Surface Properties of Bottle-Brush Polyelectrolytes on Mica:  Effects of Side Chain and Charge Densities

Surface properties of a series of cationic bottle-brush polyelectrolytes with 45-unit-long poly(ethylene oxide) side chains were investigated by phase modulated ellipsometry and surface force measurements. The evaluation of the adsorbed mass of polymer on mica by means of ellipsometry is complex due...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 23; no. 24; pp. 12222 - 12232
Main Authors Naderi, Ali, Iruthayaraj, Joseph, Vareikis, Aušvydas, Makuška, Ričardas, Claesson, Per M
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 20.11.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Surface properties of a series of cationic bottle-brush polyelectrolytes with 45-unit-long poly(ethylene oxide) side chains were investigated by phase modulated ellipsometry and surface force measurements. The evaluation of the adsorbed mass of polymer on mica by means of ellipsometry is complex due to the transparency of mica and its birefringence and low dielectric constant. We therefore employed a new method to overcome these difficulties. The charge and the poly(ethylene oxide) side chain density of the bottle-brush polymers were varied from zero charge density and one side chain per segment to one charge per segment and no side chains, thus spanning the realm from a neutral bottle-brush polymer, via a partly charged brush polyelectrolyte, to a linear fully charged polyelectrolyte. The adsorption properties depend crucially on the polymer architecture. A minimum charge density of the polymer is required to facilitate adsorption to the oppositely charged surface. The maximum adsorbed amount and the maximum side chain density at the surface are obtained for the polymer with 50% charged segments and the remaining 50% of the segments carrying poly(ethylene oxide) side chains. It is found that brushlike layers are formed when 25−50% of the segments carry poly(ethylene oxide) side chains. In this paper, we argue that the repulsion between the side chains results in an adsorbed layer that is non-homogeneous on the molecular level. As a result, not all side chains will contribute equally to the steric repulsion but some will be stretched along the surface rather than perpendicular to it. By comparison with linear polyelectrolytes, it will be shown that the presence of the side chains counteracts adsorption. This is due to the entropic penalty of confining the side chains to the surface region.
Bibliography:istex:0568EFE3968B5329BBA372759E167D1D6C17D427
ark:/67375/TPS-L0SXPZ1B-W
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0743-7463
1520-5827
1520-5827
DOI:10.1021/la701716t