Nitrogen input promotes denitrifying methanotrophs’ abundance and contribution to methane emission reduction in coastal wetland and paddy soil

Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane sink in natural habitats. Increasing nitrogen deposit around the globe brings increased availability of substrates for these microorganisms....

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 302; p. 119090
Main Authors Wang, Jiaqi, Yao, Xiangwu, Jia, Zhongjun, Zhu, Lizhong, Zheng, Ping, Kartal, Boran, Hu, Baolan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane sink in natural habitats. Increasing nitrogen deposit around the globe brings increased availability of substrates for these microorganisms. However, how elevated nitrogen level affects denitrifying methanotrophs has not been elucidated. In this study, sediment/soil samples from coastal wetland with continuous nitrogen input and paddy field with periodic nitrogen input were collected to investigate the influence of nitrogen input on the abundance and activity of denitrifying methanotrophs. The results indicated that nitrogen input significantly promoted DAMO microorganisms’ abundance and contribution to methane emission reduction. In the coastal wetland, the contribution rate of DAMO process to methane removal increased from 12.1% to 33.5% along with continuously elevated nitrogen level in the 3-year tracking study. In the paddy field, the DAMO process accounted for 71.9% of total methane removal when nitrogen fertilizer was applied during the growing season, exceeding the aerobic methane oxidation process. This work would help us better understand the microbial methane cycle and reduce uncertainties in the estimations of the global methane emission. [Display omitted] •N input promoted the abundance and activity of denitrifying methanotrophs.•Continuous N input increased contribution of DAMO process in coastal wetland.•Periodic N input led to high DAMO microbial abundance and activity in paddy soil.•Inorganic nitrogen is a key factor that influences methane oxidation and emission.
AbstractList Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane sink in natural habitats. Increasing nitrogen deposit around the globe brings increased availability of substrates for these microorganisms. However, how elevated nitrogen level affects denitrifying methanotrophs has not been elucidated. In this study, sediment/soil samples from coastal wetland with continuous nitrogen input and paddy field with periodic nitrogen input were collected to investigate the influence of nitrogen input on the abundance and activity of denitrifying methanotrophs. The results indicated that nitrogen input significantly promoted DAMO microorganisms' abundance and contribution to methane emission reduction. In the coastal wetland, the contribution rate of DAMO process to methane removal increased from 12.1% to 33.5% along with continuously elevated nitrogen level in the 3-year tracking study. In the paddy field, the DAMO process accounted for 71.9% of total methane removal when nitrogen fertilizer was applied during the growing season, exceeding the aerobic methane oxidation process. This work would help us better understand the microbial methane cycle and reduce uncertainties in the estimations of the global methane emission.
Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane sink in natural habitats. Increasing nitrogen deposit around the globe brings increased availability of substrates for these microorganisms. However, how elevated nitrogen level affects denitrifying methanotrophs has not been elucidated. In this study, sediment/soil samples from coastal wetland with continuous nitrogen input and paddy field with periodic nitrogen input were collected to investigate the influence of nitrogen input on the abundance and activity of denitrifying methanotrophs. The results indicated that nitrogen input significantly promoted DAMO microorganisms’ abundance and contribution to methane emission reduction. In the coastal wetland, the contribution rate of DAMO process to methane removal increased from 12.1% to 33.5% along with continuously elevated nitrogen level in the 3-year tracking study. In the paddy field, the DAMO process accounted for 71.9% of total methane removal when nitrogen fertilizer was applied during the growing season, exceeding the aerobic methane oxidation process. This work would help us better understand the microbial methane cycle and reduce uncertainties in the estimations of the global methane emission. [Display omitted] •N input promoted the abundance and activity of denitrifying methanotrophs.•Continuous N input increased contribution of DAMO process in coastal wetland.•Periodic N input led to high DAMO microbial abundance and activity in paddy soil.•Inorganic nitrogen is a key factor that influences methane oxidation and emission.
Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane sink in natural habitats. Increasing nitrogen deposit around the globe brings increased availability of substrates for these microorganisms. However, how elevated nitrogen level affects denitrifying methanotrophs has not been elucidated. In this study, sediment/soil samples from coastal wetland with continuous nitrogen input and paddy field with periodic nitrogen input were collected to investigate the influence of nitrogen input on the abundance and activity of denitrifying methanotrophs. The results indicated that nitrogen input significantly promoted DAMO microorganisms' abundance and contribution to methane emission reduction. In the coastal wetland, the contribution rate of DAMO process to methane removal increased from 12.1% to 33.5% along with continuously elevated nitrogen level in the 3-year tracking study. In the paddy field, the DAMO process accounted for 71.9% of total methane removal when nitrogen fertilizer was applied during the growing season, exceeding the aerobic methane oxidation process. This work would help us better understand the microbial methane cycle and reduce uncertainties in the estimations of the global methane emission.Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane sink in natural habitats. Increasing nitrogen deposit around the globe brings increased availability of substrates for these microorganisms. However, how elevated nitrogen level affects denitrifying methanotrophs has not been elucidated. In this study, sediment/soil samples from coastal wetland with continuous nitrogen input and paddy field with periodic nitrogen input were collected to investigate the influence of nitrogen input on the abundance and activity of denitrifying methanotrophs. The results indicated that nitrogen input significantly promoted DAMO microorganisms' abundance and contribution to methane emission reduction. In the coastal wetland, the contribution rate of DAMO process to methane removal increased from 12.1% to 33.5% along with continuously elevated nitrogen level in the 3-year tracking study. In the paddy field, the DAMO process accounted for 71.9% of total methane removal when nitrogen fertilizer was applied during the growing season, exceeding the aerobic methane oxidation process. This work would help us better understand the microbial methane cycle and reduce uncertainties in the estimations of the global methane emission.
ArticleNumber 119090
Author Jia, Zhongjun
Zhu, Lizhong
Yao, Xiangwu
Kartal, Boran
Zheng, Ping
Wang, Jiaqi
Hu, Baolan
Author_xml – sequence: 1
  givenname: Jiaqi
  surname: Wang
  fullname: Wang, Jiaqi
  organization: Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
– sequence: 2
  givenname: Xiangwu
  surname: Yao
  fullname: Yao, Xiangwu
  organization: Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
– sequence: 3
  givenname: Zhongjun
  surname: Jia
  fullname: Jia, Zhongjun
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
– sequence: 4
  givenname: Lizhong
  surname: Zhu
  fullname: Zhu, Lizhong
  organization: Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
– sequence: 5
  givenname: Ping
  surname: Zheng
  fullname: Zheng, Ping
  organization: Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
– sequence: 6
  givenname: Boran
  surname: Kartal
  fullname: Kartal, Boran
  organization: Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
– sequence: 7
  givenname: Baolan
  surname: Hu
  fullname: Hu, Baolan
  email: blhu@zju.edu.cn
  organization: Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35240269$$D View this record in MEDLINE/PubMed
BookMark eNqNkctuFDEQRS2UiEwG_gAhL9n04Fe_WCChiJcUhQ2sLbddnXjUbTe2O9Hs-IRs83t8CW56YMECWFgl-Z5bqqp7jk6cd4DQM0p2lNDq5X4H7nbyw44RxnaUtqQlj9CGNjUvKsHECdoQVrVFLVp6hs5j3BNCBOf8MTrjJROLuEH3VzYFfw0OWzfNCU_Bjz5BxAZcVmx_sO4aj5BulPOZnG7i928PWHWzM8ppwMoZrL3LaDcn6x1O_ogDhtHGuPwFMLP-qVqXaRWTGvAdpGFxL29Sxhxw9HZ4gk57NUR4eqxb9OXd288XH4rLT-8_Xry5LJSgTSpKIlrRN53QrBa0prymqjFGGGgq3vGe9E1DuIC26wmrFbR9U1Vtp4xmqtSK8i16sfbNG3-dISaZh9Uw5JHAz1Gyqi7LirZl_R8or6jgItcten5E524EI6dgRxUO8tfBMyBWQAcfY4D-N0KJXHKVe7nmKpdc5Zprtr36w6ZtUstFU1B2-Jf59WqGfM9bC0FGbSGHZ2wAnaTx9u8NfgDRUsTT
CitedBy_id crossref_primary_10_3389_fmars_2022_1038400
crossref_primary_10_1016_j_jclepro_2024_140600
crossref_primary_10_1016_j_chemosphere_2023_138295
crossref_primary_10_1016_j_ibiod_2024_105990
crossref_primary_10_1016_j_ejsobi_2023_103592
crossref_primary_10_1016_j_scitotenv_2022_155375
crossref_primary_10_3390_su14106044
crossref_primary_10_1093_femsle_fnad041
crossref_primary_10_1016_j_scitotenv_2023_161437
crossref_primary_10_1038_s41598_024_65300_0
crossref_primary_10_1016_j_scitotenv_2024_171081
crossref_primary_10_1038_s41564_023_01578_6
crossref_primary_10_1016_j_soilbio_2024_109425
crossref_primary_10_1016_j_catena_2023_107451
crossref_primary_10_1016_j_jclepro_2024_144372
crossref_primary_10_3390_microorganisms12112259
crossref_primary_10_1007_s00203_025_04285_4
crossref_primary_10_1016_j_isci_2024_111237
crossref_primary_10_1016_j_ecoenv_2024_117317
crossref_primary_10_1016_j_scitotenv_2023_169311
crossref_primary_10_1016_j_scitotenv_2024_173134
crossref_primary_10_1080_10643389_2024_2410056
crossref_primary_10_3390_microorganisms11061552
crossref_primary_10_1007_s00374_024_01855_4
crossref_primary_10_1016_j_scitotenv_2024_174287
crossref_primary_10_1016_j_scitotenv_2024_176660
crossref_primary_10_1016_j_scitotenv_2024_172065
crossref_primary_10_1016_j_watres_2024_121802
crossref_primary_10_1016_j_envres_2022_115174
crossref_primary_10_1016_j_scitotenv_2022_159096
crossref_primary_10_3390_plants13223223
crossref_primary_10_1038_s43247_024_01635_w
crossref_primary_10_1016_j_scitotenv_2023_166049
crossref_primary_10_1016_j_agrformet_2023_109792
crossref_primary_10_1016_j_cub_2024_06_063
crossref_primary_10_1016_j_soilbio_2023_109130
Cites_doi 10.1111/1758-2229.12487
10.1038/nature08883
10.1016/j.jes.2017.06.007
10.1111/1574-6968.12567
10.1073/pnas.1318393111
10.1126/science.1136674
10.1016/j.soilbio.2015.01.010
10.1007/s00253-015-6893-6
10.1128/AEM.00067-09
10.1016/j.envpol.2018.10.057
10.5194/essd-12-1561-2020
10.1038/nmeth.3176
10.1038/nature12375
10.1038/19751
10.1146/annurev.micro.61.080706.093130
10.1016/j.ymeth.2016.02.020
10.1007/s00253-016-7627-0
10.1016/j.scitotenv.2018.01.233
10.1038/nature04617
10.1016/j.ecoleng.2014.09.087
10.1038/ismej.2015.262
10.1007/s10533-004-0370-0
10.1111/j.1574-6968.2012.02654.x
10.1038/s41396-020-0590-x
10.1016/j.copbio.2018.01.031
10.5194/bg-12-4965-2015
10.1021/acs.est.8b05742
10.1111/j.1462-2920.2011.02682.x
10.1073/pnas.1609534113
10.1007/s00253-017-8521-0
10.1038/s41396-018-0109-x
10.1128/AEM.06934-11
10.1007/s00253-016-8065-8
10.3354/meps098187
10.1016/j.envint.2020.105764
10.1016/j.watres.2019.114935
10.1016/j.cosust.2011.06.002
10.1016/S0168-6445(00)00054-1
10.1038/nrmicro.2018.9
10.1007/s00253-016-7585-6
10.3389/fmicb.2017.02127
10.1016/j.agee.2012.05.007
10.1073/pnas.1411617111
10.1007/s00253-014-5556-3
10.1016/j.chemosphere.2012.10.004
10.1128/AEM.02379-14
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2022.119090
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 35240269
10_1016_j_envpol_2022_119090
S0269749122003049
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5VS
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
XPP
ZMT
~G-
29G
53G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
OHT
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
XJT
XOL
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a418t-50494f8b4c274171371a8dd4de863b3f0f88034e9bf027ae9f8669badc2a5ca13
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Thu Jul 10 22:56:49 EDT 2025
Thu Jul 10 17:39:14 EDT 2025
Wed Feb 19 02:26:38 EST 2025
Tue Jul 01 03:15:19 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Fri Feb 23 02:39:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Methane sink
Denitrifying methanotrophs
Coastal wetland
Nitrogen input
Paddy soil
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a418t-50494f8b4c274171371a8dd4de863b3f0f88034e9bf027ae9f8669badc2a5ca13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35240269
PQID 2636143426
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2675561957
proquest_miscellaneous_2636143426
pubmed_primary_35240269
crossref_primary_10_1016_j_envpol_2022_119090
crossref_citationtrail_10_1016_j_envpol_2022_119090
elsevier_sciencedirect_doi_10_1016_j_envpol_2022_119090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
2022-06-00
2022-Jun-01
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dong, Guo, Xu, Song, Zhang, Tang, Zhang, Leng, Liu, Wang, others (bib10) 2018; 64
Olsson, Ye, Yu, Wei, Krauss, Brix (bib31) 2015; 12
Zhou, Wang, Long, Guo, Zhu (bib50) 2014; 360
Bodelier (bib4) 2011; 3
Galloway, Dentener, Capone, Boyer, Howarth, Seitzinger, Asner, Cleveland, Green, Holland, others (bib14) 2004; 70
Welte, Rasigraf, Vaksmaa, Versantvoort, Arshad, Op den Camp, Jetten, Lüke, Reimann (bib46) 2016; 8
(bib1) 2005
van Kessel, Stultiens, Slegers, Cruz, Jetten, Kartal, den Camp (bib42) 2018; 50
Vaksmaa, Jetten, Ettwig, Lüke (bib40) 2017; 101
Wang, Zhu, Harhangi, Zhu, Jetten, Yin, Op den Camp (bib45) 2012; 336
Ettwig, Butler, Le Paslier, Pelletier, Mangenot, Kuypers, Schreiber, Dutilh, Zedelius, de Beer, others (bib11) 2010; 464
Knittel, Boetius (bib22) 2009; 63
Saunois, Stavert, Poulter, Bousquet, Canadell, Jackson, Raymond, Dlugokencky, Houweling, Patra, others (bib34) 2020; 12
Raghoebarsing, Pol, Van de Pas-Schoonen, Smolders, Ettwig, Rijpstra, Schouten, Damsté, den Camp, Jetten, others (bib33) 2006; 440
Galloway, Townsend, Erisman, Bekunda, Cai, Freney, Martinelli, Seitzinger, Sutton (bib15) 2008; 320
Yuan, Yuan, Zhu, Cao (bib49) 2018; 627
Leu, Cai, McIlroy, Southam, Orphan, Yuan, Hu, Tyson (bib24) 2020; 14
Xie, Ma, Zhou, Liang, Yin, Ma, Zhuang, Zhuang (bib47) 2020; 140
Li, Luo, Liu, Leung, Ting, Sadakane, Yamashita, Lam (bib25) 2016; 102
Hinrichs, Hayes, Sylva, Brewer, DeLong (bib19) 1999; 398
Myhre, Shindell, Bréon, Collins, Fuglestvedt, Huang, Koch, Lamarque, Lee, Mendoza, others (bib30) 2013
He, Wang, Hu, Yu, Jetten, Liu, Cai, Liu, Ren, Zhang, others (bib18) 2019; 244
Bai, Wang, Wu, Lu, Fu, Zhang, Lau, Zeng (bib3) 2019; 164
Hopkinson, Wolanski, Cahoon, Perillo, Brinson (bib20) 2019
Ettwig, Van Alen, van de Pas-Schoonen, Jetten, Strous (bib12) 2009; 75
Kuypers, Marchant, Kartal (bib23) 2018; 16
Shen, Zhu, Liu, Du, Zeng, Cheng, Xu, Zheng, Hu (bib38) 2014; 98
Luesken, Wu, Op den Camp, Keltjens, Stunnenberg, Francoijs, Strous, Jetten (bib26) 2012; 14
Shen, Liu, Huang, Lian, He, Geng, Jin, He, Lou, Xu, others (bib37) 2014; 80
Meng, Wang, Chan, Wu, Gu (bib28) 2016; 100
Sun, Wang, Tian, Jiang, Mou, Sun (bib39) 2013; 90
Xu, Zou, Cao, Zhamangulova, Zhao, Tang, Liu (bib48) 2014; 73
Buchfink, Xie, Huson (bib6) 2015; 12
Shen, Hu, Liu, Chai, He, Ren, Liu, Geng, Wang, Tang, others (bib35) 2016; 100
Armour, Nelson, Daniells, Rasiah, Inman-Bamber (bib2) 2013; 180
Wang, Cai, Li, Hua, Wang, Yang, Zheng, Hu (bib44) 2018; 53
Ding, Ding, Fu, Lu, Cheng, Zeng (bib9) 2015; 99
He, Cai, Geng, Lou, Xu, Zheng, Hu (bib17) 2013; 6
Wang, Shen, He, Hu, Cai, Zheng, Hu (bib43) 2017; 101
Vaksmaa, van Alen, Ettwig, Lupotto, Valè, Jetten, Lüke (bib41) 2017; 8
Haroon, Hu, Shi, Imelfort, Keller, Hugenholtz, Yuan, Tyson (bib16) 2013; 500
Deutzmann, Stief, Brandes, Schink (bib8) 2014; 111
Metaxas, Scheibling (bib29) 1993; 98
Cai, Leu, Xie, Guo, Feng, Zhao, Tyson, Yuan, Hu (bib7) 2018; 12
Hu, Shen, Lian, Zhu, Liu, Huang, He, Geng, Cheng, Lou, others (bib21) 2014; 111
Shen, Liu, He, Lian, Huang, He, Lou, Xu, Zheng, Hu (bib36) 2015; 83
Brune, Frenzel, Cypionka (bib5) 2000; 24
Ma, Conrad, Lu (bib27) 2012; 78
Padilla, Bristow, Sarode, Garcia-Robledo, Ramírez, Benson, Bourbonnais, Altabet, Girguis, Thamdrup, others (bib32) 2016; 10
Ettwig, Zhu, Speth, Keltjens, Jetten, Kartal (bib13) 2016; 113
Bodelier (10.1016/j.envpol.2022.119090_bib4) 2011; 3
Haroon (10.1016/j.envpol.2022.119090_bib16) 2013; 500
Bai (10.1016/j.envpol.2022.119090_bib3) 2019; 164
Welte (10.1016/j.envpol.2022.119090_bib46) 2016; 8
Myhre (10.1016/j.envpol.2022.119090_bib30) 2013
Xie (10.1016/j.envpol.2022.119090_bib47) 2020; 140
Kuypers (10.1016/j.envpol.2022.119090_bib23) 2018; 16
Raghoebarsing (10.1016/j.envpol.2022.119090_bib33) 2006; 440
Meng (10.1016/j.envpol.2022.119090_bib28) 2016; 100
Galloway (10.1016/j.envpol.2022.119090_bib14) 2004; 70
Wang (10.1016/j.envpol.2022.119090_bib45) 2012; 336
He (10.1016/j.envpol.2022.119090_bib17) 2013; 6
Metaxas (10.1016/j.envpol.2022.119090_bib29) 1993; 98
Zhou (10.1016/j.envpol.2022.119090_bib50) 2014; 360
He (10.1016/j.envpol.2022.119090_bib18) 2019; 244
Ding (10.1016/j.envpol.2022.119090_bib9) 2015; 99
Leu (10.1016/j.envpol.2022.119090_bib24) 2020; 14
Buchfink (10.1016/j.envpol.2022.119090_bib6) 2015; 12
Shen (10.1016/j.envpol.2022.119090_bib35) 2016; 100
Wang (10.1016/j.envpol.2022.119090_bib44) 2018; 53
Hu (10.1016/j.envpol.2022.119090_bib21) 2014; 111
Olsson (10.1016/j.envpol.2022.119090_bib31) 2015; 12
Armour (10.1016/j.envpol.2022.119090_bib2) 2013; 180
Xu (10.1016/j.envpol.2022.119090_bib48) 2014; 73
Luesken (10.1016/j.envpol.2022.119090_bib26) 2012; 14
(10.1016/j.envpol.2022.119090_bib1) 2005
Dong (10.1016/j.envpol.2022.119090_bib10) 2018; 64
Li (10.1016/j.envpol.2022.119090_bib25) 2016; 102
Cai (10.1016/j.envpol.2022.119090_bib7) 2018; 12
Brune (10.1016/j.envpol.2022.119090_bib5) 2000; 24
Ettwig (10.1016/j.envpol.2022.119090_bib11) 2010; 464
Wang (10.1016/j.envpol.2022.119090_bib43) 2017; 101
Galloway (10.1016/j.envpol.2022.119090_bib15) 2008; 320
Hinrichs (10.1016/j.envpol.2022.119090_bib19) 1999; 398
Saunois (10.1016/j.envpol.2022.119090_bib34) 2020; 12
Shen (10.1016/j.envpol.2022.119090_bib38) 2014; 98
Vaksmaa (10.1016/j.envpol.2022.119090_bib41) 2017; 8
Ettwig (10.1016/j.envpol.2022.119090_bib13) 2016; 113
van Kessel (10.1016/j.envpol.2022.119090_bib42) 2018; 50
Yuan (10.1016/j.envpol.2022.119090_bib49) 2018; 627
Shen (10.1016/j.envpol.2022.119090_bib36) 2015; 83
Sun (10.1016/j.envpol.2022.119090_bib39) 2013; 90
Padilla (10.1016/j.envpol.2022.119090_bib32) 2016; 10
Knittel (10.1016/j.envpol.2022.119090_bib22) 2009; 63
Hopkinson (10.1016/j.envpol.2022.119090_bib20) 2019
Shen (10.1016/j.envpol.2022.119090_bib37) 2014; 80
Ettwig (10.1016/j.envpol.2022.119090_bib12) 2009; 75
Ma (10.1016/j.envpol.2022.119090_bib27) 2012; 78
Vaksmaa (10.1016/j.envpol.2022.119090_bib40) 2017; 101
Deutzmann (10.1016/j.envpol.2022.119090_bib8) 2014; 111
References_xml – volume: 83
  start-page: 43
  year: 2015
  end-page: 51
  ident: bib36
  article-title: Depth-specific distribution and importance of nitrite-dependent anaerobic ammonium and methane-oxidising bacteria in an urban wetland
  publication-title: Soil Biol. Biochem.
– volume: 627
  start-page: 770
  year: 2018
  end-page: 781
  ident: bib49
  article-title: Effects of different fertilizers on methane emissions and methanogenic community structures in paddy rhizosphere soil
  publication-title: Sci. Total Environ.
– volume: 70
  start-page: 153
  year: 2004
  end-page: 226
  ident: bib14
  article-title: Nitrogen cycles: past, present, and future
  publication-title: Biogeochemistry
– start-page: 1
  year: 2019
  end-page: 75
  ident: bib20
  article-title: Coastal wetlands: a synthesis
  publication-title: Coastal Wetlands
– volume: 10
  start-page: 2067
  year: 2016
  end-page: 2071
  ident: bib32
  article-title: NC10 bacteria in marine oxygen minimum zones
  publication-title: ISME J.
– volume: 64
  start-page: 289
  year: 2018
  end-page: 297
  ident: bib10
  article-title: Water regime-nitrogen fertilizer incorporation interaction: field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China
  publication-title: J. Environ. Sci.
– volume: 101
  start-page: 8007
  year: 2017
  end-page: 8014
  ident: bib43
  article-title: Spatial and temporal distribution of nitrite-dependent anaerobic methane-oxidizing bacteria in an intertidal zone of the East China Sea
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 180
  start-page: 68
  year: 2013
  end-page: 78
  ident: bib2
  article-title: Nitrogen leaching from the root zone of sugarcane and bananas in the humid tropics of Australia
  publication-title: Agric. Ecosyst. Environ.
– volume: 12
  start-page: 1929
  year: 2018
  end-page: 1939
  ident: bib7
  article-title: A methanotrophic archaeon couples anaerobic oxidation of methane to Fe (III) reduction
  publication-title: ISME J.
– volume: 12
  start-page: 4965
  year: 2015
  end-page: 4977
  ident: bib31
  article-title: Factors influencing CO 2 and CH 4 emissions from coastal wetlands in the Liaohe Delta, Northeast China
  publication-title: Biogeosciences
– volume: 101
  start-page: 1631
  year: 2017
  end-page: 1641
  ident: bib40
  article-title: McrA primers for the detection and quantification of the anaerobic archaeal methanotroph ‘Candidatus Methanoperedens nitroreducens
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 102
  start-page: 3
  year: 2016
  end-page: 11
  ident: bib25
  article-title: MEGAHIT v1. 0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices
  publication-title: Methods
– volume: 8
  start-page: 941
  year: 2016
  end-page: 955
  ident: bib46
  article-title: Nitrate-and nitrite-dependent anaerobic oxidation of methane
  publication-title: Environ. Microbiol. Rep.
– volume: 99
  start-page: 9805
  year: 2015
  end-page: 9812
  ident: bib9
  article-title: New primers for detecting and quantifying denitrifying anaerobic methane oxidation archaea in different ecological niches
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 12
  start-page: 59
  year: 2015
  end-page: 60
  ident: bib6
  article-title: Fast and sensitive protein alignment using DIAMOND
  publication-title: Nat. Methods
– volume: 360
  start-page: 33
  year: 2014
  end-page: 41
  ident: bib50
  article-title: High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile
  publication-title: FEMS Microbiol. Lett.
– volume: 111
  start-page: 18273
  year: 2014
  end-page: 18278
  ident: bib8
  article-title: Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 75
  start-page: 3656
  year: 2009
  end-page: 3662
  ident: bib12
  article-title: Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum
  publication-title: Appl. Environ. Microbiol.
– volume: 3
  start-page: 379
  year: 2011
  end-page: 388
  ident: bib4
  article-title: Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils
  publication-title: Curr. Opin. Environ. Sustain.
– volume: 398
  start-page: 802
  year: 1999
  end-page: 805
  ident: bib19
  article-title: Methane-consuming archaebacteria in marine sediments
  publication-title: Nature
– year: 2005
  ident: bib1
  article-title: Standard Methods for the Examination of Water and Wastewater
– start-page: 659
  year: 2013
  end-page: 740
  ident: bib30
  article-title: Climate change 2013: the physical science basis
  publication-title: Contrib. Work. Group Fifth Assess. Rep. Intergov. Panel Clim. Change
– volume: 16
  start-page: 263
  year: 2018
  end-page: 276
  ident: bib23
  article-title: The microbial nitrogen-cycling network
  publication-title: Nat. Rev. Microbiol.
– volume: 464
  start-page: 543
  year: 2010
  end-page: 548
  ident: bib11
  article-title: Nitrite-driven anaerobic methane oxidation by oxygenic bacteria
  publication-title: Nature
– volume: 500
  start-page: 567
  year: 2013
  end-page: 570
  ident: bib16
  article-title: Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage
  publication-title: Nature
– volume: 78
  start-page: 445
  year: 2012
  end-page: 454
  ident: bib27
  article-title: Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil
  publication-title: Appl. Environ. Microbiol.
– volume: 98
  start-page: 187
  year: 1993
  end-page: 198
  ident: bib29
  article-title: Community structure and organization of tidepools
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 244
  start-page: 228
  year: 2019
  end-page: 237
  ident: bib18
  article-title: Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers
  publication-title: Environ. Pollut.
– volume: 100
  start-page: 7171
  year: 2016
  end-page: 7180
  ident: bib35
  article-title: Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 50
  start-page: 222
  year: 2018
  end-page: 227
  ident: bib42
  article-title: Current perspectives on the application of N-damo and anammox in wastewater treatment
  publication-title: Curr. Opin. Biotechnol.
– volume: 14
  start-page: 1030
  year: 2020
  end-page: 1041
  ident: bib24
  article-title: Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae
  publication-title: ISME J.
– volume: 140
  year: 2020
  ident: bib47
  article-title: Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and archaea leads to effective methane filtration in a Tibetan alpine wetland
  publication-title: Environ. Int.
– volume: 63
  start-page: 311
  year: 2009
  end-page: 334
  ident: bib22
  article-title: Anaerobic oxidation of methane: progress with an unknown process
  publication-title: Annu. Rev. Microbiol.
– volume: 100
  start-page: 7727
  year: 2016
  end-page: 7739
  ident: bib28
  article-title: Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 111
  start-page: 4495
  year: 2014
  end-page: 4500
  ident: bib21
  article-title: Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 113
  start-page: 12792
  year: 2016
  end-page: 12796
  ident: bib13
  article-title: Archaea catalyze iron-dependent anaerobic oxidation of methane
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 90
  start-page: 856
  year: 2013
  end-page: 865
  ident: bib39
  article-title: Fluxes of nitrous oxide and methane in different coastal Suaeda salsa marshes of the Yellow River estuary, China
  publication-title: Chemosphere
– volume: 24
  start-page: 691
  year: 2000
  end-page: 710
  ident: bib5
  article-title: Life at the oxic–anoxic interface: microbial activities and adaptations
  publication-title: FEMS Microbiol. Rev.
– volume: 164
  start-page: 114935
  year: 2019
  ident: bib3
  article-title: Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d
  publication-title: Water Res.
– volume: 320
  start-page: 889
  year: 2008
  end-page: 892
  ident: bib15
  article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions
  publication-title: Science
– volume: 80
  start-page: 7611
  year: 2014
  end-page: 7619
  ident: bib37
  article-title: Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field
  publication-title: Appl. Environ. Microbiol.
– volume: 12
  start-page: 1561
  year: 2020
  end-page: 1623
  ident: bib34
  article-title: The global methane budget 2000–2017
  publication-title: Earth Syst. Sci. Data
– volume: 440
  start-page: 918
  year: 2006
  end-page: 921
  ident: bib33
  article-title: A microbial consortium couples anaerobic methane oxidation to denitrification
  publication-title: Nature
– volume: 8
  start-page: 2127
  year: 2017
  ident: bib41
  article-title: Stratification of diversity and activity of methanogenic and methanotrophic microorganisms in a nitrogen-fertilized Italian paddy soil
  publication-title: Front. Microbiol.
– volume: 73
  start-page: 469
  year: 2014
  end-page: 477
  ident: bib48
  article-title: Seasonal and spatial dynamics of greenhouse gas emissions under various vegetation covers in a coastal saline wetland in southeast China
  publication-title: Ecol. Eng.
– volume: 6
  year: 2013
  ident: bib17
  article-title: Modelling a nitrite-dependent anaerobic methane oxidation process: parameters identification and model evaluation
  publication-title: Bioresour. Technol.
– volume: 98
  start-page: 5029
  year: 2014
  end-page: 5038
  ident: bib38
  article-title: Molecular evidence for nitrite-dependent anaerobic methane-oxidising bacteria in the Jiaojiang Estuary of the East Sea (China)
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 336
  start-page: 79
  year: 2012
  end-page: 88
  ident: bib45
  article-title: Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil
  publication-title: FEMS Microbiol. Lett.
– volume: 14
  start-page: 1024
  year: 2012
  end-page: 1034
  ident: bib26
  article-title: Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis
  publication-title: Environ. Microbiol.
– volume: 53
  start-page: 203
  year: 2018
  end-page: 212
  ident: bib44
  article-title: Denitrifying anaerobic methane oxidation: a previously overlooked methane sink in intertidal zone
  publication-title: Environ. Sci. Technol.
– volume: 8
  start-page: 941
  year: 2016
  ident: 10.1016/j.envpol.2022.119090_bib46
  article-title: Nitrate-and nitrite-dependent anaerobic oxidation of methane
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/1758-2229.12487
– volume: 464
  start-page: 543
  year: 2010
  ident: 10.1016/j.envpol.2022.119090_bib11
  article-title: Nitrite-driven anaerobic methane oxidation by oxygenic bacteria
  publication-title: Nature
  doi: 10.1038/nature08883
– volume: 64
  start-page: 289
  year: 2018
  ident: 10.1016/j.envpol.2022.119090_bib10
  article-title: Water regime-nitrogen fertilizer incorporation interaction: field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2017.06.007
– volume: 360
  start-page: 33
  year: 2014
  ident: 10.1016/j.envpol.2022.119090_bib50
  article-title: High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/1574-6968.12567
– volume: 111
  start-page: 4495
  year: 2014
  ident: 10.1016/j.envpol.2022.119090_bib21
  article-title: Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1318393111
– volume: 320
  start-page: 889
  year: 2008
  ident: 10.1016/j.envpol.2022.119090_bib15
  article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions
  publication-title: Science
  doi: 10.1126/science.1136674
– volume: 83
  start-page: 43
  year: 2015
  ident: 10.1016/j.envpol.2022.119090_bib36
  article-title: Depth-specific distribution and importance of nitrite-dependent anaerobic ammonium and methane-oxidising bacteria in an urban wetland
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.01.010
– volume: 99
  start-page: 9805
  year: 2015
  ident: 10.1016/j.envpol.2022.119090_bib9
  article-title: New primers for detecting and quantifying denitrifying anaerobic methane oxidation archaea in different ecological niches
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-015-6893-6
– volume: 75
  start-page: 3656
  year: 2009
  ident: 10.1016/j.envpol.2022.119090_bib12
  article-title: Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00067-09
– volume: 244
  start-page: 228
  year: 2019
  ident: 10.1016/j.envpol.2022.119090_bib18
  article-title: Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.10.057
– volume: 12
  start-page: 1561
  year: 2020
  ident: 10.1016/j.envpol.2022.119090_bib34
  article-title: The global methane budget 2000–2017
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-12-1561-2020
– volume: 12
  start-page: 59
  year: 2015
  ident: 10.1016/j.envpol.2022.119090_bib6
  article-title: Fast and sensitive protein alignment using DIAMOND
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3176
– volume: 500
  start-page: 567
  year: 2013
  ident: 10.1016/j.envpol.2022.119090_bib16
  article-title: Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage
  publication-title: Nature
  doi: 10.1038/nature12375
– volume: 398
  start-page: 802
  year: 1999
  ident: 10.1016/j.envpol.2022.119090_bib19
  article-title: Methane-consuming archaebacteria in marine sediments
  publication-title: Nature
  doi: 10.1038/19751
– volume: 63
  start-page: 311
  year: 2009
  ident: 10.1016/j.envpol.2022.119090_bib22
  article-title: Anaerobic oxidation of methane: progress with an unknown process
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.61.080706.093130
– volume: 102
  start-page: 3
  year: 2016
  ident: 10.1016/j.envpol.2022.119090_bib25
  article-title: MEGAHIT v1. 0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.02.020
– volume: 100
  start-page: 7171
  year: 2016
  ident: 10.1016/j.envpol.2022.119090_bib35
  article-title: Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-016-7627-0
– volume: 627
  start-page: 770
  year: 2018
  ident: 10.1016/j.envpol.2022.119090_bib49
  article-title: Effects of different fertilizers on methane emissions and methanogenic community structures in paddy rhizosphere soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.233
– volume: 440
  start-page: 918
  year: 2006
  ident: 10.1016/j.envpol.2022.119090_bib33
  article-title: A microbial consortium couples anaerobic methane oxidation to denitrification
  publication-title: Nature
  doi: 10.1038/nature04617
– volume: 73
  start-page: 469
  year: 2014
  ident: 10.1016/j.envpol.2022.119090_bib48
  article-title: Seasonal and spatial dynamics of greenhouse gas emissions under various vegetation covers in a coastal saline wetland in southeast China
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2014.09.087
– volume: 10
  start-page: 2067
  year: 2016
  ident: 10.1016/j.envpol.2022.119090_bib32
  article-title: NC10 bacteria in marine oxygen minimum zones
  publication-title: ISME J.
  doi: 10.1038/ismej.2015.262
– volume: 70
  start-page: 153
  year: 2004
  ident: 10.1016/j.envpol.2022.119090_bib14
  article-title: Nitrogen cycles: past, present, and future
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-004-0370-0
– start-page: 659
  year: 2013
  ident: 10.1016/j.envpol.2022.119090_bib30
  article-title: Climate change 2013: the physical science basis
  publication-title: Contrib. Work. Group Fifth Assess. Rep. Intergov. Panel Clim. Change
– volume: 336
  start-page: 79
  year: 2012
  ident: 10.1016/j.envpol.2022.119090_bib45
  article-title: Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2012.02654.x
– volume: 14
  start-page: 1030
  year: 2020
  ident: 10.1016/j.envpol.2022.119090_bib24
  article-title: Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae
  publication-title: ISME J.
  doi: 10.1038/s41396-020-0590-x
– volume: 50
  start-page: 222
  year: 2018
  ident: 10.1016/j.envpol.2022.119090_bib42
  article-title: Current perspectives on the application of N-damo and anammox in wastewater treatment
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2018.01.031
– year: 2005
  ident: 10.1016/j.envpol.2022.119090_bib1
– volume: 12
  start-page: 4965
  year: 2015
  ident: 10.1016/j.envpol.2022.119090_bib31
  article-title: Factors influencing CO 2 and CH 4 emissions from coastal wetlands in the Liaohe Delta, Northeast China
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-4965-2015
– volume: 53
  start-page: 203
  year: 2018
  ident: 10.1016/j.envpol.2022.119090_bib44
  article-title: Denitrifying anaerobic methane oxidation: a previously overlooked methane sink in intertidal zone
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05742
– volume: 14
  start-page: 1024
  year: 2012
  ident: 10.1016/j.envpol.2022.119090_bib26
  article-title: Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2011.02682.x
– volume: 113
  start-page: 12792
  year: 2016
  ident: 10.1016/j.envpol.2022.119090_bib13
  article-title: Archaea catalyze iron-dependent anaerobic oxidation of methane
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1609534113
– volume: 101
  start-page: 8007
  year: 2017
  ident: 10.1016/j.envpol.2022.119090_bib43
  article-title: Spatial and temporal distribution of nitrite-dependent anaerobic methane-oxidizing bacteria in an intertidal zone of the East China Sea
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-017-8521-0
– volume: 12
  start-page: 1929
  year: 2018
  ident: 10.1016/j.envpol.2022.119090_bib7
  article-title: A methanotrophic archaeon couples anaerobic oxidation of methane to Fe (III) reduction
  publication-title: ISME J.
  doi: 10.1038/s41396-018-0109-x
– volume: 78
  start-page: 445
  year: 2012
  ident: 10.1016/j.envpol.2022.119090_bib27
  article-title: Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.06934-11
– volume: 101
  start-page: 1631
  year: 2017
  ident: 10.1016/j.envpol.2022.119090_bib40
  article-title: McrA primers for the detection and quantification of the anaerobic archaeal methanotroph ‘Candidatus Methanoperedens nitroreducens
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-016-8065-8
– volume: 98
  start-page: 187
  year: 1993
  ident: 10.1016/j.envpol.2022.119090_bib29
  article-title: Community structure and organization of tidepools
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps098187
– volume: 140
  year: 2020
  ident: 10.1016/j.envpol.2022.119090_bib47
  article-title: Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and archaea leads to effective methane filtration in a Tibetan alpine wetland
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105764
– volume: 164
  start-page: 114935
  year: 2019
  ident: 10.1016/j.envpol.2022.119090_bib3
  article-title: Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.114935
– volume: 3
  start-page: 379
  year: 2011
  ident: 10.1016/j.envpol.2022.119090_bib4
  article-title: Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2011.06.002
– volume: 24
  start-page: 691
  year: 2000
  ident: 10.1016/j.envpol.2022.119090_bib5
  article-title: Life at the oxic–anoxic interface: microbial activities and adaptations
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1016/S0168-6445(00)00054-1
– start-page: 1
  year: 2019
  ident: 10.1016/j.envpol.2022.119090_bib20
  article-title: Coastal wetlands: a synthesis
– volume: 16
  start-page: 263
  year: 2018
  ident: 10.1016/j.envpol.2022.119090_bib23
  article-title: The microbial nitrogen-cycling network
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2018.9
– volume: 100
  start-page: 7727
  year: 2016
  ident: 10.1016/j.envpol.2022.119090_bib28
  article-title: Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-016-7585-6
– volume: 8
  start-page: 2127
  year: 2017
  ident: 10.1016/j.envpol.2022.119090_bib41
  article-title: Stratification of diversity and activity of methanogenic and methanotrophic microorganisms in a nitrogen-fertilized Italian paddy soil
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.02127
– volume: 180
  start-page: 68
  year: 2013
  ident: 10.1016/j.envpol.2022.119090_bib2
  article-title: Nitrogen leaching from the root zone of sugarcane and bananas in the humid tropics of Australia
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2012.05.007
– volume: 111
  start-page: 18273
  year: 2014
  ident: 10.1016/j.envpol.2022.119090_bib8
  article-title: Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1411617111
– volume: 98
  start-page: 5029
  year: 2014
  ident: 10.1016/j.envpol.2022.119090_bib38
  article-title: Molecular evidence for nitrite-dependent anaerobic methane-oxidising bacteria in the Jiaojiang Estuary of the East Sea (China)
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-5556-3
– volume: 90
  start-page: 856
  year: 2013
  ident: 10.1016/j.envpol.2022.119090_bib39
  article-title: Fluxes of nitrous oxide and methane in different coastal Suaeda salsa marshes of the Yellow River estuary, China
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.10.004
– volume: 80
  start-page: 7611
  year: 2014
  ident: 10.1016/j.envpol.2022.119090_bib37
  article-title: Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02379-14
– volume: 6
  year: 2013
  ident: 10.1016/j.envpol.2022.119090_bib17
  article-title: Modelling a nitrite-dependent anaerobic methane oxidation process: parameters identification and model evaluation
  publication-title: Bioresour. Technol.
SSID ssj0004333
Score 2.5482605
Snippet Denitrifying anaerobic methane oxidation (DAMO) microorganisms, using nitrate/nitrite to oxidize methane, have been proved to be an important microbial methane...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119090
SubjectTerms Coastal wetland
denitrification
Denitrifying methanotrophs
methane
methane production
Methane sink
methanotrophs
nitrates
nitrites
nitrogen
nitrogen fertilizers
Nitrogen input
oxidation
paddies
Paddy soil
paddy soils
pollution
sediments
wetlands
Title Nitrogen input promotes denitrifying methanotrophs’ abundance and contribution to methane emission reduction in coastal wetland and paddy soil
URI https://dx.doi.org/10.1016/j.envpol.2022.119090
https://www.ncbi.nlm.nih.gov/pubmed/35240269
https://www.proquest.com/docview/2636143426
https://www.proquest.com/docview/2675561957
Volume 302
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqcoEDgi2F5acyEuIWNrGdxD6uqlYLiL1Apd4iO3FEUHGiTZaql4pH4Mrr8STMOE4LElCJY-KxZXnG4xn7mxlCXoiY69KaGDjA0khkZRxJaVVkS1EbYS2TGmOH362z1Yl4c5qe7pDDKRYGYZVB94863Wvr8GcRVnPRNc3iPXgPYAyrhDH_vodBfELkKOWvLq9hHoKP5eSBOELqKXzOY7ys-9K1-ADBGOgOFaNm_vPx9Dfz0x9Dx_fI3WA_0uU4xftkx7oZ2Vs68J0_X9CX1CM6_VX5jNz5JdngjOwfXce0wQhhU_d75Nu6GTYtCBJtXLcdaOcReranoJKgpfGRUBRLTWvXAmX3sf_x9TvVBoNIYAiqXUU95D3UzqJDG8gtxXJyeCFHN5gj1rc2Dqh1j5M4twMiK_0IHejAC9q3zdkDcnJ89OFwFYVCDZEWiRyiFJPM1NKIEpPhgNubJ1pWlaiszLjhdVyDluDCKlODF6ytqmWWKaOrkum01AnfJ7uudfYRoSapcqmEZFxlQmttjKpTVsdWM47hRnPCJ_4UZchijsU0zooJrvapGLlaIFeLkatzEl316sYsHjfQ5xPri9-ksYCD5oaezydJKWCB8fUFFrvd9gXLOJhCHCyif9HkWK5UpfmcPBzF7Gq-YCkLlOLH_z23J-Q2fo1At6dkd9hs7TMwqQZz4PfMAbm1fP12tf4JGwoljw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbK9gAcEGwpLL9GQtyiTWznx8dV1WpL273QSr1ZduKIVCWJNllQbzwCV16PJ2HGcVqQgEpc47E18ozHM_E3M4S8FSHXuTUhSIDFgUjyMMgyKwObi9IIa1mmMXf4ZJUsz8T78_h8i-yNuTAIq_S2f7Dpzlr7L3O_m_O2quYfIHoAZ1hGjLn3PXmHbGN1qnhCtheHR8vVTXokHzrKA32AE8YMOgfzsvXntsE3CMbAfMgQjfOfb6i_eaDuJjp4SB54F5IuBi4fkS1bT8nOoobw-dMVfUcdqNP9LZ-S-7_UG5yS3f2btDZYwZ_rbod8W1X9ugFdolXdbnraOpCe7ShYJRipXDIUxW7Tum6Asv3Y_fj6nWqDeSSwBNV1QR3q3bfPon3jyS3FjnL4T46usUysG61qoNYdMvHF9giudCu0YAavaNdUl4_J2cH-6d4y8L0aAi2irA9irDNTZkbkWA8HIt800llRiMJmCTe8DEswFFxYaUoIhLWVZZYk0ugiZzrOdcR3yaRuavuUUBMVaSZFxrhMhNbaGFnGrAytZhwzjmaEj_JRuS9kjv00LtWIWLtQg1QVSlUNUp2R4HpWOxTyuIU-HUWvflNIBXfNLTPfjJqiYIPxAQY2u9l0iiUcvCEOTtG_aFLsWCrjdEaeDGp2zS84ywK1-Nl_8_aa3F2enhyr48PV0XNyD0cG3NsLMunXG_sSPKzevPIn6CcIxShA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+input+promotes+denitrifying+methanotrophs%27+abundance+and+contribution+to+methane+emission+reduction+in+coastal+wetland+and+paddy+soil&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Wang%2C+Jiaqi&rft.au=Yao%2C+Xiangwu&rft.au=Jia%2C+Zhongjun&rft.au=Zhu%2C+Lizhong&rft.date=2022-06-01&rft.eissn=1873-6424&rft.volume=302&rft.spage=119090&rft_id=info:doi/10.1016%2Fj.envpol.2022.119090&rft_id=info%3Apmid%2F35240269&rft.externalDocID=35240269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon