Nitrogen input promotes denitrifying methanotrophs’ abundance and contribution to methane emission reduction in coastal wetland and paddy soil
Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane sink in natural habitats. Increasing nitrogen deposit around the globe brings increased availability of substrates for these microorganisms....
Saved in:
Published in | Environmental pollution (1987) Vol. 302; p. 119090 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane sink in natural habitats. Increasing nitrogen deposit around the globe brings increased availability of substrates for these microorganisms. However, how elevated nitrogen level affects denitrifying methanotrophs has not been elucidated. In this study, sediment/soil samples from coastal wetland with continuous nitrogen input and paddy field with periodic nitrogen input were collected to investigate the influence of nitrogen input on the abundance and activity of denitrifying methanotrophs. The results indicated that nitrogen input significantly promoted DAMO microorganisms’ abundance and contribution to methane emission reduction. In the coastal wetland, the contribution rate of DAMO process to methane removal increased from 12.1% to 33.5% along with continuously elevated nitrogen level in the 3-year tracking study. In the paddy field, the DAMO process accounted for 71.9% of total methane removal when nitrogen fertilizer was applied during the growing season, exceeding the aerobic methane oxidation process. This work would help us better understand the microbial methane cycle and reduce uncertainties in the estimations of the global methane emission.
[Display omitted]
•N input promoted the abundance and activity of denitrifying methanotrophs.•Continuous N input increased contribution of DAMO process in coastal wetland.•Periodic N input led to high DAMO microbial abundance and activity in paddy soil.•Inorganic nitrogen is a key factor that influences methane oxidation and emission. |
---|---|
AbstractList | Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane sink in natural habitats. Increasing nitrogen deposit around the globe brings increased availability of substrates for these microorganisms. However, how elevated nitrogen level affects denitrifying methanotrophs has not been elucidated. In this study, sediment/soil samples from coastal wetland with continuous nitrogen input and paddy field with periodic nitrogen input were collected to investigate the influence of nitrogen input on the abundance and activity of denitrifying methanotrophs. The results indicated that nitrogen input significantly promoted DAMO microorganisms' abundance and contribution to methane emission reduction. In the coastal wetland, the contribution rate of DAMO process to methane removal increased from 12.1% to 33.5% along with continuously elevated nitrogen level in the 3-year tracking study. In the paddy field, the DAMO process accounted for 71.9% of total methane removal when nitrogen fertilizer was applied during the growing season, exceeding the aerobic methane oxidation process. This work would help us better understand the microbial methane cycle and reduce uncertainties in the estimations of the global methane emission. Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane sink in natural habitats. Increasing nitrogen deposit around the globe brings increased availability of substrates for these microorganisms. However, how elevated nitrogen level affects denitrifying methanotrophs has not been elucidated. In this study, sediment/soil samples from coastal wetland with continuous nitrogen input and paddy field with periodic nitrogen input were collected to investigate the influence of nitrogen input on the abundance and activity of denitrifying methanotrophs. The results indicated that nitrogen input significantly promoted DAMO microorganisms’ abundance and contribution to methane emission reduction. In the coastal wetland, the contribution rate of DAMO process to methane removal increased from 12.1% to 33.5% along with continuously elevated nitrogen level in the 3-year tracking study. In the paddy field, the DAMO process accounted for 71.9% of total methane removal when nitrogen fertilizer was applied during the growing season, exceeding the aerobic methane oxidation process. This work would help us better understand the microbial methane cycle and reduce uncertainties in the estimations of the global methane emission. [Display omitted] •N input promoted the abundance and activity of denitrifying methanotrophs.•Continuous N input increased contribution of DAMO process in coastal wetland.•Periodic N input led to high DAMO microbial abundance and activity in paddy soil.•Inorganic nitrogen is a key factor that influences methane oxidation and emission. Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane sink in natural habitats. Increasing nitrogen deposit around the globe brings increased availability of substrates for these microorganisms. However, how elevated nitrogen level affects denitrifying methanotrophs has not been elucidated. In this study, sediment/soil samples from coastal wetland with continuous nitrogen input and paddy field with periodic nitrogen input were collected to investigate the influence of nitrogen input on the abundance and activity of denitrifying methanotrophs. The results indicated that nitrogen input significantly promoted DAMO microorganisms' abundance and contribution to methane emission reduction. In the coastal wetland, the contribution rate of DAMO process to methane removal increased from 12.1% to 33.5% along with continuously elevated nitrogen level in the 3-year tracking study. In the paddy field, the DAMO process accounted for 71.9% of total methane removal when nitrogen fertilizer was applied during the growing season, exceeding the aerobic methane oxidation process. This work would help us better understand the microbial methane cycle and reduce uncertainties in the estimations of the global methane emission.Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane sink in natural habitats. Increasing nitrogen deposit around the globe brings increased availability of substrates for these microorganisms. However, how elevated nitrogen level affects denitrifying methanotrophs has not been elucidated. In this study, sediment/soil samples from coastal wetland with continuous nitrogen input and paddy field with periodic nitrogen input were collected to investigate the influence of nitrogen input on the abundance and activity of denitrifying methanotrophs. The results indicated that nitrogen input significantly promoted DAMO microorganisms' abundance and contribution to methane emission reduction. In the coastal wetland, the contribution rate of DAMO process to methane removal increased from 12.1% to 33.5% along with continuously elevated nitrogen level in the 3-year tracking study. In the paddy field, the DAMO process accounted for 71.9% of total methane removal when nitrogen fertilizer was applied during the growing season, exceeding the aerobic methane oxidation process. This work would help us better understand the microbial methane cycle and reduce uncertainties in the estimations of the global methane emission. |
ArticleNumber | 119090 |
Author | Jia, Zhongjun Zhu, Lizhong Yao, Xiangwu Kartal, Boran Zheng, Ping Wang, Jiaqi Hu, Baolan |
Author_xml | – sequence: 1 givenname: Jiaqi surname: Wang fullname: Wang, Jiaqi organization: Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China – sequence: 2 givenname: Xiangwu surname: Yao fullname: Yao, Xiangwu organization: Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China – sequence: 3 givenname: Zhongjun surname: Jia fullname: Jia, Zhongjun organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China – sequence: 4 givenname: Lizhong surname: Zhu fullname: Zhu, Lizhong organization: Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China – sequence: 5 givenname: Ping surname: Zheng fullname: Zheng, Ping organization: Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China – sequence: 6 givenname: Boran surname: Kartal fullname: Kartal, Boran organization: Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany – sequence: 7 givenname: Baolan surname: Hu fullname: Hu, Baolan email: blhu@zju.edu.cn organization: Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35240269$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctuFDEQRS2UiEwG_gAhL9n04Fe_WCChiJcUhQ2sLbddnXjUbTe2O9Hs-IRs83t8CW56YMECWFgl-Z5bqqp7jk6cd4DQM0p2lNDq5X4H7nbyw44RxnaUtqQlj9CGNjUvKsHECdoQVrVFLVp6hs5j3BNCBOf8MTrjJROLuEH3VzYFfw0OWzfNCU_Bjz5BxAZcVmx_sO4aj5BulPOZnG7i928PWHWzM8ppwMoZrL3LaDcn6x1O_ogDhtHGuPwFMLP-qVqXaRWTGvAdpGFxL29Sxhxw9HZ4gk57NUR4eqxb9OXd288XH4rLT-8_Xry5LJSgTSpKIlrRN53QrBa0prymqjFGGGgq3vGe9E1DuIC26wmrFbR9U1Vtp4xmqtSK8i16sfbNG3-dISaZh9Uw5JHAz1Gyqi7LirZl_R8or6jgItcten5E524EI6dgRxUO8tfBMyBWQAcfY4D-N0KJXHKVe7nmKpdc5Zprtr36w6ZtUstFU1B2-Jf59WqGfM9bC0FGbSGHZ2wAnaTx9u8NfgDRUsTT |
CitedBy_id | crossref_primary_10_3389_fmars_2022_1038400 crossref_primary_10_1016_j_jclepro_2024_140600 crossref_primary_10_1016_j_chemosphere_2023_138295 crossref_primary_10_1016_j_ibiod_2024_105990 crossref_primary_10_1016_j_ejsobi_2023_103592 crossref_primary_10_1016_j_scitotenv_2022_155375 crossref_primary_10_3390_su14106044 crossref_primary_10_1093_femsle_fnad041 crossref_primary_10_1016_j_scitotenv_2023_161437 crossref_primary_10_1038_s41598_024_65300_0 crossref_primary_10_1016_j_scitotenv_2024_171081 crossref_primary_10_1038_s41564_023_01578_6 crossref_primary_10_1016_j_soilbio_2024_109425 crossref_primary_10_1016_j_catena_2023_107451 crossref_primary_10_1016_j_jclepro_2024_144372 crossref_primary_10_3390_microorganisms12112259 crossref_primary_10_1007_s00203_025_04285_4 crossref_primary_10_1016_j_isci_2024_111237 crossref_primary_10_1016_j_ecoenv_2024_117317 crossref_primary_10_1016_j_scitotenv_2023_169311 crossref_primary_10_1016_j_scitotenv_2024_173134 crossref_primary_10_1080_10643389_2024_2410056 crossref_primary_10_3390_microorganisms11061552 crossref_primary_10_1007_s00374_024_01855_4 crossref_primary_10_1016_j_scitotenv_2024_174287 crossref_primary_10_1016_j_scitotenv_2024_176660 crossref_primary_10_1016_j_scitotenv_2024_172065 crossref_primary_10_1016_j_watres_2024_121802 crossref_primary_10_1016_j_envres_2022_115174 crossref_primary_10_1016_j_scitotenv_2022_159096 crossref_primary_10_3390_plants13223223 crossref_primary_10_1038_s43247_024_01635_w crossref_primary_10_1016_j_scitotenv_2023_166049 crossref_primary_10_1016_j_agrformet_2023_109792 crossref_primary_10_1016_j_cub_2024_06_063 crossref_primary_10_1016_j_soilbio_2023_109130 |
Cites_doi | 10.1111/1758-2229.12487 10.1038/nature08883 10.1016/j.jes.2017.06.007 10.1111/1574-6968.12567 10.1073/pnas.1318393111 10.1126/science.1136674 10.1016/j.soilbio.2015.01.010 10.1007/s00253-015-6893-6 10.1128/AEM.00067-09 10.1016/j.envpol.2018.10.057 10.5194/essd-12-1561-2020 10.1038/nmeth.3176 10.1038/nature12375 10.1038/19751 10.1146/annurev.micro.61.080706.093130 10.1016/j.ymeth.2016.02.020 10.1007/s00253-016-7627-0 10.1016/j.scitotenv.2018.01.233 10.1038/nature04617 10.1016/j.ecoleng.2014.09.087 10.1038/ismej.2015.262 10.1007/s10533-004-0370-0 10.1111/j.1574-6968.2012.02654.x 10.1038/s41396-020-0590-x 10.1016/j.copbio.2018.01.031 10.5194/bg-12-4965-2015 10.1021/acs.est.8b05742 10.1111/j.1462-2920.2011.02682.x 10.1073/pnas.1609534113 10.1007/s00253-017-8521-0 10.1038/s41396-018-0109-x 10.1128/AEM.06934-11 10.1007/s00253-016-8065-8 10.3354/meps098187 10.1016/j.envint.2020.105764 10.1016/j.watres.2019.114935 10.1016/j.cosust.2011.06.002 10.1016/S0168-6445(00)00054-1 10.1038/nrmicro.2018.9 10.1007/s00253-016-7585-6 10.3389/fmicb.2017.02127 10.1016/j.agee.2012.05.007 10.1073/pnas.1411617111 10.1007/s00253-014-5556-3 10.1016/j.chemosphere.2012.10.004 10.1128/AEM.02379-14 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2022.119090 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 35240269 10_1016_j_envpol_2022_119090 S0269749122003049 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5VS 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K TWZ WH7 XPP ZMT ~G- 29G 53G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ OHT R2- RIG SEN SEW SSH VH1 WUQ XJT XOL NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a418t-50494f8b4c274171371a8dd4de863b3f0f88034e9bf027ae9f8669badc2a5ca13 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Thu Jul 10 22:56:49 EDT 2025 Thu Jul 10 17:39:14 EDT 2025 Wed Feb 19 02:26:38 EST 2025 Tue Jul 01 03:15:19 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Fri Feb 23 02:39:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Methane sink Denitrifying methanotrophs Coastal wetland Nitrogen input Paddy soil |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a418t-50494f8b4c274171371a8dd4de863b3f0f88034e9bf027ae9f8669badc2a5ca13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 35240269 |
PQID | 2636143426 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2675561957 proquest_miscellaneous_2636143426 pubmed_primary_35240269 crossref_primary_10_1016_j_envpol_2022_119090 crossref_citationtrail_10_1016_j_envpol_2022_119090 elsevier_sciencedirect_doi_10_1016_j_envpol_2022_119090 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 2022-06-00 2022-Jun-01 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dong, Guo, Xu, Song, Zhang, Tang, Zhang, Leng, Liu, Wang, others (bib10) 2018; 64 Olsson, Ye, Yu, Wei, Krauss, Brix (bib31) 2015; 12 Zhou, Wang, Long, Guo, Zhu (bib50) 2014; 360 Bodelier (bib4) 2011; 3 Galloway, Dentener, Capone, Boyer, Howarth, Seitzinger, Asner, Cleveland, Green, Holland, others (bib14) 2004; 70 Welte, Rasigraf, Vaksmaa, Versantvoort, Arshad, Op den Camp, Jetten, Lüke, Reimann (bib46) 2016; 8 (bib1) 2005 van Kessel, Stultiens, Slegers, Cruz, Jetten, Kartal, den Camp (bib42) 2018; 50 Vaksmaa, Jetten, Ettwig, Lüke (bib40) 2017; 101 Wang, Zhu, Harhangi, Zhu, Jetten, Yin, Op den Camp (bib45) 2012; 336 Ettwig, Butler, Le Paslier, Pelletier, Mangenot, Kuypers, Schreiber, Dutilh, Zedelius, de Beer, others (bib11) 2010; 464 Knittel, Boetius (bib22) 2009; 63 Saunois, Stavert, Poulter, Bousquet, Canadell, Jackson, Raymond, Dlugokencky, Houweling, Patra, others (bib34) 2020; 12 Raghoebarsing, Pol, Van de Pas-Schoonen, Smolders, Ettwig, Rijpstra, Schouten, Damsté, den Camp, Jetten, others (bib33) 2006; 440 Galloway, Townsend, Erisman, Bekunda, Cai, Freney, Martinelli, Seitzinger, Sutton (bib15) 2008; 320 Yuan, Yuan, Zhu, Cao (bib49) 2018; 627 Leu, Cai, McIlroy, Southam, Orphan, Yuan, Hu, Tyson (bib24) 2020; 14 Xie, Ma, Zhou, Liang, Yin, Ma, Zhuang, Zhuang (bib47) 2020; 140 Li, Luo, Liu, Leung, Ting, Sadakane, Yamashita, Lam (bib25) 2016; 102 Hinrichs, Hayes, Sylva, Brewer, DeLong (bib19) 1999; 398 Myhre, Shindell, Bréon, Collins, Fuglestvedt, Huang, Koch, Lamarque, Lee, Mendoza, others (bib30) 2013 He, Wang, Hu, Yu, Jetten, Liu, Cai, Liu, Ren, Zhang, others (bib18) 2019; 244 Bai, Wang, Wu, Lu, Fu, Zhang, Lau, Zeng (bib3) 2019; 164 Hopkinson, Wolanski, Cahoon, Perillo, Brinson (bib20) 2019 Ettwig, Van Alen, van de Pas-Schoonen, Jetten, Strous (bib12) 2009; 75 Kuypers, Marchant, Kartal (bib23) 2018; 16 Shen, Zhu, Liu, Du, Zeng, Cheng, Xu, Zheng, Hu (bib38) 2014; 98 Luesken, Wu, Op den Camp, Keltjens, Stunnenberg, Francoijs, Strous, Jetten (bib26) 2012; 14 Shen, Liu, Huang, Lian, He, Geng, Jin, He, Lou, Xu, others (bib37) 2014; 80 Meng, Wang, Chan, Wu, Gu (bib28) 2016; 100 Sun, Wang, Tian, Jiang, Mou, Sun (bib39) 2013; 90 Xu, Zou, Cao, Zhamangulova, Zhao, Tang, Liu (bib48) 2014; 73 Buchfink, Xie, Huson (bib6) 2015; 12 Shen, Hu, Liu, Chai, He, Ren, Liu, Geng, Wang, Tang, others (bib35) 2016; 100 Armour, Nelson, Daniells, Rasiah, Inman-Bamber (bib2) 2013; 180 Wang, Cai, Li, Hua, Wang, Yang, Zheng, Hu (bib44) 2018; 53 Ding, Ding, Fu, Lu, Cheng, Zeng (bib9) 2015; 99 He, Cai, Geng, Lou, Xu, Zheng, Hu (bib17) 2013; 6 Wang, Shen, He, Hu, Cai, Zheng, Hu (bib43) 2017; 101 Vaksmaa, van Alen, Ettwig, Lupotto, Valè, Jetten, Lüke (bib41) 2017; 8 Haroon, Hu, Shi, Imelfort, Keller, Hugenholtz, Yuan, Tyson (bib16) 2013; 500 Deutzmann, Stief, Brandes, Schink (bib8) 2014; 111 Metaxas, Scheibling (bib29) 1993; 98 Cai, Leu, Xie, Guo, Feng, Zhao, Tyson, Yuan, Hu (bib7) 2018; 12 Hu, Shen, Lian, Zhu, Liu, Huang, He, Geng, Cheng, Lou, others (bib21) 2014; 111 Shen, Liu, He, Lian, Huang, He, Lou, Xu, Zheng, Hu (bib36) 2015; 83 Brune, Frenzel, Cypionka (bib5) 2000; 24 Ma, Conrad, Lu (bib27) 2012; 78 Padilla, Bristow, Sarode, Garcia-Robledo, Ramírez, Benson, Bourbonnais, Altabet, Girguis, Thamdrup, others (bib32) 2016; 10 Ettwig, Zhu, Speth, Keltjens, Jetten, Kartal (bib13) 2016; 113 Bodelier (10.1016/j.envpol.2022.119090_bib4) 2011; 3 Haroon (10.1016/j.envpol.2022.119090_bib16) 2013; 500 Bai (10.1016/j.envpol.2022.119090_bib3) 2019; 164 Welte (10.1016/j.envpol.2022.119090_bib46) 2016; 8 Myhre (10.1016/j.envpol.2022.119090_bib30) 2013 Xie (10.1016/j.envpol.2022.119090_bib47) 2020; 140 Kuypers (10.1016/j.envpol.2022.119090_bib23) 2018; 16 Raghoebarsing (10.1016/j.envpol.2022.119090_bib33) 2006; 440 Meng (10.1016/j.envpol.2022.119090_bib28) 2016; 100 Galloway (10.1016/j.envpol.2022.119090_bib14) 2004; 70 Wang (10.1016/j.envpol.2022.119090_bib45) 2012; 336 He (10.1016/j.envpol.2022.119090_bib17) 2013; 6 Metaxas (10.1016/j.envpol.2022.119090_bib29) 1993; 98 Zhou (10.1016/j.envpol.2022.119090_bib50) 2014; 360 He (10.1016/j.envpol.2022.119090_bib18) 2019; 244 Ding (10.1016/j.envpol.2022.119090_bib9) 2015; 99 Leu (10.1016/j.envpol.2022.119090_bib24) 2020; 14 Buchfink (10.1016/j.envpol.2022.119090_bib6) 2015; 12 Shen (10.1016/j.envpol.2022.119090_bib35) 2016; 100 Wang (10.1016/j.envpol.2022.119090_bib44) 2018; 53 Hu (10.1016/j.envpol.2022.119090_bib21) 2014; 111 Olsson (10.1016/j.envpol.2022.119090_bib31) 2015; 12 Armour (10.1016/j.envpol.2022.119090_bib2) 2013; 180 Xu (10.1016/j.envpol.2022.119090_bib48) 2014; 73 Luesken (10.1016/j.envpol.2022.119090_bib26) 2012; 14 (10.1016/j.envpol.2022.119090_bib1) 2005 Dong (10.1016/j.envpol.2022.119090_bib10) 2018; 64 Li (10.1016/j.envpol.2022.119090_bib25) 2016; 102 Cai (10.1016/j.envpol.2022.119090_bib7) 2018; 12 Brune (10.1016/j.envpol.2022.119090_bib5) 2000; 24 Ettwig (10.1016/j.envpol.2022.119090_bib11) 2010; 464 Wang (10.1016/j.envpol.2022.119090_bib43) 2017; 101 Galloway (10.1016/j.envpol.2022.119090_bib15) 2008; 320 Hinrichs (10.1016/j.envpol.2022.119090_bib19) 1999; 398 Saunois (10.1016/j.envpol.2022.119090_bib34) 2020; 12 Shen (10.1016/j.envpol.2022.119090_bib38) 2014; 98 Vaksmaa (10.1016/j.envpol.2022.119090_bib41) 2017; 8 Ettwig (10.1016/j.envpol.2022.119090_bib13) 2016; 113 van Kessel (10.1016/j.envpol.2022.119090_bib42) 2018; 50 Yuan (10.1016/j.envpol.2022.119090_bib49) 2018; 627 Shen (10.1016/j.envpol.2022.119090_bib36) 2015; 83 Sun (10.1016/j.envpol.2022.119090_bib39) 2013; 90 Padilla (10.1016/j.envpol.2022.119090_bib32) 2016; 10 Knittel (10.1016/j.envpol.2022.119090_bib22) 2009; 63 Hopkinson (10.1016/j.envpol.2022.119090_bib20) 2019 Shen (10.1016/j.envpol.2022.119090_bib37) 2014; 80 Ettwig (10.1016/j.envpol.2022.119090_bib12) 2009; 75 Ma (10.1016/j.envpol.2022.119090_bib27) 2012; 78 Vaksmaa (10.1016/j.envpol.2022.119090_bib40) 2017; 101 Deutzmann (10.1016/j.envpol.2022.119090_bib8) 2014; 111 |
References_xml | – volume: 83 start-page: 43 year: 2015 end-page: 51 ident: bib36 article-title: Depth-specific distribution and importance of nitrite-dependent anaerobic ammonium and methane-oxidising bacteria in an urban wetland publication-title: Soil Biol. Biochem. – volume: 627 start-page: 770 year: 2018 end-page: 781 ident: bib49 article-title: Effects of different fertilizers on methane emissions and methanogenic community structures in paddy rhizosphere soil publication-title: Sci. Total Environ. – volume: 70 start-page: 153 year: 2004 end-page: 226 ident: bib14 article-title: Nitrogen cycles: past, present, and future publication-title: Biogeochemistry – start-page: 1 year: 2019 end-page: 75 ident: bib20 article-title: Coastal wetlands: a synthesis publication-title: Coastal Wetlands – volume: 10 start-page: 2067 year: 2016 end-page: 2071 ident: bib32 article-title: NC10 bacteria in marine oxygen minimum zones publication-title: ISME J. – volume: 64 start-page: 289 year: 2018 end-page: 297 ident: bib10 article-title: Water regime-nitrogen fertilizer incorporation interaction: field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China publication-title: J. Environ. Sci. – volume: 101 start-page: 8007 year: 2017 end-page: 8014 ident: bib43 article-title: Spatial and temporal distribution of nitrite-dependent anaerobic methane-oxidizing bacteria in an intertidal zone of the East China Sea publication-title: Appl. Microbiol. Biotechnol. – volume: 180 start-page: 68 year: 2013 end-page: 78 ident: bib2 article-title: Nitrogen leaching from the root zone of sugarcane and bananas in the humid tropics of Australia publication-title: Agric. Ecosyst. Environ. – volume: 12 start-page: 1929 year: 2018 end-page: 1939 ident: bib7 article-title: A methanotrophic archaeon couples anaerobic oxidation of methane to Fe (III) reduction publication-title: ISME J. – volume: 12 start-page: 4965 year: 2015 end-page: 4977 ident: bib31 article-title: Factors influencing CO 2 and CH 4 emissions from coastal wetlands in the Liaohe Delta, Northeast China publication-title: Biogeosciences – volume: 101 start-page: 1631 year: 2017 end-page: 1641 ident: bib40 article-title: McrA primers for the detection and quantification of the anaerobic archaeal methanotroph ‘Candidatus Methanoperedens nitroreducens publication-title: Appl. Microbiol. Biotechnol. – volume: 102 start-page: 3 year: 2016 end-page: 11 ident: bib25 article-title: MEGAHIT v1. 0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices publication-title: Methods – volume: 8 start-page: 941 year: 2016 end-page: 955 ident: bib46 article-title: Nitrate-and nitrite-dependent anaerobic oxidation of methane publication-title: Environ. Microbiol. Rep. – volume: 99 start-page: 9805 year: 2015 end-page: 9812 ident: bib9 article-title: New primers for detecting and quantifying denitrifying anaerobic methane oxidation archaea in different ecological niches publication-title: Appl. Microbiol. Biotechnol. – volume: 12 start-page: 59 year: 2015 end-page: 60 ident: bib6 article-title: Fast and sensitive protein alignment using DIAMOND publication-title: Nat. Methods – volume: 360 start-page: 33 year: 2014 end-page: 41 ident: bib50 article-title: High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile publication-title: FEMS Microbiol. Lett. – volume: 111 start-page: 18273 year: 2014 end-page: 18278 ident: bib8 article-title: Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 75 start-page: 3656 year: 2009 end-page: 3662 ident: bib12 article-title: Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum publication-title: Appl. Environ. Microbiol. – volume: 3 start-page: 379 year: 2011 end-page: 388 ident: bib4 article-title: Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils publication-title: Curr. Opin. Environ. Sustain. – volume: 398 start-page: 802 year: 1999 end-page: 805 ident: bib19 article-title: Methane-consuming archaebacteria in marine sediments publication-title: Nature – year: 2005 ident: bib1 article-title: Standard Methods for the Examination of Water and Wastewater – start-page: 659 year: 2013 end-page: 740 ident: bib30 article-title: Climate change 2013: the physical science basis publication-title: Contrib. Work. Group Fifth Assess. Rep. Intergov. Panel Clim. Change – volume: 16 start-page: 263 year: 2018 end-page: 276 ident: bib23 article-title: The microbial nitrogen-cycling network publication-title: Nat. Rev. Microbiol. – volume: 464 start-page: 543 year: 2010 end-page: 548 ident: bib11 article-title: Nitrite-driven anaerobic methane oxidation by oxygenic bacteria publication-title: Nature – volume: 500 start-page: 567 year: 2013 end-page: 570 ident: bib16 article-title: Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage publication-title: Nature – volume: 78 start-page: 445 year: 2012 end-page: 454 ident: bib27 article-title: Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil publication-title: Appl. Environ. Microbiol. – volume: 98 start-page: 187 year: 1993 end-page: 198 ident: bib29 article-title: Community structure and organization of tidepools publication-title: Mar. Ecol. Prog. Ser. – volume: 244 start-page: 228 year: 2019 end-page: 237 ident: bib18 article-title: Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers publication-title: Environ. Pollut. – volume: 100 start-page: 7171 year: 2016 end-page: 7180 ident: bib35 article-title: Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments publication-title: Appl. Microbiol. Biotechnol. – volume: 50 start-page: 222 year: 2018 end-page: 227 ident: bib42 article-title: Current perspectives on the application of N-damo and anammox in wastewater treatment publication-title: Curr. Opin. Biotechnol. – volume: 14 start-page: 1030 year: 2020 end-page: 1041 ident: bib24 article-title: Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae publication-title: ISME J. – volume: 140 year: 2020 ident: bib47 article-title: Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and archaea leads to effective methane filtration in a Tibetan alpine wetland publication-title: Environ. Int. – volume: 63 start-page: 311 year: 2009 end-page: 334 ident: bib22 article-title: Anaerobic oxidation of methane: progress with an unknown process publication-title: Annu. Rev. Microbiol. – volume: 100 start-page: 7727 year: 2016 end-page: 7739 ident: bib28 article-title: Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils publication-title: Appl. Microbiol. Biotechnol. – volume: 111 start-page: 4495 year: 2014 end-page: 4500 ident: bib21 article-title: Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 113 start-page: 12792 year: 2016 end-page: 12796 ident: bib13 article-title: Archaea catalyze iron-dependent anaerobic oxidation of methane publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 90 start-page: 856 year: 2013 end-page: 865 ident: bib39 article-title: Fluxes of nitrous oxide and methane in different coastal Suaeda salsa marshes of the Yellow River estuary, China publication-title: Chemosphere – volume: 24 start-page: 691 year: 2000 end-page: 710 ident: bib5 article-title: Life at the oxic–anoxic interface: microbial activities and adaptations publication-title: FEMS Microbiol. Rev. – volume: 164 start-page: 114935 year: 2019 ident: bib3 article-title: Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d publication-title: Water Res. – volume: 320 start-page: 889 year: 2008 end-page: 892 ident: bib15 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science – volume: 80 start-page: 7611 year: 2014 end-page: 7619 ident: bib37 article-title: Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field publication-title: Appl. Environ. Microbiol. – volume: 12 start-page: 1561 year: 2020 end-page: 1623 ident: bib34 article-title: The global methane budget 2000–2017 publication-title: Earth Syst. Sci. Data – volume: 440 start-page: 918 year: 2006 end-page: 921 ident: bib33 article-title: A microbial consortium couples anaerobic methane oxidation to denitrification publication-title: Nature – volume: 8 start-page: 2127 year: 2017 ident: bib41 article-title: Stratification of diversity and activity of methanogenic and methanotrophic microorganisms in a nitrogen-fertilized Italian paddy soil publication-title: Front. Microbiol. – volume: 73 start-page: 469 year: 2014 end-page: 477 ident: bib48 article-title: Seasonal and spatial dynamics of greenhouse gas emissions under various vegetation covers in a coastal saline wetland in southeast China publication-title: Ecol. Eng. – volume: 6 year: 2013 ident: bib17 article-title: Modelling a nitrite-dependent anaerobic methane oxidation process: parameters identification and model evaluation publication-title: Bioresour. Technol. – volume: 98 start-page: 5029 year: 2014 end-page: 5038 ident: bib38 article-title: Molecular evidence for nitrite-dependent anaerobic methane-oxidising bacteria in the Jiaojiang Estuary of the East Sea (China) publication-title: Appl. Microbiol. Biotechnol. – volume: 336 start-page: 79 year: 2012 end-page: 88 ident: bib45 article-title: Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil publication-title: FEMS Microbiol. Lett. – volume: 14 start-page: 1024 year: 2012 end-page: 1034 ident: bib26 article-title: Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis publication-title: Environ. Microbiol. – volume: 53 start-page: 203 year: 2018 end-page: 212 ident: bib44 article-title: Denitrifying anaerobic methane oxidation: a previously overlooked methane sink in intertidal zone publication-title: Environ. Sci. Technol. – volume: 8 start-page: 941 year: 2016 ident: 10.1016/j.envpol.2022.119090_bib46 article-title: Nitrate-and nitrite-dependent anaerobic oxidation of methane publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12487 – volume: 464 start-page: 543 year: 2010 ident: 10.1016/j.envpol.2022.119090_bib11 article-title: Nitrite-driven anaerobic methane oxidation by oxygenic bacteria publication-title: Nature doi: 10.1038/nature08883 – volume: 64 start-page: 289 year: 2018 ident: 10.1016/j.envpol.2022.119090_bib10 article-title: Water regime-nitrogen fertilizer incorporation interaction: field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2017.06.007 – volume: 360 start-page: 33 year: 2014 ident: 10.1016/j.envpol.2022.119090_bib50 article-title: High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile publication-title: FEMS Microbiol. Lett. doi: 10.1111/1574-6968.12567 – volume: 111 start-page: 4495 year: 2014 ident: 10.1016/j.envpol.2022.119090_bib21 article-title: Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1318393111 – volume: 320 start-page: 889 year: 2008 ident: 10.1016/j.envpol.2022.119090_bib15 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science doi: 10.1126/science.1136674 – volume: 83 start-page: 43 year: 2015 ident: 10.1016/j.envpol.2022.119090_bib36 article-title: Depth-specific distribution and importance of nitrite-dependent anaerobic ammonium and methane-oxidising bacteria in an urban wetland publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.01.010 – volume: 99 start-page: 9805 year: 2015 ident: 10.1016/j.envpol.2022.119090_bib9 article-title: New primers for detecting and quantifying denitrifying anaerobic methane oxidation archaea in different ecological niches publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-6893-6 – volume: 75 start-page: 3656 year: 2009 ident: 10.1016/j.envpol.2022.119090_bib12 article-title: Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00067-09 – volume: 244 start-page: 228 year: 2019 ident: 10.1016/j.envpol.2022.119090_bib18 article-title: Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.10.057 – volume: 12 start-page: 1561 year: 2020 ident: 10.1016/j.envpol.2022.119090_bib34 article-title: The global methane budget 2000–2017 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-12-1561-2020 – volume: 12 start-page: 59 year: 2015 ident: 10.1016/j.envpol.2022.119090_bib6 article-title: Fast and sensitive protein alignment using DIAMOND publication-title: Nat. Methods doi: 10.1038/nmeth.3176 – volume: 500 start-page: 567 year: 2013 ident: 10.1016/j.envpol.2022.119090_bib16 article-title: Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage publication-title: Nature doi: 10.1038/nature12375 – volume: 398 start-page: 802 year: 1999 ident: 10.1016/j.envpol.2022.119090_bib19 article-title: Methane-consuming archaebacteria in marine sediments publication-title: Nature doi: 10.1038/19751 – volume: 63 start-page: 311 year: 2009 ident: 10.1016/j.envpol.2022.119090_bib22 article-title: Anaerobic oxidation of methane: progress with an unknown process publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.61.080706.093130 – volume: 102 start-page: 3 year: 2016 ident: 10.1016/j.envpol.2022.119090_bib25 article-title: MEGAHIT v1. 0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices publication-title: Methods doi: 10.1016/j.ymeth.2016.02.020 – volume: 100 start-page: 7171 year: 2016 ident: 10.1016/j.envpol.2022.119090_bib35 article-title: Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7627-0 – volume: 627 start-page: 770 year: 2018 ident: 10.1016/j.envpol.2022.119090_bib49 article-title: Effects of different fertilizers on methane emissions and methanogenic community structures in paddy rhizosphere soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.233 – volume: 440 start-page: 918 year: 2006 ident: 10.1016/j.envpol.2022.119090_bib33 article-title: A microbial consortium couples anaerobic methane oxidation to denitrification publication-title: Nature doi: 10.1038/nature04617 – volume: 73 start-page: 469 year: 2014 ident: 10.1016/j.envpol.2022.119090_bib48 article-title: Seasonal and spatial dynamics of greenhouse gas emissions under various vegetation covers in a coastal saline wetland in southeast China publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.09.087 – volume: 10 start-page: 2067 year: 2016 ident: 10.1016/j.envpol.2022.119090_bib32 article-title: NC10 bacteria in marine oxygen minimum zones publication-title: ISME J. doi: 10.1038/ismej.2015.262 – volume: 70 start-page: 153 year: 2004 ident: 10.1016/j.envpol.2022.119090_bib14 article-title: Nitrogen cycles: past, present, and future publication-title: Biogeochemistry doi: 10.1007/s10533-004-0370-0 – start-page: 659 year: 2013 ident: 10.1016/j.envpol.2022.119090_bib30 article-title: Climate change 2013: the physical science basis publication-title: Contrib. Work. Group Fifth Assess. Rep. Intergov. Panel Clim. Change – volume: 336 start-page: 79 year: 2012 ident: 10.1016/j.envpol.2022.119090_bib45 article-title: Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2012.02654.x – volume: 14 start-page: 1030 year: 2020 ident: 10.1016/j.envpol.2022.119090_bib24 article-title: Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae publication-title: ISME J. doi: 10.1038/s41396-020-0590-x – volume: 50 start-page: 222 year: 2018 ident: 10.1016/j.envpol.2022.119090_bib42 article-title: Current perspectives on the application of N-damo and anammox in wastewater treatment publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2018.01.031 – year: 2005 ident: 10.1016/j.envpol.2022.119090_bib1 – volume: 12 start-page: 4965 year: 2015 ident: 10.1016/j.envpol.2022.119090_bib31 article-title: Factors influencing CO 2 and CH 4 emissions from coastal wetlands in the Liaohe Delta, Northeast China publication-title: Biogeosciences doi: 10.5194/bg-12-4965-2015 – volume: 53 start-page: 203 year: 2018 ident: 10.1016/j.envpol.2022.119090_bib44 article-title: Denitrifying anaerobic methane oxidation: a previously overlooked methane sink in intertidal zone publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05742 – volume: 14 start-page: 1024 year: 2012 ident: 10.1016/j.envpol.2022.119090_bib26 article-title: Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2011.02682.x – volume: 113 start-page: 12792 year: 2016 ident: 10.1016/j.envpol.2022.119090_bib13 article-title: Archaea catalyze iron-dependent anaerobic oxidation of methane publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1609534113 – volume: 101 start-page: 8007 year: 2017 ident: 10.1016/j.envpol.2022.119090_bib43 article-title: Spatial and temporal distribution of nitrite-dependent anaerobic methane-oxidizing bacteria in an intertidal zone of the East China Sea publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-017-8521-0 – volume: 12 start-page: 1929 year: 2018 ident: 10.1016/j.envpol.2022.119090_bib7 article-title: A methanotrophic archaeon couples anaerobic oxidation of methane to Fe (III) reduction publication-title: ISME J. doi: 10.1038/s41396-018-0109-x – volume: 78 start-page: 445 year: 2012 ident: 10.1016/j.envpol.2022.119090_bib27 article-title: Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.06934-11 – volume: 101 start-page: 1631 year: 2017 ident: 10.1016/j.envpol.2022.119090_bib40 article-title: McrA primers for the detection and quantification of the anaerobic archaeal methanotroph ‘Candidatus Methanoperedens nitroreducens publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-8065-8 – volume: 98 start-page: 187 year: 1993 ident: 10.1016/j.envpol.2022.119090_bib29 article-title: Community structure and organization of tidepools publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps098187 – volume: 140 year: 2020 ident: 10.1016/j.envpol.2022.119090_bib47 article-title: Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and archaea leads to effective methane filtration in a Tibetan alpine wetland publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105764 – volume: 164 start-page: 114935 year: 2019 ident: 10.1016/j.envpol.2022.119090_bib3 article-title: Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d publication-title: Water Res. doi: 10.1016/j.watres.2019.114935 – volume: 3 start-page: 379 year: 2011 ident: 10.1016/j.envpol.2022.119090_bib4 article-title: Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils publication-title: Curr. Opin. Environ. Sustain. doi: 10.1016/j.cosust.2011.06.002 – volume: 24 start-page: 691 year: 2000 ident: 10.1016/j.envpol.2022.119090_bib5 article-title: Life at the oxic–anoxic interface: microbial activities and adaptations publication-title: FEMS Microbiol. Rev. doi: 10.1016/S0168-6445(00)00054-1 – start-page: 1 year: 2019 ident: 10.1016/j.envpol.2022.119090_bib20 article-title: Coastal wetlands: a synthesis – volume: 16 start-page: 263 year: 2018 ident: 10.1016/j.envpol.2022.119090_bib23 article-title: The microbial nitrogen-cycling network publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2018.9 – volume: 100 start-page: 7727 year: 2016 ident: 10.1016/j.envpol.2022.119090_bib28 article-title: Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7585-6 – volume: 8 start-page: 2127 year: 2017 ident: 10.1016/j.envpol.2022.119090_bib41 article-title: Stratification of diversity and activity of methanogenic and methanotrophic microorganisms in a nitrogen-fertilized Italian paddy soil publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02127 – volume: 180 start-page: 68 year: 2013 ident: 10.1016/j.envpol.2022.119090_bib2 article-title: Nitrogen leaching from the root zone of sugarcane and bananas in the humid tropics of Australia publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2012.05.007 – volume: 111 start-page: 18273 year: 2014 ident: 10.1016/j.envpol.2022.119090_bib8 article-title: Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1411617111 – volume: 98 start-page: 5029 year: 2014 ident: 10.1016/j.envpol.2022.119090_bib38 article-title: Molecular evidence for nitrite-dependent anaerobic methane-oxidising bacteria in the Jiaojiang Estuary of the East Sea (China) publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-5556-3 – volume: 90 start-page: 856 year: 2013 ident: 10.1016/j.envpol.2022.119090_bib39 article-title: Fluxes of nitrous oxide and methane in different coastal Suaeda salsa marshes of the Yellow River estuary, China publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.10.004 – volume: 80 start-page: 7611 year: 2014 ident: 10.1016/j.envpol.2022.119090_bib37 article-title: Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02379-14 – volume: 6 year: 2013 ident: 10.1016/j.envpol.2022.119090_bib17 article-title: Modelling a nitrite-dependent anaerobic methane oxidation process: parameters identification and model evaluation publication-title: Bioresour. Technol. |
SSID | ssj0004333 |
Score | 2.5482605 |
Snippet | Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119090 |
SubjectTerms | Coastal wetland denitrification Denitrifying methanotrophs methane methane production Methane sink methanotrophs nitrates nitrites nitrogen nitrogen fertilizers Nitrogen input oxidation paddies Paddy soil paddy soils pollution sediments wetlands |
Title | Nitrogen input promotes denitrifying methanotrophs’ abundance and contribution to methane emission reduction in coastal wetland and paddy soil |
URI | https://dx.doi.org/10.1016/j.envpol.2022.119090 https://www.ncbi.nlm.nih.gov/pubmed/35240269 https://www.proquest.com/docview/2636143426 https://www.proquest.com/docview/2675561957 |
Volume | 302 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqcoEDgi2F5acyEuIWNrGdxD6uqlYLiL1Apd4iO3FEUHGiTZaql4pH4Mrr8STMOE4LElCJY-KxZXnG4xn7mxlCXoiY69KaGDjA0khkZRxJaVVkS1EbYS2TGmOH362z1Yl4c5qe7pDDKRYGYZVB94863Wvr8GcRVnPRNc3iPXgPYAyrhDH_vodBfELkKOWvLq9hHoKP5eSBOELqKXzOY7ys-9K1-ADBGOgOFaNm_vPx9Dfz0x9Dx_fI3WA_0uU4xftkx7oZ2Vs68J0_X9CX1CM6_VX5jNz5JdngjOwfXce0wQhhU_d75Nu6GTYtCBJtXLcdaOcReranoJKgpfGRUBRLTWvXAmX3sf_x9TvVBoNIYAiqXUU95D3UzqJDG8gtxXJyeCFHN5gj1rc2Dqh1j5M4twMiK_0IHejAC9q3zdkDcnJ89OFwFYVCDZEWiRyiFJPM1NKIEpPhgNubJ1pWlaiszLjhdVyDluDCKlODF6ytqmWWKaOrkum01AnfJ7uudfYRoSapcqmEZFxlQmttjKpTVsdWM47hRnPCJ_4UZchijsU0zooJrvapGLlaIFeLkatzEl316sYsHjfQ5xPri9-ksYCD5oaezydJKWCB8fUFFrvd9gXLOJhCHCyif9HkWK5UpfmcPBzF7Gq-YCkLlOLH_z23J-Q2fo1At6dkd9hs7TMwqQZz4PfMAbm1fP12tf4JGwoljw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbK9gAcEGwpLL9GQtyiTWznx8dV1WpL273QSr1ZduKIVCWJNllQbzwCV16PJ2HGcVqQgEpc47E18ozHM_E3M4S8FSHXuTUhSIDFgUjyMMgyKwObi9IIa1mmMXf4ZJUsz8T78_h8i-yNuTAIq_S2f7Dpzlr7L3O_m_O2quYfIHoAZ1hGjLn3PXmHbGN1qnhCtheHR8vVTXokHzrKA32AE8YMOgfzsvXntsE3CMbAfMgQjfOfb6i_eaDuJjp4SB54F5IuBi4fkS1bT8nOoobw-dMVfUcdqNP9LZ-S-7_UG5yS3f2btDZYwZ_rbod8W1X9ugFdolXdbnraOpCe7ShYJRipXDIUxW7Tum6Asv3Y_fj6nWqDeSSwBNV1QR3q3bfPon3jyS3FjnL4T46usUysG61qoNYdMvHF9giudCu0YAavaNdUl4_J2cH-6d4y8L0aAi2irA9irDNTZkbkWA8HIt800llRiMJmCTe8DEswFFxYaUoIhLWVZZYk0ugiZzrOdcR3yaRuavuUUBMVaSZFxrhMhNbaGFnGrAytZhwzjmaEj_JRuS9kjv00LtWIWLtQg1QVSlUNUp2R4HpWOxTyuIU-HUWvflNIBXfNLTPfjJqiYIPxAQY2u9l0iiUcvCEOTtG_aFLsWCrjdEaeDGp2zS84ywK1-Nl_8_aa3F2enhyr48PV0XNyD0cG3NsLMunXG_sSPKzevPIn6CcIxShA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+input+promotes+denitrifying+methanotrophs%27+abundance+and+contribution+to+methane+emission+reduction+in+coastal+wetland+and+paddy+soil&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Wang%2C+Jiaqi&rft.au=Yao%2C+Xiangwu&rft.au=Jia%2C+Zhongjun&rft.au=Zhu%2C+Lizhong&rft.date=2022-06-01&rft.eissn=1873-6424&rft.volume=302&rft.spage=119090&rft_id=info:doi/10.1016%2Fj.envpol.2022.119090&rft_id=info%3Apmid%2F35240269&rft.externalDocID=35240269 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |