Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review

Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) d...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 227; pp. 98 - 115
Main Authors Zhu, Xiaomin, Chen, Baoliang, Zhu, Lizhong, Xing, Baoshan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement. [Display omitted] •Biochar-microbial interactions and mechanisms in soil were reviewed.•Effect mechanisms of biochar on microbial activities were highlighted.•Biochar altered soil carbon sequestration related microbial functions.•Biochar as electron shuttle can enhance contaminant mitigation and remediation.•Potential biochar-microbial interactions on soil improvement were prospected. The interaction mechanisms between biochar and soil microbes and the environmental effects of biochar-microbe interactions on soil carbon sequestration and contaminant mitigation are reviewed.
AbstractList Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement.
Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement.Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement.
Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement. [Display omitted] •Biochar-microbial interactions and mechanisms in soil were reviewed.•Effect mechanisms of biochar on microbial activities were highlighted.•Biochar altered soil carbon sequestration related microbial functions.•Biochar as electron shuttle can enhance contaminant mitigation and remediation.•Potential biochar-microbial interactions on soil improvement were prospected. The interaction mechanisms between biochar and soil microbes and the environmental effects of biochar-microbe interactions on soil carbon sequestration and contaminant mitigation are reviewed.
Author Xing, Baoshan
Zhu, Xiaomin
Chen, Baoliang
Zhu, Lizhong
Author_xml – sequence: 1
  givenname: Xiaomin
  orcidid: 0000-0003-4155-2437
  surname: Zhu
  fullname: Zhu, Xiaomin
  email: zhuxm@zju.edu.cn
  organization: Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
– sequence: 2
  givenname: Baoliang
  orcidid: 0000-0001-8196-081X
  surname: Chen
  fullname: Chen, Baoliang
  email: blchen@zju.edu.cn
  organization: Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
– sequence: 3
  givenname: Lizhong
  surname: Zhu
  fullname: Zhu, Lizhong
  email: zlz@zju.edu.cn
  organization: Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
– sequence: 4
  givenname: Baoshan
  surname: Xing
  fullname: Xing, Baoshan
  email: bx@umass.edu
  organization: Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28458251$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAUha2Kqgy0b4AqL7tJ8F8chwUSQhSQkLqBteXY18KjxJ7aman69vUwtIsuYGVf6ztH1-ecoKOYIiB0RklLCZXn6xbibpOmlhHat0S0hLMPaEVVzxspmDhCK8Lk0PRioMfopJQ1IURwzj-hY6ZEp1hHVyjeeA92KdhEh2ewzyaGMhecPB5DqmNu5mBzGgGHuEA2dgkpljrgksKEw7zJaQczxOXFoi40bfcIzvXRBbO_X-CrOu4C_PqMPnozFfjyep6ip-83j9d3zcOP2_vrq4fGCKqWhkvJOsO9JW5UfUe8ZGAteMelUsRQ2XfUEg-dBe6ck9QoO4xAR8OAOD7yU_Tt4Fu3-7mFsug5FAvTZCKkbdGsZsE7QXv1LkrVwIeeKsoq-vUV3Y71c3qTw2zyb_03zgqIA1ATKyWD_4dQovet6bU-tKb3rWkidG2tyi7-k9mwvCS3ZBOm98SXBzHUPGvGWRcbINoafq7NapfC2wZ_ADEOt3A
CitedBy_id crossref_primary_10_1007_s11356_024_32419_6
crossref_primary_10_3390_agronomy11061242
crossref_primary_10_1007_s11270_022_05659_w
crossref_primary_10_1016_j_eti_2024_103738
crossref_primary_10_1016_j_envres_2024_120037
crossref_primary_10_1016_j_cej_2020_125138
crossref_primary_10_1016_j_eti_2024_103612
crossref_primary_10_3389_fpls_2024_1503203
crossref_primary_10_1016_j_scitotenv_2020_139393
crossref_primary_10_4028_www_scientific_net_MSF_913_879
crossref_primary_10_1016_j_cej_2021_134377
crossref_primary_10_1016_j_ecoenv_2020_111222
crossref_primary_10_1016_j_envpol_2021_118655
crossref_primary_10_3390_microorganisms9010004
crossref_primary_10_1016_j_jenvman_2024_120951
crossref_primary_10_1680_jenes_24_00107
crossref_primary_10_1016_j_scitotenv_2024_176104
crossref_primary_10_1016_j_jenvman_2021_113340
crossref_primary_10_15243_jdmlm_2024_114_6329
crossref_primary_10_1016_j_jwpe_2025_107499
crossref_primary_10_3390_agronomy15010144
crossref_primary_10_1016_j_crsust_2024_100267
crossref_primary_10_3390_su141710922
crossref_primary_10_1007_s42773_019_00018_1
crossref_primary_10_1016_j_envpol_2022_119913
crossref_primary_10_3390_su16124961
crossref_primary_10_58626_menba_1569118
crossref_primary_10_25046_aj050666
crossref_primary_10_1016_j_apsoil_2023_105066
crossref_primary_10_1016_j_jhazmat_2021_126611
crossref_primary_10_3389_fmicb_2023_1250453
crossref_primary_10_1016_j_jece_2024_113565
crossref_primary_10_1080_01490451_2022_2028942
crossref_primary_10_1007_s11356_021_18289_2
crossref_primary_10_3934_environsci_2019_5_379
crossref_primary_10_1016_j_chemosphere_2019_125699
crossref_primary_10_1007_s42832_022_0158_y
crossref_primary_10_1016_j_pedsph_2023_06_008
crossref_primary_10_1007_s13399_021_01346_8
crossref_primary_10_1007_s42773_023_00291_1
crossref_primary_10_3389_fenvs_2023_1059449
crossref_primary_10_1016_j_scitotenv_2022_160690
crossref_primary_10_1016_j_scitotenv_2018_12_031
crossref_primary_10_1038_s41598_022_22149_5
crossref_primary_10_3390_ma17081895
crossref_primary_10_1007_s10098_020_01811_4
crossref_primary_10_1007_s10653_023_01605_9
crossref_primary_10_3390_geotechnics5010001
crossref_primary_10_1080_01490451_2023_2272619
crossref_primary_10_1038_s41598_021_00168_y
crossref_primary_10_1016_j_jclepro_2019_04_282
crossref_primary_10_1016_j_chemosphere_2024_141178
crossref_primary_10_1016_j_scitotenv_2024_173056
crossref_primary_10_3390_app11041473
crossref_primary_10_1080_15320383_2022_2105811
crossref_primary_10_4315_0362_028X_JFP_19_331
crossref_primary_10_1016_j_chemosphere_2024_142383
crossref_primary_10_1016_j_scitotenv_2019_06_041
crossref_primary_10_1016_j_scitotenv_2022_156081
crossref_primary_10_1016_j_envres_2024_119055
crossref_primary_10_1016_j_scitotenv_2022_158381
crossref_primary_10_1016_j_envres_2021_111757
crossref_primary_10_3390_bioengineering8080109
crossref_primary_10_1007_s42773_019_00019_0
crossref_primary_10_1186_s12870_024_05038_z
crossref_primary_10_1016_j_biortech_2024_131374
crossref_primary_10_1016_j_scitotenv_2023_163196
crossref_primary_10_1002_ldr_4230
crossref_primary_10_1080_00103624_2024_2420855
crossref_primary_10_3389_fenvs_2024_1340565
crossref_primary_10_1016_j_rser_2024_114640
crossref_primary_10_1111_aab_12736
crossref_primary_10_1080_10643389_2019_1642832
crossref_primary_10_1088_1755_1315_687_1_012023
crossref_primary_10_1016_j_biortech_2021_126587
crossref_primary_10_1007_s11356_023_31536_y
crossref_primary_10_3390_ijms241311154
crossref_primary_10_1016_j_jenvman_2020_111097
crossref_primary_10_1016_j_rhisph_2020_100184
crossref_primary_10_1007_s11270_018_3708_2
crossref_primary_10_1007_s44378_025_00041_8
crossref_primary_10_1016_j_scitotenv_2022_160990
crossref_primary_10_1016_j_jenvman_2022_114758
crossref_primary_10_1016_j_jenvman_2025_124296
crossref_primary_10_1007_s00203_022_02899_6
crossref_primary_10_1016_j_envpol_2022_118978
crossref_primary_10_1111_gwmr_12561
crossref_primary_10_1016_j_chemosphere_2023_137888
crossref_primary_10_1016_j_jwpe_2023_104229
crossref_primary_10_3389_feart_2023_1181984
crossref_primary_10_4236_as_2023_143026
crossref_primary_10_1016_j_ecoenv_2018_11_096
crossref_primary_10_1016_j_ecoenv_2022_113165
crossref_primary_10_1016_j_chemosphere_2021_131660
crossref_primary_10_1016_j_jaap_2025_106952
crossref_primary_10_1016_j_conbuildmat_2020_120723
crossref_primary_10_1111_sum_12626
crossref_primary_10_3390_en15010001
crossref_primary_10_1016_j_cej_2021_129946
crossref_primary_10_34133_2022_9857374
crossref_primary_10_1016_j_esr_2024_101512
crossref_primary_10_1021_acs_est_4c08890
crossref_primary_10_1016_j_ecoenv_2023_115857
crossref_primary_10_1021_acs_est_3c01008
crossref_primary_10_1016_j_jece_2024_113855
crossref_primary_10_1002_jsfa_13191
crossref_primary_10_3390_plants13111492
crossref_primary_10_1016_j_envpol_2020_116040
crossref_primary_10_1016_j_jenvman_2021_112047
crossref_primary_10_1021_acs_est_8b01524
crossref_primary_10_1038_s41598_024_52425_5
crossref_primary_10_1016_j_envpol_2021_118327
crossref_primary_10_1016_j_apgeochem_2019_03_017
crossref_primary_10_1139_cjm_2022_0031
crossref_primary_10_1016_j_scitotenv_2021_150304
crossref_primary_10_3390_agriculture14071020
crossref_primary_10_3390_plants10040759
crossref_primary_10_1007_s13399_024_06441_0
crossref_primary_10_1016_j_scitotenv_2021_150444
crossref_primary_10_1016_j_jece_2024_112311
crossref_primary_10_1016_j_jobe_2024_111124
crossref_primary_10_1016_j_jhazmat_2022_129006
crossref_primary_10_1016_j_scitotenv_2021_149696
crossref_primary_10_1016_j_earscirev_2024_104860
crossref_primary_10_3390_polym17030306
crossref_primary_10_3390_agronomy10060912
crossref_primary_10_1016_j_wasman_2019_12_003
crossref_primary_10_1016_j_envres_2025_120770
crossref_primary_10_1525_elementa_2022_00101
crossref_primary_10_1016_j_jhazmat_2025_137756
crossref_primary_10_3390_microorganisms10010101
crossref_primary_10_1016_j_ecoenv_2022_114237
crossref_primary_10_1016_j_heliyon_2024_e33011
crossref_primary_10_1093_jambio_lxae120
crossref_primary_10_3390_agronomy12020247
crossref_primary_10_1007_s10311_024_01766_8
crossref_primary_10_1007_s10653_019_00445_w
crossref_primary_10_1016_j_chemosphere_2022_137101
crossref_primary_10_1016_j_scitotenv_2021_151422
crossref_primary_10_1016_j_pedsph_2024_07_001
crossref_primary_10_1016_j_jes_2018_11_007
crossref_primary_10_1021_acsomega_3c07921
crossref_primary_10_3390_horticulturae8100893
crossref_primary_10_1007_s11368_018_2000_9
crossref_primary_10_1016_j_scitotenv_2019_06_244
crossref_primary_10_1016_j_biortech_2021_125245
crossref_primary_10_3390_agriculture11070620
crossref_primary_10_1016_j_still_2022_105345
crossref_primary_10_1039_D0GC00717J
crossref_primary_10_1016_j_jmrt_2023_04_033
crossref_primary_10_1098_rsos_171875
crossref_primary_10_1016_j_still_2023_105765
crossref_primary_10_1016_j_envpol_2021_116481
crossref_primary_10_1007_s11771_025_5861_2
crossref_primary_10_1016_j_envres_2022_113599
crossref_primary_10_1016_j_jhazmat_2019_121533
crossref_primary_10_3389_feart_2023_1181974
crossref_primary_10_1016_j_envpol_2018_11_062
crossref_primary_10_1016_j_scitotenv_2022_152921
crossref_primary_10_1016_j_ecoenv_2020_111292
crossref_primary_10_3390_catal15030243
crossref_primary_10_1016_j_scitotenv_2024_175885
crossref_primary_10_3390_antiox10122017
crossref_primary_10_1016_j_jhazmat_2021_125702
crossref_primary_10_1016_j_scitotenv_2019_134087
crossref_primary_10_3390_toxics11010053
crossref_primary_10_1021_acs_est_0c04033
crossref_primary_10_1007_s42398_025_00340_4
crossref_primary_10_1080_01904167_2025_2451923
crossref_primary_10_1016_j_chemosphere_2022_134333
crossref_primary_10_1016_j_envpol_2022_119624
crossref_primary_10_3390_ijerph19127282
crossref_primary_10_3390_su151813375
crossref_primary_10_1007_s42773_024_00301_w
crossref_primary_10_1038_s41598_018_26396_3
crossref_primary_10_1007_s11356_020_11571_9
crossref_primary_10_1007_s42773_023_00219_9
crossref_primary_10_1016_j_jes_2023_04_008
crossref_primary_10_1016_j_scitotenv_2022_156333
crossref_primary_10_1016_j_jhazmat_2022_129466
crossref_primary_10_1128_spectrum_00149_24
crossref_primary_10_1016_j_chemosphere_2019_02_100
crossref_primary_10_1016_j_hazadv_2023_100319
crossref_primary_10_3389_fmicb_2018_02862
crossref_primary_10_3390_land12081645
crossref_primary_10_1002_cjce_24426
crossref_primary_10_1093_femsec_fiac131
crossref_primary_10_1016_j_pedsph_2023_01_002
crossref_primary_10_3390_su15129380
crossref_primary_10_1016_j_eti_2020_101168
crossref_primary_10_1088_1755_1315_497_1_012038
crossref_primary_10_3390_fermentation9100885
crossref_primary_10_1016_j_apsoil_2019_103432
crossref_primary_10_1016_j_apsoil_2023_105233
crossref_primary_10_1016_j_scitotenv_2021_148797
crossref_primary_10_1039_C8RA05933K
crossref_primary_10_1016_j_scitotenv_2022_154496
crossref_primary_10_1016_j_apsoil_2025_105916
crossref_primary_10_1016_j_scitotenv_2019_135068
crossref_primary_10_3390_pr10122663
crossref_primary_10_3389_fmicb_2020_00799
crossref_primary_10_1016_j_chemosphere_2021_130915
crossref_primary_10_1016_j_jece_2023_110835
crossref_primary_10_3390_agronomy13123051
crossref_primary_10_1016_j_energy_2019_116128
crossref_primary_10_1016_j_compgeo_2021_104432
crossref_primary_10_1166_jbmb_2023_2294
crossref_primary_10_1007_s42773_025_00450_6
crossref_primary_10_3389_fenvs_2022_1057384
crossref_primary_10_1016_j_jece_2021_105258
crossref_primary_10_1016_j_plaphy_2022_05_008
crossref_primary_10_1016_j_jhazmat_2019_122002
crossref_primary_10_1063_5_0095208
crossref_primary_10_1080_01904167_2022_2105720
crossref_primary_10_1016_j_chemosphere_2024_142775
crossref_primary_10_1016_j_geodrs_2023_e00669
crossref_primary_10_1016_j_jwpe_2024_106713
crossref_primary_10_1016_j_procbio_2023_05_006
crossref_primary_10_1016_j_jobe_2021_103064
crossref_primary_10_1080_14735903_2020_1793652
crossref_primary_10_1016_j_scitotenv_2022_155571
crossref_primary_10_1016_j_jece_2025_115626
crossref_primary_10_3389_fsufs_2024_1346529
crossref_primary_10_3390_agronomy11081598
crossref_primary_10_1016_j_biortech_2021_125797
crossref_primary_10_1007_s42773_024_00333_2
crossref_primary_10_1016_j_pedsph_2024_06_007
crossref_primary_10_1016_j_envpol_2021_118354
crossref_primary_10_1111_gcbb_12898
crossref_primary_10_12677_HJAS_2020_109113
crossref_primary_10_1016_j_jhazmat_2018_12_032
crossref_primary_10_1111_gcbb_12896
crossref_primary_10_1007_s42773_023_00272_4
crossref_primary_10_1016_j_scitotenv_2022_157325
crossref_primary_10_3390_agronomy14122935
crossref_primary_10_1007_s42773_022_00160_3
crossref_primary_10_33462_jotaf_1190812
crossref_primary_10_1016_j_biortech_2023_130257
crossref_primary_10_1016_j_rhisph_2024_100939
crossref_primary_10_1007_s11440_021_01235_4
crossref_primary_10_1016_j_jhazmat_2022_130209
crossref_primary_10_1007_s11270_023_06400_x
crossref_primary_10_1007_s42832_019_0008_8
crossref_primary_10_3390_plants11243442
crossref_primary_10_1016_j_scitotenv_2021_148451
crossref_primary_10_1016_j_scitotenv_2024_170064
crossref_primary_10_1007_s40726_018_0092_x
crossref_primary_10_1016_j_wasman_2024_08_009
crossref_primary_10_1007_s42773_025_00440_8
crossref_primary_10_1016_j_envpol_2020_115846
crossref_primary_10_1016_j_envpol_2022_119609
crossref_primary_10_3389_fbioe_2020_00961
crossref_primary_10_1007_s11356_021_17125_x
crossref_primary_10_1016_j_jhazmat_2020_123833
crossref_primary_10_1016_j_rser_2021_112056
crossref_primary_10_1007_s13399_021_02257_4
crossref_primary_10_1016_j_envpol_2018_05_025
crossref_primary_10_1016_j_scitotenv_2019_134073
crossref_primary_10_1039_D4EN01019A
crossref_primary_10_1016_j_geoderma_2020_114323
crossref_primary_10_1080_10643389_2019_1699381
crossref_primary_10_1016_j_envpol_2018_09_097
crossref_primary_10_1016_j_eti_2025_104043
crossref_primary_10_1016_j_jhazmat_2018_12_022
crossref_primary_10_1007_s10653_019_00412_5
crossref_primary_10_1007_s42773_025_00451_5
crossref_primary_10_1016_j_biortech_2018_05_041
crossref_primary_10_1016_j_scitotenv_2023_162021
crossref_primary_10_17221_348_2022_PSE
crossref_primary_10_1007_s13399_020_00836_5
crossref_primary_10_1016_j_watres_2018_03_012
crossref_primary_10_3390_agronomy11050993
crossref_primary_10_3390_toxics13010030
crossref_primary_10_1016_j_chemosphere_2021_130606
crossref_primary_10_1016_j_jenvman_2023_119775
crossref_primary_10_1007_s41748_022_00336_8
crossref_primary_10_1016_j_chemosphere_2023_140093
crossref_primary_10_1016_j_jclepro_2024_141219
crossref_primary_10_1016_j_ecoenv_2023_115589
crossref_primary_10_1016_j_scitotenv_2024_173268
crossref_primary_10_1007_s11368_024_03887_7
crossref_primary_10_1016_j_crsust_2023_100214
crossref_primary_10_1016_j_scitotenv_2020_137690
crossref_primary_10_1016_j_agwat_2023_108605
crossref_primary_10_1016_j_envres_2020_110671
crossref_primary_10_1021_acs_est_8b06265
crossref_primary_10_1016_j_soilbio_2022_108851
crossref_primary_10_1016_j_scitotenv_2022_156532
crossref_primary_10_1007_s11157_024_09712_4
crossref_primary_10_1016_j_scienta_2019_108641
crossref_primary_10_3390_su142214792
crossref_primary_10_1016_j_cej_2023_141380
crossref_primary_10_1007_s42729_023_01489_9
crossref_primary_10_1007_s11356_020_08099_3
crossref_primary_10_1016_j_eti_2022_102735
crossref_primary_10_1016_S1002_0160_21_60073_5
crossref_primary_10_1016_j_scitotenv_2021_147660
crossref_primary_10_1016_j_bcab_2022_102432
crossref_primary_10_1016_j_biteb_2024_101771
crossref_primary_10_1016_j_envres_2023_117999
crossref_primary_10_1016_j_hazadv_2022_100086
crossref_primary_10_1093_jxb_erz301
crossref_primary_10_1177_00368504221148842
crossref_primary_10_1007_s11356_019_04961_1
crossref_primary_10_1016_j_jhazmat_2022_129557
crossref_primary_10_1016_j_hazl_2023_100091
crossref_primary_10_1016_j_ecoenv_2023_115579
crossref_primary_10_1016_j_ecoenv_2024_116726
crossref_primary_10_1016_j_rhisph_2022_100598
crossref_primary_10_1016_j_scitotenv_2024_176300
crossref_primary_10_1016_j_cej_2021_131189
crossref_primary_10_1016_j_jhazmat_2020_122767
crossref_primary_10_3390_plants12142736
crossref_primary_10_1016_j_jwpe_2021_101993
crossref_primary_10_1021_acs_estlett_3c00682
crossref_primary_10_1016_j_jhazmat_2020_123859
crossref_primary_10_1515_pac_2021_0106
crossref_primary_10_1016_j_scitotenv_2019_02_402
crossref_primary_10_3390_su12052124
crossref_primary_10_1007_s42773_023_00207_z
crossref_primary_10_1016_j_cej_2024_152676
crossref_primary_10_1007_s11356_018_3271_9
crossref_primary_10_1016_j_scitotenv_2022_157753
crossref_primary_10_1007_s42773_025_00452_4
crossref_primary_10_1007_s42773_024_00411_5
crossref_primary_10_3390_agronomy10050746
crossref_primary_10_1590_1678_4499_20200459
crossref_primary_10_3389_fmicb_2018_00579
crossref_primary_10_21273_HORTSCI15428_20
crossref_primary_10_1016_j_scitotenv_2024_177844
crossref_primary_10_3390_app132312545
crossref_primary_10_1051_e3sconf_202339301020
crossref_primary_10_1016_j_jece_2024_112034
crossref_primary_10_1016_j_apsoil_2023_105025
crossref_primary_10_1007_s11368_022_03362_1
crossref_primary_10_1016_j_jhazmat_2024_135693
crossref_primary_10_1038_s41598_024_70515_2
crossref_primary_10_1016_j_geodrs_2024_e00900
crossref_primary_10_1016_j_hazadv_2022_100171
crossref_primary_10_1080_00103624_2023_2262510
crossref_primary_10_1016_j_micres_2024_127696
crossref_primary_10_3390_c7040083
crossref_primary_10_1016_j_cej_2021_133142
crossref_primary_10_1016_j_jece_2021_105184
crossref_primary_10_1016_j_ecoleng_2024_107328
crossref_primary_10_1016_j_susmat_2024_e00831
crossref_primary_10_3390_microorganisms12122592
crossref_primary_10_3390_su152316446
crossref_primary_10_1111_sum_12804
crossref_primary_10_3390_toxics12120897
crossref_primary_10_1007_s11157_020_09523_3
crossref_primary_10_3390_microorganisms11020527
crossref_primary_10_1016_j_biortech_2024_131602
crossref_primary_10_1016_j_jenvman_2018_11_043
crossref_primary_10_1016_j_animal_2024_101195
crossref_primary_10_1016_j_cej_2019_05_139
crossref_primary_10_1186_s40793_022_00439_9
crossref_primary_10_1186_s13750_021_00223_1
crossref_primary_10_1007_s42773_022_00164_z
crossref_primary_10_3389_fenvs_2021_798729
crossref_primary_10_3390_land8120179
crossref_primary_10_1089_ees_2020_0418
crossref_primary_10_1016_j_jenvman_2018_12_085
crossref_primary_10_1016_j_scitotenv_2023_164246
crossref_primary_10_1016_j_renene_2023_119747
crossref_primary_10_1007_s13399_020_00936_2
crossref_primary_10_1016_j_apsoil_2020_103541
crossref_primary_10_1016_j_scitotenv_2022_156202
crossref_primary_10_1016_j_eti_2020_101191
crossref_primary_10_1007_s42398_021_00187_5
crossref_primary_10_1016_j_envpol_2021_117179
crossref_primary_10_1016_j_jhazmat_2019_121493
crossref_primary_10_1088_1755_1315_779_1_012082
crossref_primary_10_3390_agronomy14081750
crossref_primary_10_1016_j_biortech_2024_131852
crossref_primary_10_1016_j_jenvman_2022_114903
crossref_primary_10_1088_1755_1315_237_5_052008
crossref_primary_10_1016_j_envpol_2024_124254
crossref_primary_10_1088_1755_1315_1241_1_012104
crossref_primary_10_1016_j_scitotenv_2020_139709
crossref_primary_10_1186_s40538_024_00546_4
crossref_primary_10_1016_j_jwpe_2024_105360
crossref_primary_10_1016_j_jaap_2021_105132
crossref_primary_10_1016_j_chemosphere_2022_133999
crossref_primary_10_1016_j_scitotenv_2021_145676
crossref_primary_10_1007_s42729_024_01777_y
crossref_primary_10_1016_j_apsoil_2020_103856
crossref_primary_10_1016_j_cej_2019_123055
crossref_primary_10_1016_j_jhazmat_2024_135879
crossref_primary_10_1088_1755_1315_1258_1_012002
crossref_primary_10_1038_s41598_019_38697_2
crossref_primary_10_3389_fsufs_2024_1384530
crossref_primary_10_1016_j_scitotenv_2020_138988
crossref_primary_10_1016_j_scitotenv_2020_137775
crossref_primary_10_1590_1808_1657000852018
crossref_primary_10_3390_ijerph18147622
crossref_primary_10_24180_ijaws_1255958
crossref_primary_10_1080_09506608_2021_1922047
crossref_primary_10_3724_EE_1672_9250_2025_53_002
crossref_primary_10_3390_su15032527
crossref_primary_10_3390_app12084051
crossref_primary_10_1007_s42773_021_00085_3
crossref_primary_10_1016_j_trac_2018_05_013
crossref_primary_10_1139_er_2024_0047
crossref_primary_10_1016_j_biortech_2021_125738
crossref_primary_10_1016_j_scitotenv_2023_165710
crossref_primary_10_3390_jmse9020155
crossref_primary_10_1007_s13399_024_05789_7
crossref_primary_10_1016_j_jclepro_2025_145194
crossref_primary_10_3390_agriculture12101579
crossref_primary_10_1016_j_scitotenv_2020_143084
crossref_primary_10_1016_j_scitotenv_2024_172899
crossref_primary_10_3390_plants11202745
crossref_primary_10_1007_s42773_023_00241_x
crossref_primary_10_1016_j_scitotenv_2017_12_108
crossref_primary_10_1080_09542299_2018_1487774
crossref_primary_10_1021_acs_est_0c01061
crossref_primary_10_1007_s11356_019_05604_1
crossref_primary_10_1016_j_envpol_2020_114228
crossref_primary_10_3389_fmicb_2021_647766
crossref_primary_10_1016_j_jhazmat_2020_122213
crossref_primary_10_1049_mnl_2020_0017
crossref_primary_10_1016_j_jhazmat_2023_131091
crossref_primary_10_1016_j_biortech_2024_130707
crossref_primary_10_1016_j_heliyon_2020_e05578
crossref_primary_10_1007_s12517_020_05622_1
crossref_primary_10_1016_j_chemgeo_2017_11_023
crossref_primary_10_1016_j_jenvman_2019_02_010
crossref_primary_10_1016_j_envres_2023_116152
crossref_primary_10_1016_j_jhazmat_2023_132067
crossref_primary_10_3390_land12081580
crossref_primary_10_1016_j_jenvman_2025_124950
crossref_primary_10_1016_j_jclepro_2022_133483
crossref_primary_10_1016_j_ecoenv_2021_112374
crossref_primary_10_1016_j_envpol_2020_115447
crossref_primary_10_1016_j_envpol_2025_125831
crossref_primary_10_1016_j_jhazmat_2021_126047
crossref_primary_10_1016_j_apsoil_2019_09_006
crossref_primary_10_1016_j_envpol_2024_125371
crossref_primary_10_3389_fenvs_2022_921766
crossref_primary_10_1186_s40643_021_00491_2
crossref_primary_10_1016_j_soilbio_2021_108446
crossref_primary_10_1016_j_scitotenv_2021_148977
crossref_primary_10_1080_07388551_2022_2119547
crossref_primary_10_3390_su141610411
crossref_primary_10_4025_actasciagron_v44i1_55682
crossref_primary_10_1007_s42773_022_00138_1
crossref_primary_10_1016_j_scitotenv_2023_164720
crossref_primary_10_1016_j_jenvman_2024_123212
crossref_primary_10_1007_s40725_020_00112_9
crossref_primary_10_3390_land12112078
crossref_primary_10_1007_s00374_020_01436_1
crossref_primary_10_1016_j_matchemphys_2019_121791
crossref_primary_10_3390_ma12010094
crossref_primary_10_1007_s11356_018_3945_3
crossref_primary_10_1016_j_jhazmat_2021_127251
crossref_primary_10_3389_fpls_2022_932311
crossref_primary_10_1016_j_scitotenv_2022_156929
crossref_primary_10_1007_s11104_024_06647_1
crossref_primary_10_1080_15320383_2019_1669531
crossref_primary_10_1016_j_envint_2021_106553
crossref_primary_10_1016_j_chemosphere_2018_07_133
crossref_primary_10_1016_j_scitotenv_2022_154340
crossref_primary_10_1016_j_scitotenv_2018_12_400
crossref_primary_10_1007_s11270_021_05404_9
crossref_primary_10_1016_j_biortech_2020_124324
crossref_primary_10_1016_j_seh_2024_100095
crossref_primary_10_1016_j_fuel_2021_121150
crossref_primary_10_1016_j_jhazmat_2023_133137
crossref_primary_10_25259_AJC_79_2024
crossref_primary_10_3390_agronomy14040730
crossref_primary_10_1016_j_cej_2021_132313
crossref_primary_10_3390_agriculture13071282
crossref_primary_10_1007_s11270_025_07821_6
crossref_primary_10_1016_j_jclepro_2022_132172
crossref_primary_10_1016_j_envres_2024_119926
crossref_primary_10_1080_00103624_2022_2028818
crossref_primary_10_1007_s11356_018_3018_7
crossref_primary_10_1016_j_scitotenv_2024_173679
crossref_primary_10_1039_D0EM00370K
crossref_primary_10_1016_j_envint_2019_105211
crossref_primary_10_1016_j_jenvman_2023_117864
crossref_primary_10_1016_j_envpol_2023_121973
crossref_primary_10_1016_j_heliyon_2020_e04552
crossref_primary_10_2139_ssrn_4198763
crossref_primary_10_1016_j_jece_2022_109239
crossref_primary_10_1080_01904167_2024_2377411
crossref_primary_10_1016_j_biortech_2020_124430
crossref_primary_10_1007_s11368_018_2170_5
crossref_primary_10_1080_00103624_2022_2063313
crossref_primary_10_1016_j_geoderma_2024_116845
crossref_primary_10_1016_j_jhazmat_2024_133889
crossref_primary_10_1016_j_scitotenv_2019_134619
crossref_primary_10_1016_j_envres_2022_113934
crossref_primary_10_1080_10643389_2020_1713030
crossref_primary_10_1007_s42773_023_00287_x
crossref_primary_10_1038_s41598_020_76213_z
crossref_primary_10_1002_ldr_2829
crossref_primary_10_1016_j_envpol_2024_124078
crossref_primary_10_1080_00103624_2022_2028806
crossref_primary_10_1007_s00374_020_01502_8
crossref_primary_10_1016_j_jhazmat_2020_123227
crossref_primary_10_1007_s42773_020_00078_8
crossref_primary_10_1016_j_geoderma_2019_114055
crossref_primary_10_1016_j_heliyon_2020_e04688
crossref_primary_10_1016_j_scitotenv_2021_148923
crossref_primary_10_1016_j_envpol_2022_120232
crossref_primary_10_3390_agriculture13030512
crossref_primary_10_1016_j_scitotenv_2023_164656
crossref_primary_10_1039_D0MA00087F
crossref_primary_10_1016_j_jhazmat_2023_133236
crossref_primary_10_1039_C8RA08512A
crossref_primary_10_54097_hset_v40i_6624
crossref_primary_10_1111_aab_70001
crossref_primary_10_1080_00103624_2022_2028812
crossref_primary_10_1007_s00477_020_01799_9
crossref_primary_10_1016_j_cej_2025_161496
crossref_primary_10_1007_s11356_022_21842_2
crossref_primary_10_1016_j_psep_2024_02_084
crossref_primary_10_3390_toxics11080666
crossref_primary_10_1080_21655979_2021_1993536
crossref_primary_10_3390_su142417049
crossref_primary_10_1007_s13399_025_06702_6
crossref_primary_10_1016_j_cej_2023_145317
crossref_primary_10_1016_j_scitotenv_2022_153461
crossref_primary_10_1016_j_cej_2023_144229
crossref_primary_10_1016_j_chemosphere_2022_135605
crossref_primary_10_2139_ssrn_4150164
crossref_primary_10_1016_j_jwpe_2021_102215
crossref_primary_10_1016_j_geoderma_2019_114170
crossref_primary_10_1016_j_seppur_2023_125660
crossref_primary_10_1016_j_chemosphere_2022_133555
crossref_primary_10_1016_j_scitotenv_2023_165970
crossref_primary_10_1016_j_jenvman_2024_122044
crossref_primary_10_1016_j_envpol_2020_114681
crossref_primary_10_3390_agronomy10081163
crossref_primary_10_1016_j_chemosphere_2020_125850
crossref_primary_10_1016_j_scitotenv_2018_08_222
crossref_primary_10_1016_j_envres_2022_113340
crossref_primary_10_1016_j_envpol_2021_117718
crossref_primary_10_1016_j_jenvman_2024_122501
crossref_primary_10_1016_j_scitotenv_2017_10_319
crossref_primary_10_1016_j_scitotenv_2019_06_212
crossref_primary_10_1016_j_chemosphere_2019_124868
crossref_primary_10_1016_j_jenvman_2022_115531
crossref_primary_10_1016_j_scitotenv_2020_144218
crossref_primary_10_1007_s00128_020_02914_w
crossref_primary_10_1016_j_seh_2023_100050
crossref_primary_10_5004_dwt_2022_28635
crossref_primary_10_1016_j_jenvman_2020_110511
crossref_primary_10_1007_s10661_022_10783_5
crossref_primary_10_1021_acs_energyfuels_9b04495
crossref_primary_10_3390_agronomy12051003
crossref_primary_10_1016_j_envpol_2022_119064
crossref_primary_10_1016_j_jenvman_2019_109636
crossref_primary_10_1016_j_envres_2022_113226
crossref_primary_10_1016_j_scitotenv_2018_07_099
crossref_primary_10_1016_j_conbuildmat_2025_140931
crossref_primary_10_2139_ssrn_4076642
crossref_primary_10_1016_j_envpol_2021_117840
crossref_primary_10_1016_j_scitotenv_2021_149194
crossref_primary_10_1038_s41598_022_17075_5
crossref_primary_10_1080_10643389_2023_2290947
crossref_primary_10_1016_j_jhazmat_2021_125378
crossref_primary_10_1016_j_jclepro_2020_122743
crossref_primary_10_1016_j_jhazmat_2022_128944
crossref_primary_10_3390_plants12051024
crossref_primary_10_1016_j_jhazmat_2020_124584
crossref_primary_10_1007_s42773_020_00063_1
crossref_primary_10_1021_acs_est_2c02701
crossref_primary_10_1016_j_apsoil_2022_104444
crossref_primary_10_1016_j_watres_2020_116054
crossref_primary_10_1021_acs_est_9b03607
crossref_primary_10_3390_pr8070826
crossref_primary_10_1016_j_jenvman_2023_118191
crossref_primary_10_1016_j_envpol_2022_120184
crossref_primary_10_1016_j_jhazmat_2024_133600
crossref_primary_10_1139_cjss_2019_0138
crossref_primary_10_1016_j_scitotenv_2017_11_106
crossref_primary_10_1016_j_envres_2020_110188
crossref_primary_10_1016_j_soilbio_2019_107678
crossref_primary_10_1016_j_catena_2023_107429
crossref_primary_10_1080_00103624_2024_2440069
crossref_primary_10_1016_j_scitotenv_2017_11_341
crossref_primary_10_1016_j_jhazmat_2021_125494
crossref_primary_10_1007_s42823_024_00766_6
crossref_primary_10_1016_j_jhazmat_2019_121749
crossref_primary_10_1016_j_scitotenv_2023_169585
crossref_primary_10_1016_j_jhazmat_2019_121503
crossref_primary_10_1016_j_jenvman_2024_123974
crossref_primary_10_1016_j_jhazmat_2021_126212
crossref_primary_10_1007_s11356_021_13959_7
crossref_primary_10_1016_j_apsoil_2022_104697
crossref_primary_10_1016_j_still_2021_104955
crossref_primary_10_1080_02648725_2022_2122288
crossref_primary_10_1016_j_envpol_2023_121323
crossref_primary_10_1016_j_scitotenv_2024_176034
crossref_primary_10_1016_j_enceco_2025_01_004
crossref_primary_10_1016_j_jenvman_2018_09_006
crossref_primary_10_1016_j_scitotenv_2019_133658
crossref_primary_10_1016_j_scitotenv_2023_161622
crossref_primary_10_3390_plants12061399
crossref_primary_10_1007_s42398_021_00190_w
crossref_primary_10_1016_j_envint_2019_03_068
crossref_primary_10_1016_j_chemosphere_2017_12_177
crossref_primary_10_1016_j_seh_2023_100033
crossref_primary_10_3390_resources13050066
crossref_primary_10_1007_s13399_022_02795_5
crossref_primary_10_1016_j_ijhydene_2024_10_123
crossref_primary_10_1007_s11104_023_05912_z
crossref_primary_10_1016_j_jece_2022_109090
crossref_primary_10_1016_j_chemosphere_2021_130458
crossref_primary_10_1016_j_biombioe_2024_107178
crossref_primary_10_1016_j_chemosphere_2021_130456
crossref_primary_10_1007_s10653_024_01956_x
crossref_primary_10_1016_j_jenvman_2021_112198
crossref_primary_10_1016_j_ejsobi_2024_103680
crossref_primary_10_1016_j_molliq_2018_10_142
crossref_primary_10_1007_s42773_020_00041_7
crossref_primary_10_1016_j_scitotenv_2024_176283
crossref_primary_10_1016_j_jhazmat_2024_134952
crossref_primary_10_1371_journal_pone_0284348
crossref_primary_10_1088_1742_6596_1637_1_012070
crossref_primary_10_1016_j_ecoenv_2022_114322
crossref_primary_10_3390_microorganisms10081593
crossref_primary_10_1016_j_jece_2021_105830
crossref_primary_10_3390_biology13080611
crossref_primary_10_1016_j_agee_2022_108183
crossref_primary_10_1016_j_eti_2024_103659
crossref_primary_10_1016_j_ibiod_2025_106005
crossref_primary_10_1071_FP23257
crossref_primary_10_1007_s42770_019_00043_z
crossref_primary_10_1007_s42773_024_00397_0
crossref_primary_10_1007_s42729_021_00514_z
crossref_primary_10_1007_s12517_020_05586_2
crossref_primary_10_1080_01904167_2023_2220720
crossref_primary_10_1186_s13765_023_00851_w
crossref_primary_10_1016_j_scitotenv_2022_159368
crossref_primary_10_1007_s42773_019_00008_3
crossref_primary_10_1016_j_cej_2024_148970
crossref_primary_10_1080_10643389_2023_2190333
crossref_primary_10_1016_j_seppur_2023_123850
crossref_primary_10_1007_s11356_018_2425_0
crossref_primary_10_1016_j_jrmge_2022_04_010
crossref_primary_10_1021_acs_est_1c01976
crossref_primary_10_1016_j_scitotenv_2018_06_009
crossref_primary_10_1007_s13762_023_04904_x
crossref_primary_10_3389_fpls_2022_1020832
crossref_primary_10_5696_2156_9614_10_27_200902
crossref_primary_10_1007_s42773_023_00278_y
crossref_primary_10_3390_ijerph19020845
crossref_primary_10_1002_cben_201700006
crossref_primary_10_1016_j_apsoil_2023_104986
crossref_primary_10_1016_j_jwpe_2023_104744
crossref_primary_10_1016_j_envint_2020_105576
crossref_primary_10_1007_s10311_022_01520_y
crossref_primary_10_3390_plants12122355
crossref_primary_10_1016_j_enconman_2019_06_069
crossref_primary_10_1016_j_scitotenv_2020_144893
crossref_primary_10_3390_w13182501
crossref_primary_10_1016_j_geoderma_2018_09_034
crossref_primary_10_1016_j_envint_2019_105172
crossref_primary_10_1007_s42773_023_00244_8
crossref_primary_10_3390_agronomy14030428
crossref_primary_10_1007_s00253_023_12519_y
crossref_primary_10_1016_j_scitotenv_2021_151255
crossref_primary_10_1016_j_scitotenv_2022_154845
crossref_primary_10_1016_j_jhazmat_2019_121827
crossref_primary_10_3390_microorganisms9081660
crossref_primary_10_1016_j_jenvman_2024_123534
crossref_primary_10_1007_s11368_022_03347_0
crossref_primary_10_1016_j_jece_2023_110572
crossref_primary_10_1021_acs_est_2c02976
crossref_primary_10_1111_gcbb_13147
crossref_primary_10_1016_j_scitotenv_2018_06_231
crossref_primary_10_1016_j_heliyon_2024_e26478
crossref_primary_10_1016_j_biortech_2023_128821
crossref_primary_10_3390_su122410586
crossref_primary_10_1016_j_chemosphere_2021_132691
crossref_primary_10_1007_s12042_025_09396_2
crossref_primary_10_1016_j_jhazmat_2018_02_019
crossref_primary_10_1007_s42773_019_00009_2
crossref_primary_10_1111_aab_12555
crossref_primary_10_3389_fsoil_2022_998654
crossref_primary_10_3390_agronomy13102518
crossref_primary_10_1016_j_ecoenv_2021_112173
crossref_primary_10_1007_s42773_023_00255_5
crossref_primary_10_1080_10643389_2021_1894064
crossref_primary_10_1016_j_biortech_2025_132317
crossref_primary_10_1021_acs_est_4c03917
crossref_primary_10_1016_j_envint_2019_105277
crossref_primary_10_1016_j_scitotenv_2021_152112
crossref_primary_10_1016_j_eti_2023_103229
crossref_primary_10_1021_acs_est_4c07027
crossref_primary_10_1016_j_ecoenv_2022_114408
crossref_primary_10_1016_j_scitotenv_2018_09_098
crossref_primary_10_1016_j_electacta_2022_141713
crossref_primary_10_1016_j_scitotenv_2018_09_099
crossref_primary_10_1016_j_scitotenv_2017_11_008
crossref_primary_10_1016_j_jhazmat_2023_132550
crossref_primary_10_1016_j_scitotenv_2022_159034
crossref_primary_10_1016_j_scitotenv_2022_159037
crossref_primary_10_1007_s12600_021_00887_y
crossref_primary_10_3390_agronomy10101455
crossref_primary_10_1039_D2RA01647H
crossref_primary_10_3390_plants11030423
crossref_primary_10_1007_s10343_023_00952_y
Cites_doi 10.1007/s11270-016-3155-x
10.1016/j.apsoil.2013.05.003
10.1007/s11368-014-1029-7
10.1016/j.ecoenv.2016.10.033
10.1007/s11368-015-1073-y
10.1016/j.envpol.2016.08.014
10.1007/s11368-010-0266-7
10.1007/s00374-014-0968-x
10.1016/j.envpol.2011.07.023
10.1016/j.geoderma.2014.11.009
10.1021/es3047872
10.1007/s11426-008-0041-4
10.1021/es5061512
10.1016/j.apsoil.2012.02.021
10.1021/acsomega.6b00085
10.1021/es101283d
10.1128/AEM.00148-11
10.1016/j.geoderma.2015.01.012
10.1111/gcbb.12119
10.1016/j.biortech.2010.11.018
10.1016/j.agee.2014.04.006
10.1016/j.pedobi.2005.04.004
10.1016/j.soilbio.2014.11.023
10.1021/es403711y
10.1016/j.catena.2013.06.021
10.1021/jf404624h
10.1038/ismej.2010.58
10.1007/s00374-016-1154-0
10.1128/AEM.02775-08
10.1038/447143a
10.1021/es401458s
10.1016/j.geoderma.2015.12.020
10.1016/j.jhazmat.2012.05.090
10.1016/j.apsoil.2014.08.001
10.1016/j.jhazmat.2014.12.002
10.1021/es202970x
10.1016/j.chemosphere.2013.11.004
10.1016/j.soilbio.2004.01.013
10.1016/j.fuel.2011.08.044
10.1021/es405647e
10.1002/ep.12122
10.1111/gcbb.12037
10.1016/S0038-0717(00)00084-5
10.1016/j.envpol.2016.06.063
10.1016/j.soilbio.2010.10.014
10.1007/s11104-012-1169-8
10.1016/j.soilbio.2009.03.016
10.1016/j.ibiod.2013.07.004
10.1111/j.1365-2486.2009.02044.x
10.3389/fpls.2015.00529
10.1016/j.agee.2011.06.015
10.1002/jpln.201200639
10.1021/ez5002209
10.1016/j.ejsobi.2013.10.007
10.1021/es5043468
10.1029/2006GB002798
10.1016/j.agee.2014.12.001
10.1021/acssuschemeng.6b01869
10.1021/acs.est.5b05517
10.1007/s11104-010-0544-6
10.2136/sssaj2005.0383
10.1371/journal.pone.0018839
10.1021/tx010050x
10.1016/j.chemosphere.2015.05.052
10.1023/A:1014483303813
10.1038/srep16221
10.1111/ejss.12034
10.1016/j.envpol.2010.02.003
10.1016/S1001-0742(09)60293-X
10.1016/j.chemosphere.2015.04.062
10.1139/cjss-2015-0094
10.1021/es8002684
10.3390/su71013317
10.1016/j.geoderma.2012.10.002
10.1007/s11356-015-4233-0
10.1016/j.apsoil.2015.05.005
10.1111/ejss.12064
10.1007/s00374-012-0723-0
10.1016/j.soilbio.2014.08.004
10.1016/j.proci.2006.07.172
10.1016/j.tim.2010.11.006
10.1016/j.geoderma.2011.04.021
10.1007/s00374-011-0644-3
10.1016/j.jhazmat.2013.12.027
10.1016/j.chemosphere.2015.05.084
10.1016/j.soilbio.2015.07.014
10.1016/j.taap.2015.09.021
10.1016/j.chemosphere.2013.10.071
10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
10.1016/j.chemosphere.2011.06.108
10.5194/se-5-585-2014
10.1016/j.geoderma.2013.03.003
10.1186/1743-8977-6-11
10.1111/j.1365-2486.2012.02796.x
10.1088/1748-9326/9/6/064013
10.1016/j.chemosphere.2015.04.087
10.1016/j.orggeochem.2015.12.003
10.1111/ejss.12257
10.1021/es902648t
10.1016/j.biortech.2010.02.052
10.1007/s11368-014-0996-z
10.1007/s11368-014-0969-2
10.1094/PHYTO-100-9-0913
10.1007/s00374-014-0962-3
10.1021/acs.est.5b04042
10.1111/gcbb.12007
10.1111/gcbb.12018
10.1007/s11368-014-1040-z
10.1016/j.chemosphere.2016.08.072
10.1080/10643389.2011.574115
10.1016/j.biortech.2011.11.084
10.1111/1574-6941.12374
10.1021/es405676h
10.1021/es4048126
10.1021/es1014423
10.1021/es303351e
10.1007/s11368-012-0554-5
10.4155/cmt.13.23
10.1097/SS.0b013e3181981d9a
10.1021/es302345e
10.1016/j.catena.2014.05.020
10.1007/s11104-012-1129-3
10.1021/es803092k
10.1016/j.soilbio.2011.04.022
10.1016/j.soilbio.2010.12.015
10.1021/es404250a
10.1016/j.soilbio.2011.05.021
10.1128/AEM.00335-09
10.1016/j.biortech.2010.08.067
10.1016/S0038-0717(99)00051-6
10.2134/jeq2012.0411
10.1016/j.soilbio.2013.06.004
10.1016/j.biortech.2013.07.086
10.1021/es300797z
10.2134/jeq2011.0145
10.1021/es903140c
10.1006/fgbi.1997.1022
10.1016/j.chemosphere.2009.02.004
10.1016/j.soilbio.2011.02.005
10.1016/j.geoderma.2010.05.013
10.1016/j.pedobi.2004.11.003
10.1111/ejss.12071
10.1007/s11368-013-0806-z
10.1007/s11104-007-9391-5
10.1016/j.biortech.2014.11.032
10.5194/bg-13-5739-2016
10.1021/es501885n
10.1021/es500906d
10.5194/se-5-693-2014
10.1080/10256010903388436
10.1038/nrmicro1127
10.1111/gcbb.12132
10.1016/j.scitotenv.2016.07.135
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2017.04.032
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
EndPage 115
ExternalDocumentID 28458251
10_1016_j_envpol_2017_04_032
S026974911632228X
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
29G
4.4
457
53G
5GY
5VS
6TJ
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XJT
XOL
XPP
ZMT
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-a418t-36625a3fc0db8750f62eccefd36880a16751c0fe5ce3ddd61a8c9be1ba2e0d3b3
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Fri Jul 11 08:45:11 EDT 2025
Tue Jul 22 01:05:23 EDT 2025
Wed Feb 19 02:16:36 EST 2025
Tue Jul 01 00:54:27 EDT 2025
Thu Apr 24 23:16:01 EDT 2025
Fri Feb 23 02:28:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil improvement
Contaminant mitigation
Interaction mechanisms
Carbon sequestration
Microbial community
Biochar amendment
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a418t-36625a3fc0db8750f62eccefd36880a16751c0fe5ce3ddd61a8c9be1ba2e0d3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4155-2437
0000-0001-8196-081X
PMID 28458251
PQID 1893971812
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2000354178
proquest_miscellaneous_1893971812
pubmed_primary_28458251
crossref_primary_10_1016_j_envpol_2017_04_032
crossref_citationtrail_10_1016_j_envpol_2017_04_032
elsevier_sciencedirect_doi_10_1016_j_envpol_2017_04_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dellinger, Pryor, Cueto, Squadrito, Hegde, Deutsch (bib40) 2001; 14
Sun, Meng, Liang, Yang, Huang, Chen, Jiang, Lan, Zhang, Gao (bib142) 2015; 15
Kappler, Wuestner, Ruecker, Harter, Halama, Behrens (bib78) 2014; 1
Paz-Ferreiro, Fu, Mendez, Gasco (bib113) 2015; 15
Graber, Tsechansky, Lew, Cohen (bib62) 2014; 65
Fang, Gao, Liu, Dionysiou, Wang, Zhou (bib48) 2014; 48
Warnock, Lehmann, Kuyper, Rillig (bib146) 2007; 300
Awad, Blagodatskaya, Ok, Kuzyakov (bib10) 2013; 64
Rillig, Wright, Eviner (bib128) 2002; 238
Masek, Brownsort, Cross, Sohi (bib103) 2013; 103
Kasozi, Zimmerman, Nkedi-Kizza, Gao (bib79) 2010; 44
Luo, Gu (bib99) 2016; 182
Elad, David, Harel, Borenshtein, Ben Kalifa, Silber, Graber (bib46) 2010; 100
Sawyer, Claessen, Haas, Hurgobin, Gras (bib135) 2011
Yanardag, Zornoza, Faz Cano, Yanardag, Mermut (bib152) 2015; 51
Dong, Ma, Gress, Harris, Li (bib42) 2014; 267
Elad, Cytryn, Harel, Lew, Graber (bib45) 2011; 50
Zhang, Zhou, Liang, Sun, Wang, He (bib159) 2015; 94
Gebbink, Claessen, Bouma, Dijkhuizen, Wosten (bib57) 2005; 3
Fox, Kwapinski, Griffiths, Schmalenberger (bib52) 2014; 90
Chen, Yuan, Qian (bib27) 2012; 12
Paz-Ferreiro, Gasco, Gutierrez, Mendez (bib115) 2012; 48
Liao, Pan, Li, Zhang, Xing (bib96) 2014; 48
Smebye, Alling, Vogt, Gadmar, Mulder, Cornelissen, Hale (bib138) 2016; 142
Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Vithanage, Lee, Ok (bib4) 2014; 99
Xiao, Chen, Chen (bib148) 2016
Zheng, Chen, Pan, Liu, Zhang, Li, Sian, Cheng, JinweiZheng (bib160) 2016; 571
Chen, Yuan (bib26) 2011; 11
Lehmann (bib90) 2007; 5
Demisie, Liu, Zhang (bib41) 2014; 121
Chen, Liu, Zheng, Zhang, Lu, Chi, Pan, Li, Zheng, Zhang, Wang, Yu (bib30) 2013; 71
Hale, Luth, Kenney, Crowley (bib65) 2014; 84
Leal, Dick, Lombardi, Maciel, Gonzalez-Perez, Knicker (bib89) 2015; 15
Liang, Zhu, Fu, Mendez, Gasco, Paz-Ferreiro (bib95) 2014
Truong, Lomnicki, Dellinger (bib144) 2010; 44
Reed, dela Cruz, Lomnicki, Backes (bib125) 2015; 289
Hale, Luth, Crowley (bib64) 2015; 81
Chen, Xiao, Chen, Zhu (bib35) 2015; 49
Chen, Ding (bib25) 2012; 229
Galvez, Sinicco, Cayuela, Mingorance, Fornasier, Mondini (bib54) 2012; 160
Silber, Levkovitch, Graber (bib137) 2010; 44
Rousk, Brookes, Baath (bib133) 2009; 75
Wang, Gao, Zimmerman, Li, Ma, Harris, Migliaccio (bib145) 2015; 134
Yang, Pan, Li, Liao, Zhang, Wu, Xing (bib153) 2016; 50
Czimczik, Masiello (bib37) 2007
Spokas, Novak, Stewart, Cantrell, Uchimiya, DuSaire, Ro (bib139) 2011; 85
Quilliam, Glanville, Wade, Jones (bib123) 2013; 65
Novak, Busscher, Laird, Ahmedna, Watts, Niandou (bib111) 2009; 174
Chen, Chen, Chiou (bib32) 2012; 46
Qian, Chen (bib118) 2014; 62
Beesley, Moreno-Jimenez, Gomez-Eyles, Harris, Robinson, Sizmur (bib16) 2011; 159
Mukherjee, Zimmerman, Harris (bib107) 2011; 163
Purakayastha, Kumari, Pathak (bib116) 2015; 239
Akhter, Hage-Ahmed, Soja, Steinkellner (bib5) 2015
Jien, Wang (bib75) 2013; 110
Lu, Yang, Gielen, Bolan, Ok, Niazi, Xu, Yuan, Chen, Zhang, Liu, Song, Liu, Wang (bib98) 2017; 186
Rillig (bib126) 2005; 49
Beesley, Moreno-Jiménez, Gomez-Eyles (bib15) 2010; 158
Joseph, Graber, Chia, Munroe, Donne, Thomas, Nielsen, Marjo, Rutlidge, Pan, Li, Taylor, Rawal, Hook (bib77) 2013; 4
Bailey, Fansler, Smith, Bolton (bib11) 2011; 43
Nielsen, Minchin, Kimber, van Zwieten, Gilbert, Munroe, Joseph, Thomas (bib110) 2014; 191
Lehmann (bib91) 2007; 447
Koltowski, Charmas, Skubiszewska-Zieba, Oleszczuk (bib84) 2017; 136
Ghidotti, Fabbri, Hornung (bib59) 2017; 5
Li, Cao, Zhao, Wang, Ding (bib93) 2014; 48
Mackie, Marhan, Ditterich, Schmidt, Kandeler (bib101) 2015; 201
Cantrell, Hunt, Uchimiya, Novak, Ro (bib18) 2012; 107
Chen, Chen, Zhou, Chen (bib33) 2012; 46
Jeong, Dodla, Wang (bib73) 2016; 142
Lauber, Hamady, Knight, Fierer (bib88) 2009; 75
Rousk, Baath, Brookes, Lauber, Lozupone, Caporaso, Knight, Fierer (bib132) 2010; 4
Xu, Adhikari, Huang, Zhang, Tang, Roden, Yang (bib149) 2016; 50
Rillig, Lutgen, Ramsey, Klironomos, Gannon (bib127) 2005; 49
Zimmerman, Gao, Ahn (bib164) 2011; 43
Kolton, Harel, Pasternak, Graber, Elad, Cytryn (bib83) 2011; 77
Chen, Chen, Lv (bib24) 2011; 102
Gibson, Berry, Wang, Spencer, Johnston, Jiang, Bird, Filley (bib60) 2016; 92
Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (bib92) 2011; 43
Heitkoetter, Marschner (bib68) 2015; 245
Chen, Zhou, Zhu (bib28) 2008; 42
Ameloot, Sleutel, Das, Kanagaratnam, de Neve (bib8) 2015; 7
Chen, Zhou, Zhu, Shen (bib29) 2008; 51
Ronsse, van Hecke, Dickinson, Prins (bib131) 2013; 5
Doong, Lee, Lien (bib43) 2014; 97
Bandick, Dick (bib14) 1999; 31
Biederman, Harpole (bib17) 2013; 5
Chathurika, Kumaragamage, Zvomuya, Akinremi, Flaten, Indraratne, Dandeniya (bib22) 2016; 96
Jien, Wang, Lee, Lee (bib74) 2015; 7
Chen, Fang, Xu, Chen (bib34) 2012; 32
Kuzyakov, Friedel, Stahr (bib85) 2000; 32
Lammirato, Miltner, Kaestner (bib87) 2011; 43
Balakrishna, Lomnicki, McAvey, Cole, Dellinger, Cormier (bib12) 2009
Yang, Liu, McGrouther, Huang, Lu, Guo, He, Lin, Che, Ye, Wang (bib154) 2016; 23
Rittl, Novotny, Balieiro, Hoffland, Alves, Kuyper (bib129) 2015; 66
Choppala, Bolan, Megharaj, Chen, Naidu (bib36) 2012; 41
Graber, Harel, Kolton, Cytryn, Silber, David, Tsechansky, Borenshtein, Elad (bib61) 2010; 337
Lin, Munroe, Joseph, Kimber, Van Zwieten (bib97) 2012; 357
Harel, Elad, Rav-David, Borenstein, Shulchani, Lew, Graber (bib67) 2012; 357
Yu, Yuan, Tang, Wang, Zhou (bib155) 2015
Qian, Chen, Hu (bib119) 2013; 47
Qian, Chen, Chen (bib121) 2016
Bamminger, Zaiser, Zinsser, Lamers, Kammann, Marhan (bib13) 2014; 50
Kluepfel, Keiluweit, Kleber, Sander (bib82) 2014; 48
Fang, Chen, Lin, Guan (bib51) 2014; 48
Garcia-Delgado, Alfaro-Barta, Eymar (bib56) 2015; 285
Abit, Bolster, Cai, Walker (bib2) 2012; 46
Zimmermann, Bird, Wurster, Saiz, Goodrick, Barta, Capek, Santruckova, Smernik (bib165) 2012; 18
Guo, Chen (bib63) 2014; 48
Zimmerman (bib162) 2010; 44
Ascough, Sturrock, Bird (bib9) 2010; 46
El-Naggar, Usman, Al-Omran, Ok, Ahmad, Al-Wabel (bib44) 2015; 138
Mukherjee, Zimmerman, Hamdan, Cooper (bib106) 2014; 5
Jones, Edwards-Jones, Murphy (bib76) 2011; 43
Gao, Cheng, Del Valle, Liu, Masiello, Silberg (bib55) 2016; 1
Ameloot, Sleutel, Case, Alberti, McNamara, Zavalloni, Vervisch, delle Vedove, De Neve (bib7) 2014; 78
Jeffery, Bezemer, Cornelissen, Kuyper, Lehmann, Mommer, Sohi, van de Voorde, Wardle, van Groenigen (bib72) 2015; 7
Oh, Son, Hur, Chung, Chiu (bib112) 2013; 42
Fang, Zhu, Dionysiou, Gao, Zhou (bib50) 2015; 176
King (bib81) 2011; 19
Yuan, Xu, Zhang (bib157) 2011; 102
Fang, Liu, Gao, Dionysiou, Zhou (bib49) 2015; 49
Jäckel, Schnell, Conrad (bib71) 2004; 36
Abel, Peters, Trinks, Schonsky, Facklam, Wessolek (bib1) 2013; 202
Yuan, Lu, Wang, Chen, Lei (bib156) 2016; 267
Cely, Tarquis, Paz-Ferreiro, Mendez, Gasco (bib21) 2014; 5
Paz-Ferreiro, Fu, Mendez, Gasco (bib114) 2014; 14
Major, Lehmann, Rondon, Goodale (bib102) 2010; 16
Qin, Gong, Fan (bib122) 2013; 85
Nannipieri, Giagnoni, Renella, Puglisi, Ceccanti, Masciandaro, Fornasier, Moscatelli, Marinari (bib109) 2012; 48
Zhang, Chen, Li, Brookes, Xu, Luo (bib158) 2017; 53
Masiello, Chen, Gao, Liu, Cheng, Bennett, Rudgers, Wagner, Zygourakis, Silberg (bib104) 2013; 47
Steinbeiss, Gleixner, Antonietti (bib141) 2009; 41
Laird, Fleming, Davis, Horton, Wang, Karlen (bib86) 2010; 158
Murray, Keith, Singh (bib108) 2015; 89
Kershaw, Talbot (bib80) 1998; 23
Chen, Chen (bib23) 2009; 76
Cao, Harris (bib19) 2010; 101
Xiao, Chen, Zhu (bib147) 2014; 48
Cao, Ma, Gao, Harris (bib20) 2009; 43
Mukherjee, Zimmerman (bib105) 2013; 193
Ameloot, Graber, Verheijen, De Neve (bib6) 2013; 64
Hale, Hanley, Lehmann, Zimmerman, Cornelissen (bib66) 2011; 45
Galitskaya, Akhmetzyanova, Selivanovskaya (bib53) 2016; 13
George, Wagner, Kuecke, Rillig (bib58) 2012; 59
de Andrade, Silveira Bibar, Coscione, Moreno Pires, Soares (bib38) 2015; 50
Quilliam, Rangecroft, Emmett, Deluca, Jones (bib124) 2013; 5
Dellinger, Loninicki, Khachatryan, Maskos, Hall, Adounkpe, McFerrin, Truong (bib39) 2007; 31
Lyu, He, Tang, Hecker, Liu, Jones, Codling, Giesy (bib100) 2016; 218
Seneviratne, Weerasundara, Ok, Rinklebe, Vithanage (bib136) 2017; 186
Rodriguez-Vila, Forjan, Guedes, Covelo (bib130) 2016
Stefaniuk, Oleszczuk (bib140) 2016; 218
Xu, Chen (bib151) 2015; 15
Qian, Chen (bib117) 2013; 47
Zimmerman, Ahn (bib163) 2010
Qian, Chen, Chen (bib120) 2015; 15
Huang, Chen (bib70) 2010; 22
Liang, Lehmann, Solomon, Kinyangi, Grossman, O'Neill, Skjemstad, Thies, Luizao, Petersen, Neves (bib94) 2006; 70
Hua, Wang, Wang, Ma (bib69) 2015; 34
Sun, Lu (bib143) 2014; 177
Ahmad, Ok, Kim, Ahn, Lee, Zhang, Moon, Al-Wabel, Lee (bib3) 2016; 166
Zielinska, Oleszczuk (bib161) 2016; 163
Chen, Rotaru, Shrestha, Malvankar, Liu, Fan, Nevin, Lovley (bib31) 2014
Ennis, Evans, Islam, Ralebitso-Senior, Senior (bib47) 2012; 42
Rutigliano, Romano, Marzaioli, Baglivo, Baronti, Miglietta, Castaldi (bib134) 2014; 60
Xu, Chen (bib150) 2013; 146
Demisie (10.1016/j.envpol.2017.04.032_bib41) 2014; 121
Cao (10.1016/j.envpol.2017.04.032_bib20) 2009; 43
Chathurika (10.1016/j.envpol.2017.04.032_bib22) 2016; 96
Lehmann (10.1016/j.envpol.2017.04.032_bib91) 2007; 447
Warnock (10.1016/j.envpol.2017.04.032_bib146) 2007; 300
Qin (10.1016/j.envpol.2017.04.032_bib122) 2013; 85
Qian (10.1016/j.envpol.2017.04.032_bib118) 2014; 62
Rousk (10.1016/j.envpol.2017.04.032_bib132) 2010; 4
Chen (10.1016/j.envpol.2017.04.032_bib24) 2011; 102
Liang (10.1016/j.envpol.2017.04.032_bib95) 2014
Elad (10.1016/j.envpol.2017.04.032_bib46) 2010; 100
Sun (10.1016/j.envpol.2017.04.032_bib142) 2015; 15
Rillig (10.1016/j.envpol.2017.04.032_bib128) 2002; 238
Leal (10.1016/j.envpol.2017.04.032_bib89) 2015; 15
Lin (10.1016/j.envpol.2017.04.032_bib97) 2012; 357
Purakayastha (10.1016/j.envpol.2017.04.032_bib116) 2015; 239
Paz-Ferreiro (10.1016/j.envpol.2017.04.032_bib114) 2014; 14
Ameloot (10.1016/j.envpol.2017.04.032_bib8) 2015; 7
Quilliam (10.1016/j.envpol.2017.04.032_bib123) 2013; 65
Xiao (10.1016/j.envpol.2017.04.032_bib148) 2016
Kuzyakov (10.1016/j.envpol.2017.04.032_bib85) 2000; 32
Galvez (10.1016/j.envpol.2017.04.032_bib54) 2012; 160
Zhang (10.1016/j.envpol.2017.04.032_bib158) 2017; 53
Kluepfel (10.1016/j.envpol.2017.04.032_bib82) 2014; 48
Graber (10.1016/j.envpol.2017.04.032_bib61) 2010; 337
Rittl (10.1016/j.envpol.2017.04.032_bib129) 2015; 66
Cantrell (10.1016/j.envpol.2017.04.032_bib18) 2012; 107
Beesley (10.1016/j.envpol.2017.04.032_bib15) 2010; 158
Rillig (10.1016/j.envpol.2017.04.032_bib126) 2005; 49
Graber (10.1016/j.envpol.2017.04.032_bib62) 2014; 65
Laird (10.1016/j.envpol.2017.04.032_bib86) 2010; 158
Seneviratne (10.1016/j.envpol.2017.04.032_bib136) 2017; 186
Chen (10.1016/j.envpol.2017.04.032_bib29) 2008; 51
Mukherjee (10.1016/j.envpol.2017.04.032_bib106) 2014; 5
Mukherjee (10.1016/j.envpol.2017.04.032_bib105) 2013; 193
Nannipieri (10.1016/j.envpol.2017.04.032_bib109) 2012; 48
Ennis (10.1016/j.envpol.2017.04.032_bib47) 2012; 42
Major (10.1016/j.envpol.2017.04.032_bib102) 2010; 16
Oh (10.1016/j.envpol.2017.04.032_bib112) 2013; 42
Steinbeiss (10.1016/j.envpol.2017.04.032_bib141) 2009; 41
Xu (10.1016/j.envpol.2017.04.032_bib149) 2016; 50
Masiello (10.1016/j.envpol.2017.04.032_bib104) 2013; 47
Zielinska (10.1016/j.envpol.2017.04.032_bib161) 2016; 163
Xu (10.1016/j.envpol.2017.04.032_bib151) 2015; 15
Garcia-Delgado (10.1016/j.envpol.2017.04.032_bib56) 2015; 285
Yang (10.1016/j.envpol.2017.04.032_bib154) 2016; 23
Chen (10.1016/j.envpol.2017.04.032_bib30) 2013; 71
Choppala (10.1016/j.envpol.2017.04.032_bib36) 2012; 41
Doong (10.1016/j.envpol.2017.04.032_bib43) 2014; 97
Hale (10.1016/j.envpol.2017.04.032_bib65) 2014; 84
Novak (10.1016/j.envpol.2017.04.032_bib111) 2009; 174
Paz-Ferreiro (10.1016/j.envpol.2017.04.032_bib115) 2012; 48
Akhter (10.1016/j.envpol.2017.04.032_bib5) 2015
Chen (10.1016/j.envpol.2017.04.032_bib32) 2012; 46
Jones (10.1016/j.envpol.2017.04.032_bib76) 2011; 43
Balakrishna (10.1016/j.envpol.2017.04.032_bib12) 2009
Fang (10.1016/j.envpol.2017.04.032_bib50) 2015; 176
Koltowski (10.1016/j.envpol.2017.04.032_bib84) 2017; 136
Qian (10.1016/j.envpol.2017.04.032_bib119) 2013; 47
Awad (10.1016/j.envpol.2017.04.032_bib10) 2013; 64
Masek (10.1016/j.envpol.2017.04.032_bib103) 2013; 103
Qian (10.1016/j.envpol.2017.04.032_bib120) 2015; 15
Abit (10.1016/j.envpol.2017.04.032_bib2) 2012; 46
Fang (10.1016/j.envpol.2017.04.032_bib49) 2015; 49
Heitkoetter (10.1016/j.envpol.2017.04.032_bib68) 2015; 245
Smebye (10.1016/j.envpol.2017.04.032_bib138) 2016; 142
Stefaniuk (10.1016/j.envpol.2017.04.032_bib140) 2016; 218
Cao (10.1016/j.envpol.2017.04.032_bib19) 2010; 101
Bamminger (10.1016/j.envpol.2017.04.032_bib13) 2014; 50
Chen (10.1016/j.envpol.2017.04.032_bib25) 2012; 229
Ahmad (10.1016/j.envpol.2017.04.032_bib3) 2016; 166
Liao (10.1016/j.envpol.2017.04.032_bib96) 2014; 48
Jien (10.1016/j.envpol.2017.04.032_bib74) 2015; 7
Dong (10.1016/j.envpol.2017.04.032_bib42) 2014; 267
Lehmann (10.1016/j.envpol.2017.04.032_bib90) 2007; 5
Kershaw (10.1016/j.envpol.2017.04.032_bib80) 1998; 23
Silber (10.1016/j.envpol.2017.04.032_bib137) 2010; 44
Chen (10.1016/j.envpol.2017.04.032_bib27) 2012; 12
Chen (10.1016/j.envpol.2017.04.032_bib28) 2008; 42
Chen (10.1016/j.envpol.2017.04.032_bib31) 2014
Kappler (10.1016/j.envpol.2017.04.032_bib78) 2014; 1
Zimmerman (10.1016/j.envpol.2017.04.032_bib162) 2010; 44
Zimmerman (10.1016/j.envpol.2017.04.032_bib163) 2010
Czimczik (10.1016/j.envpol.2017.04.032_bib37) 2007
Gao (10.1016/j.envpol.2017.04.032_bib55) 2016; 1
Wang (10.1016/j.envpol.2017.04.032_bib145) 2015; 134
Bailey (10.1016/j.envpol.2017.04.032_bib11) 2011; 43
Hale (10.1016/j.envpol.2017.04.032_bib64) 2015; 81
Hua (10.1016/j.envpol.2017.04.032_bib69) 2015; 34
Nielsen (10.1016/j.envpol.2017.04.032_bib110) 2014; 191
Qian (10.1016/j.envpol.2017.04.032_bib117) 2013; 47
Jien (10.1016/j.envpol.2017.04.032_bib75) 2013; 110
Fox (10.1016/j.envpol.2017.04.032_bib52) 2014; 90
Chen (10.1016/j.envpol.2017.04.032_bib23) 2009; 76
Fang (10.1016/j.envpol.2017.04.032_bib51) 2014; 48
Luo (10.1016/j.envpol.2017.04.032_bib99) 2016; 182
Biederman (10.1016/j.envpol.2017.04.032_bib17) 2013; 5
Lammirato (10.1016/j.envpol.2017.04.032_bib87) 2011; 43
Ameloot (10.1016/j.envpol.2017.04.032_bib7) 2014; 78
Zimmerman (10.1016/j.envpol.2017.04.032_bib164) 2011; 43
Paz-Ferreiro (10.1016/j.envpol.2017.04.032_bib113) 2015; 15
Beesley (10.1016/j.envpol.2017.04.032_bib16) 2011; 159
Rousk (10.1016/j.envpol.2017.04.032_bib133) 2009; 75
Guo (10.1016/j.envpol.2017.04.032_bib63) 2014; 48
Chen (10.1016/j.envpol.2017.04.032_bib33) 2012; 46
Harel (10.1016/j.envpol.2017.04.032_bib67) 2012; 357
Xiao (10.1016/j.envpol.2017.04.032_bib147) 2014; 48
Dellinger (10.1016/j.envpol.2017.04.032_bib40) 2001; 14
Gebbink (10.1016/j.envpol.2017.04.032_bib57) 2005; 3
Mackie (10.1016/j.envpol.2017.04.032_bib101) 2015; 201
Chen (10.1016/j.envpol.2017.04.032_bib26) 2011; 11
Qian (10.1016/j.envpol.2017.04.032_bib121) 2016
Quilliam (10.1016/j.envpol.2017.04.032_bib124) 2013; 5
Spokas (10.1016/j.envpol.2017.04.032_bib139) 2011; 85
Mukherjee (10.1016/j.envpol.2017.04.032_bib107) 2011; 163
Kasozi (10.1016/j.envpol.2017.04.032_bib79) 2010; 44
Truong (10.1016/j.envpol.2017.04.032_bib144) 2010; 44
Jeffery (10.1016/j.envpol.2017.04.032_bib72) 2015; 7
Li (10.1016/j.envpol.2017.04.032_bib93) 2014; 48
Murray (10.1016/j.envpol.2017.04.032_bib108) 2015; 89
Chen (10.1016/j.envpol.2017.04.032_bib35) 2015; 49
Reed (10.1016/j.envpol.2017.04.032_bib125) 2015; 289
Ahmad (10.1016/j.envpol.2017.04.032_bib4) 2014; 99
Cely (10.1016/j.envpol.2017.04.032_bib21) 2014; 5
Sun (10.1016/j.envpol.2017.04.032_bib143) 2014; 177
Dellinger (10.1016/j.envpol.2017.04.032_bib39) 2007; 31
Xu (10.1016/j.envpol.2017.04.032_bib150) 2013; 146
Rutigliano (10.1016/j.envpol.2017.04.032_bib134) 2014; 60
Zimmermann (10.1016/j.envpol.2017.04.032_bib165) 2012; 18
Jäckel (10.1016/j.envpol.2017.04.032_bib71) 2004; 36
Ascough (10.1016/j.envpol.2017.04.032_bib9) 2010; 46
Yanardag (10.1016/j.envpol.2017.04.032_bib152) 2015; 51
Lu (10.1016/j.envpol.2017.04.032_bib98) 2017; 186
Chen (10.1016/j.envpol.2017.04.032_bib34) 2012; 32
Lehmann (10.1016/j.envpol.2017.04.032_bib92) 2011; 43
Sawyer (10.1016/j.envpol.2017.04.032_bib135) 2011
Yang (10.1016/j.envpol.2017.04.032_bib153) 2016; 50
Yuan (10.1016/j.envpol.2017.04.032_bib157) 2011; 102
Galitskaya (10.1016/j.envpol.2017.04.032_bib53) 2016; 13
Zheng (10.1016/j.envpol.2017.04.032_bib160) 2016; 571
King (10.1016/j.envpol.2017.04.032_bib81) 2011; 19
Fang (10.1016/j.envpol.2017.04.032_bib48) 2014; 48
Hale (10.1016/j.envpol.2017.04.032_bib66) 2011; 45
Jeong (10.1016/j.envpol.2017.04.032_bib73) 2016; 142
Zhang (10.1016/j.envpol.2017.04.032_bib159) 2015; 94
George (10.1016/j.envpol.2017.04.032_bib58) 2012; 59
Liang (10.1016/j.envpol.2017.04.032_bib94) 2006; 70
Bandick (10.1016/j.envpol.2017.04.032_bib14) 1999; 31
Lauber (10.1016/j.envpol.2017.04.032_bib88) 2009; 75
Lyu (10.1016/j.envpol.2017.04.032_bib100) 2016; 218
Ameloot (10.1016/j.envpol.2017.04.032_bib6) 2013; 64
Ghidotti (10.1016/j.envpol.2017.04.032_bib59) 2017; 5
Yuan (10.1016/j.envpol.2017.04.032_bib156) 2016; 267
El-Naggar (10.1016/j.envpol.2017.04.032_bib44) 2015; 138
Ronsse (10.1016/j.envpol.2017.04.032_bib131) 2013; 5
Gibson (10.1016/j.envpol.2017.04.032_bib60) 2016; 92
Huang (10.1016/j.envpol.2017.04.032_bib70) 2010; 22
Joseph (10.1016/j.envpol.2017.04.032_bib77) 2013; 4
Rodriguez-Vila (10.1016/j.envpol.2017.04.032_bib130) 2016
Rillig (10.1016/j.envpol.2017.04.032_bib127) 2005; 49
Yu (10.1016/j.envpol.2017.04.032_bib155) 2015
Kolton (10.1016/j.envpol.2017.04.032_bib83) 2011; 77
de Andrade (10.1016/j.envpol.2017.04.032_bib38) 2015; 50
Abel (10.1016/j.envpol.2017.04.032_bib1) 2013; 202
Elad (10.1016/j.envpol.2017.04.032_bib45) 2011; 50
References_xml – volume: 138
  start-page: 67
  year: 2015
  end-page: 73
  ident: bib44
  article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar
  publication-title: Chemosphere
– volume: 49
  start-page: 251
  year: 2005
  end-page: 259
  ident: bib127
  article-title: Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation
  publication-title: Pedobiologia
– volume: 48
  start-page: 511
  year: 2012
  end-page: 517
  ident: bib115
  article-title: Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil
  publication-title: Biol. Fertil. Soils
– volume: 50
  start-page: 1189
  year: 2014
  end-page: 1200
  ident: bib13
  article-title: Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil
  publication-title: Biol. Fertil. Soils
– volume: 42
  start-page: 815
  year: 2013
  end-page: 821
  ident: bib112
  article-title: Black carbon-mediated reduction of 2,4-Dinitrotoluene by dithiothreitol
  publication-title: J. Environ. Qual.
– volume: 85
  start-page: 150
  year: 2013
  end-page: 155
  ident: bib122
  article-title: Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar
  publication-title: Int. Biodeterior. Biodegr.
– volume: 239
  start-page: 293
  year: 2015
  end-page: 303
  ident: bib116
  article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues
  publication-title: Geoderma
– volume: 229
  start-page: 159
  year: 2012
  end-page: 169
  ident: bib25
  article-title: Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium
  publication-title: J. Hazard. Mater
– volume: 13
  start-page: 5739
  year: 2016
  end-page: 5752
  ident: bib53
  article-title: Biochar-carrying hydrocarbon decomposers promote degradation during the early stage of bioremediation
  publication-title: Biogeosciences
– volume: 84
  start-page: 192
  year: 2014
  end-page: 199
  ident: bib65
  article-title: Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation
  publication-title: Appl. Soil Ecol.
– volume: 32
  start-page: 1485
  year: 2000
  end-page: 1498
  ident: bib85
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biol. Biochem.
– volume: 43
  start-page: 1169
  year: 2011
  end-page: 1179
  ident: bib164
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils
  publication-title: Soil Biol. Biochem.
– volume: 66
  start-page: 714
  year: 2015
  end-page: 721
  ident: bib129
  article-title: Negative priming of native soil organic carbon mineralization by oilseed biochars of contrasting quality
  publication-title: Eur. J. Soil Sci.
– volume: 447
  start-page: 143
  year: 2007
  end-page: 144
  ident: bib91
  article-title: A handful of carbon
  publication-title: Nature
– volume: 5
  start-page: 585
  year: 2014
  end-page: 594
  ident: bib21
  article-title: Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar
  publication-title: Solid Earth
– volume: 101
  start-page: 5222
  year: 2010
  end-page: 5228
  ident: bib19
  article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation
  publication-title: Bioresour. Technol.
– year: 2016
  ident: bib121
  article-title: Novel alleviation mechanisms of aluminum phytotoxicity via released biosilicon from rice straw-derived biochars
  publication-title: Sci. Rep.
– volume: 107
  start-page: 419
  year: 2012
  end-page: 428
  ident: bib18
  article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar
  publication-title: Bioresour. Technol.
– volume: 44
  start-page: 6189
  year: 2010
  end-page: 6195
  ident: bib79
  article-title: Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars)
  publication-title: Environ. Sci. Technol.
– volume: 31
  start-page: 521
  year: 2007
  end-page: 528
  ident: bib39
  article-title: Formation and stabilization of persistent free radicals
  publication-title: Proc. Combust. Inst.
– volume: 238
  start-page: 325
  year: 2002
  end-page: 333
  ident: bib128
  article-title: The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species
  publication-title: Plant Soil
– volume: 14
  start-page: 483
  year: 2014
  end-page: 494
  ident: bib114
  article-title: Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities
  publication-title: J. Soils Sed.
– volume: 71
  start-page: 33
  year: 2013
  end-page: 44
  ident: bib30
  article-title: Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China
  publication-title: Appl. Soil Ecol.
– volume: 267
  start-page: 62
  year: 2014
  end-page: 70
  ident: bib42
  article-title: Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar
  publication-title: J. Hazard. Mater
– volume: 193
  start-page: 122
  year: 2013
  end-page: 130
  ident: bib105
  article-title: Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures
  publication-title: Geoderma
– volume: 48
  start-page: 5601
  year: 2014
  end-page: 5611
  ident: bib82
  article-title: Redox properties of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 90
  start-page: 78
  year: 2014
  end-page: 91
  ident: bib52
  article-title: The role of sulfur- and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Lolium perenne
  publication-title: FEMS Microbiol. Ecol.
– volume: 23
  start-page: 974
  year: 2016
  end-page: 984
  ident: bib154
  article-title: Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil
  publication-title: Environ. Sci. Pollut. Res.
– volume: 75
  start-page: 1589
  year: 2009
  end-page: 1596
  ident: bib133
  article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization
  publication-title: Appl. Environ. Microbiol.
– volume: 51
  start-page: 464
  year: 2008
  end-page: 472
  ident: bib29
  article-title: Sorption characteristics and mechanisms of organic contaminant to carbonaceous biosorbents in aqueous solution
  publication-title: Sci. China Ser. B-Chem.
– year: 2016
  ident: bib130
  article-title: Changes on the phytoavailability of nutrients in a mine soil reclaimed with compost and biochar
  publication-title: Water Air Soil Pollut.
– volume: 36
  start-page: 835
  year: 2004
  end-page: 840
  ident: bib71
  article-title: Microbial ethylene production and inhibition of methanotrophic activity in a deciduous forest soil
  publication-title: Soil Biol. Biochem.
– volume: 48
  start-page: 8581
  year: 2014
  end-page: 8587
  ident: bib96
  article-title: Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings
  publication-title: Environ. Sci. Technol.
– volume: 15
  start-page: 60
  year: 2015
  end-page: 70
  ident: bib151
  article-title: Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution
  publication-title: J. Soils Sed.
– volume: 134
  start-page: 257
  year: 2015
  end-page: 262
  ident: bib145
  article-title: Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass
  publication-title: Chemosphere
– volume: 1
  start-page: 339
  year: 2014
  end-page: 344
  ident: bib78
  article-title: Biochar as an electron shuttle between bacteria and Fe(III) minerals
  publication-title: Environ. Sci. Technol. Lett.
– volume: 65
  start-page: 287
  year: 2013
  end-page: 293
  ident: bib123
  article-title: Life in the 'charosphere' - does biochar in agricultural soil provide a significant habitat for microorganisms?
  publication-title: Soil Biol. Biochem.
– volume: 85
  start-page: 869
  year: 2011
  end-page: 882
  ident: bib139
  article-title: Qualitative analysis of volatile organic compounds on biochar
  publication-title: Chemosphere
– volume: 43
  start-page: 296
  year: 2011
  end-page: 301
  ident: bib11
  article-title: Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization
  publication-title: Soil Biol. Biochem.
– volume: 31
  start-page: 1471
  year: 1999
  end-page: 1479
  ident: bib14
  article-title: Field management effects on soil enzyme activities
  publication-title: Soil Biol. Biochem.
– volume: 160
  start-page: 3
  year: 2012
  end-page: 14
  ident: bib54
  article-title: Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties
  publication-title: Agric. Ecosyst. Environ.
– volume: 19
  start-page: 75
  year: 2011
  end-page: 84
  ident: bib81
  article-title: Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes
  publication-title: Trends Microbiol.
– volume: 43
  start-page: 1936
  year: 2011
  end-page: 1942
  ident: bib87
  article-title: Effects of wood char and activated carbon on the hydrolysis of cellobiose by beta-glucosidase from Aspergillus niger
  publication-title: Soil Biol. Biochem.
– volume: 48
  start-page: 279
  year: 2014
  end-page: 288
  ident: bib51
  article-title: Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups
  publication-title: Environ. Sci. Technol.
– volume: 46
  start-page: 8097
  year: 2012
  end-page: 8105
  ident: bib2
  article-title: Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil
  publication-title: Environ. Sci. Technol.
– volume: 159
  start-page: 3269
  year: 2011
  end-page: 3282
  ident: bib16
  article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
– volume: 3
  start-page: 333
  year: 2005
  end-page: 341
  ident: bib57
  article-title: Amyloids - a functional coat for microorganisms
  publication-title: Nat. Rev. Microbiol.
– volume: 78
  start-page: 195
  year: 2014
  end-page: 203
  ident: bib7
  article-title: C mineralization and microbial activity in four biochar field experiments several years after incorporation
  publication-title: Soil Biol. Biochem.
– volume: 121
  start-page: 214
  year: 2014
  end-page: 221
  ident: bib41
  article-title: Effect of biochar on carbon fractions and enzyme activity of red soil
  publication-title: Catena
– volume: 43
  start-page: 3285
  year: 2009
  end-page: 3291
  ident: bib20
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
– volume: 1
  start-page: 226
  year: 2016
  end-page: 233
  ident: bib55
  article-title: Charcoal disrupts soil microbial communication through a combination of signal sorption and hydrolysis
  publication-title: Acs Omega
– volume: 100
  start-page: 913
  year: 2010
  end-page: 921
  ident: bib46
  article-title: Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent
  publication-title: Phytopathology
– volume: 16
  start-page: 1366
  year: 2010
  end-page: 1379
  ident: bib102
  article-title: Fate of soil-applied black carbon: downward migration, leaching and soil respiration
  publication-title: Glob. Change Biol.
– volume: 46
  start-page: 11104
  year: 2012
  end-page: 11111
  ident: bib32
  article-title: Fast and slow rates of naphthalene sorption to biochars produced at different temperatures
  publication-title: Environ. Sci. Technol.
– year: 2007
  ident: bib37
  article-title: Controls on black carbon storage in soils
  publication-title: Glob. Biogeochem. Cycl.
– volume: 50
  start-page: 335
  year: 2011
  end-page: 349
  ident: bib45
  article-title: The biochar effect: plant resistance to biotic stresses
  publication-title: Phytopathol. Mediterr.
– volume: 4
  start-page: 323
  year: 2013
  end-page: 343
  ident: bib77
  article-title: Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components
  publication-title: Carbon Manag.
– volume: 96
  start-page: 472
  year: 2016
  end-page: 484
  ident: bib22
  article-title: Woodchip biochar with or without synthetic fertilizers affects soil properties and available phosphorus in two alkaline, chernozemic soils
  publication-title: Can. J. Soil Sci.
– volume: 81
  start-page: 228
  year: 2015
  end-page: 235
  ident: bib64
  article-title: Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite
  publication-title: Soil Biol. Biochem.
– year: 2014
  ident: bib95
  article-title: Biochar alters the resistance and resilience to drought in a tropical soil
  publication-title: Environ. Res. Lett.
– volume: 89
  start-page: 217
  year: 2015
  end-page: 225
  ident: bib108
  article-title: The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy
  publication-title: Soil Biol. Biochem.
– volume: 44
  start-page: 1933
  year: 2010
  end-page: 1939
  ident: bib144
  article-title: Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter
  publication-title: Environ. Sci. Technol.
– volume: 357
  start-page: 245
  year: 2012
  end-page: 257
  ident: bib67
  article-title: Biochar mediates systemic response of strawberry to foliar fungal pathogens
  publication-title: Plant Soil
– volume: 163
  start-page: 480
  year: 2016
  end-page: 489
  ident: bib161
  article-title: Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in historically contaminated soils after lab incubation with sewage sludge-derived biochars
  publication-title: Chemosphere
– volume: 218
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib100
  article-title: Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment
  publication-title: Environ. Pollut.
– volume: 51
  start-page: 183
  year: 2015
  end-page: 196
  ident: bib152
  article-title: Evaluation of carbon and nitrogen dynamics in different soil types amended with pig slurry, pig manure and its biochar by chemical and thermogravimetric analysis
  publication-title: Biol. Fertil. Soils
– volume: 182
  start-page: 29
  year: 2016
  end-page: 36
  ident: bib99
  article-title: Alteration of extracellular enzyme activity and microbial abundance by biochar addition: implication for carbon sequestration in subtropical mangrove sediment
  publication-title: J. Environ. Manag.
– volume: 64
  start-page: 488
  year: 2013
  end-page: 499
  ident: bib10
  article-title: Effects of polyacrylamide, biopolymer and biochar on the decomposition of C-14-labelled maize residues and on their stabilization in soil aggregates
  publication-title: Eur. J. Soil Sci.
– volume: 53
  start-page: 77
  year: 2017
  end-page: 87
  ident: bib158
  article-title: The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers
  publication-title: Biol. Fertil. Soils
– volume: 41
  start-page: 1301
  year: 2009
  end-page: 1310
  ident: bib141
  article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity
  publication-title: Soil Biol. Biochem.
– volume: 174
  start-page: 105
  year: 2009
  end-page: 112
  ident: bib111
  article-title: Impact of biochar amendment on fertility of a southeastern coastal plain soil
  publication-title: Soil Sci.
– volume: 42
  start-page: 5137
  year: 2008
  end-page: 5143
  ident: bib28
  article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
– volume: 14
  start-page: 1371
  year: 2001
  end-page: 1377
  ident: bib40
  article-title: Role of free radicals in the toxicity of airborne fine particulate matter
  publication-title: Chem. Res. Toxicol.
– volume: 47
  start-page: 8759
  year: 2013
  end-page: 8768
  ident: bib117
  article-title: Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles
  publication-title: Environ. Sci. Technol.
– volume: 65
  start-page: 162
  year: 2014
  end-page: 172
  ident: bib62
  article-title: Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe
  publication-title: Eur. J. Soil Sci.
– volume: 5
  start-page: 693
  year: 2014
  end-page: 704
  ident: bib106
  article-title: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging
  publication-title: Solid earth.
– volume: 102
  start-page: 716
  year: 2011
  end-page: 723
  ident: bib24
  article-title: A novel magnetic biochar efficiently sorbs organic pollutants and phosphate
  publication-title: Bioresour. Technol.
– volume: 45
  start-page: 10445
  year: 2011
  end-page: 10453
  ident: bib66
  article-title: Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar
  publication-title: Environ. Sci. Technol.
– volume: 32
  start-page: 769
  year: 2012
  end-page: 776
  ident: bib34
  article-title: Adsorption of Pb
  publication-title: Acta Sci. Circumst.
– volume: 18
  start-page: 3306
  year: 2012
  end-page: 3316
  ident: bib165
  article-title: Rapid degradation of pyrogenic carbon
  publication-title: Glob. Change Biol.
– volume: 48
  start-page: 9103
  year: 2014
  end-page: 9112
  ident: bib63
  article-title: Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components
  publication-title: Environ. Sci. Technol.
– volume: 15
  start-page: 578
  year: 2015
  end-page: 583
  ident: bib113
  article-title: Biochar modifies the thermodynamic parameters of soil enzyme activity in a tropical soil
  publication-title: J. Soils Sed.
– volume: 47
  start-page: 11496
  year: 2013
  end-page: 11503
  ident: bib104
  article-title: Biochar and microbial signaling: production conditions determine effects on microbial communication
  publication-title: Environ. Sci. Technol.
– year: 2009
  ident: bib12
  article-title: Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity
  publication-title: Part. Fibre Toxicol.
– volume: 136
  start-page: 119
  year: 2017
  end-page: 125
  ident: bib84
  article-title: Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 7
  start-page: 13317
  year: 2015
  end-page: 13333
  ident: bib74
  article-title: Stabilization of organic matter by biochar application in compost-amended soils with contrasting pH values and textures
  publication-title: Sustainability
– volume: 337
  start-page: 481
  year: 2010
  end-page: 496
  ident: bib61
  article-title: Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media
  publication-title: Plant Soil
– volume: 34
  start-page: 1467
  year: 2015
  end-page: 1472
  ident: bib69
  article-title: Effect of biochar on organic matter conservation and metabolic quotient of soil
  publication-title: Environ. Prog. Sustain. Energy
– volume: 46
  start-page: 64
  year: 2010
  end-page: 77
  ident: bib9
  article-title: Investigation of growth responses in saprophytic fungi to charred biomass
  publication-title: Isot. Environ. Health Stud.
– volume: 46
  start-page: 12476
  year: 2012
  end-page: 12483
  ident: bib33
  article-title: Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
– volume: 70
  start-page: 1719
  year: 2006
  end-page: 1730
  ident: bib94
  article-title: Black Carbon increases cation exchange capacity in soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 158
  start-page: 2282
  year: 2010
  end-page: 2287
  ident: bib15
  article-title: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil
  publication-title: Environ. Pollut.
– volume: 166
  start-page: 131
  year: 2016
  end-page: 139
  ident: bib3
  article-title: Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil
  publication-title: J. Environ. Manag.
– volume: 191
  start-page: 73
  year: 2014
  end-page: 82
  ident: bib110
  article-title: Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers
  publication-title: Agric. Ecosyst. Environ.
– volume: 97
  start-page: 54
  year: 2014
  end-page: 63
  ident: bib43
  article-title: Enhanced dechlorination of carbon tetrachloride by Geobacter sulfurreducens in the presence of naturally occurring quinones and ferrihydrite
  publication-title: Chemosphere
– volume: 146
  start-page: 485
  year: 2013
  end-page: 493
  ident: bib150
  article-title: Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis
  publication-title: Bioresour. Technol.
– year: 2014
  ident: bib31
  article-title: Promoting interspecies electron transfer with biochar
  publication-title: Sci. Rep.
– volume: 41
  start-page: 1175
  year: 2012
  end-page: 1184
  ident: bib36
  article-title: The influence of biochar and black carbon on reduction and bioavailability of chromate in soils
  publication-title: J. Environ. Qual.
– volume: 4
  start-page: 1340
  year: 2010
  end-page: 1351
  ident: bib132
  article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil
  publication-title: Isme J.
– volume: 7
  start-page: 135
  year: 2015
  end-page: 144
  ident: bib8
  article-title: Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties
  publication-title: Glob. Change Biol. Bioenergy
– volume: 50
  start-page: 2389
  year: 2016
  end-page: 2395
  ident: bib149
  article-title: Biochar - facilitated microbial reduction of hematite
  publication-title: Environ. Sci. Technol.
– year: 2015
  ident: bib155
  article-title: Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens
  publication-title: Sci. Rep.
– volume: 49
  start-page: 395
  year: 2005
  end-page: 399
  ident: bib126
  article-title: A connection between fungal hydrophobins and soil water repellency?
  publication-title: Pedobiologia
– volume: 5
  start-page: 104
  year: 2013
  end-page: 115
  ident: bib131
  article-title: Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions
  publication-title: Glob. Change Biol. Bioenergy
– volume: 5
  start-page: 202
  year: 2013
  end-page: 214
  ident: bib17
  article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis
  publication-title: Glob. Change Biol. Bioenergy
– volume: 59
  start-page: 68
  year: 2012
  end-page: 72
  ident: bib58
  article-title: Divergent consequences of hydrochar in the plant-soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects
  publication-title: Appl. Soil Ecol.
– volume: 15
  start-page: 805
  year: 2015
  end-page: 815
  ident: bib89
  article-title: Soil chemical properties and organic matter composition of a subtropical Cambisol after charcoal fine residues incorporation
  publication-title: J. Soils Sed.
– volume: 289
  start-page: 223
  year: 2015
  end-page: 230
  ident: bib125
  article-title: Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 267
  start-page: 17
  year: 2016
  end-page: 23
  ident: bib156
  article-title: Sewage sludge biochar: nutrient composition and its effect on the leaching of soil nutrients
  publication-title: Geoderma
– volume: 7
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib72
  article-title: The way forward in biochar research: targeting trade-offs between the potential wins
  publication-title: Glob. Change Biol. Bioenergy
– volume: 357
  start-page: 369
  year: 2012
  end-page: 380
  ident: bib97
  article-title: Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy
  publication-title: Plant Soil
– volume: 48
  start-page: 3411
  year: 2014
  end-page: 3419
  ident: bib147
  article-title: Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 11211
  year: 2014
  end-page: 11217
  ident: bib93
  article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 407
  year: 2015
  end-page: 416
  ident: bib38
  article-title: Mineralization and effects of poultry litter biochar on soil cation exchange capacity
  publication-title: Pesq. Agropecu. Bras.
– volume: 186
  start-page: 285
  year: 2017
  end-page: 292
  ident: bib98
  article-title: Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil
  publication-title: J. Environ. Manag.
– volume: 15
  start-page: 271
  year: 2015
  end-page: 281
  ident: bib142
  article-title: Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities
  publication-title: J. Soils Sed.
– volume: 245
  start-page: 56
  year: 2015
  end-page: 64
  ident: bib68
  article-title: Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production
  publication-title: Geoderma
– year: 2010
  ident: bib163
  article-title: Organo-mineral enzyme interactions and influence on soil enzyme activity
  publication-title: Soil Enzymes
– volume: 163
  start-page: 247
  year: 2011
  end-page: 255
  ident: bib107
  article-title: Surface chemistry variations among a series of laboratory-produced biochars
  publication-title: Geoderma
– volume: 49
  start-page: 309
  year: 2015
  end-page: 317
  ident: bib35
  article-title: Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 1902
  year: 2014
  end-page: 1910
  ident: bib48
  article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation
  publication-title: Environ. Sci. Technol.
– volume: 186
  start-page: 293
  year: 2017
  end-page: 300
  ident: bib136
  article-title: Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria
  publication-title: J. Environ. Manag.
– volume: 5
  start-page: 381
  year: 2007
  end-page: 387
  ident: bib90
  article-title: Bio-energy in the black
  publication-title: Front. Ecol. Environ.
– volume: 571
  start-page: 206
  year: 2016
  end-page: 217
  ident: bib160
  article-title: Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest
  publication-title: China. Sci. Total Environ.
– volume: 49
  start-page: 5645
  year: 2015
  end-page: 5653
  ident: bib49
  article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation
  publication-title: Environ. Sci. Technol.
– volume: 177
  start-page: 26
  year: 2014
  end-page: 33
  ident: bib143
  article-title: Biochars improve aggregate stability, water retention, and pore- space properties of clayey soil
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 176
  start-page: 210
  year: 2015
  end-page: 217
  ident: bib50
  article-title: Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation
  publication-title: Bioresour. Technol.
– volume: 158
  start-page: 443
  year: 2010
  end-page: 449
  ident: bib86
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
– volume: 11
  start-page: 62
  year: 2011
  end-page: 71
  ident: bib26
  article-title: Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar
  publication-title: J. Soils Sed.
– volume: 75
  start-page: 5111
  year: 2009
  end-page: 5120
  ident: bib88
  article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale
  publication-title: Appl. Environ. Microbiol.
– year: 2016
  ident: bib148
  article-title: H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials
  publication-title: Sci. Rep.
– volume: 44
  start-page: 1295
  year: 2010
  end-page: 1301
  ident: bib162
  article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 110
  start-page: 225
  year: 2013
  end-page: 233
  ident: bib75
  article-title: Effects of biochar on soil properties and erosion potential in a highly weathered soil
  publication-title: Catena
– volume: 94
  start-page: 59
  year: 2015
  end-page: 71
  ident: bib159
  article-title: Distribution of soil nutrients, extracellular enzyme activities and microbial communities across particle-size fractions in a long-term fertilizer experiment
  publication-title: Appl. Soil Ecol.
– volume: 42
  start-page: 2311
  year: 2012
  end-page: 2364
  ident: bib47
  article-title: Biochar: carbon sequestration, land remediation, and impacts on soil microbiology
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 92
  start-page: 32
  year: 2016
  end-page: 41
  ident: bib60
  article-title: Weathering of pyrogenic organic matter induces fungal oxidative enzyme response in single culture inoculation experiments
  publication-title: Org. Geochem
– volume: 50
  start-page: 694
  year: 2016
  end-page: 700
  ident: bib153
  article-title: Degradation of p-Nitrophenol on biochars: role of persistent free radicals
  publication-title: Environ. Sci. Technol.
– volume: 23
  start-page: 18
  year: 1998
  end-page: 33
  ident: bib80
  article-title: Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis
  publication-title: Fungal Genet. Biol.
– volume: 12
  start-page: 1350
  year: 2012
  end-page: 1359
  ident: bib27
  article-title: Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers
  publication-title: J. Soils Sed.
– volume: 142
  start-page: 100
  year: 2016
  end-page: 105
  ident: bib138
  article-title: Biochar amendment to soil changes dissolved organic matter content and composition
  publication-title: Chemosphere
– volume: 5
  start-page: 96
  year: 2013
  end-page: 103
  ident: bib124
  article-title: Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils?
  publication-title: Glob. Change Biol. Bioenergy
– volume: 201
  start-page: 58
  year: 2015
  end-page: 69
  ident: bib101
  article-title: The effects of biochar and compost amendments on copper immobilization and soil microorganisms in a temperate vineyard
  publication-title: Agric. Ecosyst. Environ.
– volume: 218
  start-page: 242
  year: 2016
  end-page: 251
  ident: bib140
  article-title: Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil
  publication-title: Environ. Pollut.
– volume: 5
  start-page: 510
  year: 2017
  end-page: 517
  ident: bib59
  article-title: Profiles of volatile organic compounds in biochar: insights into process conditions and quality assessment
  publication-title: Acs Sustain. Chem. Eng.
– volume: 22
  start-page: 1586
  year: 2010
  end-page: 1594
  ident: bib70
  article-title: Interaction mechanisms of organic contaminants with burned straw ash charcoal
  publication-title: J. Environ. Sci.
– volume: 300
  start-page: 9
  year: 2007
  end-page: 20
  ident: bib146
  article-title: Mycorrhizal responses to biochar in soil - concepts and mechanisms
  publication-title: Plant Soil
– volume: 62
  start-page: 373
  year: 2014
  end-page: 380
  ident: bib118
  article-title: Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process
  publication-title: J. Agric. Food Chem.
– volume: 99
  start-page: 19
  year: 2014
  end-page: 33
  ident: bib4
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
– volume: 285
  start-page: 259
  year: 2015
  end-page: 266
  ident: bib56
  article-title: Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil
  publication-title: J. Hazard. Mater
– volume: 142
  start-page: 4
  year: 2016
  end-page: 13
  ident: bib73
  article-title: Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products
  publication-title: Chemosphere
– year: 2015
  ident: bib5
  article-title: Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp lycopersici
  publication-title: Front. Plant. Sci.
– volume: 202
  start-page: 183
  year: 2013
  end-page: 191
  ident: bib1
  article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
  publication-title: Geoderma
– volume: 60
  start-page: 9
  year: 2014
  end-page: 15
  ident: bib134
  article-title: Effect of biochar addition on soil microbial community in a wheat crop
  publication-title: Eur. J. Soil Biol.
– volume: 48
  start-page: 743
  year: 2012
  end-page: 762
  ident: bib109
  article-title: Soil enzymology: classical and molecular approaches
  publication-title: Biol. Fertil. Soils
– volume: 77
  start-page: 4924
  year: 2011
  end-page: 4930
  ident: bib83
  article-title: Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants
  publication-title: Appl. Environ. Microbiol.
– year: 2011
  ident: bib135
  article-title: The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils
  publication-title: PLoS One
– volume: 15
  start-page: 1130
  year: 2015
  end-page: 1138
  ident: bib120
  article-title: Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes
  publication-title: J. Soils Sed.
– volume: 76
  start-page: 127
  year: 2009
  end-page: 133
  ident: bib23
  article-title: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures
  publication-title: Chemosphere
– volume: 64
  start-page: 379
  year: 2013
  end-page: 390
  ident: bib6
  article-title: Interactions between biochar stability and soil organisms: review and research needs
  publication-title: Eur. J. Soil Sci.
– volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  ident: bib92
  article-title: Biochar effects on soil biota - a review
  publication-title: Soil Biol. Biochem.
– volume: 103
  start-page: 151
  year: 2013
  end-page: 155
  ident: bib103
  article-title: Influence of production conditions on the yield and environmental stability of biochar
  publication-title: Fuel
– volume: 47
  start-page: 2737
  year: 2013
  end-page: 2745
  ident: bib119
  article-title: Effective alleviation of aluminum phytotoxicity by manure-derived biochar
  publication-title: Environ. Sci. Technol.
– volume: 44
  start-page: 9318
  year: 2010
  end-page: 9323
  ident: bib137
  article-title: pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 804
  year: 2011
  end-page: 813
  ident: bib76
  article-title: Biochar mediated alterations in herbicide breakdown and leaching in soil
  publication-title: Soil Biol. Biochem.
– volume: 102
  start-page: 3488
  year: 2011
  end-page: 3497
  ident: bib157
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
– year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib130
  article-title: Changes on the phytoavailability of nutrients in a mine soil reclaimed with compost and biochar
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-016-3155-x
– volume: 71
  start-page: 33
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib30
  article-title: Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2013.05.003
– volume: 15
  start-page: 578
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib113
  article-title: Biochar modifies the thermodynamic parameters of soil enzyme activity in a tropical soil
  publication-title: J. Soils Sed.
  doi: 10.1007/s11368-014-1029-7
– volume: 136
  start-page: 119
  year: 2017
  ident: 10.1016/j.envpol.2017.04.032_bib84
  article-title: Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2016.10.033
– volume: 47
  start-page: 8759
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib117
  article-title: Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles
  publication-title: Environ. Sci. Technol.
– volume: 15
  start-page: 1130
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib120
  article-title: Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes
  publication-title: J. Soils Sed.
  doi: 10.1007/s11368-015-1073-y
– volume: 218
  start-page: 1
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib100
  article-title: Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.08.014
– volume: 11
  start-page: 62
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib26
  article-title: Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar
  publication-title: J. Soils Sed.
  doi: 10.1007/s11368-010-0266-7
– volume: 50
  start-page: 335
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib45
  article-title: The biochar effect: plant resistance to biotic stresses
  publication-title: Phytopathol. Mediterr.
– volume: 50
  start-page: 1189
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib13
  article-title: Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-014-0968-x
– volume: 159
  start-page: 3269
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib16
  article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.07.023
– volume: 239
  start-page: 293
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib116
  article-title: Characterisation, stability, and microbial effects of four biochars produced from crop residues
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.11.009
– volume: 47
  start-page: 2737
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib119
  article-title: Effective alleviation of aluminum phytotoxicity by manure-derived biochar
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3047872
– volume: 51
  start-page: 464
  year: 2008
  ident: 10.1016/j.envpol.2017.04.032_bib29
  article-title: Sorption characteristics and mechanisms of organic contaminant to carbonaceous biosorbents in aqueous solution
  publication-title: Sci. China Ser. B-Chem.
  doi: 10.1007/s11426-008-0041-4
– volume: 49
  start-page: 5645
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib49
  article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5061512
– volume: 59
  start-page: 68
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib58
  article-title: Divergent consequences of hydrochar in the plant-soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2012.02.021
– volume: 1
  start-page: 226
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib55
  article-title: Charcoal disrupts soil microbial communication through a combination of signal sorption and hydrolysis
  publication-title: Acs Omega
  doi: 10.1021/acsomega.6b00085
– volume: 44
  start-page: 9318
  year: 2010
  ident: 10.1016/j.envpol.2017.04.032_bib137
  article-title: pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101283d
– volume: 77
  start-page: 4924
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib83
  article-title: Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00148-11
– volume: 245
  start-page: 56
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib68
  article-title: Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.01.012
– volume: 7
  start-page: 135
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib8
  article-title: Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12119
– volume: 102
  start-page: 3488
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib157
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.11.018
– volume: 191
  start-page: 73
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib110
  article-title: Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.04.006
– volume: 49
  start-page: 395
  year: 2005
  ident: 10.1016/j.envpol.2017.04.032_bib126
  article-title: A connection between fungal hydrophobins and soil water repellency?
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2005.04.004
– volume: 81
  start-page: 228
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib64
  article-title: Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.11.023
– volume: 48
  start-page: 279
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib51
  article-title: Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es403711y
– volume: 110
  start-page: 225
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib75
  article-title: Effects of biochar on soil properties and erosion potential in a highly weathered soil
  publication-title: Catena
  doi: 10.1016/j.catena.2013.06.021
– volume: 62
  start-page: 373
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib118
  article-title: Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf404624h
– volume: 4
  start-page: 1340
  year: 2010
  ident: 10.1016/j.envpol.2017.04.032_bib132
  article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil
  publication-title: Isme J.
  doi: 10.1038/ismej.2010.58
– volume: 53
  start-page: 77
  year: 2017
  ident: 10.1016/j.envpol.2017.04.032_bib158
  article-title: The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-016-1154-0
– year: 2010
  ident: 10.1016/j.envpol.2017.04.032_bib163
  article-title: Organo-mineral enzyme interactions and influence on soil enzyme activity
– volume: 75
  start-page: 1589
  year: 2009
  ident: 10.1016/j.envpol.2017.04.032_bib133
  article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02775-08
– volume: 447
  start-page: 143
  year: 2007
  ident: 10.1016/j.envpol.2017.04.032_bib91
  article-title: A handful of carbon
  publication-title: Nature
  doi: 10.1038/447143a
– volume: 47
  start-page: 11496
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib104
  article-title: Biochar and microbial signaling: production conditions determine effects on microbial communication
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401458s
– volume: 267
  start-page: 17
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib156
  article-title: Sewage sludge biochar: nutrient composition and its effect on the leaching of soil nutrients
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.12.020
– volume: 229
  start-page: 159
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib25
  article-title: Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium
  publication-title: J. Hazard. Mater
  doi: 10.1016/j.jhazmat.2012.05.090
– volume: 84
  start-page: 192
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib65
  article-title: Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2014.08.001
– volume: 285
  start-page: 259
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib56
  article-title: Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil
  publication-title: J. Hazard. Mater
  doi: 10.1016/j.jhazmat.2014.12.002
– volume: 45
  start-page: 10445
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib66
  article-title: Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202970x
– volume: 97
  start-page: 54
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib43
  article-title: Enhanced dechlorination of carbon tetrachloride by Geobacter sulfurreducens in the presence of naturally occurring quinones and ferrihydrite
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.11.004
– year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib121
  article-title: Novel alleviation mechanisms of aluminum phytotoxicity via released biosilicon from rice straw-derived biochars
  publication-title: Sci. Rep.
– volume: 36
  start-page: 835
  year: 2004
  ident: 10.1016/j.envpol.2017.04.032_bib71
  article-title: Microbial ethylene production and inhibition of methanotrophic activity in a deciduous forest soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.01.013
– volume: 103
  start-page: 151
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib103
  article-title: Influence of production conditions on the yield and environmental stability of biochar
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.08.044
– volume: 48
  start-page: 9103
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib63
  article-title: Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405647e
– volume: 34
  start-page: 1467
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib69
  article-title: Effect of biochar on organic matter conservation and metabolic quotient of soil
  publication-title: Environ. Prog. Sustain. Energy
  doi: 10.1002/ep.12122
– volume: 5
  start-page: 202
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib17
  article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12037
– volume: 32
  start-page: 1485
  year: 2000
  ident: 10.1016/j.envpol.2017.04.032_bib85
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00084-5
– volume: 218
  start-page: 242
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib140
  article-title: Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.06.063
– volume: 43
  start-page: 296
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib11
  article-title: Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.10.014
– volume: 357
  start-page: 369
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib97
  article-title: Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1169-8
– volume: 41
  start-page: 1301
  year: 2009
  ident: 10.1016/j.envpol.2017.04.032_bib141
  article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.03.016
– volume: 85
  start-page: 150
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib122
  article-title: Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar
  publication-title: Int. Biodeterior. Biodegr.
  doi: 10.1016/j.ibiod.2013.07.004
– volume: 16
  start-page: 1366
  year: 2010
  ident: 10.1016/j.envpol.2017.04.032_bib102
  article-title: Fate of soil-applied black carbon: downward migration, leaching and soil respiration
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2009.02044.x
– year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib5
  article-title: Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp lycopersici
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2015.00529
– volume: 160
  start-page: 3
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib54
  article-title: Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2011.06.015
– volume: 177
  start-page: 26
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib143
  article-title: Biochars improve aggregate stability, water retention, and pore- space properties of clayey soil
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201200639
– volume: 1
  start-page: 339
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib78
  article-title: Biochar as an electron shuttle between bacteria and Fe(III) minerals
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/ez5002209
– volume: 60
  start-page: 9
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib134
  article-title: Effect of biochar addition on soil microbial community in a wheat crop
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2013.10.007
– volume: 49
  start-page: 309
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib35
  article-title: Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5043468
– year: 2007
  ident: 10.1016/j.envpol.2017.04.032_bib37
  article-title: Controls on black carbon storage in soils
  publication-title: Glob. Biogeochem. Cycl.
  doi: 10.1029/2006GB002798
– volume: 201
  start-page: 58
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib101
  article-title: The effects of biochar and compost amendments on copper immobilization and soil microorganisms in a temperate vineyard
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.12.001
– volume: 5
  start-page: 510
  year: 2017
  ident: 10.1016/j.envpol.2017.04.032_bib59
  article-title: Profiles of volatile organic compounds in biochar: insights into process conditions and quality assessment
  publication-title: Acs Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01869
– volume: 50
  start-page: 407
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib38
  article-title: Mineralization and effects of poultry litter biochar on soil cation exchange capacity
  publication-title: Pesq. Agropecu. Bras.
– volume: 50
  start-page: 2389
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib149
  article-title: Biochar - facilitated microbial reduction of hematite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05517
– volume: 337
  start-page: 481
  year: 2010
  ident: 10.1016/j.envpol.2017.04.032_bib61
  article-title: Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0544-6
– volume: 70
  start-page: 1719
  year: 2006
  ident: 10.1016/j.envpol.2017.04.032_bib94
  article-title: Black Carbon increases cation exchange capacity in soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0383
– year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib135
  article-title: The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018839
– volume: 14
  start-page: 1371
  year: 2001
  ident: 10.1016/j.envpol.2017.04.032_bib40
  article-title: Role of free radicals in the toxicity of airborne fine particulate matter
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx010050x
– volume: 138
  start-page: 67
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib44
  article-title: Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.05.052
– volume: 238
  start-page: 325
  year: 2002
  ident: 10.1016/j.envpol.2017.04.032_bib128
  article-title: The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species
  publication-title: Plant Soil
  doi: 10.1023/A:1014483303813
– year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib155
  article-title: Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens
  publication-title: Sci. Rep.
  doi: 10.1038/srep16221
– volume: 64
  start-page: 488
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib10
  article-title: Effects of polyacrylamide, biopolymer and biochar on the decomposition of C-14-labelled maize residues and on their stabilization in soil aggregates
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12034
– volume: 158
  start-page: 2282
  year: 2010
  ident: 10.1016/j.envpol.2017.04.032_bib15
  article-title: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2010.02.003
– volume: 22
  start-page: 1586
  year: 2010
  ident: 10.1016/j.envpol.2017.04.032_bib70
  article-title: Interaction mechanisms of organic contaminants with burned straw ash charcoal
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(09)60293-X
– volume: 134
  start-page: 257
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib145
  article-title: Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.04.062
– volume: 96
  start-page: 472
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib22
  article-title: Woodchip biochar with or without synthetic fertilizers affects soil properties and available phosphorus in two alkaline, chernozemic soils
  publication-title: Can. J. Soil Sci.
  doi: 10.1139/cjss-2015-0094
– volume: 42
  start-page: 5137
  year: 2008
  ident: 10.1016/j.envpol.2017.04.032_bib28
  article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8002684
– volume: 7
  start-page: 13317
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib74
  article-title: Stabilization of organic matter by biochar application in compost-amended soils with contrasting pH values and textures
  publication-title: Sustainability
  doi: 10.3390/su71013317
– volume: 193
  start-page: 122
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib105
  article-title: Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.10.002
– volume: 23
  start-page: 974
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib154
  article-title: Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-4233-0
– volume: 94
  start-page: 59
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib159
  article-title: Distribution of soil nutrients, extracellular enzyme activities and microbial communities across particle-size fractions in a long-term fertilizer experiment
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2015.05.005
– volume: 64
  start-page: 379
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib6
  article-title: Interactions between biochar stability and soil organisms: review and research needs
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12064
– volume: 48
  start-page: 743
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib109
  article-title: Soil enzymology: classical and molecular approaches
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-012-0723-0
– volume: 78
  start-page: 195
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib7
  article-title: C mineralization and microbial activity in four biochar field experiments several years after incorporation
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.08.004
– volume: 31
  start-page: 521
  year: 2007
  ident: 10.1016/j.envpol.2017.04.032_bib39
  article-title: Formation and stabilization of persistent free radicals
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2006.07.172
– volume: 19
  start-page: 75
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib81
  article-title: Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2010.11.006
– volume: 163
  start-page: 247
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib107
  article-title: Surface chemistry variations among a series of laboratory-produced biochars
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.04.021
– volume: 48
  start-page: 511
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib115
  article-title: Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-011-0644-3
– volume: 267
  start-page: 62
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib42
  article-title: Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar
  publication-title: J. Hazard. Mater
  doi: 10.1016/j.jhazmat.2013.12.027
– year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib148
  article-title: H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials
  publication-title: Sci. Rep.
– volume: 142
  start-page: 4
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib73
  article-title: Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.05.084
– volume: 89
  start-page: 217
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib108
  article-title: The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.07.014
– volume: 289
  start-page: 223
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib125
  article-title: Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2015.09.021
– volume: 99
  start-page: 19
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib4
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.071
– volume: 5
  start-page: 381
  year: 2007
  ident: 10.1016/j.envpol.2017.04.032_bib90
  article-title: Bio-energy in the black
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
– volume: 85
  start-page: 869
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib139
  article-title: Qualitative analysis of volatile organic compounds on biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.06.108
– volume: 5
  start-page: 585
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib21
  article-title: Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar
  publication-title: Solid Earth
  doi: 10.5194/se-5-585-2014
– volume: 202
  start-page: 183
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib1
  article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.03.003
– year: 2009
  ident: 10.1016/j.envpol.2017.04.032_bib12
  article-title: Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-6-11
– volume: 18
  start-page: 3306
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib165
  article-title: Rapid degradation of pyrogenic carbon
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2012.02796.x
– year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib95
  article-title: Biochar alters the resistance and resilience to drought in a tropical soil
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/6/064013
– volume: 142
  start-page: 100
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib138
  article-title: Biochar amendment to soil changes dissolved organic matter content and composition
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.04.087
– volume: 92
  start-page: 32
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib60
  article-title: Weathering of pyrogenic organic matter induces fungal oxidative enzyme response in single culture inoculation experiments
  publication-title: Org. Geochem
  doi: 10.1016/j.orggeochem.2015.12.003
– volume: 66
  start-page: 714
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib129
  article-title: Negative priming of native soil organic carbon mineralization by oilseed biochars of contrasting quality
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12257
– volume: 44
  start-page: 1933
  year: 2010
  ident: 10.1016/j.envpol.2017.04.032_bib144
  article-title: Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902648t
– volume: 32
  start-page: 769
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib34
  article-title: Adsorption of Pb2+ by rice straw derived-biochar and its influential factors
  publication-title: Acta Sci. Circumst.
– volume: 101
  start-page: 5222
  year: 2010
  ident: 10.1016/j.envpol.2017.04.032_bib19
  article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.02.052
– volume: 15
  start-page: 271
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib142
  article-title: Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities
  publication-title: J. Soils Sed.
  doi: 10.1007/s11368-014-0996-z
– volume: 15
  start-page: 60
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib151
  article-title: Organic carbon and inorganic silicon speciation in rice-bran-derived biochars affect its capacity to adsorb cadmium in solution
  publication-title: J. Soils Sed.
  doi: 10.1007/s11368-014-0969-2
– volume: 100
  start-page: 913
  year: 2010
  ident: 10.1016/j.envpol.2017.04.032_bib46
  article-title: Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-100-9-0913
– volume: 182
  start-page: 29
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib99
  article-title: Alteration of extracellular enzyme activity and microbial abundance by biochar addition: implication for carbon sequestration in subtropical mangrove sediment
  publication-title: J. Environ. Manag.
– volume: 51
  start-page: 183
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib152
  article-title: Evaluation of carbon and nitrogen dynamics in different soil types amended with pig slurry, pig manure and its biochar by chemical and thermogravimetric analysis
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-014-0962-3
– volume: 50
  start-page: 694
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib153
  article-title: Degradation of p-Nitrophenol on biochars: role of persistent free radicals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04042
– volume: 5
  start-page: 96
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib124
  article-title: Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils?
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12007
– volume: 5
  start-page: 104
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib131
  article-title: Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12018
– volume: 15
  start-page: 805
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib89
  article-title: Soil chemical properties and organic matter composition of a subtropical Cambisol after charcoal fine residues incorporation
  publication-title: J. Soils Sed.
  doi: 10.1007/s11368-014-1040-z
– volume: 186
  start-page: 285
  year: 2017
  ident: 10.1016/j.envpol.2017.04.032_bib98
  article-title: Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil
  publication-title: J. Environ. Manag.
– volume: 163
  start-page: 480
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib161
  article-title: Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in historically contaminated soils after lab incubation with sewage sludge-derived biochars
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.08.072
– volume: 42
  start-page: 2311
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib47
  article-title: Biochar: carbon sequestration, land remediation, and impacts on soil microbiology
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2011.574115
– volume: 107
  start-page: 419
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib18
  article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.11.084
– year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib31
  article-title: Promoting interspecies electron transfer with biochar
  publication-title: Sci. Rep.
– volume: 90
  start-page: 78
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib52
  article-title: The role of sulfur- and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Lolium perenne
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12374
– volume: 48
  start-page: 3411
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib147
  article-title: Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405676h
– volume: 48
  start-page: 1902
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib48
  article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4048126
– volume: 44
  start-page: 6189
  year: 2010
  ident: 10.1016/j.envpol.2017.04.032_bib79
  article-title: Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1014423
– volume: 46
  start-page: 12476
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib33
  article-title: Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es303351e
– volume: 12
  start-page: 1350
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib27
  article-title: Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers
  publication-title: J. Soils Sed.
  doi: 10.1007/s11368-012-0554-5
– volume: 4
  start-page: 323
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib77
  article-title: Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components
  publication-title: Carbon Manag.
  doi: 10.4155/cmt.13.23
– volume: 174
  start-page: 105
  year: 2009
  ident: 10.1016/j.envpol.2017.04.032_bib111
  article-title: Impact of biochar amendment on fertility of a southeastern coastal plain soil
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e3181981d9a
– volume: 46
  start-page: 11104
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib32
  article-title: Fast and slow rates of naphthalene sorption to biochars produced at different temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302345e
– volume: 121
  start-page: 214
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib41
  article-title: Effect of biochar on carbon fractions and enzyme activity of red soil
  publication-title: Catena
  doi: 10.1016/j.catena.2014.05.020
– volume: 357
  start-page: 245
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib67
  article-title: Biochar mediates systemic response of strawberry to foliar fungal pathogens
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1129-3
– volume: 43
  start-page: 3285
  year: 2009
  ident: 10.1016/j.envpol.2017.04.032_bib20
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803092k
– volume: 43
  start-page: 1812
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib92
  article-title: Biochar effects on soil biota - a review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.04.022
– volume: 43
  start-page: 804
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib76
  article-title: Biochar mediated alterations in herbicide breakdown and leaching in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.12.015
– volume: 48
  start-page: 8581
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib96
  article-title: Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404250a
– volume: 43
  start-page: 1936
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib87
  article-title: Effects of wood char and activated carbon on the hydrolysis of cellobiose by beta-glucosidase from Aspergillus niger
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.05.021
– volume: 75
  start-page: 5111
  year: 2009
  ident: 10.1016/j.envpol.2017.04.032_bib88
  article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00335-09
– volume: 102
  start-page: 716
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib24
  article-title: A novel magnetic biochar efficiently sorbs organic pollutants and phosphate
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.08.067
– volume: 31
  start-page: 1471
  year: 1999
  ident: 10.1016/j.envpol.2017.04.032_bib14
  article-title: Field management effects on soil enzyme activities
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(99)00051-6
– volume: 42
  start-page: 815
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib112
  article-title: Black carbon-mediated reduction of 2,4-Dinitrotoluene by dithiothreitol
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2012.0411
– volume: 65
  start-page: 287
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib123
  article-title: Life in the 'charosphere' - does biochar in agricultural soil provide a significant habitat for microorganisms?
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.06.004
– volume: 146
  start-page: 485
  year: 2013
  ident: 10.1016/j.envpol.2017.04.032_bib150
  article-title: Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.07.086
– volume: 46
  start-page: 8097
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib2
  article-title: Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300797z
– volume: 41
  start-page: 1175
  year: 2012
  ident: 10.1016/j.envpol.2017.04.032_bib36
  article-title: The influence of biochar and black carbon on reduction and bioavailability of chromate in soils
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0145
– volume: 186
  start-page: 293
  year: 2017
  ident: 10.1016/j.envpol.2017.04.032_bib136
  article-title: Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria
  publication-title: J. Environ. Manag.
– volume: 44
  start-page: 1295
  year: 2010
  ident: 10.1016/j.envpol.2017.04.032_bib162
  article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903140c
– volume: 23
  start-page: 18
  year: 1998
  ident: 10.1016/j.envpol.2017.04.032_bib80
  article-title: Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis
  publication-title: Fungal Genet. Biol.
  doi: 10.1006/fgbi.1997.1022
– volume: 76
  start-page: 127
  year: 2009
  ident: 10.1016/j.envpol.2017.04.032_bib23
  article-title: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.02.004
– volume: 43
  start-page: 1169
  year: 2011
  ident: 10.1016/j.envpol.2017.04.032_bib164
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.02.005
– volume: 158
  start-page: 443
  year: 2010
  ident: 10.1016/j.envpol.2017.04.032_bib86
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.05.013
– volume: 49
  start-page: 251
  year: 2005
  ident: 10.1016/j.envpol.2017.04.032_bib127
  article-title: Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2004.11.003
– volume: 65
  start-page: 162
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib62
  article-title: Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12071
– volume: 14
  start-page: 483
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib114
  article-title: Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities
  publication-title: J. Soils Sed.
  doi: 10.1007/s11368-013-0806-z
– volume: 300
  start-page: 9
  year: 2007
  ident: 10.1016/j.envpol.2017.04.032_bib146
  article-title: Mycorrhizal responses to biochar in soil - concepts and mechanisms
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9391-5
– volume: 176
  start-page: 210
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib50
  article-title: Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.11.032
– volume: 166
  start-page: 131
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib3
  article-title: Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil
  publication-title: J. Environ. Manag.
– volume: 13
  start-page: 5739
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib53
  article-title: Biochar-carrying hydrocarbon decomposers promote degradation during the early stage of bioremediation
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-5739-2016
– volume: 48
  start-page: 11211
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib93
  article-title: Effects of mineral additives on biochar formation: carbon retention, stability, and properties
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501885n
– volume: 48
  start-page: 5601
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib82
  article-title: Redox properties of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500906d
– volume: 5
  start-page: 693
  year: 2014
  ident: 10.1016/j.envpol.2017.04.032_bib106
  article-title: Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging
  publication-title: Solid earth.
  doi: 10.5194/se-5-693-2014
– volume: 46
  start-page: 64
  year: 2010
  ident: 10.1016/j.envpol.2017.04.032_bib9
  article-title: Investigation of growth responses in saprophytic fungi to charred biomass
  publication-title: Isot. Environ. Health Stud.
  doi: 10.1080/10256010903388436
– volume: 3
  start-page: 333
  year: 2005
  ident: 10.1016/j.envpol.2017.04.032_bib57
  article-title: Amyloids - a functional coat for microorganisms
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1127
– volume: 7
  start-page: 1
  year: 2015
  ident: 10.1016/j.envpol.2017.04.032_bib72
  article-title: The way forward in biochar research: targeting trade-offs between the potential wins
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12132
– volume: 571
  start-page: 206
  year: 2016
  ident: 10.1016/j.envpol.2017.04.032_bib160
  article-title: Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest
  publication-title: China. Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.07.135
SSID ssj0004333
Score 2.678505
SecondaryResourceType review_article
Snippet Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 98
SubjectTerms Adsorption
biochar
Biochar amendment
Carbon
Carbon sequestration
Charcoal - chemistry
community structure
Contaminant mitigation
Ecosystem
Environmental Restoration and Remediation - methods
enzyme activity
habitats
heavy metals
hydrolysis
Interaction mechanisms
Metals, Heavy - analysis
microbial activity
microbial communities
Microbial community
Organic Chemicals
organic compounds
Soil - chemistry
soil aggregates
soil enzymes
soil fertility
Soil improvement
soil microorganisms
soil organic matter
Soil Pollutants - analysis
Soil Pollutants - chemistry
soil pollution
soil properties
soil remediation
toxicity
Title Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review
URI https://dx.doi.org/10.1016/j.envpol.2017.04.032
https://www.ncbi.nlm.nih.gov/pubmed/28458251
https://www.proquest.com/docview/1893971812
https://www.proquest.com/docview/2000354178
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFH-UetGD6Nbq-lEiiLdxk0l2MuttKS2rYi9a2FtIJhkY6c4sna3gxb_d95KZVg9LwdOQ4SWEvLzkff1eAN4tRG7ziqN888JlSgVJYGWe4d2snSrqoDw59L9eFKtL9Xk9Xx_A6YiFobTK4exPZ3o8rYc_s2E1Z9ummX1D6wGVYRTWgqIF5ZoQ7ErTLv_w-y7NQ8n0nDwSZ0Q9wudijldof247CkAIHQueynzf9bRP_YzX0PkTeDzoj2yZpvgUDkI7gaNli7bz5hd7z2JGZ3SVT-DRX8UGJ3B8dodpwxEGoe6PoE0VjHtmW882gaDATb_pWVcz13QEy8o2lLbnAqPiEtcJCtFjg_Vdc8Wa6JeIbsY4xJZeTyYSRr5Hn3j_kS1Zgsk8g8vzs--nq2x4hiGzSpS7TBZoI1lZV9w7tG54XeTI91B7WaDwW4Emh6h4HeZVkN77QtiyWrggnM0D99LJYzhsuza8AKYXzrpqnjuLZhh-yxo5pzR3pa1zHfgU5Lj6phpqlNNTGVdmTEb7YRLPDPHMcGWQZ1PIbnttU42Oe-j1yFjzz14zeI3c0_PtuA8MiiHFVmwbupveCNT7FprUpf00eYzbKqHLKTxPm-h2vqglzAlF_PK_5_YKHlIrJSe-hsPd9U14gwrTzp1EiTiBB8tPX1YXfwByJReI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOCLYUlqeRgFtYx_YmWSQOK2i1pY8LrbQ3YyeOFNRNVs0W1At_ij_IjJ20cFhVQuopSuJYjufhz-N5ALyZxMKInKN888RGSjlJwco8wrU5tSopnSrIoH94lMxO1Jf5eL4Bv_tYGHKr7HR_0OleW3dPRt1sjpZVNfqKuwcEwyisCZ0WZPPOs3LfXfzEfVv7ce8zEvmtELs7x59mUVdaIDIqzlaRTBD3G1nmvLCI2HmZCPwXVxYyQYY2McLoOOelG-dOFkWRxCbLJ9bF1gjHC2kl9nsLbitUF1Q24f2vK78SJUP9ehxdRMPr4_W8U5mrfywbOvGIU59hVYp16-E6vOvXvd0HcL8DrGwa5uQhbLh6AFvTGjfriwv2jnkXUm-bH8C9v7IbDmB75yqIDnvotEi7BXVImdwyUxds4Sj2uGoXLWtKZquG4sCiBfkJWscom8VZiL1o8Ya1TXXKKm8I8XZN38WSyjVTE0bGziIw2wc2ZSEu5xGc3AhxtmGzbmr3BFg6scbmY2EN7vvwmpXIKirlNjOlSB0fguxnX-ddUnSqzXGqe--37zrQTBPNNFcaaTaE6PKrZUgKck37tCes_oe5Na5b13z5uucDjXJPhzmmds15q2MEmpOU8Nn6NsIfFKs4zYbwODDR5XgRlowpbPnpf4_tFdyZHR8e6IO9o_1ncJfeBM_I57C5Ojt3LxCtrexLLx0Mvt20OP4B-4VVCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+and+mechanisms+of+biochar-microbe+interactions+in+soil+improvement+and+pollution+remediation%3A+A+review&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Zhu%2C+Xiaomin&rft.au=Chen%2C+Baoliang&rft.au=Zhu%2C+Lizhong&rft.au=Xing%2C+Baoshan&rft.date=2017-08-01&rft.eissn=1873-6424&rft.volume=227&rft.spage=98&rft_id=info:doi/10.1016%2Fj.envpol.2017.04.032&rft_id=info%3Apmid%2F28458251&rft.externalDocID=28458251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon