Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review
Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) d...
Saved in:
Published in | Environmental pollution (1987) Vol. 227; pp. 98 - 115 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement.
[Display omitted]
•Biochar-microbial interactions and mechanisms in soil were reviewed.•Effect mechanisms of biochar on microbial activities were highlighted.•Biochar altered soil carbon sequestration related microbial functions.•Biochar as electron shuttle can enhance contaminant mitigation and remediation.•Potential biochar-microbial interactions on soil improvement were prospected.
The interaction mechanisms between biochar and soil microbes and the environmental effects of biochar-microbe interactions on soil carbon sequestration and contaminant mitigation are reviewed. |
---|---|
AbstractList | Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement. Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement.Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement. Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement. [Display omitted] •Biochar-microbial interactions and mechanisms in soil were reviewed.•Effect mechanisms of biochar on microbial activities were highlighted.•Biochar altered soil carbon sequestration related microbial functions.•Biochar as electron shuttle can enhance contaminant mitigation and remediation.•Potential biochar-microbial interactions on soil improvement were prospected. The interaction mechanisms between biochar and soil microbes and the environmental effects of biochar-microbe interactions on soil carbon sequestration and contaminant mitigation are reviewed. |
Author | Xing, Baoshan Zhu, Xiaomin Chen, Baoliang Zhu, Lizhong |
Author_xml | – sequence: 1 givenname: Xiaomin orcidid: 0000-0003-4155-2437 surname: Zhu fullname: Zhu, Xiaomin email: zhuxm@zju.edu.cn organization: Department of Environmental Science, Zhejiang University, Hangzhou 310058, China – sequence: 2 givenname: Baoliang orcidid: 0000-0001-8196-081X surname: Chen fullname: Chen, Baoliang email: blchen@zju.edu.cn organization: Department of Environmental Science, Zhejiang University, Hangzhou 310058, China – sequence: 3 givenname: Lizhong surname: Zhu fullname: Zhu, Lizhong email: zlz@zju.edu.cn organization: Department of Environmental Science, Zhejiang University, Hangzhou 310058, China – sequence: 4 givenname: Baoshan surname: Xing fullname: Xing, Baoshan email: bx@umass.edu organization: Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28458251$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1O3DAUha2Kqgy0b4AqL7tJ8F8chwUSQhSQkLqBteXY18KjxJ7aman69vUwtIsuYGVf6ztH1-ecoKOYIiB0RklLCZXn6xbibpOmlhHat0S0hLMPaEVVzxspmDhCK8Lk0PRioMfopJQ1IURwzj-hY6ZEp1hHVyjeeA92KdhEh2ewzyaGMhecPB5DqmNu5mBzGgGHuEA2dgkpljrgksKEw7zJaQczxOXFoi40bfcIzvXRBbO_X-CrOu4C_PqMPnozFfjyep6ip-83j9d3zcOP2_vrq4fGCKqWhkvJOsO9JW5UfUe8ZGAteMelUsRQ2XfUEg-dBe6ck9QoO4xAR8OAOD7yU_Tt4Fu3-7mFsug5FAvTZCKkbdGsZsE7QXv1LkrVwIeeKsoq-vUV3Y71c3qTw2zyb_03zgqIA1ATKyWD_4dQovet6bU-tKb3rWkidG2tyi7-k9mwvCS3ZBOm98SXBzHUPGvGWRcbINoafq7NapfC2wZ_ADEOt3A |
CitedBy_id | crossref_primary_10_1007_s11356_024_32419_6 crossref_primary_10_3390_agronomy11061242 crossref_primary_10_1007_s11270_022_05659_w crossref_primary_10_1016_j_eti_2024_103738 crossref_primary_10_1016_j_envres_2024_120037 crossref_primary_10_1016_j_cej_2020_125138 crossref_primary_10_1016_j_eti_2024_103612 crossref_primary_10_3389_fpls_2024_1503203 crossref_primary_10_1016_j_scitotenv_2020_139393 crossref_primary_10_4028_www_scientific_net_MSF_913_879 crossref_primary_10_1016_j_cej_2021_134377 crossref_primary_10_1016_j_ecoenv_2020_111222 crossref_primary_10_1016_j_envpol_2021_118655 crossref_primary_10_3390_microorganisms9010004 crossref_primary_10_1016_j_jenvman_2024_120951 crossref_primary_10_1680_jenes_24_00107 crossref_primary_10_1016_j_scitotenv_2024_176104 crossref_primary_10_1016_j_jenvman_2021_113340 crossref_primary_10_15243_jdmlm_2024_114_6329 crossref_primary_10_1016_j_jwpe_2025_107499 crossref_primary_10_3390_agronomy15010144 crossref_primary_10_1016_j_crsust_2024_100267 crossref_primary_10_3390_su141710922 crossref_primary_10_1007_s42773_019_00018_1 crossref_primary_10_1016_j_envpol_2022_119913 crossref_primary_10_3390_su16124961 crossref_primary_10_58626_menba_1569118 crossref_primary_10_25046_aj050666 crossref_primary_10_1016_j_apsoil_2023_105066 crossref_primary_10_1016_j_jhazmat_2021_126611 crossref_primary_10_3389_fmicb_2023_1250453 crossref_primary_10_1016_j_jece_2024_113565 crossref_primary_10_1080_01490451_2022_2028942 crossref_primary_10_1007_s11356_021_18289_2 crossref_primary_10_3934_environsci_2019_5_379 crossref_primary_10_1016_j_chemosphere_2019_125699 crossref_primary_10_1007_s42832_022_0158_y crossref_primary_10_1016_j_pedsph_2023_06_008 crossref_primary_10_1007_s13399_021_01346_8 crossref_primary_10_1007_s42773_023_00291_1 crossref_primary_10_3389_fenvs_2023_1059449 crossref_primary_10_1016_j_scitotenv_2022_160690 crossref_primary_10_1016_j_scitotenv_2018_12_031 crossref_primary_10_1038_s41598_022_22149_5 crossref_primary_10_3390_ma17081895 crossref_primary_10_1007_s10098_020_01811_4 crossref_primary_10_1007_s10653_023_01605_9 crossref_primary_10_3390_geotechnics5010001 crossref_primary_10_1080_01490451_2023_2272619 crossref_primary_10_1038_s41598_021_00168_y crossref_primary_10_1016_j_jclepro_2019_04_282 crossref_primary_10_1016_j_chemosphere_2024_141178 crossref_primary_10_1016_j_scitotenv_2024_173056 crossref_primary_10_3390_app11041473 crossref_primary_10_1080_15320383_2022_2105811 crossref_primary_10_4315_0362_028X_JFP_19_331 crossref_primary_10_1016_j_chemosphere_2024_142383 crossref_primary_10_1016_j_scitotenv_2019_06_041 crossref_primary_10_1016_j_scitotenv_2022_156081 crossref_primary_10_1016_j_envres_2024_119055 crossref_primary_10_1016_j_scitotenv_2022_158381 crossref_primary_10_1016_j_envres_2021_111757 crossref_primary_10_3390_bioengineering8080109 crossref_primary_10_1007_s42773_019_00019_0 crossref_primary_10_1186_s12870_024_05038_z crossref_primary_10_1016_j_biortech_2024_131374 crossref_primary_10_1016_j_scitotenv_2023_163196 crossref_primary_10_1002_ldr_4230 crossref_primary_10_1080_00103624_2024_2420855 crossref_primary_10_3389_fenvs_2024_1340565 crossref_primary_10_1016_j_rser_2024_114640 crossref_primary_10_1111_aab_12736 crossref_primary_10_1080_10643389_2019_1642832 crossref_primary_10_1088_1755_1315_687_1_012023 crossref_primary_10_1016_j_biortech_2021_126587 crossref_primary_10_1007_s11356_023_31536_y crossref_primary_10_3390_ijms241311154 crossref_primary_10_1016_j_jenvman_2020_111097 crossref_primary_10_1016_j_rhisph_2020_100184 crossref_primary_10_1007_s11270_018_3708_2 crossref_primary_10_1007_s44378_025_00041_8 crossref_primary_10_1016_j_scitotenv_2022_160990 crossref_primary_10_1016_j_jenvman_2022_114758 crossref_primary_10_1016_j_jenvman_2025_124296 crossref_primary_10_1007_s00203_022_02899_6 crossref_primary_10_1016_j_envpol_2022_118978 crossref_primary_10_1111_gwmr_12561 crossref_primary_10_1016_j_chemosphere_2023_137888 crossref_primary_10_1016_j_jwpe_2023_104229 crossref_primary_10_3389_feart_2023_1181984 crossref_primary_10_4236_as_2023_143026 crossref_primary_10_1016_j_ecoenv_2018_11_096 crossref_primary_10_1016_j_ecoenv_2022_113165 crossref_primary_10_1016_j_chemosphere_2021_131660 crossref_primary_10_1016_j_jaap_2025_106952 crossref_primary_10_1016_j_conbuildmat_2020_120723 crossref_primary_10_1111_sum_12626 crossref_primary_10_3390_en15010001 crossref_primary_10_1016_j_cej_2021_129946 crossref_primary_10_34133_2022_9857374 crossref_primary_10_1016_j_esr_2024_101512 crossref_primary_10_1021_acs_est_4c08890 crossref_primary_10_1016_j_ecoenv_2023_115857 crossref_primary_10_1021_acs_est_3c01008 crossref_primary_10_1016_j_jece_2024_113855 crossref_primary_10_1002_jsfa_13191 crossref_primary_10_3390_plants13111492 crossref_primary_10_1016_j_envpol_2020_116040 crossref_primary_10_1016_j_jenvman_2021_112047 crossref_primary_10_1021_acs_est_8b01524 crossref_primary_10_1038_s41598_024_52425_5 crossref_primary_10_1016_j_envpol_2021_118327 crossref_primary_10_1016_j_apgeochem_2019_03_017 crossref_primary_10_1139_cjm_2022_0031 crossref_primary_10_1016_j_scitotenv_2021_150304 crossref_primary_10_3390_agriculture14071020 crossref_primary_10_3390_plants10040759 crossref_primary_10_1007_s13399_024_06441_0 crossref_primary_10_1016_j_scitotenv_2021_150444 crossref_primary_10_1016_j_jece_2024_112311 crossref_primary_10_1016_j_jobe_2024_111124 crossref_primary_10_1016_j_jhazmat_2022_129006 crossref_primary_10_1016_j_scitotenv_2021_149696 crossref_primary_10_1016_j_earscirev_2024_104860 crossref_primary_10_3390_polym17030306 crossref_primary_10_3390_agronomy10060912 crossref_primary_10_1016_j_wasman_2019_12_003 crossref_primary_10_1016_j_envres_2025_120770 crossref_primary_10_1525_elementa_2022_00101 crossref_primary_10_1016_j_jhazmat_2025_137756 crossref_primary_10_3390_microorganisms10010101 crossref_primary_10_1016_j_ecoenv_2022_114237 crossref_primary_10_1016_j_heliyon_2024_e33011 crossref_primary_10_1093_jambio_lxae120 crossref_primary_10_3390_agronomy12020247 crossref_primary_10_1007_s10311_024_01766_8 crossref_primary_10_1007_s10653_019_00445_w crossref_primary_10_1016_j_chemosphere_2022_137101 crossref_primary_10_1016_j_scitotenv_2021_151422 crossref_primary_10_1016_j_pedsph_2024_07_001 crossref_primary_10_1016_j_jes_2018_11_007 crossref_primary_10_1021_acsomega_3c07921 crossref_primary_10_3390_horticulturae8100893 crossref_primary_10_1007_s11368_018_2000_9 crossref_primary_10_1016_j_scitotenv_2019_06_244 crossref_primary_10_1016_j_biortech_2021_125245 crossref_primary_10_3390_agriculture11070620 crossref_primary_10_1016_j_still_2022_105345 crossref_primary_10_1039_D0GC00717J crossref_primary_10_1016_j_jmrt_2023_04_033 crossref_primary_10_1098_rsos_171875 crossref_primary_10_1016_j_still_2023_105765 crossref_primary_10_1016_j_envpol_2021_116481 crossref_primary_10_1007_s11771_025_5861_2 crossref_primary_10_1016_j_envres_2022_113599 crossref_primary_10_1016_j_jhazmat_2019_121533 crossref_primary_10_3389_feart_2023_1181974 crossref_primary_10_1016_j_envpol_2018_11_062 crossref_primary_10_1016_j_scitotenv_2022_152921 crossref_primary_10_1016_j_ecoenv_2020_111292 crossref_primary_10_3390_catal15030243 crossref_primary_10_1016_j_scitotenv_2024_175885 crossref_primary_10_3390_antiox10122017 crossref_primary_10_1016_j_jhazmat_2021_125702 crossref_primary_10_1016_j_scitotenv_2019_134087 crossref_primary_10_3390_toxics11010053 crossref_primary_10_1021_acs_est_0c04033 crossref_primary_10_1007_s42398_025_00340_4 crossref_primary_10_1080_01904167_2025_2451923 crossref_primary_10_1016_j_chemosphere_2022_134333 crossref_primary_10_1016_j_envpol_2022_119624 crossref_primary_10_3390_ijerph19127282 crossref_primary_10_3390_su151813375 crossref_primary_10_1007_s42773_024_00301_w crossref_primary_10_1038_s41598_018_26396_3 crossref_primary_10_1007_s11356_020_11571_9 crossref_primary_10_1007_s42773_023_00219_9 crossref_primary_10_1016_j_jes_2023_04_008 crossref_primary_10_1016_j_scitotenv_2022_156333 crossref_primary_10_1016_j_jhazmat_2022_129466 crossref_primary_10_1128_spectrum_00149_24 crossref_primary_10_1016_j_chemosphere_2019_02_100 crossref_primary_10_1016_j_hazadv_2023_100319 crossref_primary_10_3389_fmicb_2018_02862 crossref_primary_10_3390_land12081645 crossref_primary_10_1002_cjce_24426 crossref_primary_10_1093_femsec_fiac131 crossref_primary_10_1016_j_pedsph_2023_01_002 crossref_primary_10_3390_su15129380 crossref_primary_10_1016_j_eti_2020_101168 crossref_primary_10_1088_1755_1315_497_1_012038 crossref_primary_10_3390_fermentation9100885 crossref_primary_10_1016_j_apsoil_2019_103432 crossref_primary_10_1016_j_apsoil_2023_105233 crossref_primary_10_1016_j_scitotenv_2021_148797 crossref_primary_10_1039_C8RA05933K crossref_primary_10_1016_j_scitotenv_2022_154496 crossref_primary_10_1016_j_apsoil_2025_105916 crossref_primary_10_1016_j_scitotenv_2019_135068 crossref_primary_10_3390_pr10122663 crossref_primary_10_3389_fmicb_2020_00799 crossref_primary_10_1016_j_chemosphere_2021_130915 crossref_primary_10_1016_j_jece_2023_110835 crossref_primary_10_3390_agronomy13123051 crossref_primary_10_1016_j_energy_2019_116128 crossref_primary_10_1016_j_compgeo_2021_104432 crossref_primary_10_1166_jbmb_2023_2294 crossref_primary_10_1007_s42773_025_00450_6 crossref_primary_10_3389_fenvs_2022_1057384 crossref_primary_10_1016_j_jece_2021_105258 crossref_primary_10_1016_j_plaphy_2022_05_008 crossref_primary_10_1016_j_jhazmat_2019_122002 crossref_primary_10_1063_5_0095208 crossref_primary_10_1080_01904167_2022_2105720 crossref_primary_10_1016_j_chemosphere_2024_142775 crossref_primary_10_1016_j_geodrs_2023_e00669 crossref_primary_10_1016_j_jwpe_2024_106713 crossref_primary_10_1016_j_procbio_2023_05_006 crossref_primary_10_1016_j_jobe_2021_103064 crossref_primary_10_1080_14735903_2020_1793652 crossref_primary_10_1016_j_scitotenv_2022_155571 crossref_primary_10_1016_j_jece_2025_115626 crossref_primary_10_3389_fsufs_2024_1346529 crossref_primary_10_3390_agronomy11081598 crossref_primary_10_1016_j_biortech_2021_125797 crossref_primary_10_1007_s42773_024_00333_2 crossref_primary_10_1016_j_pedsph_2024_06_007 crossref_primary_10_1016_j_envpol_2021_118354 crossref_primary_10_1111_gcbb_12898 crossref_primary_10_12677_HJAS_2020_109113 crossref_primary_10_1016_j_jhazmat_2018_12_032 crossref_primary_10_1111_gcbb_12896 crossref_primary_10_1007_s42773_023_00272_4 crossref_primary_10_1016_j_scitotenv_2022_157325 crossref_primary_10_3390_agronomy14122935 crossref_primary_10_1007_s42773_022_00160_3 crossref_primary_10_33462_jotaf_1190812 crossref_primary_10_1016_j_biortech_2023_130257 crossref_primary_10_1016_j_rhisph_2024_100939 crossref_primary_10_1007_s11440_021_01235_4 crossref_primary_10_1016_j_jhazmat_2022_130209 crossref_primary_10_1007_s11270_023_06400_x crossref_primary_10_1007_s42832_019_0008_8 crossref_primary_10_3390_plants11243442 crossref_primary_10_1016_j_scitotenv_2021_148451 crossref_primary_10_1016_j_scitotenv_2024_170064 crossref_primary_10_1007_s40726_018_0092_x crossref_primary_10_1016_j_wasman_2024_08_009 crossref_primary_10_1007_s42773_025_00440_8 crossref_primary_10_1016_j_envpol_2020_115846 crossref_primary_10_1016_j_envpol_2022_119609 crossref_primary_10_3389_fbioe_2020_00961 crossref_primary_10_1007_s11356_021_17125_x crossref_primary_10_1016_j_jhazmat_2020_123833 crossref_primary_10_1016_j_rser_2021_112056 crossref_primary_10_1007_s13399_021_02257_4 crossref_primary_10_1016_j_envpol_2018_05_025 crossref_primary_10_1016_j_scitotenv_2019_134073 crossref_primary_10_1039_D4EN01019A crossref_primary_10_1016_j_geoderma_2020_114323 crossref_primary_10_1080_10643389_2019_1699381 crossref_primary_10_1016_j_envpol_2018_09_097 crossref_primary_10_1016_j_eti_2025_104043 crossref_primary_10_1016_j_jhazmat_2018_12_022 crossref_primary_10_1007_s10653_019_00412_5 crossref_primary_10_1007_s42773_025_00451_5 crossref_primary_10_1016_j_biortech_2018_05_041 crossref_primary_10_1016_j_scitotenv_2023_162021 crossref_primary_10_17221_348_2022_PSE crossref_primary_10_1007_s13399_020_00836_5 crossref_primary_10_1016_j_watres_2018_03_012 crossref_primary_10_3390_agronomy11050993 crossref_primary_10_3390_toxics13010030 crossref_primary_10_1016_j_chemosphere_2021_130606 crossref_primary_10_1016_j_jenvman_2023_119775 crossref_primary_10_1007_s41748_022_00336_8 crossref_primary_10_1016_j_chemosphere_2023_140093 crossref_primary_10_1016_j_jclepro_2024_141219 crossref_primary_10_1016_j_ecoenv_2023_115589 crossref_primary_10_1016_j_scitotenv_2024_173268 crossref_primary_10_1007_s11368_024_03887_7 crossref_primary_10_1016_j_crsust_2023_100214 crossref_primary_10_1016_j_scitotenv_2020_137690 crossref_primary_10_1016_j_agwat_2023_108605 crossref_primary_10_1016_j_envres_2020_110671 crossref_primary_10_1021_acs_est_8b06265 crossref_primary_10_1016_j_soilbio_2022_108851 crossref_primary_10_1016_j_scitotenv_2022_156532 crossref_primary_10_1007_s11157_024_09712_4 crossref_primary_10_1016_j_scienta_2019_108641 crossref_primary_10_3390_su142214792 crossref_primary_10_1016_j_cej_2023_141380 crossref_primary_10_1007_s42729_023_01489_9 crossref_primary_10_1007_s11356_020_08099_3 crossref_primary_10_1016_j_eti_2022_102735 crossref_primary_10_1016_S1002_0160_21_60073_5 crossref_primary_10_1016_j_scitotenv_2021_147660 crossref_primary_10_1016_j_bcab_2022_102432 crossref_primary_10_1016_j_biteb_2024_101771 crossref_primary_10_1016_j_envres_2023_117999 crossref_primary_10_1016_j_hazadv_2022_100086 crossref_primary_10_1093_jxb_erz301 crossref_primary_10_1177_00368504221148842 crossref_primary_10_1007_s11356_019_04961_1 crossref_primary_10_1016_j_jhazmat_2022_129557 crossref_primary_10_1016_j_hazl_2023_100091 crossref_primary_10_1016_j_ecoenv_2023_115579 crossref_primary_10_1016_j_ecoenv_2024_116726 crossref_primary_10_1016_j_rhisph_2022_100598 crossref_primary_10_1016_j_scitotenv_2024_176300 crossref_primary_10_1016_j_cej_2021_131189 crossref_primary_10_1016_j_jhazmat_2020_122767 crossref_primary_10_3390_plants12142736 crossref_primary_10_1016_j_jwpe_2021_101993 crossref_primary_10_1021_acs_estlett_3c00682 crossref_primary_10_1016_j_jhazmat_2020_123859 crossref_primary_10_1515_pac_2021_0106 crossref_primary_10_1016_j_scitotenv_2019_02_402 crossref_primary_10_3390_su12052124 crossref_primary_10_1007_s42773_023_00207_z crossref_primary_10_1016_j_cej_2024_152676 crossref_primary_10_1007_s11356_018_3271_9 crossref_primary_10_1016_j_scitotenv_2022_157753 crossref_primary_10_1007_s42773_025_00452_4 crossref_primary_10_1007_s42773_024_00411_5 crossref_primary_10_3390_agronomy10050746 crossref_primary_10_1590_1678_4499_20200459 crossref_primary_10_3389_fmicb_2018_00579 crossref_primary_10_21273_HORTSCI15428_20 crossref_primary_10_1016_j_scitotenv_2024_177844 crossref_primary_10_3390_app132312545 crossref_primary_10_1051_e3sconf_202339301020 crossref_primary_10_1016_j_jece_2024_112034 crossref_primary_10_1016_j_apsoil_2023_105025 crossref_primary_10_1007_s11368_022_03362_1 crossref_primary_10_1016_j_jhazmat_2024_135693 crossref_primary_10_1038_s41598_024_70515_2 crossref_primary_10_1016_j_geodrs_2024_e00900 crossref_primary_10_1016_j_hazadv_2022_100171 crossref_primary_10_1080_00103624_2023_2262510 crossref_primary_10_1016_j_micres_2024_127696 crossref_primary_10_3390_c7040083 crossref_primary_10_1016_j_cej_2021_133142 crossref_primary_10_1016_j_jece_2021_105184 crossref_primary_10_1016_j_ecoleng_2024_107328 crossref_primary_10_1016_j_susmat_2024_e00831 crossref_primary_10_3390_microorganisms12122592 crossref_primary_10_3390_su152316446 crossref_primary_10_1111_sum_12804 crossref_primary_10_3390_toxics12120897 crossref_primary_10_1007_s11157_020_09523_3 crossref_primary_10_3390_microorganisms11020527 crossref_primary_10_1016_j_biortech_2024_131602 crossref_primary_10_1016_j_jenvman_2018_11_043 crossref_primary_10_1016_j_animal_2024_101195 crossref_primary_10_1016_j_cej_2019_05_139 crossref_primary_10_1186_s40793_022_00439_9 crossref_primary_10_1186_s13750_021_00223_1 crossref_primary_10_1007_s42773_022_00164_z crossref_primary_10_3389_fenvs_2021_798729 crossref_primary_10_3390_land8120179 crossref_primary_10_1089_ees_2020_0418 crossref_primary_10_1016_j_jenvman_2018_12_085 crossref_primary_10_1016_j_scitotenv_2023_164246 crossref_primary_10_1016_j_renene_2023_119747 crossref_primary_10_1007_s13399_020_00936_2 crossref_primary_10_1016_j_apsoil_2020_103541 crossref_primary_10_1016_j_scitotenv_2022_156202 crossref_primary_10_1016_j_eti_2020_101191 crossref_primary_10_1007_s42398_021_00187_5 crossref_primary_10_1016_j_envpol_2021_117179 crossref_primary_10_1016_j_jhazmat_2019_121493 crossref_primary_10_1088_1755_1315_779_1_012082 crossref_primary_10_3390_agronomy14081750 crossref_primary_10_1016_j_biortech_2024_131852 crossref_primary_10_1016_j_jenvman_2022_114903 crossref_primary_10_1088_1755_1315_237_5_052008 crossref_primary_10_1016_j_envpol_2024_124254 crossref_primary_10_1088_1755_1315_1241_1_012104 crossref_primary_10_1016_j_scitotenv_2020_139709 crossref_primary_10_1186_s40538_024_00546_4 crossref_primary_10_1016_j_jwpe_2024_105360 crossref_primary_10_1016_j_jaap_2021_105132 crossref_primary_10_1016_j_chemosphere_2022_133999 crossref_primary_10_1016_j_scitotenv_2021_145676 crossref_primary_10_1007_s42729_024_01777_y crossref_primary_10_1016_j_apsoil_2020_103856 crossref_primary_10_1016_j_cej_2019_123055 crossref_primary_10_1016_j_jhazmat_2024_135879 crossref_primary_10_1088_1755_1315_1258_1_012002 crossref_primary_10_1038_s41598_019_38697_2 crossref_primary_10_3389_fsufs_2024_1384530 crossref_primary_10_1016_j_scitotenv_2020_138988 crossref_primary_10_1016_j_scitotenv_2020_137775 crossref_primary_10_1590_1808_1657000852018 crossref_primary_10_3390_ijerph18147622 crossref_primary_10_24180_ijaws_1255958 crossref_primary_10_1080_09506608_2021_1922047 crossref_primary_10_3724_EE_1672_9250_2025_53_002 crossref_primary_10_3390_su15032527 crossref_primary_10_3390_app12084051 crossref_primary_10_1007_s42773_021_00085_3 crossref_primary_10_1016_j_trac_2018_05_013 crossref_primary_10_1139_er_2024_0047 crossref_primary_10_1016_j_biortech_2021_125738 crossref_primary_10_1016_j_scitotenv_2023_165710 crossref_primary_10_3390_jmse9020155 crossref_primary_10_1007_s13399_024_05789_7 crossref_primary_10_1016_j_jclepro_2025_145194 crossref_primary_10_3390_agriculture12101579 crossref_primary_10_1016_j_scitotenv_2020_143084 crossref_primary_10_1016_j_scitotenv_2024_172899 crossref_primary_10_3390_plants11202745 crossref_primary_10_1007_s42773_023_00241_x crossref_primary_10_1016_j_scitotenv_2017_12_108 crossref_primary_10_1080_09542299_2018_1487774 crossref_primary_10_1021_acs_est_0c01061 crossref_primary_10_1007_s11356_019_05604_1 crossref_primary_10_1016_j_envpol_2020_114228 crossref_primary_10_3389_fmicb_2021_647766 crossref_primary_10_1016_j_jhazmat_2020_122213 crossref_primary_10_1049_mnl_2020_0017 crossref_primary_10_1016_j_jhazmat_2023_131091 crossref_primary_10_1016_j_biortech_2024_130707 crossref_primary_10_1016_j_heliyon_2020_e05578 crossref_primary_10_1007_s12517_020_05622_1 crossref_primary_10_1016_j_chemgeo_2017_11_023 crossref_primary_10_1016_j_jenvman_2019_02_010 crossref_primary_10_1016_j_envres_2023_116152 crossref_primary_10_1016_j_jhazmat_2023_132067 crossref_primary_10_3390_land12081580 crossref_primary_10_1016_j_jenvman_2025_124950 crossref_primary_10_1016_j_jclepro_2022_133483 crossref_primary_10_1016_j_ecoenv_2021_112374 crossref_primary_10_1016_j_envpol_2020_115447 crossref_primary_10_1016_j_envpol_2025_125831 crossref_primary_10_1016_j_jhazmat_2021_126047 crossref_primary_10_1016_j_apsoil_2019_09_006 crossref_primary_10_1016_j_envpol_2024_125371 crossref_primary_10_3389_fenvs_2022_921766 crossref_primary_10_1186_s40643_021_00491_2 crossref_primary_10_1016_j_soilbio_2021_108446 crossref_primary_10_1016_j_scitotenv_2021_148977 crossref_primary_10_1080_07388551_2022_2119547 crossref_primary_10_3390_su141610411 crossref_primary_10_4025_actasciagron_v44i1_55682 crossref_primary_10_1007_s42773_022_00138_1 crossref_primary_10_1016_j_scitotenv_2023_164720 crossref_primary_10_1016_j_jenvman_2024_123212 crossref_primary_10_1007_s40725_020_00112_9 crossref_primary_10_3390_land12112078 crossref_primary_10_1007_s00374_020_01436_1 crossref_primary_10_1016_j_matchemphys_2019_121791 crossref_primary_10_3390_ma12010094 crossref_primary_10_1007_s11356_018_3945_3 crossref_primary_10_1016_j_jhazmat_2021_127251 crossref_primary_10_3389_fpls_2022_932311 crossref_primary_10_1016_j_scitotenv_2022_156929 crossref_primary_10_1007_s11104_024_06647_1 crossref_primary_10_1080_15320383_2019_1669531 crossref_primary_10_1016_j_envint_2021_106553 crossref_primary_10_1016_j_chemosphere_2018_07_133 crossref_primary_10_1016_j_scitotenv_2022_154340 crossref_primary_10_1016_j_scitotenv_2018_12_400 crossref_primary_10_1007_s11270_021_05404_9 crossref_primary_10_1016_j_biortech_2020_124324 crossref_primary_10_1016_j_seh_2024_100095 crossref_primary_10_1016_j_fuel_2021_121150 crossref_primary_10_1016_j_jhazmat_2023_133137 crossref_primary_10_25259_AJC_79_2024 crossref_primary_10_3390_agronomy14040730 crossref_primary_10_1016_j_cej_2021_132313 crossref_primary_10_3390_agriculture13071282 crossref_primary_10_1007_s11270_025_07821_6 crossref_primary_10_1016_j_jclepro_2022_132172 crossref_primary_10_1016_j_envres_2024_119926 crossref_primary_10_1080_00103624_2022_2028818 crossref_primary_10_1007_s11356_018_3018_7 crossref_primary_10_1016_j_scitotenv_2024_173679 crossref_primary_10_1039_D0EM00370K crossref_primary_10_1016_j_envint_2019_105211 crossref_primary_10_1016_j_jenvman_2023_117864 crossref_primary_10_1016_j_envpol_2023_121973 crossref_primary_10_1016_j_heliyon_2020_e04552 crossref_primary_10_2139_ssrn_4198763 crossref_primary_10_1016_j_jece_2022_109239 crossref_primary_10_1080_01904167_2024_2377411 crossref_primary_10_1016_j_biortech_2020_124430 crossref_primary_10_1007_s11368_018_2170_5 crossref_primary_10_1080_00103624_2022_2063313 crossref_primary_10_1016_j_geoderma_2024_116845 crossref_primary_10_1016_j_jhazmat_2024_133889 crossref_primary_10_1016_j_scitotenv_2019_134619 crossref_primary_10_1016_j_envres_2022_113934 crossref_primary_10_1080_10643389_2020_1713030 crossref_primary_10_1007_s42773_023_00287_x crossref_primary_10_1038_s41598_020_76213_z crossref_primary_10_1002_ldr_2829 crossref_primary_10_1016_j_envpol_2024_124078 crossref_primary_10_1080_00103624_2022_2028806 crossref_primary_10_1007_s00374_020_01502_8 crossref_primary_10_1016_j_jhazmat_2020_123227 crossref_primary_10_1007_s42773_020_00078_8 crossref_primary_10_1016_j_geoderma_2019_114055 crossref_primary_10_1016_j_heliyon_2020_e04688 crossref_primary_10_1016_j_scitotenv_2021_148923 crossref_primary_10_1016_j_envpol_2022_120232 crossref_primary_10_3390_agriculture13030512 crossref_primary_10_1016_j_scitotenv_2023_164656 crossref_primary_10_1039_D0MA00087F crossref_primary_10_1016_j_jhazmat_2023_133236 crossref_primary_10_1039_C8RA08512A crossref_primary_10_54097_hset_v40i_6624 crossref_primary_10_1111_aab_70001 crossref_primary_10_1080_00103624_2022_2028812 crossref_primary_10_1007_s00477_020_01799_9 crossref_primary_10_1016_j_cej_2025_161496 crossref_primary_10_1007_s11356_022_21842_2 crossref_primary_10_1016_j_psep_2024_02_084 crossref_primary_10_3390_toxics11080666 crossref_primary_10_1080_21655979_2021_1993536 crossref_primary_10_3390_su142417049 crossref_primary_10_1007_s13399_025_06702_6 crossref_primary_10_1016_j_cej_2023_145317 crossref_primary_10_1016_j_scitotenv_2022_153461 crossref_primary_10_1016_j_cej_2023_144229 crossref_primary_10_1016_j_chemosphere_2022_135605 crossref_primary_10_2139_ssrn_4150164 crossref_primary_10_1016_j_jwpe_2021_102215 crossref_primary_10_1016_j_geoderma_2019_114170 crossref_primary_10_1016_j_seppur_2023_125660 crossref_primary_10_1016_j_chemosphere_2022_133555 crossref_primary_10_1016_j_scitotenv_2023_165970 crossref_primary_10_1016_j_jenvman_2024_122044 crossref_primary_10_1016_j_envpol_2020_114681 crossref_primary_10_3390_agronomy10081163 crossref_primary_10_1016_j_chemosphere_2020_125850 crossref_primary_10_1016_j_scitotenv_2018_08_222 crossref_primary_10_1016_j_envres_2022_113340 crossref_primary_10_1016_j_envpol_2021_117718 crossref_primary_10_1016_j_jenvman_2024_122501 crossref_primary_10_1016_j_scitotenv_2017_10_319 crossref_primary_10_1016_j_scitotenv_2019_06_212 crossref_primary_10_1016_j_chemosphere_2019_124868 crossref_primary_10_1016_j_jenvman_2022_115531 crossref_primary_10_1016_j_scitotenv_2020_144218 crossref_primary_10_1007_s00128_020_02914_w crossref_primary_10_1016_j_seh_2023_100050 crossref_primary_10_5004_dwt_2022_28635 crossref_primary_10_1016_j_jenvman_2020_110511 crossref_primary_10_1007_s10661_022_10783_5 crossref_primary_10_1021_acs_energyfuels_9b04495 crossref_primary_10_3390_agronomy12051003 crossref_primary_10_1016_j_envpol_2022_119064 crossref_primary_10_1016_j_jenvman_2019_109636 crossref_primary_10_1016_j_envres_2022_113226 crossref_primary_10_1016_j_scitotenv_2018_07_099 crossref_primary_10_1016_j_conbuildmat_2025_140931 crossref_primary_10_2139_ssrn_4076642 crossref_primary_10_1016_j_envpol_2021_117840 crossref_primary_10_1016_j_scitotenv_2021_149194 crossref_primary_10_1038_s41598_022_17075_5 crossref_primary_10_1080_10643389_2023_2290947 crossref_primary_10_1016_j_jhazmat_2021_125378 crossref_primary_10_1016_j_jclepro_2020_122743 crossref_primary_10_1016_j_jhazmat_2022_128944 crossref_primary_10_3390_plants12051024 crossref_primary_10_1016_j_jhazmat_2020_124584 crossref_primary_10_1007_s42773_020_00063_1 crossref_primary_10_1021_acs_est_2c02701 crossref_primary_10_1016_j_apsoil_2022_104444 crossref_primary_10_1016_j_watres_2020_116054 crossref_primary_10_1021_acs_est_9b03607 crossref_primary_10_3390_pr8070826 crossref_primary_10_1016_j_jenvman_2023_118191 crossref_primary_10_1016_j_envpol_2022_120184 crossref_primary_10_1016_j_jhazmat_2024_133600 crossref_primary_10_1139_cjss_2019_0138 crossref_primary_10_1016_j_scitotenv_2017_11_106 crossref_primary_10_1016_j_envres_2020_110188 crossref_primary_10_1016_j_soilbio_2019_107678 crossref_primary_10_1016_j_catena_2023_107429 crossref_primary_10_1080_00103624_2024_2440069 crossref_primary_10_1016_j_scitotenv_2017_11_341 crossref_primary_10_1016_j_jhazmat_2021_125494 crossref_primary_10_1007_s42823_024_00766_6 crossref_primary_10_1016_j_jhazmat_2019_121749 crossref_primary_10_1016_j_scitotenv_2023_169585 crossref_primary_10_1016_j_jhazmat_2019_121503 crossref_primary_10_1016_j_jenvman_2024_123974 crossref_primary_10_1016_j_jhazmat_2021_126212 crossref_primary_10_1007_s11356_021_13959_7 crossref_primary_10_1016_j_apsoil_2022_104697 crossref_primary_10_1016_j_still_2021_104955 crossref_primary_10_1080_02648725_2022_2122288 crossref_primary_10_1016_j_envpol_2023_121323 crossref_primary_10_1016_j_scitotenv_2024_176034 crossref_primary_10_1016_j_enceco_2025_01_004 crossref_primary_10_1016_j_jenvman_2018_09_006 crossref_primary_10_1016_j_scitotenv_2019_133658 crossref_primary_10_1016_j_scitotenv_2023_161622 crossref_primary_10_3390_plants12061399 crossref_primary_10_1007_s42398_021_00190_w crossref_primary_10_1016_j_envint_2019_03_068 crossref_primary_10_1016_j_chemosphere_2017_12_177 crossref_primary_10_1016_j_seh_2023_100033 crossref_primary_10_3390_resources13050066 crossref_primary_10_1007_s13399_022_02795_5 crossref_primary_10_1016_j_ijhydene_2024_10_123 crossref_primary_10_1007_s11104_023_05912_z crossref_primary_10_1016_j_jece_2022_109090 crossref_primary_10_1016_j_chemosphere_2021_130458 crossref_primary_10_1016_j_biombioe_2024_107178 crossref_primary_10_1016_j_chemosphere_2021_130456 crossref_primary_10_1007_s10653_024_01956_x crossref_primary_10_1016_j_jenvman_2021_112198 crossref_primary_10_1016_j_ejsobi_2024_103680 crossref_primary_10_1016_j_molliq_2018_10_142 crossref_primary_10_1007_s42773_020_00041_7 crossref_primary_10_1016_j_scitotenv_2024_176283 crossref_primary_10_1016_j_jhazmat_2024_134952 crossref_primary_10_1371_journal_pone_0284348 crossref_primary_10_1088_1742_6596_1637_1_012070 crossref_primary_10_1016_j_ecoenv_2022_114322 crossref_primary_10_3390_microorganisms10081593 crossref_primary_10_1016_j_jece_2021_105830 crossref_primary_10_3390_biology13080611 crossref_primary_10_1016_j_agee_2022_108183 crossref_primary_10_1016_j_eti_2024_103659 crossref_primary_10_1016_j_ibiod_2025_106005 crossref_primary_10_1071_FP23257 crossref_primary_10_1007_s42770_019_00043_z crossref_primary_10_1007_s42773_024_00397_0 crossref_primary_10_1007_s42729_021_00514_z crossref_primary_10_1007_s12517_020_05586_2 crossref_primary_10_1080_01904167_2023_2220720 crossref_primary_10_1186_s13765_023_00851_w crossref_primary_10_1016_j_scitotenv_2022_159368 crossref_primary_10_1007_s42773_019_00008_3 crossref_primary_10_1016_j_cej_2024_148970 crossref_primary_10_1080_10643389_2023_2190333 crossref_primary_10_1016_j_seppur_2023_123850 crossref_primary_10_1007_s11356_018_2425_0 crossref_primary_10_1016_j_jrmge_2022_04_010 crossref_primary_10_1021_acs_est_1c01976 crossref_primary_10_1016_j_scitotenv_2018_06_009 crossref_primary_10_1007_s13762_023_04904_x crossref_primary_10_3389_fpls_2022_1020832 crossref_primary_10_5696_2156_9614_10_27_200902 crossref_primary_10_1007_s42773_023_00278_y crossref_primary_10_3390_ijerph19020845 crossref_primary_10_1002_cben_201700006 crossref_primary_10_1016_j_apsoil_2023_104986 crossref_primary_10_1016_j_jwpe_2023_104744 crossref_primary_10_1016_j_envint_2020_105576 crossref_primary_10_1007_s10311_022_01520_y crossref_primary_10_3390_plants12122355 crossref_primary_10_1016_j_enconman_2019_06_069 crossref_primary_10_1016_j_scitotenv_2020_144893 crossref_primary_10_3390_w13182501 crossref_primary_10_1016_j_geoderma_2018_09_034 crossref_primary_10_1016_j_envint_2019_105172 crossref_primary_10_1007_s42773_023_00244_8 crossref_primary_10_3390_agronomy14030428 crossref_primary_10_1007_s00253_023_12519_y crossref_primary_10_1016_j_scitotenv_2021_151255 crossref_primary_10_1016_j_scitotenv_2022_154845 crossref_primary_10_1016_j_jhazmat_2019_121827 crossref_primary_10_3390_microorganisms9081660 crossref_primary_10_1016_j_jenvman_2024_123534 crossref_primary_10_1007_s11368_022_03347_0 crossref_primary_10_1016_j_jece_2023_110572 crossref_primary_10_1021_acs_est_2c02976 crossref_primary_10_1111_gcbb_13147 crossref_primary_10_1016_j_scitotenv_2018_06_231 crossref_primary_10_1016_j_heliyon_2024_e26478 crossref_primary_10_1016_j_biortech_2023_128821 crossref_primary_10_3390_su122410586 crossref_primary_10_1016_j_chemosphere_2021_132691 crossref_primary_10_1007_s12042_025_09396_2 crossref_primary_10_1016_j_jhazmat_2018_02_019 crossref_primary_10_1007_s42773_019_00009_2 crossref_primary_10_1111_aab_12555 crossref_primary_10_3389_fsoil_2022_998654 crossref_primary_10_3390_agronomy13102518 crossref_primary_10_1016_j_ecoenv_2021_112173 crossref_primary_10_1007_s42773_023_00255_5 crossref_primary_10_1080_10643389_2021_1894064 crossref_primary_10_1016_j_biortech_2025_132317 crossref_primary_10_1021_acs_est_4c03917 crossref_primary_10_1016_j_envint_2019_105277 crossref_primary_10_1016_j_scitotenv_2021_152112 crossref_primary_10_1016_j_eti_2023_103229 crossref_primary_10_1021_acs_est_4c07027 crossref_primary_10_1016_j_ecoenv_2022_114408 crossref_primary_10_1016_j_scitotenv_2018_09_098 crossref_primary_10_1016_j_electacta_2022_141713 crossref_primary_10_1016_j_scitotenv_2018_09_099 crossref_primary_10_1016_j_scitotenv_2017_11_008 crossref_primary_10_1016_j_jhazmat_2023_132550 crossref_primary_10_1016_j_scitotenv_2022_159034 crossref_primary_10_1016_j_scitotenv_2022_159037 crossref_primary_10_1007_s12600_021_00887_y crossref_primary_10_3390_agronomy10101455 crossref_primary_10_1039_D2RA01647H crossref_primary_10_3390_plants11030423 crossref_primary_10_1007_s10343_023_00952_y |
Cites_doi | 10.1007/s11270-016-3155-x 10.1016/j.apsoil.2013.05.003 10.1007/s11368-014-1029-7 10.1016/j.ecoenv.2016.10.033 10.1007/s11368-015-1073-y 10.1016/j.envpol.2016.08.014 10.1007/s11368-010-0266-7 10.1007/s00374-014-0968-x 10.1016/j.envpol.2011.07.023 10.1016/j.geoderma.2014.11.009 10.1021/es3047872 10.1007/s11426-008-0041-4 10.1021/es5061512 10.1016/j.apsoil.2012.02.021 10.1021/acsomega.6b00085 10.1021/es101283d 10.1128/AEM.00148-11 10.1016/j.geoderma.2015.01.012 10.1111/gcbb.12119 10.1016/j.biortech.2010.11.018 10.1016/j.agee.2014.04.006 10.1016/j.pedobi.2005.04.004 10.1016/j.soilbio.2014.11.023 10.1021/es403711y 10.1016/j.catena.2013.06.021 10.1021/jf404624h 10.1038/ismej.2010.58 10.1007/s00374-016-1154-0 10.1128/AEM.02775-08 10.1038/447143a 10.1021/es401458s 10.1016/j.geoderma.2015.12.020 10.1016/j.jhazmat.2012.05.090 10.1016/j.apsoil.2014.08.001 10.1016/j.jhazmat.2014.12.002 10.1021/es202970x 10.1016/j.chemosphere.2013.11.004 10.1016/j.soilbio.2004.01.013 10.1016/j.fuel.2011.08.044 10.1021/es405647e 10.1002/ep.12122 10.1111/gcbb.12037 10.1016/S0038-0717(00)00084-5 10.1016/j.envpol.2016.06.063 10.1016/j.soilbio.2010.10.014 10.1007/s11104-012-1169-8 10.1016/j.soilbio.2009.03.016 10.1016/j.ibiod.2013.07.004 10.1111/j.1365-2486.2009.02044.x 10.3389/fpls.2015.00529 10.1016/j.agee.2011.06.015 10.1002/jpln.201200639 10.1021/ez5002209 10.1016/j.ejsobi.2013.10.007 10.1021/es5043468 10.1029/2006GB002798 10.1016/j.agee.2014.12.001 10.1021/acssuschemeng.6b01869 10.1021/acs.est.5b05517 10.1007/s11104-010-0544-6 10.2136/sssaj2005.0383 10.1371/journal.pone.0018839 10.1021/tx010050x 10.1016/j.chemosphere.2015.05.052 10.1023/A:1014483303813 10.1038/srep16221 10.1111/ejss.12034 10.1016/j.envpol.2010.02.003 10.1016/S1001-0742(09)60293-X 10.1016/j.chemosphere.2015.04.062 10.1139/cjss-2015-0094 10.1021/es8002684 10.3390/su71013317 10.1016/j.geoderma.2012.10.002 10.1007/s11356-015-4233-0 10.1016/j.apsoil.2015.05.005 10.1111/ejss.12064 10.1007/s00374-012-0723-0 10.1016/j.soilbio.2014.08.004 10.1016/j.proci.2006.07.172 10.1016/j.tim.2010.11.006 10.1016/j.geoderma.2011.04.021 10.1007/s00374-011-0644-3 10.1016/j.jhazmat.2013.12.027 10.1016/j.chemosphere.2015.05.084 10.1016/j.soilbio.2015.07.014 10.1016/j.taap.2015.09.021 10.1016/j.chemosphere.2013.10.071 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 10.1016/j.chemosphere.2011.06.108 10.5194/se-5-585-2014 10.1016/j.geoderma.2013.03.003 10.1186/1743-8977-6-11 10.1111/j.1365-2486.2012.02796.x 10.1088/1748-9326/9/6/064013 10.1016/j.chemosphere.2015.04.087 10.1016/j.orggeochem.2015.12.003 10.1111/ejss.12257 10.1021/es902648t 10.1016/j.biortech.2010.02.052 10.1007/s11368-014-0996-z 10.1007/s11368-014-0969-2 10.1094/PHYTO-100-9-0913 10.1007/s00374-014-0962-3 10.1021/acs.est.5b04042 10.1111/gcbb.12007 10.1111/gcbb.12018 10.1007/s11368-014-1040-z 10.1016/j.chemosphere.2016.08.072 10.1080/10643389.2011.574115 10.1016/j.biortech.2011.11.084 10.1111/1574-6941.12374 10.1021/es405676h 10.1021/es4048126 10.1021/es1014423 10.1021/es303351e 10.1007/s11368-012-0554-5 10.4155/cmt.13.23 10.1097/SS.0b013e3181981d9a 10.1021/es302345e 10.1016/j.catena.2014.05.020 10.1007/s11104-012-1129-3 10.1021/es803092k 10.1016/j.soilbio.2011.04.022 10.1016/j.soilbio.2010.12.015 10.1021/es404250a 10.1016/j.soilbio.2011.05.021 10.1128/AEM.00335-09 10.1016/j.biortech.2010.08.067 10.1016/S0038-0717(99)00051-6 10.2134/jeq2012.0411 10.1016/j.soilbio.2013.06.004 10.1016/j.biortech.2013.07.086 10.1021/es300797z 10.2134/jeq2011.0145 10.1021/es903140c 10.1006/fgbi.1997.1022 10.1016/j.chemosphere.2009.02.004 10.1016/j.soilbio.2011.02.005 10.1016/j.geoderma.2010.05.013 10.1016/j.pedobi.2004.11.003 10.1111/ejss.12071 10.1007/s11368-013-0806-z 10.1007/s11104-007-9391-5 10.1016/j.biortech.2014.11.032 10.5194/bg-13-5739-2016 10.1021/es501885n 10.1021/es500906d 10.5194/se-5-693-2014 10.1080/10256010903388436 10.1038/nrmicro1127 10.1111/gcbb.12132 10.1016/j.scitotenv.2016.07.135 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2017.04.032 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
EndPage | 115 |
ExternalDocumentID | 28458251 10_1016_j_envpol_2017_04_032 S026974911632228X |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 29G 4.4 457 53G 5GY 5VS 6TJ 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SCU SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TWZ VH1 WH7 WUQ XJT XOL XPP ZMT ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-a418t-36625a3fc0db8750f62eccefd36880a16751c0fe5ce3ddd61a8c9be1ba2e0d3b3 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Fri Jul 11 08:45:11 EDT 2025 Tue Jul 22 01:05:23 EDT 2025 Wed Feb 19 02:16:36 EST 2025 Tue Jul 01 00:54:27 EDT 2025 Thu Apr 24 23:16:01 EDT 2025 Fri Feb 23 02:28:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil improvement Contaminant mitigation Interaction mechanisms Carbon sequestration Microbial community Biochar amendment |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a418t-36625a3fc0db8750f62eccefd36880a16751c0fe5ce3ddd61a8c9be1ba2e0d3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4155-2437 0000-0001-8196-081X |
PMID | 28458251 |
PQID | 1893971812 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2000354178 proquest_miscellaneous_1893971812 pubmed_primary_28458251 crossref_primary_10_1016_j_envpol_2017_04_032 crossref_citationtrail_10_1016_j_envpol_2017_04_032 elsevier_sciencedirect_doi_10_1016_j_envpol_2017_04_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dellinger, Pryor, Cueto, Squadrito, Hegde, Deutsch (bib40) 2001; 14 Sun, Meng, Liang, Yang, Huang, Chen, Jiang, Lan, Zhang, Gao (bib142) 2015; 15 Kappler, Wuestner, Ruecker, Harter, Halama, Behrens (bib78) 2014; 1 Paz-Ferreiro, Fu, Mendez, Gasco (bib113) 2015; 15 Graber, Tsechansky, Lew, Cohen (bib62) 2014; 65 Fang, Gao, Liu, Dionysiou, Wang, Zhou (bib48) 2014; 48 Warnock, Lehmann, Kuyper, Rillig (bib146) 2007; 300 Awad, Blagodatskaya, Ok, Kuzyakov (bib10) 2013; 64 Rillig, Wright, Eviner (bib128) 2002; 238 Masek, Brownsort, Cross, Sohi (bib103) 2013; 103 Kasozi, Zimmerman, Nkedi-Kizza, Gao (bib79) 2010; 44 Luo, Gu (bib99) 2016; 182 Elad, David, Harel, Borenshtein, Ben Kalifa, Silber, Graber (bib46) 2010; 100 Sawyer, Claessen, Haas, Hurgobin, Gras (bib135) 2011 Yanardag, Zornoza, Faz Cano, Yanardag, Mermut (bib152) 2015; 51 Dong, Ma, Gress, Harris, Li (bib42) 2014; 267 Elad, Cytryn, Harel, Lew, Graber (bib45) 2011; 50 Zhang, Zhou, Liang, Sun, Wang, He (bib159) 2015; 94 Gebbink, Claessen, Bouma, Dijkhuizen, Wosten (bib57) 2005; 3 Fox, Kwapinski, Griffiths, Schmalenberger (bib52) 2014; 90 Chen, Yuan, Qian (bib27) 2012; 12 Paz-Ferreiro, Gasco, Gutierrez, Mendez (bib115) 2012; 48 Liao, Pan, Li, Zhang, Xing (bib96) 2014; 48 Smebye, Alling, Vogt, Gadmar, Mulder, Cornelissen, Hale (bib138) 2016; 142 Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Vithanage, Lee, Ok (bib4) 2014; 99 Xiao, Chen, Chen (bib148) 2016 Zheng, Chen, Pan, Liu, Zhang, Li, Sian, Cheng, JinweiZheng (bib160) 2016; 571 Chen, Yuan (bib26) 2011; 11 Lehmann (bib90) 2007; 5 Demisie, Liu, Zhang (bib41) 2014; 121 Chen, Liu, Zheng, Zhang, Lu, Chi, Pan, Li, Zheng, Zhang, Wang, Yu (bib30) 2013; 71 Hale, Luth, Kenney, Crowley (bib65) 2014; 84 Leal, Dick, Lombardi, Maciel, Gonzalez-Perez, Knicker (bib89) 2015; 15 Liang, Zhu, Fu, Mendez, Gasco, Paz-Ferreiro (bib95) 2014 Truong, Lomnicki, Dellinger (bib144) 2010; 44 Reed, dela Cruz, Lomnicki, Backes (bib125) 2015; 289 Hale, Luth, Crowley (bib64) 2015; 81 Chen, Xiao, Chen, Zhu (bib35) 2015; 49 Chen, Ding (bib25) 2012; 229 Galvez, Sinicco, Cayuela, Mingorance, Fornasier, Mondini (bib54) 2012; 160 Silber, Levkovitch, Graber (bib137) 2010; 44 Rousk, Brookes, Baath (bib133) 2009; 75 Wang, Gao, Zimmerman, Li, Ma, Harris, Migliaccio (bib145) 2015; 134 Yang, Pan, Li, Liao, Zhang, Wu, Xing (bib153) 2016; 50 Czimczik, Masiello (bib37) 2007 Spokas, Novak, Stewart, Cantrell, Uchimiya, DuSaire, Ro (bib139) 2011; 85 Quilliam, Glanville, Wade, Jones (bib123) 2013; 65 Novak, Busscher, Laird, Ahmedna, Watts, Niandou (bib111) 2009; 174 Chen, Chen, Chiou (bib32) 2012; 46 Qian, Chen (bib118) 2014; 62 Beesley, Moreno-Jimenez, Gomez-Eyles, Harris, Robinson, Sizmur (bib16) 2011; 159 Mukherjee, Zimmerman, Harris (bib107) 2011; 163 Purakayastha, Kumari, Pathak (bib116) 2015; 239 Akhter, Hage-Ahmed, Soja, Steinkellner (bib5) 2015 Jien, Wang (bib75) 2013; 110 Lu, Yang, Gielen, Bolan, Ok, Niazi, Xu, Yuan, Chen, Zhang, Liu, Song, Liu, Wang (bib98) 2017; 186 Rillig (bib126) 2005; 49 Beesley, Moreno-Jiménez, Gomez-Eyles (bib15) 2010; 158 Joseph, Graber, Chia, Munroe, Donne, Thomas, Nielsen, Marjo, Rutlidge, Pan, Li, Taylor, Rawal, Hook (bib77) 2013; 4 Bailey, Fansler, Smith, Bolton (bib11) 2011; 43 Nielsen, Minchin, Kimber, van Zwieten, Gilbert, Munroe, Joseph, Thomas (bib110) 2014; 191 Lehmann (bib91) 2007; 447 Koltowski, Charmas, Skubiszewska-Zieba, Oleszczuk (bib84) 2017; 136 Ghidotti, Fabbri, Hornung (bib59) 2017; 5 Li, Cao, Zhao, Wang, Ding (bib93) 2014; 48 Mackie, Marhan, Ditterich, Schmidt, Kandeler (bib101) 2015; 201 Cantrell, Hunt, Uchimiya, Novak, Ro (bib18) 2012; 107 Chen, Chen, Zhou, Chen (bib33) 2012; 46 Jeong, Dodla, Wang (bib73) 2016; 142 Lauber, Hamady, Knight, Fierer (bib88) 2009; 75 Rousk, Baath, Brookes, Lauber, Lozupone, Caporaso, Knight, Fierer (bib132) 2010; 4 Xu, Adhikari, Huang, Zhang, Tang, Roden, Yang (bib149) 2016; 50 Rillig, Lutgen, Ramsey, Klironomos, Gannon (bib127) 2005; 49 Zimmerman, Gao, Ahn (bib164) 2011; 43 Kolton, Harel, Pasternak, Graber, Elad, Cytryn (bib83) 2011; 77 Chen, Chen, Lv (bib24) 2011; 102 Gibson, Berry, Wang, Spencer, Johnston, Jiang, Bird, Filley (bib60) 2016; 92 Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (bib92) 2011; 43 Heitkoetter, Marschner (bib68) 2015; 245 Chen, Zhou, Zhu (bib28) 2008; 42 Ameloot, Sleutel, Das, Kanagaratnam, de Neve (bib8) 2015; 7 Chen, Zhou, Zhu, Shen (bib29) 2008; 51 Ronsse, van Hecke, Dickinson, Prins (bib131) 2013; 5 Doong, Lee, Lien (bib43) 2014; 97 Bandick, Dick (bib14) 1999; 31 Biederman, Harpole (bib17) 2013; 5 Chathurika, Kumaragamage, Zvomuya, Akinremi, Flaten, Indraratne, Dandeniya (bib22) 2016; 96 Jien, Wang, Lee, Lee (bib74) 2015; 7 Chen, Fang, Xu, Chen (bib34) 2012; 32 Kuzyakov, Friedel, Stahr (bib85) 2000; 32 Lammirato, Miltner, Kaestner (bib87) 2011; 43 Balakrishna, Lomnicki, McAvey, Cole, Dellinger, Cormier (bib12) 2009 Yang, Liu, McGrouther, Huang, Lu, Guo, He, Lin, Che, Ye, Wang (bib154) 2016; 23 Rittl, Novotny, Balieiro, Hoffland, Alves, Kuyper (bib129) 2015; 66 Choppala, Bolan, Megharaj, Chen, Naidu (bib36) 2012; 41 Graber, Harel, Kolton, Cytryn, Silber, David, Tsechansky, Borenshtein, Elad (bib61) 2010; 337 Lin, Munroe, Joseph, Kimber, Van Zwieten (bib97) 2012; 357 Harel, Elad, Rav-David, Borenstein, Shulchani, Lew, Graber (bib67) 2012; 357 Yu, Yuan, Tang, Wang, Zhou (bib155) 2015 Qian, Chen, Hu (bib119) 2013; 47 Qian, Chen, Chen (bib121) 2016 Bamminger, Zaiser, Zinsser, Lamers, Kammann, Marhan (bib13) 2014; 50 Kluepfel, Keiluweit, Kleber, Sander (bib82) 2014; 48 Fang, Chen, Lin, Guan (bib51) 2014; 48 Garcia-Delgado, Alfaro-Barta, Eymar (bib56) 2015; 285 Abit, Bolster, Cai, Walker (bib2) 2012; 46 Zimmermann, Bird, Wurster, Saiz, Goodrick, Barta, Capek, Santruckova, Smernik (bib165) 2012; 18 Guo, Chen (bib63) 2014; 48 Zimmerman (bib162) 2010; 44 Ascough, Sturrock, Bird (bib9) 2010; 46 El-Naggar, Usman, Al-Omran, Ok, Ahmad, Al-Wabel (bib44) 2015; 138 Mukherjee, Zimmerman, Hamdan, Cooper (bib106) 2014; 5 Jones, Edwards-Jones, Murphy (bib76) 2011; 43 Gao, Cheng, Del Valle, Liu, Masiello, Silberg (bib55) 2016; 1 Ameloot, Sleutel, Case, Alberti, McNamara, Zavalloni, Vervisch, delle Vedove, De Neve (bib7) 2014; 78 Jeffery, Bezemer, Cornelissen, Kuyper, Lehmann, Mommer, Sohi, van de Voorde, Wardle, van Groenigen (bib72) 2015; 7 Oh, Son, Hur, Chung, Chiu (bib112) 2013; 42 Fang, Zhu, Dionysiou, Gao, Zhou (bib50) 2015; 176 King (bib81) 2011; 19 Yuan, Xu, Zhang (bib157) 2011; 102 Fang, Liu, Gao, Dionysiou, Zhou (bib49) 2015; 49 Jäckel, Schnell, Conrad (bib71) 2004; 36 Abel, Peters, Trinks, Schonsky, Facklam, Wessolek (bib1) 2013; 202 Yuan, Lu, Wang, Chen, Lei (bib156) 2016; 267 Cely, Tarquis, Paz-Ferreiro, Mendez, Gasco (bib21) 2014; 5 Paz-Ferreiro, Fu, Mendez, Gasco (bib114) 2014; 14 Major, Lehmann, Rondon, Goodale (bib102) 2010; 16 Qin, Gong, Fan (bib122) 2013; 85 Nannipieri, Giagnoni, Renella, Puglisi, Ceccanti, Masciandaro, Fornasier, Moscatelli, Marinari (bib109) 2012; 48 Zhang, Chen, Li, Brookes, Xu, Luo (bib158) 2017; 53 Masiello, Chen, Gao, Liu, Cheng, Bennett, Rudgers, Wagner, Zygourakis, Silberg (bib104) 2013; 47 Steinbeiss, Gleixner, Antonietti (bib141) 2009; 41 Laird, Fleming, Davis, Horton, Wang, Karlen (bib86) 2010; 158 Murray, Keith, Singh (bib108) 2015; 89 Kershaw, Talbot (bib80) 1998; 23 Chen, Chen (bib23) 2009; 76 Cao, Harris (bib19) 2010; 101 Xiao, Chen, Zhu (bib147) 2014; 48 Cao, Ma, Gao, Harris (bib20) 2009; 43 Mukherjee, Zimmerman (bib105) 2013; 193 Ameloot, Graber, Verheijen, De Neve (bib6) 2013; 64 Hale, Hanley, Lehmann, Zimmerman, Cornelissen (bib66) 2011; 45 Galitskaya, Akhmetzyanova, Selivanovskaya (bib53) 2016; 13 George, Wagner, Kuecke, Rillig (bib58) 2012; 59 de Andrade, Silveira Bibar, Coscione, Moreno Pires, Soares (bib38) 2015; 50 Quilliam, Rangecroft, Emmett, Deluca, Jones (bib124) 2013; 5 Dellinger, Loninicki, Khachatryan, Maskos, Hall, Adounkpe, McFerrin, Truong (bib39) 2007; 31 Lyu, He, Tang, Hecker, Liu, Jones, Codling, Giesy (bib100) 2016; 218 Seneviratne, Weerasundara, Ok, Rinklebe, Vithanage (bib136) 2017; 186 Rodriguez-Vila, Forjan, Guedes, Covelo (bib130) 2016 Stefaniuk, Oleszczuk (bib140) 2016; 218 Xu, Chen (bib151) 2015; 15 Qian, Chen (bib117) 2013; 47 Zimmerman, Ahn (bib163) 2010 Qian, Chen, Chen (bib120) 2015; 15 Huang, Chen (bib70) 2010; 22 Liang, Lehmann, Solomon, Kinyangi, Grossman, O'Neill, Skjemstad, Thies, Luizao, Petersen, Neves (bib94) 2006; 70 Hua, Wang, Wang, Ma (bib69) 2015; 34 Sun, Lu (bib143) 2014; 177 Ahmad, Ok, Kim, Ahn, Lee, Zhang, Moon, Al-Wabel, Lee (bib3) 2016; 166 Zielinska, Oleszczuk (bib161) 2016; 163 Chen, Rotaru, Shrestha, Malvankar, Liu, Fan, Nevin, Lovley (bib31) 2014 Ennis, Evans, Islam, Ralebitso-Senior, Senior (bib47) 2012; 42 Rutigliano, Romano, Marzaioli, Baglivo, Baronti, Miglietta, Castaldi (bib134) 2014; 60 Xu, Chen (bib150) 2013; 146 Demisie (10.1016/j.envpol.2017.04.032_bib41) 2014; 121 Cao (10.1016/j.envpol.2017.04.032_bib20) 2009; 43 Chathurika (10.1016/j.envpol.2017.04.032_bib22) 2016; 96 Lehmann (10.1016/j.envpol.2017.04.032_bib91) 2007; 447 Warnock (10.1016/j.envpol.2017.04.032_bib146) 2007; 300 Qin (10.1016/j.envpol.2017.04.032_bib122) 2013; 85 Qian (10.1016/j.envpol.2017.04.032_bib118) 2014; 62 Rousk (10.1016/j.envpol.2017.04.032_bib132) 2010; 4 Chen (10.1016/j.envpol.2017.04.032_bib24) 2011; 102 Liang (10.1016/j.envpol.2017.04.032_bib95) 2014 Elad (10.1016/j.envpol.2017.04.032_bib46) 2010; 100 Sun (10.1016/j.envpol.2017.04.032_bib142) 2015; 15 Rillig (10.1016/j.envpol.2017.04.032_bib128) 2002; 238 Leal (10.1016/j.envpol.2017.04.032_bib89) 2015; 15 Lin (10.1016/j.envpol.2017.04.032_bib97) 2012; 357 Purakayastha (10.1016/j.envpol.2017.04.032_bib116) 2015; 239 Paz-Ferreiro (10.1016/j.envpol.2017.04.032_bib114) 2014; 14 Ameloot (10.1016/j.envpol.2017.04.032_bib8) 2015; 7 Quilliam (10.1016/j.envpol.2017.04.032_bib123) 2013; 65 Xiao (10.1016/j.envpol.2017.04.032_bib148) 2016 Kuzyakov (10.1016/j.envpol.2017.04.032_bib85) 2000; 32 Galvez (10.1016/j.envpol.2017.04.032_bib54) 2012; 160 Zhang (10.1016/j.envpol.2017.04.032_bib158) 2017; 53 Kluepfel (10.1016/j.envpol.2017.04.032_bib82) 2014; 48 Graber (10.1016/j.envpol.2017.04.032_bib61) 2010; 337 Rittl (10.1016/j.envpol.2017.04.032_bib129) 2015; 66 Cantrell (10.1016/j.envpol.2017.04.032_bib18) 2012; 107 Beesley (10.1016/j.envpol.2017.04.032_bib15) 2010; 158 Rillig (10.1016/j.envpol.2017.04.032_bib126) 2005; 49 Graber (10.1016/j.envpol.2017.04.032_bib62) 2014; 65 Laird (10.1016/j.envpol.2017.04.032_bib86) 2010; 158 Seneviratne (10.1016/j.envpol.2017.04.032_bib136) 2017; 186 Chen (10.1016/j.envpol.2017.04.032_bib29) 2008; 51 Mukherjee (10.1016/j.envpol.2017.04.032_bib106) 2014; 5 Mukherjee (10.1016/j.envpol.2017.04.032_bib105) 2013; 193 Nannipieri (10.1016/j.envpol.2017.04.032_bib109) 2012; 48 Ennis (10.1016/j.envpol.2017.04.032_bib47) 2012; 42 Major (10.1016/j.envpol.2017.04.032_bib102) 2010; 16 Oh (10.1016/j.envpol.2017.04.032_bib112) 2013; 42 Steinbeiss (10.1016/j.envpol.2017.04.032_bib141) 2009; 41 Xu (10.1016/j.envpol.2017.04.032_bib149) 2016; 50 Masiello (10.1016/j.envpol.2017.04.032_bib104) 2013; 47 Zielinska (10.1016/j.envpol.2017.04.032_bib161) 2016; 163 Xu (10.1016/j.envpol.2017.04.032_bib151) 2015; 15 Garcia-Delgado (10.1016/j.envpol.2017.04.032_bib56) 2015; 285 Yang (10.1016/j.envpol.2017.04.032_bib154) 2016; 23 Chen (10.1016/j.envpol.2017.04.032_bib30) 2013; 71 Choppala (10.1016/j.envpol.2017.04.032_bib36) 2012; 41 Doong (10.1016/j.envpol.2017.04.032_bib43) 2014; 97 Hale (10.1016/j.envpol.2017.04.032_bib65) 2014; 84 Novak (10.1016/j.envpol.2017.04.032_bib111) 2009; 174 Paz-Ferreiro (10.1016/j.envpol.2017.04.032_bib115) 2012; 48 Akhter (10.1016/j.envpol.2017.04.032_bib5) 2015 Chen (10.1016/j.envpol.2017.04.032_bib32) 2012; 46 Jones (10.1016/j.envpol.2017.04.032_bib76) 2011; 43 Balakrishna (10.1016/j.envpol.2017.04.032_bib12) 2009 Fang (10.1016/j.envpol.2017.04.032_bib50) 2015; 176 Koltowski (10.1016/j.envpol.2017.04.032_bib84) 2017; 136 Qian (10.1016/j.envpol.2017.04.032_bib119) 2013; 47 Awad (10.1016/j.envpol.2017.04.032_bib10) 2013; 64 Masek (10.1016/j.envpol.2017.04.032_bib103) 2013; 103 Qian (10.1016/j.envpol.2017.04.032_bib120) 2015; 15 Abit (10.1016/j.envpol.2017.04.032_bib2) 2012; 46 Fang (10.1016/j.envpol.2017.04.032_bib49) 2015; 49 Heitkoetter (10.1016/j.envpol.2017.04.032_bib68) 2015; 245 Smebye (10.1016/j.envpol.2017.04.032_bib138) 2016; 142 Stefaniuk (10.1016/j.envpol.2017.04.032_bib140) 2016; 218 Cao (10.1016/j.envpol.2017.04.032_bib19) 2010; 101 Bamminger (10.1016/j.envpol.2017.04.032_bib13) 2014; 50 Chen (10.1016/j.envpol.2017.04.032_bib25) 2012; 229 Ahmad (10.1016/j.envpol.2017.04.032_bib3) 2016; 166 Liao (10.1016/j.envpol.2017.04.032_bib96) 2014; 48 Jien (10.1016/j.envpol.2017.04.032_bib74) 2015; 7 Dong (10.1016/j.envpol.2017.04.032_bib42) 2014; 267 Lehmann (10.1016/j.envpol.2017.04.032_bib90) 2007; 5 Kershaw (10.1016/j.envpol.2017.04.032_bib80) 1998; 23 Silber (10.1016/j.envpol.2017.04.032_bib137) 2010; 44 Chen (10.1016/j.envpol.2017.04.032_bib27) 2012; 12 Chen (10.1016/j.envpol.2017.04.032_bib28) 2008; 42 Chen (10.1016/j.envpol.2017.04.032_bib31) 2014 Kappler (10.1016/j.envpol.2017.04.032_bib78) 2014; 1 Zimmerman (10.1016/j.envpol.2017.04.032_bib162) 2010; 44 Zimmerman (10.1016/j.envpol.2017.04.032_bib163) 2010 Czimczik (10.1016/j.envpol.2017.04.032_bib37) 2007 Gao (10.1016/j.envpol.2017.04.032_bib55) 2016; 1 Wang (10.1016/j.envpol.2017.04.032_bib145) 2015; 134 Bailey (10.1016/j.envpol.2017.04.032_bib11) 2011; 43 Hale (10.1016/j.envpol.2017.04.032_bib64) 2015; 81 Hua (10.1016/j.envpol.2017.04.032_bib69) 2015; 34 Nielsen (10.1016/j.envpol.2017.04.032_bib110) 2014; 191 Qian (10.1016/j.envpol.2017.04.032_bib117) 2013; 47 Jien (10.1016/j.envpol.2017.04.032_bib75) 2013; 110 Fox (10.1016/j.envpol.2017.04.032_bib52) 2014; 90 Chen (10.1016/j.envpol.2017.04.032_bib23) 2009; 76 Fang (10.1016/j.envpol.2017.04.032_bib51) 2014; 48 Luo (10.1016/j.envpol.2017.04.032_bib99) 2016; 182 Biederman (10.1016/j.envpol.2017.04.032_bib17) 2013; 5 Lammirato (10.1016/j.envpol.2017.04.032_bib87) 2011; 43 Ameloot (10.1016/j.envpol.2017.04.032_bib7) 2014; 78 Zimmerman (10.1016/j.envpol.2017.04.032_bib164) 2011; 43 Paz-Ferreiro (10.1016/j.envpol.2017.04.032_bib113) 2015; 15 Beesley (10.1016/j.envpol.2017.04.032_bib16) 2011; 159 Rousk (10.1016/j.envpol.2017.04.032_bib133) 2009; 75 Guo (10.1016/j.envpol.2017.04.032_bib63) 2014; 48 Chen (10.1016/j.envpol.2017.04.032_bib33) 2012; 46 Harel (10.1016/j.envpol.2017.04.032_bib67) 2012; 357 Xiao (10.1016/j.envpol.2017.04.032_bib147) 2014; 48 Dellinger (10.1016/j.envpol.2017.04.032_bib40) 2001; 14 Gebbink (10.1016/j.envpol.2017.04.032_bib57) 2005; 3 Mackie (10.1016/j.envpol.2017.04.032_bib101) 2015; 201 Chen (10.1016/j.envpol.2017.04.032_bib26) 2011; 11 Qian (10.1016/j.envpol.2017.04.032_bib121) 2016 Quilliam (10.1016/j.envpol.2017.04.032_bib124) 2013; 5 Spokas (10.1016/j.envpol.2017.04.032_bib139) 2011; 85 Mukherjee (10.1016/j.envpol.2017.04.032_bib107) 2011; 163 Kasozi (10.1016/j.envpol.2017.04.032_bib79) 2010; 44 Truong (10.1016/j.envpol.2017.04.032_bib144) 2010; 44 Jeffery (10.1016/j.envpol.2017.04.032_bib72) 2015; 7 Li (10.1016/j.envpol.2017.04.032_bib93) 2014; 48 Murray (10.1016/j.envpol.2017.04.032_bib108) 2015; 89 Chen (10.1016/j.envpol.2017.04.032_bib35) 2015; 49 Reed (10.1016/j.envpol.2017.04.032_bib125) 2015; 289 Ahmad (10.1016/j.envpol.2017.04.032_bib4) 2014; 99 Cely (10.1016/j.envpol.2017.04.032_bib21) 2014; 5 Sun (10.1016/j.envpol.2017.04.032_bib143) 2014; 177 Dellinger (10.1016/j.envpol.2017.04.032_bib39) 2007; 31 Xu (10.1016/j.envpol.2017.04.032_bib150) 2013; 146 Rutigliano (10.1016/j.envpol.2017.04.032_bib134) 2014; 60 Zimmermann (10.1016/j.envpol.2017.04.032_bib165) 2012; 18 Jäckel (10.1016/j.envpol.2017.04.032_bib71) 2004; 36 Ascough (10.1016/j.envpol.2017.04.032_bib9) 2010; 46 Yanardag (10.1016/j.envpol.2017.04.032_bib152) 2015; 51 Lu (10.1016/j.envpol.2017.04.032_bib98) 2017; 186 Chen (10.1016/j.envpol.2017.04.032_bib34) 2012; 32 Lehmann (10.1016/j.envpol.2017.04.032_bib92) 2011; 43 Sawyer (10.1016/j.envpol.2017.04.032_bib135) 2011 Yang (10.1016/j.envpol.2017.04.032_bib153) 2016; 50 Yuan (10.1016/j.envpol.2017.04.032_bib157) 2011; 102 Galitskaya (10.1016/j.envpol.2017.04.032_bib53) 2016; 13 Zheng (10.1016/j.envpol.2017.04.032_bib160) 2016; 571 King (10.1016/j.envpol.2017.04.032_bib81) 2011; 19 Fang (10.1016/j.envpol.2017.04.032_bib48) 2014; 48 Hale (10.1016/j.envpol.2017.04.032_bib66) 2011; 45 Jeong (10.1016/j.envpol.2017.04.032_bib73) 2016; 142 Zhang (10.1016/j.envpol.2017.04.032_bib159) 2015; 94 George (10.1016/j.envpol.2017.04.032_bib58) 2012; 59 Liang (10.1016/j.envpol.2017.04.032_bib94) 2006; 70 Bandick (10.1016/j.envpol.2017.04.032_bib14) 1999; 31 Lauber (10.1016/j.envpol.2017.04.032_bib88) 2009; 75 Lyu (10.1016/j.envpol.2017.04.032_bib100) 2016; 218 Ameloot (10.1016/j.envpol.2017.04.032_bib6) 2013; 64 Ghidotti (10.1016/j.envpol.2017.04.032_bib59) 2017; 5 Yuan (10.1016/j.envpol.2017.04.032_bib156) 2016; 267 El-Naggar (10.1016/j.envpol.2017.04.032_bib44) 2015; 138 Ronsse (10.1016/j.envpol.2017.04.032_bib131) 2013; 5 Gibson (10.1016/j.envpol.2017.04.032_bib60) 2016; 92 Huang (10.1016/j.envpol.2017.04.032_bib70) 2010; 22 Joseph (10.1016/j.envpol.2017.04.032_bib77) 2013; 4 Rodriguez-Vila (10.1016/j.envpol.2017.04.032_bib130) 2016 Rillig (10.1016/j.envpol.2017.04.032_bib127) 2005; 49 Yu (10.1016/j.envpol.2017.04.032_bib155) 2015 Kolton (10.1016/j.envpol.2017.04.032_bib83) 2011; 77 de Andrade (10.1016/j.envpol.2017.04.032_bib38) 2015; 50 Abel (10.1016/j.envpol.2017.04.032_bib1) 2013; 202 Elad (10.1016/j.envpol.2017.04.032_bib45) 2011; 50 |
References_xml | – volume: 138 start-page: 67 year: 2015 end-page: 73 ident: bib44 article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar publication-title: Chemosphere – volume: 49 start-page: 251 year: 2005 end-page: 259 ident: bib127 article-title: Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation publication-title: Pedobiologia – volume: 48 start-page: 511 year: 2012 end-page: 517 ident: bib115 article-title: Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil publication-title: Biol. Fertil. Soils – volume: 50 start-page: 1189 year: 2014 end-page: 1200 ident: bib13 article-title: Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil publication-title: Biol. Fertil. Soils – volume: 42 start-page: 815 year: 2013 end-page: 821 ident: bib112 article-title: Black carbon-mediated reduction of 2,4-Dinitrotoluene by dithiothreitol publication-title: J. Environ. Qual. – volume: 85 start-page: 150 year: 2013 end-page: 155 ident: bib122 article-title: Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar publication-title: Int. Biodeterior. Biodegr. – volume: 239 start-page: 293 year: 2015 end-page: 303 ident: bib116 article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues publication-title: Geoderma – volume: 229 start-page: 159 year: 2012 end-page: 169 ident: bib25 article-title: Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium publication-title: J. Hazard. Mater – volume: 13 start-page: 5739 year: 2016 end-page: 5752 ident: bib53 article-title: Biochar-carrying hydrocarbon decomposers promote degradation during the early stage of bioremediation publication-title: Biogeosciences – volume: 84 start-page: 192 year: 2014 end-page: 199 ident: bib65 article-title: Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation publication-title: Appl. Soil Ecol. – volume: 32 start-page: 1485 year: 2000 end-page: 1498 ident: bib85 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biol. Biochem. – volume: 43 start-page: 1169 year: 2011 end-page: 1179 ident: bib164 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol. Biochem. – volume: 66 start-page: 714 year: 2015 end-page: 721 ident: bib129 article-title: Negative priming of native soil organic carbon mineralization by oilseed biochars of contrasting quality publication-title: Eur. J. Soil Sci. – volume: 447 start-page: 143 year: 2007 end-page: 144 ident: bib91 article-title: A handful of carbon publication-title: Nature – volume: 5 start-page: 585 year: 2014 end-page: 594 ident: bib21 article-title: Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar publication-title: Solid Earth – volume: 101 start-page: 5222 year: 2010 end-page: 5228 ident: bib19 article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation publication-title: Bioresour. Technol. – year: 2016 ident: bib121 article-title: Novel alleviation mechanisms of aluminum phytotoxicity via released biosilicon from rice straw-derived biochars publication-title: Sci. Rep. – volume: 107 start-page: 419 year: 2012 end-page: 428 ident: bib18 article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar publication-title: Bioresour. Technol. – volume: 44 start-page: 6189 year: 2010 end-page: 6195 ident: bib79 article-title: Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars) publication-title: Environ. Sci. Technol. – volume: 31 start-page: 521 year: 2007 end-page: 528 ident: bib39 article-title: Formation and stabilization of persistent free radicals publication-title: Proc. Combust. Inst. – volume: 238 start-page: 325 year: 2002 end-page: 333 ident: bib128 article-title: The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species publication-title: Plant Soil – volume: 14 start-page: 483 year: 2014 end-page: 494 ident: bib114 article-title: Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities publication-title: J. Soils Sed. – volume: 71 start-page: 33 year: 2013 end-page: 44 ident: bib30 article-title: Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China publication-title: Appl. Soil Ecol. – volume: 267 start-page: 62 year: 2014 end-page: 70 ident: bib42 article-title: Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar publication-title: J. Hazard. Mater – volume: 193 start-page: 122 year: 2013 end-page: 130 ident: bib105 article-title: Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures publication-title: Geoderma – volume: 48 start-page: 5601 year: 2014 end-page: 5611 ident: bib82 article-title: Redox properties of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 90 start-page: 78 year: 2014 end-page: 91 ident: bib52 article-title: The role of sulfur- and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Lolium perenne publication-title: FEMS Microbiol. Ecol. – volume: 23 start-page: 974 year: 2016 end-page: 984 ident: bib154 article-title: Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil publication-title: Environ. Sci. Pollut. Res. – volume: 75 start-page: 1589 year: 2009 end-page: 1596 ident: bib133 article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization publication-title: Appl. Environ. Microbiol. – volume: 51 start-page: 464 year: 2008 end-page: 472 ident: bib29 article-title: Sorption characteristics and mechanisms of organic contaminant to carbonaceous biosorbents in aqueous solution publication-title: Sci. China Ser. B-Chem. – year: 2016 ident: bib130 article-title: Changes on the phytoavailability of nutrients in a mine soil reclaimed with compost and biochar publication-title: Water Air Soil Pollut. – volume: 36 start-page: 835 year: 2004 end-page: 840 ident: bib71 article-title: Microbial ethylene production and inhibition of methanotrophic activity in a deciduous forest soil publication-title: Soil Biol. Biochem. – volume: 48 start-page: 8581 year: 2014 end-page: 8587 ident: bib96 article-title: Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings publication-title: Environ. Sci. Technol. – volume: 15 start-page: 60 year: 2015 end-page: 70 ident: bib151 article-title: Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution publication-title: J. Soils Sed. – volume: 134 start-page: 257 year: 2015 end-page: 262 ident: bib145 article-title: Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass publication-title: Chemosphere – volume: 1 start-page: 339 year: 2014 end-page: 344 ident: bib78 article-title: Biochar as an electron shuttle between bacteria and Fe(III) minerals publication-title: Environ. Sci. Technol. Lett. – volume: 65 start-page: 287 year: 2013 end-page: 293 ident: bib123 article-title: Life in the 'charosphere' - does biochar in agricultural soil provide a significant habitat for microorganisms? publication-title: Soil Biol. Biochem. – volume: 85 start-page: 869 year: 2011 end-page: 882 ident: bib139 article-title: Qualitative analysis of volatile organic compounds on biochar publication-title: Chemosphere – volume: 43 start-page: 296 year: 2011 end-page: 301 ident: bib11 article-title: Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization publication-title: Soil Biol. Biochem. – volume: 31 start-page: 1471 year: 1999 end-page: 1479 ident: bib14 article-title: Field management effects on soil enzyme activities publication-title: Soil Biol. Biochem. – volume: 160 start-page: 3 year: 2012 end-page: 14 ident: bib54 article-title: Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties publication-title: Agric. Ecosyst. Environ. – volume: 19 start-page: 75 year: 2011 end-page: 84 ident: bib81 article-title: Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes publication-title: Trends Microbiol. – volume: 43 start-page: 1936 year: 2011 end-page: 1942 ident: bib87 article-title: Effects of wood char and activated carbon on the hydrolysis of cellobiose by beta-glucosidase from Aspergillus niger publication-title: Soil Biol. Biochem. – volume: 48 start-page: 279 year: 2014 end-page: 288 ident: bib51 article-title: Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups publication-title: Environ. Sci. Technol. – volume: 46 start-page: 8097 year: 2012 end-page: 8105 ident: bib2 article-title: Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil publication-title: Environ. Sci. Technol. – volume: 159 start-page: 3269 year: 2011 end-page: 3282 ident: bib16 article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. – volume: 3 start-page: 333 year: 2005 end-page: 341 ident: bib57 article-title: Amyloids - a functional coat for microorganisms publication-title: Nat. Rev. Microbiol. – volume: 78 start-page: 195 year: 2014 end-page: 203 ident: bib7 article-title: C mineralization and microbial activity in four biochar field experiments several years after incorporation publication-title: Soil Biol. Biochem. – volume: 121 start-page: 214 year: 2014 end-page: 221 ident: bib41 article-title: Effect of biochar on carbon fractions and enzyme activity of red soil publication-title: Catena – volume: 43 start-page: 3285 year: 2009 end-page: 3291 ident: bib20 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. – volume: 1 start-page: 226 year: 2016 end-page: 233 ident: bib55 article-title: Charcoal disrupts soil microbial communication through a combination of signal sorption and hydrolysis publication-title: Acs Omega – volume: 100 start-page: 913 year: 2010 end-page: 921 ident: bib46 article-title: Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent publication-title: Phytopathology – volume: 16 start-page: 1366 year: 2010 end-page: 1379 ident: bib102 article-title: Fate of soil-applied black carbon: downward migration, leaching and soil respiration publication-title: Glob. Change Biol. – volume: 46 start-page: 11104 year: 2012 end-page: 11111 ident: bib32 article-title: Fast and slow rates of naphthalene sorption to biochars produced at different temperatures publication-title: Environ. Sci. Technol. – year: 2007 ident: bib37 article-title: Controls on black carbon storage in soils publication-title: Glob. Biogeochem. Cycl. – volume: 50 start-page: 335 year: 2011 end-page: 349 ident: bib45 article-title: The biochar effect: plant resistance to biotic stresses publication-title: Phytopathol. Mediterr. – volume: 4 start-page: 323 year: 2013 end-page: 343 ident: bib77 article-title: Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components publication-title: Carbon Manag. – volume: 96 start-page: 472 year: 2016 end-page: 484 ident: bib22 article-title: Woodchip biochar with or without synthetic fertilizers affects soil properties and available phosphorus in two alkaline, chernozemic soils publication-title: Can. J. Soil Sci. – volume: 81 start-page: 228 year: 2015 end-page: 235 ident: bib64 article-title: Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite publication-title: Soil Biol. Biochem. – year: 2014 ident: bib95 article-title: Biochar alters the resistance and resilience to drought in a tropical soil publication-title: Environ. Res. Lett. – volume: 89 start-page: 217 year: 2015 end-page: 225 ident: bib108 article-title: The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy publication-title: Soil Biol. Biochem. – volume: 44 start-page: 1933 year: 2010 end-page: 1939 ident: bib144 article-title: Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter publication-title: Environ. Sci. Technol. – volume: 357 start-page: 245 year: 2012 end-page: 257 ident: bib67 article-title: Biochar mediates systemic response of strawberry to foliar fungal pathogens publication-title: Plant Soil – volume: 163 start-page: 480 year: 2016 end-page: 489 ident: bib161 article-title: Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in historically contaminated soils after lab incubation with sewage sludge-derived biochars publication-title: Chemosphere – volume: 218 start-page: 1 year: 2016 end-page: 7 ident: bib100 article-title: Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment publication-title: Environ. Pollut. – volume: 51 start-page: 183 year: 2015 end-page: 196 ident: bib152 article-title: Evaluation of carbon and nitrogen dynamics in different soil types amended with pig slurry, pig manure and its biochar by chemical and thermogravimetric analysis publication-title: Biol. Fertil. Soils – volume: 182 start-page: 29 year: 2016 end-page: 36 ident: bib99 article-title: Alteration of extracellular enzyme activity and microbial abundance by biochar addition: implication for carbon sequestration in subtropical mangrove sediment publication-title: J. Environ. Manag. – volume: 64 start-page: 488 year: 2013 end-page: 499 ident: bib10 article-title: Effects of polyacrylamide, biopolymer and biochar on the decomposition of C-14-labelled maize residues and on their stabilization in soil aggregates publication-title: Eur. J. Soil Sci. – volume: 53 start-page: 77 year: 2017 end-page: 87 ident: bib158 article-title: The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers publication-title: Biol. Fertil. Soils – volume: 41 start-page: 1301 year: 2009 end-page: 1310 ident: bib141 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biol. Biochem. – volume: 174 start-page: 105 year: 2009 end-page: 112 ident: bib111 article-title: Impact of biochar amendment on fertility of a southeastern coastal plain soil publication-title: Soil Sci. – volume: 42 start-page: 5137 year: 2008 end-page: 5143 ident: bib28 article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures publication-title: Environ. Sci. Technol. – volume: 14 start-page: 1371 year: 2001 end-page: 1377 ident: bib40 article-title: Role of free radicals in the toxicity of airborne fine particulate matter publication-title: Chem. Res. Toxicol. – volume: 47 start-page: 8759 year: 2013 end-page: 8768 ident: bib117 article-title: Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles publication-title: Environ. Sci. Technol. – volume: 65 start-page: 162 year: 2014 end-page: 172 ident: bib62 article-title: Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe publication-title: Eur. J. Soil Sci. – volume: 5 start-page: 693 year: 2014 end-page: 704 ident: bib106 article-title: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging publication-title: Solid earth. – volume: 102 start-page: 716 year: 2011 end-page: 723 ident: bib24 article-title: A novel magnetic biochar efficiently sorbs organic pollutants and phosphate publication-title: Bioresour. Technol. – volume: 45 start-page: 10445 year: 2011 end-page: 10453 ident: bib66 article-title: Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar publication-title: Environ. Sci. Technol. – volume: 32 start-page: 769 year: 2012 end-page: 776 ident: bib34 article-title: Adsorption of Pb publication-title: Acta Sci. Circumst. – volume: 18 start-page: 3306 year: 2012 end-page: 3316 ident: bib165 article-title: Rapid degradation of pyrogenic carbon publication-title: Glob. Change Biol. – volume: 48 start-page: 9103 year: 2014 end-page: 9112 ident: bib63 article-title: Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components publication-title: Environ. Sci. Technol. – volume: 15 start-page: 578 year: 2015 end-page: 583 ident: bib113 article-title: Biochar modifies the thermodynamic parameters of soil enzyme activity in a tropical soil publication-title: J. Soils Sed. – volume: 47 start-page: 11496 year: 2013 end-page: 11503 ident: bib104 article-title: Biochar and microbial signaling: production conditions determine effects on microbial communication publication-title: Environ. Sci. Technol. – year: 2009 ident: bib12 article-title: Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity publication-title: Part. Fibre Toxicol. – volume: 136 start-page: 119 year: 2017 end-page: 125 ident: bib84 article-title: Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity publication-title: Ecotoxicol. Environ. Saf. – volume: 7 start-page: 13317 year: 2015 end-page: 13333 ident: bib74 article-title: Stabilization of organic matter by biochar application in compost-amended soils with contrasting pH values and textures publication-title: Sustainability – volume: 337 start-page: 481 year: 2010 end-page: 496 ident: bib61 article-title: Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media publication-title: Plant Soil – volume: 34 start-page: 1467 year: 2015 end-page: 1472 ident: bib69 article-title: Effect of biochar on organic matter conservation and metabolic quotient of soil publication-title: Environ. Prog. Sustain. Energy – volume: 46 start-page: 64 year: 2010 end-page: 77 ident: bib9 article-title: Investigation of growth responses in saprophytic fungi to charred biomass publication-title: Isot. Environ. Health Stud. – volume: 46 start-page: 12476 year: 2012 end-page: 12483 ident: bib33 article-title: Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures publication-title: Environ. Sci. Technol. – volume: 70 start-page: 1719 year: 2006 end-page: 1730 ident: bib94 article-title: Black Carbon increases cation exchange capacity in soils publication-title: Soil Sci. Soc. Am. J. – volume: 158 start-page: 2282 year: 2010 end-page: 2287 ident: bib15 article-title: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil publication-title: Environ. Pollut. – volume: 166 start-page: 131 year: 2016 end-page: 139 ident: bib3 article-title: Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil publication-title: J. Environ. Manag. – volume: 191 start-page: 73 year: 2014 end-page: 82 ident: bib110 article-title: Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers publication-title: Agric. Ecosyst. Environ. – volume: 97 start-page: 54 year: 2014 end-page: 63 ident: bib43 article-title: Enhanced dechlorination of carbon tetrachloride by Geobacter sulfurreducens in the presence of naturally occurring quinones and ferrihydrite publication-title: Chemosphere – volume: 146 start-page: 485 year: 2013 end-page: 493 ident: bib150 article-title: Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis publication-title: Bioresour. Technol. – year: 2014 ident: bib31 article-title: Promoting interspecies electron transfer with biochar publication-title: Sci. Rep. – volume: 41 start-page: 1175 year: 2012 end-page: 1184 ident: bib36 article-title: The influence of biochar and black carbon on reduction and bioavailability of chromate in soils publication-title: J. Environ. Qual. – volume: 4 start-page: 1340 year: 2010 end-page: 1351 ident: bib132 article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil publication-title: Isme J. – volume: 7 start-page: 135 year: 2015 end-page: 144 ident: bib8 article-title: Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties publication-title: Glob. Change Biol. Bioenergy – volume: 50 start-page: 2389 year: 2016 end-page: 2395 ident: bib149 article-title: Biochar - facilitated microbial reduction of hematite publication-title: Environ. Sci. Technol. – year: 2015 ident: bib155 article-title: Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens publication-title: Sci. Rep. – volume: 49 start-page: 395 year: 2005 end-page: 399 ident: bib126 article-title: A connection between fungal hydrophobins and soil water repellency? publication-title: Pedobiologia – volume: 5 start-page: 104 year: 2013 end-page: 115 ident: bib131 article-title: Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions publication-title: Glob. Change Biol. Bioenergy – volume: 5 start-page: 202 year: 2013 end-page: 214 ident: bib17 article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis publication-title: Glob. Change Biol. Bioenergy – volume: 59 start-page: 68 year: 2012 end-page: 72 ident: bib58 article-title: Divergent consequences of hydrochar in the plant-soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects publication-title: Appl. Soil Ecol. – volume: 15 start-page: 805 year: 2015 end-page: 815 ident: bib89 article-title: Soil chemical properties and organic matter composition of a subtropical Cambisol after charcoal fine residues incorporation publication-title: J. Soils Sed. – volume: 289 start-page: 223 year: 2015 end-page: 230 ident: bib125 article-title: Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2 publication-title: Toxicol. Appl. Pharmacol. – volume: 267 start-page: 17 year: 2016 end-page: 23 ident: bib156 article-title: Sewage sludge biochar: nutrient composition and its effect on the leaching of soil nutrients publication-title: Geoderma – volume: 7 start-page: 1 year: 2015 end-page: 13 ident: bib72 article-title: The way forward in biochar research: targeting trade-offs between the potential wins publication-title: Glob. Change Biol. Bioenergy – volume: 357 start-page: 369 year: 2012 end-page: 380 ident: bib97 article-title: Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy publication-title: Plant Soil – volume: 48 start-page: 3411 year: 2014 end-page: 3419 ident: bib147 article-title: Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures publication-title: Environ. Sci. Technol. – volume: 48 start-page: 11211 year: 2014 end-page: 11217 ident: bib93 article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties publication-title: Environ. Sci. Technol. – volume: 50 start-page: 407 year: 2015 end-page: 416 ident: bib38 article-title: Mineralization and effects of poultry litter biochar on soil cation exchange capacity publication-title: Pesq. Agropecu. Bras. – volume: 186 start-page: 285 year: 2017 end-page: 292 ident: bib98 article-title: Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil publication-title: J. Environ. Manag. – volume: 15 start-page: 271 year: 2015 end-page: 281 ident: bib142 article-title: Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities publication-title: J. Soils Sed. – volume: 245 start-page: 56 year: 2015 end-page: 64 ident: bib68 article-title: Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production publication-title: Geoderma – year: 2010 ident: bib163 article-title: Organo-mineral enzyme interactions and influence on soil enzyme activity publication-title: Soil Enzymes – volume: 163 start-page: 247 year: 2011 end-page: 255 ident: bib107 article-title: Surface chemistry variations among a series of laboratory-produced biochars publication-title: Geoderma – volume: 49 start-page: 309 year: 2015 end-page: 317 ident: bib35 article-title: Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures publication-title: Environ. Sci. Technol. – volume: 48 start-page: 1902 year: 2014 end-page: 1910 ident: bib48 article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation publication-title: Environ. Sci. Technol. – volume: 186 start-page: 293 year: 2017 end-page: 300 ident: bib136 article-title: Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria publication-title: J. Environ. Manag. – volume: 5 start-page: 381 year: 2007 end-page: 387 ident: bib90 article-title: Bio-energy in the black publication-title: Front. Ecol. Environ. – volume: 571 start-page: 206 year: 2016 end-page: 217 ident: bib160 article-title: Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest publication-title: China. Sci. Total Environ. – volume: 49 start-page: 5645 year: 2015 end-page: 5653 ident: bib49 article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation publication-title: Environ. Sci. Technol. – volume: 177 start-page: 26 year: 2014 end-page: 33 ident: bib143 article-title: Biochars improve aggregate stability, water retention, and pore- space properties of clayey soil publication-title: J. Plant Nutr. Soil Sci. – volume: 176 start-page: 210 year: 2015 end-page: 217 ident: bib50 article-title: Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation publication-title: Bioresour. Technol. – volume: 158 start-page: 443 year: 2010 end-page: 449 ident: bib86 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma – volume: 11 start-page: 62 year: 2011 end-page: 71 ident: bib26 article-title: Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar publication-title: J. Soils Sed. – volume: 75 start-page: 5111 year: 2009 end-page: 5120 ident: bib88 article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale publication-title: Appl. Environ. Microbiol. – year: 2016 ident: bib148 article-title: H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials publication-title: Sci. Rep. – volume: 44 start-page: 1295 year: 2010 end-page: 1301 ident: bib162 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 110 start-page: 225 year: 2013 end-page: 233 ident: bib75 article-title: Effects of biochar on soil properties and erosion potential in a highly weathered soil publication-title: Catena – volume: 94 start-page: 59 year: 2015 end-page: 71 ident: bib159 article-title: Distribution of soil nutrients, extracellular enzyme activities and microbial communities across particle-size fractions in a long-term fertilizer experiment publication-title: Appl. Soil Ecol. – volume: 42 start-page: 2311 year: 2012 end-page: 2364 ident: bib47 article-title: Biochar: carbon sequestration, land remediation, and impacts on soil microbiology publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 92 start-page: 32 year: 2016 end-page: 41 ident: bib60 article-title: Weathering of pyrogenic organic matter induces fungal oxidative enzyme response in single culture inoculation experiments publication-title: Org. Geochem – volume: 50 start-page: 694 year: 2016 end-page: 700 ident: bib153 article-title: Degradation of p-Nitrophenol on biochars: role of persistent free radicals publication-title: Environ. Sci. Technol. – volume: 23 start-page: 18 year: 1998 end-page: 33 ident: bib80 article-title: Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis publication-title: Fungal Genet. Biol. – volume: 12 start-page: 1350 year: 2012 end-page: 1359 ident: bib27 article-title: Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers publication-title: J. Soils Sed. – volume: 142 start-page: 100 year: 2016 end-page: 105 ident: bib138 article-title: Biochar amendment to soil changes dissolved organic matter content and composition publication-title: Chemosphere – volume: 5 start-page: 96 year: 2013 end-page: 103 ident: bib124 article-title: Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? publication-title: Glob. Change Biol. Bioenergy – volume: 201 start-page: 58 year: 2015 end-page: 69 ident: bib101 article-title: The effects of biochar and compost amendments on copper immobilization and soil microorganisms in a temperate vineyard publication-title: Agric. Ecosyst. Environ. – volume: 218 start-page: 242 year: 2016 end-page: 251 ident: bib140 article-title: Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil publication-title: Environ. Pollut. – volume: 5 start-page: 510 year: 2017 end-page: 517 ident: bib59 article-title: Profiles of volatile organic compounds in biochar: insights into process conditions and quality assessment publication-title: Acs Sustain. Chem. Eng. – volume: 22 start-page: 1586 year: 2010 end-page: 1594 ident: bib70 article-title: Interaction mechanisms of organic contaminants with burned straw ash charcoal publication-title: J. Environ. Sci. – volume: 300 start-page: 9 year: 2007 end-page: 20 ident: bib146 article-title: Mycorrhizal responses to biochar in soil - concepts and mechanisms publication-title: Plant Soil – volume: 62 start-page: 373 year: 2014 end-page: 380 ident: bib118 article-title: Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process publication-title: J. Agric. Food Chem. – volume: 99 start-page: 19 year: 2014 end-page: 33 ident: bib4 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere – volume: 285 start-page: 259 year: 2015 end-page: 266 ident: bib56 article-title: Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil publication-title: J. Hazard. Mater – volume: 142 start-page: 4 year: 2016 end-page: 13 ident: bib73 article-title: Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products publication-title: Chemosphere – year: 2015 ident: bib5 article-title: Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp lycopersici publication-title: Front. Plant. Sci. – volume: 202 start-page: 183 year: 2013 end-page: 191 ident: bib1 article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil publication-title: Geoderma – volume: 60 start-page: 9 year: 2014 end-page: 15 ident: bib134 article-title: Effect of biochar addition on soil microbial community in a wheat crop publication-title: Eur. J. Soil Biol. – volume: 48 start-page: 743 year: 2012 end-page: 762 ident: bib109 article-title: Soil enzymology: classical and molecular approaches publication-title: Biol. Fertil. Soils – volume: 77 start-page: 4924 year: 2011 end-page: 4930 ident: bib83 article-title: Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants publication-title: Appl. Environ. Microbiol. – year: 2011 ident: bib135 article-title: The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils publication-title: PLoS One – volume: 15 start-page: 1130 year: 2015 end-page: 1138 ident: bib120 article-title: Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes publication-title: J. Soils Sed. – volume: 76 start-page: 127 year: 2009 end-page: 133 ident: bib23 article-title: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures publication-title: Chemosphere – volume: 64 start-page: 379 year: 2013 end-page: 390 ident: bib6 article-title: Interactions between biochar stability and soil organisms: review and research needs publication-title: Eur. J. Soil Sci. – volume: 43 start-page: 1812 year: 2011 end-page: 1836 ident: bib92 article-title: Biochar effects on soil biota - a review publication-title: Soil Biol. Biochem. – volume: 103 start-page: 151 year: 2013 end-page: 155 ident: bib103 article-title: Influence of production conditions on the yield and environmental stability of biochar publication-title: Fuel – volume: 47 start-page: 2737 year: 2013 end-page: 2745 ident: bib119 article-title: Effective alleviation of aluminum phytotoxicity by manure-derived biochar publication-title: Environ. Sci. Technol. – volume: 44 start-page: 9318 year: 2010 end-page: 9323 ident: bib137 article-title: pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications publication-title: Environ. Sci. Technol. – volume: 43 start-page: 804 year: 2011 end-page: 813 ident: bib76 article-title: Biochar mediated alterations in herbicide breakdown and leaching in soil publication-title: Soil Biol. Biochem. – volume: 102 start-page: 3488 year: 2011 end-page: 3497 ident: bib157 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. – year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib130 article-title: Changes on the phytoavailability of nutrients in a mine soil reclaimed with compost and biochar publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-016-3155-x – volume: 71 start-page: 33 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib30 article-title: Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2013.05.003 – volume: 15 start-page: 578 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib113 article-title: Biochar modifies the thermodynamic parameters of soil enzyme activity in a tropical soil publication-title: J. Soils Sed. doi: 10.1007/s11368-014-1029-7 – volume: 136 start-page: 119 year: 2017 ident: 10.1016/j.envpol.2017.04.032_bib84 article-title: Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2016.10.033 – volume: 47 start-page: 8759 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib117 article-title: Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles publication-title: Environ. Sci. Technol. – volume: 15 start-page: 1130 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib120 article-title: Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes publication-title: J. Soils Sed. doi: 10.1007/s11368-015-1073-y – volume: 218 start-page: 1 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib100 article-title: Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.08.014 – volume: 11 start-page: 62 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib26 article-title: Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar publication-title: J. Soils Sed. doi: 10.1007/s11368-010-0266-7 – volume: 50 start-page: 335 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib45 article-title: The biochar effect: plant resistance to biotic stresses publication-title: Phytopathol. Mediterr. – volume: 50 start-page: 1189 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib13 article-title: Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-014-0968-x – volume: 159 start-page: 3269 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib16 article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.07.023 – volume: 239 start-page: 293 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib116 article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues publication-title: Geoderma doi: 10.1016/j.geoderma.2014.11.009 – volume: 47 start-page: 2737 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib119 article-title: Effective alleviation of aluminum phytotoxicity by manure-derived biochar publication-title: Environ. Sci. Technol. doi: 10.1021/es3047872 – volume: 51 start-page: 464 year: 2008 ident: 10.1016/j.envpol.2017.04.032_bib29 article-title: Sorption characteristics and mechanisms of organic contaminant to carbonaceous biosorbents in aqueous solution publication-title: Sci. China Ser. B-Chem. doi: 10.1007/s11426-008-0041-4 – volume: 49 start-page: 5645 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib49 article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es5061512 – volume: 59 start-page: 68 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib58 article-title: Divergent consequences of hydrochar in the plant-soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2012.02.021 – volume: 1 start-page: 226 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib55 article-title: Charcoal disrupts soil microbial communication through a combination of signal sorption and hydrolysis publication-title: Acs Omega doi: 10.1021/acsomega.6b00085 – volume: 44 start-page: 9318 year: 2010 ident: 10.1016/j.envpol.2017.04.032_bib137 article-title: pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications publication-title: Environ. Sci. Technol. doi: 10.1021/es101283d – volume: 77 start-page: 4924 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib83 article-title: Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00148-11 – volume: 245 start-page: 56 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib68 article-title: Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production publication-title: Geoderma doi: 10.1016/j.geoderma.2015.01.012 – volume: 7 start-page: 135 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib8 article-title: Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12119 – volume: 102 start-page: 3488 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib157 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.11.018 – volume: 191 start-page: 73 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib110 article-title: Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.04.006 – volume: 49 start-page: 395 year: 2005 ident: 10.1016/j.envpol.2017.04.032_bib126 article-title: A connection between fungal hydrophobins and soil water repellency? publication-title: Pedobiologia doi: 10.1016/j.pedobi.2005.04.004 – volume: 81 start-page: 228 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib64 article-title: Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.11.023 – volume: 48 start-page: 279 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib51 article-title: Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups publication-title: Environ. Sci. Technol. doi: 10.1021/es403711y – volume: 110 start-page: 225 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib75 article-title: Effects of biochar on soil properties and erosion potential in a highly weathered soil publication-title: Catena doi: 10.1016/j.catena.2013.06.021 – volume: 62 start-page: 373 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib118 article-title: Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process publication-title: J. Agric. Food Chem. doi: 10.1021/jf404624h – volume: 4 start-page: 1340 year: 2010 ident: 10.1016/j.envpol.2017.04.032_bib132 article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil publication-title: Isme J. doi: 10.1038/ismej.2010.58 – volume: 53 start-page: 77 year: 2017 ident: 10.1016/j.envpol.2017.04.032_bib158 article-title: The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-016-1154-0 – year: 2010 ident: 10.1016/j.envpol.2017.04.032_bib163 article-title: Organo-mineral enzyme interactions and influence on soil enzyme activity – volume: 75 start-page: 1589 year: 2009 ident: 10.1016/j.envpol.2017.04.032_bib133 article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02775-08 – volume: 447 start-page: 143 year: 2007 ident: 10.1016/j.envpol.2017.04.032_bib91 article-title: A handful of carbon publication-title: Nature doi: 10.1038/447143a – volume: 47 start-page: 11496 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib104 article-title: Biochar and microbial signaling: production conditions determine effects on microbial communication publication-title: Environ. Sci. Technol. doi: 10.1021/es401458s – volume: 267 start-page: 17 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib156 article-title: Sewage sludge biochar: nutrient composition and its effect on the leaching of soil nutrients publication-title: Geoderma doi: 10.1016/j.geoderma.2015.12.020 – volume: 229 start-page: 159 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib25 article-title: Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium publication-title: J. Hazard. Mater doi: 10.1016/j.jhazmat.2012.05.090 – volume: 84 start-page: 192 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib65 article-title: Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2014.08.001 – volume: 285 start-page: 259 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib56 article-title: Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil publication-title: J. Hazard. Mater doi: 10.1016/j.jhazmat.2014.12.002 – volume: 45 start-page: 10445 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib66 article-title: Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar publication-title: Environ. Sci. Technol. doi: 10.1021/es202970x – volume: 97 start-page: 54 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib43 article-title: Enhanced dechlorination of carbon tetrachloride by Geobacter sulfurreducens in the presence of naturally occurring quinones and ferrihydrite publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.11.004 – year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib121 article-title: Novel alleviation mechanisms of aluminum phytotoxicity via released biosilicon from rice straw-derived biochars publication-title: Sci. Rep. – volume: 36 start-page: 835 year: 2004 ident: 10.1016/j.envpol.2017.04.032_bib71 article-title: Microbial ethylene production and inhibition of methanotrophic activity in a deciduous forest soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.01.013 – volume: 103 start-page: 151 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib103 article-title: Influence of production conditions on the yield and environmental stability of biochar publication-title: Fuel doi: 10.1016/j.fuel.2011.08.044 – volume: 48 start-page: 9103 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib63 article-title: Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components publication-title: Environ. Sci. Technol. doi: 10.1021/es405647e – volume: 34 start-page: 1467 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib69 article-title: Effect of biochar on organic matter conservation and metabolic quotient of soil publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.12122 – volume: 5 start-page: 202 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib17 article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12037 – volume: 32 start-page: 1485 year: 2000 ident: 10.1016/j.envpol.2017.04.032_bib85 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00084-5 – volume: 218 start-page: 242 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib140 article-title: Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.06.063 – volume: 43 start-page: 296 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib11 article-title: Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.10.014 – volume: 357 start-page: 369 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib97 article-title: Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy publication-title: Plant Soil doi: 10.1007/s11104-012-1169-8 – volume: 41 start-page: 1301 year: 2009 ident: 10.1016/j.envpol.2017.04.032_bib141 article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.03.016 – volume: 85 start-page: 150 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib122 article-title: Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar publication-title: Int. Biodeterior. Biodegr. doi: 10.1016/j.ibiod.2013.07.004 – volume: 16 start-page: 1366 year: 2010 ident: 10.1016/j.envpol.2017.04.032_bib102 article-title: Fate of soil-applied black carbon: downward migration, leaching and soil respiration publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2009.02044.x – year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib5 article-title: Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp lycopersici publication-title: Front. Plant. Sci. doi: 10.3389/fpls.2015.00529 – volume: 160 start-page: 3 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib54 article-title: Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2011.06.015 – volume: 177 start-page: 26 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib143 article-title: Biochars improve aggregate stability, water retention, and pore- space properties of clayey soil publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201200639 – volume: 1 start-page: 339 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib78 article-title: Biochar as an electron shuttle between bacteria and Fe(III) minerals publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/ez5002209 – volume: 60 start-page: 9 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib134 article-title: Effect of biochar addition on soil microbial community in a wheat crop publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2013.10.007 – volume: 49 start-page: 309 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib35 article-title: Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es5043468 – year: 2007 ident: 10.1016/j.envpol.2017.04.032_bib37 article-title: Controls on black carbon storage in soils publication-title: Glob. Biogeochem. Cycl. doi: 10.1029/2006GB002798 – volume: 201 start-page: 58 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib101 article-title: The effects of biochar and compost amendments on copper immobilization and soil microorganisms in a temperate vineyard publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.12.001 – volume: 5 start-page: 510 year: 2017 ident: 10.1016/j.envpol.2017.04.032_bib59 article-title: Profiles of volatile organic compounds in biochar: insights into process conditions and quality assessment publication-title: Acs Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b01869 – volume: 50 start-page: 407 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib38 article-title: Mineralization and effects of poultry litter biochar on soil cation exchange capacity publication-title: Pesq. Agropecu. Bras. – volume: 50 start-page: 2389 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib149 article-title: Biochar - facilitated microbial reduction of hematite publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05517 – volume: 337 start-page: 481 year: 2010 ident: 10.1016/j.envpol.2017.04.032_bib61 article-title: Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media publication-title: Plant Soil doi: 10.1007/s11104-010-0544-6 – volume: 70 start-page: 1719 year: 2006 ident: 10.1016/j.envpol.2017.04.032_bib94 article-title: Black Carbon increases cation exchange capacity in soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0383 – year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib135 article-title: The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils publication-title: PLoS One doi: 10.1371/journal.pone.0018839 – volume: 14 start-page: 1371 year: 2001 ident: 10.1016/j.envpol.2017.04.032_bib40 article-title: Role of free radicals in the toxicity of airborne fine particulate matter publication-title: Chem. Res. Toxicol. doi: 10.1021/tx010050x – volume: 138 start-page: 67 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib44 article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.05.052 – volume: 238 start-page: 325 year: 2002 ident: 10.1016/j.envpol.2017.04.032_bib128 article-title: The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species publication-title: Plant Soil doi: 10.1023/A:1014483303813 – year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib155 article-title: Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens publication-title: Sci. Rep. doi: 10.1038/srep16221 – volume: 64 start-page: 488 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib10 article-title: Effects of polyacrylamide, biopolymer and biochar on the decomposition of C-14-labelled maize residues and on their stabilization in soil aggregates publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12034 – volume: 158 start-page: 2282 year: 2010 ident: 10.1016/j.envpol.2017.04.032_bib15 article-title: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.02.003 – volume: 22 start-page: 1586 year: 2010 ident: 10.1016/j.envpol.2017.04.032_bib70 article-title: Interaction mechanisms of organic contaminants with burned straw ash charcoal publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(09)60293-X – volume: 134 start-page: 257 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib145 article-title: Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.04.062 – volume: 96 start-page: 472 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib22 article-title: Woodchip biochar with or without synthetic fertilizers affects soil properties and available phosphorus in two alkaline, chernozemic soils publication-title: Can. J. Soil Sci. doi: 10.1139/cjss-2015-0094 – volume: 42 start-page: 5137 year: 2008 ident: 10.1016/j.envpol.2017.04.032_bib28 article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es8002684 – volume: 7 start-page: 13317 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib74 article-title: Stabilization of organic matter by biochar application in compost-amended soils with contrasting pH values and textures publication-title: Sustainability doi: 10.3390/su71013317 – volume: 193 start-page: 122 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib105 article-title: Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures publication-title: Geoderma doi: 10.1016/j.geoderma.2012.10.002 – volume: 23 start-page: 974 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib154 article-title: Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4233-0 – volume: 94 start-page: 59 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib159 article-title: Distribution of soil nutrients, extracellular enzyme activities and microbial communities across particle-size fractions in a long-term fertilizer experiment publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2015.05.005 – volume: 64 start-page: 379 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib6 article-title: Interactions between biochar stability and soil organisms: review and research needs publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12064 – volume: 48 start-page: 743 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib109 article-title: Soil enzymology: classical and molecular approaches publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-012-0723-0 – volume: 78 start-page: 195 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib7 article-title: C mineralization and microbial activity in four biochar field experiments several years after incorporation publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.08.004 – volume: 31 start-page: 521 year: 2007 ident: 10.1016/j.envpol.2017.04.032_bib39 article-title: Formation and stabilization of persistent free radicals publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2006.07.172 – volume: 19 start-page: 75 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib81 article-title: Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes publication-title: Trends Microbiol. doi: 10.1016/j.tim.2010.11.006 – volume: 163 start-page: 247 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib107 article-title: Surface chemistry variations among a series of laboratory-produced biochars publication-title: Geoderma doi: 10.1016/j.geoderma.2011.04.021 – volume: 48 start-page: 511 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib115 article-title: Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-011-0644-3 – volume: 267 start-page: 62 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib42 article-title: Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar publication-title: J. Hazard. Mater doi: 10.1016/j.jhazmat.2013.12.027 – year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib148 article-title: H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials publication-title: Sci. Rep. – volume: 142 start-page: 4 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib73 article-title: Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.05.084 – volume: 89 start-page: 217 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib108 article-title: The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.07.014 – volume: 289 start-page: 223 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib125 article-title: Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2 publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2015.09.021 – volume: 99 start-page: 19 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib4 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.071 – volume: 5 start-page: 381 year: 2007 ident: 10.1016/j.envpol.2017.04.032_bib90 article-title: Bio-energy in the black publication-title: Front. Ecol. Environ. doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 – volume: 85 start-page: 869 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib139 article-title: Qualitative analysis of volatile organic compounds on biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.06.108 – volume: 5 start-page: 585 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib21 article-title: Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar publication-title: Solid Earth doi: 10.5194/se-5-585-2014 – volume: 202 start-page: 183 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib1 article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil publication-title: Geoderma doi: 10.1016/j.geoderma.2013.03.003 – year: 2009 ident: 10.1016/j.envpol.2017.04.032_bib12 article-title: Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity publication-title: Part. Fibre Toxicol. doi: 10.1186/1743-8977-6-11 – volume: 18 start-page: 3306 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib165 article-title: Rapid degradation of pyrogenic carbon publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2012.02796.x – year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib95 article-title: Biochar alters the resistance and resilience to drought in a tropical soil publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/6/064013 – volume: 142 start-page: 100 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib138 article-title: Biochar amendment to soil changes dissolved organic matter content and composition publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.04.087 – volume: 92 start-page: 32 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib60 article-title: Weathering of pyrogenic organic matter induces fungal oxidative enzyme response in single culture inoculation experiments publication-title: Org. Geochem doi: 10.1016/j.orggeochem.2015.12.003 – volume: 66 start-page: 714 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib129 article-title: Negative priming of native soil organic carbon mineralization by oilseed biochars of contrasting quality publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12257 – volume: 44 start-page: 1933 year: 2010 ident: 10.1016/j.envpol.2017.04.032_bib144 article-title: Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter publication-title: Environ. Sci. Technol. doi: 10.1021/es902648t – volume: 32 start-page: 769 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib34 article-title: Adsorption of Pb2+ by rice straw derived-biochar and its influential factors publication-title: Acta Sci. Circumst. – volume: 101 start-page: 5222 year: 2010 ident: 10.1016/j.envpol.2017.04.032_bib19 article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.02.052 – volume: 15 start-page: 271 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib142 article-title: Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities publication-title: J. Soils Sed. doi: 10.1007/s11368-014-0996-z – volume: 15 start-page: 60 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib151 article-title: Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution publication-title: J. Soils Sed. doi: 10.1007/s11368-014-0969-2 – volume: 100 start-page: 913 year: 2010 ident: 10.1016/j.envpol.2017.04.032_bib46 article-title: Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent publication-title: Phytopathology doi: 10.1094/PHYTO-100-9-0913 – volume: 182 start-page: 29 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib99 article-title: Alteration of extracellular enzyme activity and microbial abundance by biochar addition: implication for carbon sequestration in subtropical mangrove sediment publication-title: J. Environ. Manag. – volume: 51 start-page: 183 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib152 article-title: Evaluation of carbon and nitrogen dynamics in different soil types amended with pig slurry, pig manure and its biochar by chemical and thermogravimetric analysis publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-014-0962-3 – volume: 50 start-page: 694 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib153 article-title: Degradation of p-Nitrophenol on biochars: role of persistent free radicals publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04042 – volume: 5 start-page: 96 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib124 article-title: Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12007 – volume: 5 start-page: 104 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib131 article-title: Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12018 – volume: 15 start-page: 805 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib89 article-title: Soil chemical properties and organic matter composition of a subtropical Cambisol after charcoal fine residues incorporation publication-title: J. Soils Sed. doi: 10.1007/s11368-014-1040-z – volume: 186 start-page: 285 year: 2017 ident: 10.1016/j.envpol.2017.04.032_bib98 article-title: Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil publication-title: J. Environ. Manag. – volume: 163 start-page: 480 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib161 article-title: Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in historically contaminated soils after lab incubation with sewage sludge-derived biochars publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.08.072 – volume: 42 start-page: 2311 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib47 article-title: Biochar: carbon sequestration, land remediation, and impacts on soil microbiology publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2011.574115 – volume: 107 start-page: 419 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib18 article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.11.084 – year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib31 article-title: Promoting interspecies electron transfer with biochar publication-title: Sci. Rep. – volume: 90 start-page: 78 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib52 article-title: The role of sulfur- and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Lolium perenne publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12374 – volume: 48 start-page: 3411 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib147 article-title: Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es405676h – volume: 48 start-page: 1902 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib48 article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es4048126 – volume: 44 start-page: 6189 year: 2010 ident: 10.1016/j.envpol.2017.04.032_bib79 article-title: Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars) publication-title: Environ. Sci. Technol. doi: 10.1021/es1014423 – volume: 46 start-page: 12476 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib33 article-title: Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es303351e – volume: 12 start-page: 1350 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib27 article-title: Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers publication-title: J. Soils Sed. doi: 10.1007/s11368-012-0554-5 – volume: 4 start-page: 323 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib77 article-title: Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components publication-title: Carbon Manag. doi: 10.4155/cmt.13.23 – volume: 174 start-page: 105 year: 2009 ident: 10.1016/j.envpol.2017.04.032_bib111 article-title: Impact of biochar amendment on fertility of a southeastern coastal plain soil publication-title: Soil Sci. doi: 10.1097/SS.0b013e3181981d9a – volume: 46 start-page: 11104 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib32 article-title: Fast and slow rates of naphthalene sorption to biochars produced at different temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es302345e – volume: 121 start-page: 214 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib41 article-title: Effect of biochar on carbon fractions and enzyme activity of red soil publication-title: Catena doi: 10.1016/j.catena.2014.05.020 – volume: 357 start-page: 245 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib67 article-title: Biochar mediates systemic response of strawberry to foliar fungal pathogens publication-title: Plant Soil doi: 10.1007/s11104-012-1129-3 – volume: 43 start-page: 3285 year: 2009 ident: 10.1016/j.envpol.2017.04.032_bib20 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. doi: 10.1021/es803092k – volume: 43 start-page: 1812 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib92 article-title: Biochar effects on soil biota - a review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.04.022 – volume: 43 start-page: 804 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib76 article-title: Biochar mediated alterations in herbicide breakdown and leaching in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.12.015 – volume: 48 start-page: 8581 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib96 article-title: Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings publication-title: Environ. Sci. Technol. doi: 10.1021/es404250a – volume: 43 start-page: 1936 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib87 article-title: Effects of wood char and activated carbon on the hydrolysis of cellobiose by beta-glucosidase from Aspergillus niger publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.05.021 – volume: 75 start-page: 5111 year: 2009 ident: 10.1016/j.envpol.2017.04.032_bib88 article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00335-09 – volume: 102 start-page: 716 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib24 article-title: A novel magnetic biochar efficiently sorbs organic pollutants and phosphate publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.08.067 – volume: 31 start-page: 1471 year: 1999 ident: 10.1016/j.envpol.2017.04.032_bib14 article-title: Field management effects on soil enzyme activities publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(99)00051-6 – volume: 42 start-page: 815 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib112 article-title: Black carbon-mediated reduction of 2,4-Dinitrotoluene by dithiothreitol publication-title: J. Environ. Qual. doi: 10.2134/jeq2012.0411 – volume: 65 start-page: 287 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib123 article-title: Life in the 'charosphere' - does biochar in agricultural soil provide a significant habitat for microorganisms? publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.06.004 – volume: 146 start-page: 485 year: 2013 ident: 10.1016/j.envpol.2017.04.032_bib150 article-title: Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.07.086 – volume: 46 start-page: 8097 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib2 article-title: Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil publication-title: Environ. Sci. Technol. doi: 10.1021/es300797z – volume: 41 start-page: 1175 year: 2012 ident: 10.1016/j.envpol.2017.04.032_bib36 article-title: The influence of biochar and black carbon on reduction and bioavailability of chromate in soils publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0145 – volume: 186 start-page: 293 year: 2017 ident: 10.1016/j.envpol.2017.04.032_bib136 article-title: Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria publication-title: J. Environ. Manag. – volume: 44 start-page: 1295 year: 2010 ident: 10.1016/j.envpol.2017.04.032_bib162 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es903140c – volume: 23 start-page: 18 year: 1998 ident: 10.1016/j.envpol.2017.04.032_bib80 article-title: Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis publication-title: Fungal Genet. Biol. doi: 10.1006/fgbi.1997.1022 – volume: 76 start-page: 127 year: 2009 ident: 10.1016/j.envpol.2017.04.032_bib23 article-title: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.02.004 – volume: 43 start-page: 1169 year: 2011 ident: 10.1016/j.envpol.2017.04.032_bib164 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.02.005 – volume: 158 start-page: 443 year: 2010 ident: 10.1016/j.envpol.2017.04.032_bib86 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.013 – volume: 49 start-page: 251 year: 2005 ident: 10.1016/j.envpol.2017.04.032_bib127 article-title: Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation publication-title: Pedobiologia doi: 10.1016/j.pedobi.2004.11.003 – volume: 65 start-page: 162 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib62 article-title: Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12071 – volume: 14 start-page: 483 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib114 article-title: Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities publication-title: J. Soils Sed. doi: 10.1007/s11368-013-0806-z – volume: 300 start-page: 9 year: 2007 ident: 10.1016/j.envpol.2017.04.032_bib146 article-title: Mycorrhizal responses to biochar in soil - concepts and mechanisms publication-title: Plant Soil doi: 10.1007/s11104-007-9391-5 – volume: 176 start-page: 210 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib50 article-title: Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.11.032 – volume: 166 start-page: 131 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib3 article-title: Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil publication-title: J. Environ. Manag. – volume: 13 start-page: 5739 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib53 article-title: Biochar-carrying hydrocarbon decomposers promote degradation during the early stage of bioremediation publication-title: Biogeosciences doi: 10.5194/bg-13-5739-2016 – volume: 48 start-page: 11211 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib93 article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties publication-title: Environ. Sci. Technol. doi: 10.1021/es501885n – volume: 48 start-page: 5601 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib82 article-title: Redox properties of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es500906d – volume: 5 start-page: 693 year: 2014 ident: 10.1016/j.envpol.2017.04.032_bib106 article-title: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging publication-title: Solid earth. doi: 10.5194/se-5-693-2014 – volume: 46 start-page: 64 year: 2010 ident: 10.1016/j.envpol.2017.04.032_bib9 article-title: Investigation of growth responses in saprophytic fungi to charred biomass publication-title: Isot. Environ. Health Stud. doi: 10.1080/10256010903388436 – volume: 3 start-page: 333 year: 2005 ident: 10.1016/j.envpol.2017.04.032_bib57 article-title: Amyloids - a functional coat for microorganisms publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1127 – volume: 7 start-page: 1 year: 2015 ident: 10.1016/j.envpol.2017.04.032_bib72 article-title: The way forward in biochar research: targeting trade-offs between the potential wins publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12132 – volume: 571 start-page: 206 year: 2016 ident: 10.1016/j.envpol.2017.04.032_bib160 article-title: Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest publication-title: China. Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.135 |
SSID | ssj0004333 |
Score | 2.678505 |
SecondaryResourceType | review_article |
Snippet | Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 98 |
SubjectTerms | Adsorption biochar Biochar amendment Carbon Carbon sequestration Charcoal - chemistry community structure Contaminant mitigation Ecosystem Environmental Restoration and Remediation - methods enzyme activity habitats heavy metals hydrolysis Interaction mechanisms Metals, Heavy - analysis microbial activity microbial communities Microbial community Organic Chemicals organic compounds Soil - chemistry soil aggregates soil enzymes soil fertility Soil improvement soil microorganisms soil organic matter Soil Pollutants - analysis Soil Pollutants - chemistry soil pollution soil properties soil remediation toxicity |
Title | Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review |
URI | https://dx.doi.org/10.1016/j.envpol.2017.04.032 https://www.ncbi.nlm.nih.gov/pubmed/28458251 https://www.proquest.com/docview/1893971812 https://www.proquest.com/docview/2000354178 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFH-UetGD6Nbq-lEiiLdxk0l2MuttKS2rYi9a2FtIJhkY6c4sna3gxb_d95KZVg9LwdOQ4SWEvLzkff1eAN4tRG7ziqN888JlSgVJYGWe4d2snSrqoDw59L9eFKtL9Xk9Xx_A6YiFobTK4exPZ3o8rYc_s2E1Z9ummX1D6wGVYRTWgqIF5ZoQ7ErTLv_w-y7NQ8n0nDwSZ0Q9wudijldof247CkAIHQueynzf9bRP_YzX0PkTeDzoj2yZpvgUDkI7gaNli7bz5hd7z2JGZ3SVT-DRX8UGJ3B8dodpwxEGoe6PoE0VjHtmW882gaDATb_pWVcz13QEy8o2lLbnAqPiEtcJCtFjg_Vdc8Wa6JeIbsY4xJZeTyYSRr5Hn3j_kS1Zgsk8g8vzs--nq2x4hiGzSpS7TBZoI1lZV9w7tG54XeTI91B7WaDwW4Emh6h4HeZVkN77QtiyWrggnM0D99LJYzhsuza8AKYXzrpqnjuLZhh-yxo5pzR3pa1zHfgU5Lj6phpqlNNTGVdmTEb7YRLPDPHMcGWQZ1PIbnttU42Oe-j1yFjzz14zeI3c0_PtuA8MiiHFVmwbupveCNT7FprUpf00eYzbKqHLKTxPm-h2vqglzAlF_PK_5_YKHlIrJSe-hsPd9U14gwrTzp1EiTiBB8tPX1YXfwByJReI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOCLYUlqeRgFtYx_YmWSQOK2i1pY8LrbQ3YyeOFNRNVs0W1At_ij_IjJ20cFhVQuopSuJYjufhz-N5ALyZxMKInKN888RGSjlJwco8wrU5tSopnSrIoH94lMxO1Jf5eL4Bv_tYGHKr7HR_0OleW3dPRt1sjpZVNfqKuwcEwyisCZ0WZPPOs3LfXfzEfVv7ce8zEvmtELs7x59mUVdaIDIqzlaRTBD3G1nmvLCI2HmZCPwXVxYyQYY2McLoOOelG-dOFkWRxCbLJ9bF1gjHC2kl9nsLbitUF1Q24f2vK78SJUP9ehxdRMPr4_W8U5mrfywbOvGIU59hVYp16-E6vOvXvd0HcL8DrGwa5uQhbLh6AFvTGjfriwv2jnkXUm-bH8C9v7IbDmB75yqIDnvotEi7BXVImdwyUxds4Sj2uGoXLWtKZquG4sCiBfkJWscom8VZiL1o8Ya1TXXKKm8I8XZN38WSyjVTE0bGziIw2wc2ZSEu5xGc3AhxtmGzbmr3BFg6scbmY2EN7vvwmpXIKirlNjOlSB0fguxnX-ddUnSqzXGqe--37zrQTBPNNFcaaTaE6PKrZUgKck37tCes_oe5Na5b13z5uucDjXJPhzmmds15q2MEmpOU8Nn6NsIfFKs4zYbwODDR5XgRlowpbPnpf4_tFdyZHR8e6IO9o_1ncJfeBM_I57C5Ojt3LxCtrexLLx0Mvt20OP4B-4VVCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+and+mechanisms+of+biochar-microbe+interactions+in+soil+improvement+and+pollution+remediation%3A+A+review&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Zhu%2C+Xiaomin&rft.au=Chen%2C+Baoliang&rft.au=Zhu%2C+Lizhong&rft.au=Xing%2C+Baoshan&rft.date=2017-08-01&rft.eissn=1873-6424&rft.volume=227&rft.spage=98&rft_id=info:doi/10.1016%2Fj.envpol.2017.04.032&rft_id=info%3Apmid%2F28458251&rft.externalDocID=28458251 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |