IuEVGNx1spu_tFmSAOuN3S_B7_z3yLXkwWcxOopPp6beXZJfZGA7rlBi8Ir1qtdavEVlV8Zuaj34B7P4mAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BEBUXBOEVnguCnurGXq_XmyOkjRIgVSRaqTdr7N1tLcV2FDuVwg_kdzHrR9uAuHDyYZ_2zni-2XkR8hEQsElhjKO09h3OTOgAq4sICAgkAw7GWnTnJ2J6xr-eB-e3Sn3VTvtJnB7my-wwTy9r38pVlgw7P7HhYj6WFpWMxHClzPAuuYc864pOUW9_wiJorldwTYdLl3c-70wOATdq40t9h9k6MX5go9StQ2IPyoztyqe_QOefvpO3hNHkEXnYokj6udntY3JH531yv6krue2TvXlrMe-T_UWTm3p7QE9vQq3KA7pPFzdZq7dPyK8faWZLeWlFZ3bNqzp5K7VeG_iY5ZcoSRQ9LVC7zrY4N7U3uLRY189iU-2MGmtTwc9UpZmmx00-cRwMF5AiGqVT1H3X2aayUVt0UeqNKpAZoKSg15uLNC9KoFcpUKBH2xyyNKH4ZiZdZtRWbltSyBWdaxuynJaZ8wXlsGpaUAw_JWeT49Px1GmLPDjAPVk5CDc1903ice3p0KIR6RvXBzEKVGw85iZSxDBKEGjGifCEtcsCKC4MV5qL2H9GenmR6xeEJhxUyKUfgwntbLGRUscqZIjJXTd2B-SDPeGo5dIyqhUgJiOkiKimiIh5A_KpO_9o1ST8-Ee_9x1xRMiR1swCucZPHDGBcECEgssBed4Qy_VMHbENSLhDRtcdbLbv3RZkgjrrd0v0L_975DuytziaRN9nJ99ekQfMhnFYv8TgNelV641-g-Cqit_WbPQbCFUnFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulated+Intravenous+versus+Inhaled+Tobramycin+with+or+without+Intravenous+Ceftazidime+Evaluated+against+Hypermutable+Pseudomonas+aeruginosa+via+a+Dynamic+Biofilm+Model+and+Mechanism-Based+Modeling&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Bilal%2C+Hajira&rft.au=Tait%2C+Jessica+R.&rft.au=Lang%2C+Yinzhi&rft.au=Zhou%2C+Jieqiang&rft.date=2022-03-15&rft.pub=American+Society+for+Microbiology&rft.issn=0066-4804&rft.eissn=1098-6596&rft.volume=66&rft.issue=3&rft_id=info:doi/10.1128%2Faac.02203-21&rft_id=info%3Apmid%2F35041509&rft.externalDBID=PMC8923196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon