Use of a Lipid-Coated Mesoporous Silica Nanoparticle Platform for Synergistic Gemcitabine and Paclitaxel Delivery to Human Pancreatic Cancer in Mice
Recently, a commercial albumin-bound paclitaxel (PTX) nanocarrier (Abraxane) was approved as the first new drug for pancreatic ductal adenocarcinoma in almost a decade. PTX improves the pharmaceutical efficacy of the first-line pancreatic cancer drug, gemcitabine (GEM), through suppression of the tu...
Saved in:
Published in | ACS nano Vol. 9; no. 4; pp. 3540 - 3557 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, a commercial albumin-bound paclitaxel (PTX) nanocarrier (Abraxane) was approved as the first new drug for pancreatic ductal adenocarcinoma in almost a decade. PTX improves the pharmaceutical efficacy of the first-line pancreatic cancer drug, gemcitabine (GEM), through suppression of the tumor stroma and inhibiting the expression of the GEM-inactivating enzyme, cytidine deaminase (CDA). We asked, therefore, whether it was possible to develop a mesoporous silica nanoparticle (MSNP) carrier for pancreatic cancer to co-deliver a synergistic GEM/PTX combination. High drug loading was achieved by a custom-designed coated lipid film technique to encapsulate a calculated dose of GEM (40 wt %) by using a supported lipid bilayer (LB). The uniform coating of the 65 nm nanoparticles by a lipid membrane allowed incorporation of a sublethal amount of hydrophobic PTX, which could be co-delivered with GEM in pancreatic cells and tumors. We demonstrate that ratiometric PTX incorporation and delivery by our LB-MSNP could suppress CDA expression, contemporaneous with induction of oxidative stress as the operating principle for PTX synergy. To demonstrate the in vivo efficacy, mice carrying subcutaneous PANC-1 xenografts received intravenous (IV) injection of PTX/GEM-loaded LB-MSNP. Drug co-delivery provided more effective tumor shrinkage than GEM-loaded LB-MSNP, free GEM, or free GEM plus Abraxane. Comparable tumor shrinkage required coadministration of 12 times the amount of free Abraxane. High-performance liquid chromatography analysis of tumor-associated GEM metabolites confirmed that, compared to free GEM, MSNP co-delivery increased the phosphorylated DNA-interactive GEM metabolite 13-fold and decreased the inactivated and deaminated metabolite 4-fold. IV injection of MSNP-delivered PTX/GEM in a PANC-1 orthotopic model effectively inhibited primary tumor growth and eliminated metastatic foci. The enhanced in vivo efficacy of the dual delivery carrier could be achieved with no evidence of local or systemic toxicity. In summary, we demonstrate the development of an effective LB-MSNP nanocarrier for synergistic PTX/GEM delivery in pancreatic cancer. |
---|---|
AbstractList | Recently, a commercial albumin-bound paclitaxel (PTX) nanocarrier (Abraxane) was approved as the first new drug for pancreatic ductal adenocarcinoma in almost a decade. PTX improves the pharmaceutical efficacy of the first-line pancreatic cancer drug, gemcitabine (GEM), through suppression of the tumor stroma and inhibiting the expression of the GEM-inactivating enzyme, cytidine deaminase (CDA). We asked, therefore, whether it was possible to develop a mesoporous silica nanoparticle (MSNP) carrier for pancreatic cancer to co-deliver a synergistic GEM/PTX combination. High drug loading was achieved by a custom-designed coated lipid film technique to encapsulate a calculated dose of GEM (40 wt %) by using a supported lipid bilayer (LB). The uniform coating of the 65 nm nanoparticles by a lipid membrane allowed incorporation of a sublethal amount of hydrophobic PTX, which could be co-delivered with GEM in pancreatic cells and tumors. We demonstrate that ratiometric PTX incorporation and delivery by our LB-MSNP could suppress CDA expression, contemporaneous with induction of oxidative stress as the operating principle for PTX synergy. To demonstrate the in vivo efficacy, mice carrying subcutaneous PANC-1 xenografts received intravenous (IV) injection of PTX/GEM-loaded LB-MSNP. Drug co-delivery provided more effective tumor shrinkage than GEM-loaded LB-MSNP, free GEM, or free GEM plus Abraxane. Comparable tumor shrinkage required coadministration of 12 times the amount of free Abraxane. High-performance liquid chromatography analysis of tumor-associated GEM metabolites confirmed that, compared to free GEM, MSNP co-delivery increased the phosphorylated DNA-interactive GEM metabolite 13-fold and decreased the inactivated and deaminated metabolite 4-fold. IV injection of MSNP-delivered PTX/GEM in a PANC-1 orthotopic model effectively inhibited primary tumor growth and eliminated metastatic foci. The enhanced in vivo efficacy of the dual delivery carrier could be achieved with no evidence of local or systemic toxicity. In summary, we demonstrate the development of an effective LB-MSNP nanocarrier for synergistic PTX/GEM delivery in pancreatic cancer. Keywords: gemcitabine; paclitaxel; co-delivery; synergy; ratiometric; mesoporous silica nanoparticle; pancreatic cancer Recently, a commercial albumin-bound paclitaxel (PTX) nanocarrier (Abraxane) was approved as the first new drug for pancreatic ductal adenocarcinoma in almost a decade. PTX improves the pharmaceutical efficacy of the first-line pancreatic cancer drug, gemcitabine (GEM), through suppression of the tumor stroma and inhibiting the expression of the GEM-inactivating enzyme, cytidine deaminase (CDA). We asked, therefore, whether it was possible to develop a mesoporous silica nanoparticle (MSNP) carrier for pancreatic cancer to co-deliver a synergistic GEM/PTX combination. High drug loading was achieved by a custom-designed coated lipid film technique to encapsulate a calculated dose of GEM (40 wt %) by using a supported lipid bilayer (LB). The uniform coating of the 65 nm nanoparticles by a lipid membrane allowed incorporation of a sublethal amount of hydrophobic PTX, which could be co-delivered with GEM in pancreatic cells and tumors. We demonstrate that ratiometric PTX incorporation and delivery by our LB-MSNP could suppress CDA expression, contemporaneous with induction of oxidative stress as the operating principle for PTX synergy. To demonstrate the in vivo efficacy, mice carrying subcutaneous PANC-1 xenografts received intravenous (IV) injection of PTX/GEM-loaded LB-MSNP. Drug co-delivery provided more effective tumor shrinkage than GEM-loaded LB-MSNP, free GEM, or free GEM plus Abraxane. Comparable tumor shrinkage required coadministration of 12 times the amount of free Abraxane. High-performance liquid chromatography analysis of tumor-associated GEM metabolites confirmed that, compared to free GEM, MSNP co-delivery increased the phosphorylated DNA-interactive GEM metabolite 13-fold and decreased the inactivated and deaminated metabolite 4-fold. IV injection of MSNP-delivered PTX/GEM in a PANC-1 orthotopic model effectively inhibited primary tumor growth and eliminated metastatic foci. The enhanced in vivo efficacy of the dual delivery carrier could be achieved with no evidence of local or systemic toxicity. In summary, we demonstrate the development of an effective LB-MSNP nanocarrier for synergistic PTX/GEM delivery in pancreatic cancer. Recently, a commercial albumin-bound paclitaxel (PTX) nanocarrier (Abraxane) was approved as the first new drug for pancreatic ductal adenocarcinoma in almost a decade. PTX improves the pharmaceutical efficacy of the first-line pancreatic cancer drug, gemcitabine (GEM), through suppression of the tumor stroma and inhibiting the expression of the GEM-inactivating enzyme, cytidine deaminase (CDA). We asked, therefore, whether it was possible to develop a mesoporous silica nanoparticle (MSNP) carrier for pancreatic cancer to co-deliver a synergistic GEM/PTX combination. High drug loading was achieved by a custom-designed coated lipid film technique to encapsulate a calculated dose of GEM (40 wt %) by using a supported lipid bilayer (LB). The uniform coating of the 65 nm nanoparticles by a lipid membrane allowed incorporation of a sublethal amount of hydrophobic PTX, which could be co-delivered with GEM in pancreatic cells and tumors. We demonstrate that ratiometric PTX incorporation and delivery by our LB-MSNP could suppress CDA expression, contemporaneous with induction of oxidative stress as the operating principle for PTX synergy. To demonstrate the in vivo efficacy, mice carrying subcutaneous PANC-1 xenografts received intravenous (IV) injection of PTX/GEM-loaded LB-MSNP. Drug co-delivery provided more effective tumor shrinkage than GEM-loaded LB-MSNP, free GEM, or free GEM plus Abraxane. Comparable tumor shrinkage required coadministration of 12 times the amount of free Abraxane. High-performance liquid chromatography analysis of tumor-associated GEM metabolites confirmed that, compared to free GEM, MSNP co-delivery increased the phosphorylated DNA-interactive GEM metabolite 13-fold and decreased the inactivated and deaminated metabolite 4-fold. IV injection of MSNP-delivered PTX/GEM in a PANC-1 orthotopic model effectively inhibited primary tumor growth and eliminated metastatic foci. The enhanced in vivo efficacy of the dual delivery carrier could be achieved with no evidence of local or systemic toxicity. In summary, we demonstrate the development of an effective LB-MSNP nanocarrier for synergistic PTX/GEM delivery in pancreatic cancer. |
Author | Wu, Bobby Ji, Zhaoxia Liu, Xiangsheng Wang, Meiying Nel, Andre E Situ, Allen Meng, Huan Chang, Chong Hyun Liu, Huiyu |
AuthorAffiliation | Chinese Academy of Sciences Division of NanoMedicine, Department of Medicine University of California Laboratory of Controllable Preparation and Application of Nanomaterials, Research Center for Micro & Nano Materials and Technology, Technical Institute of Physics and Chemistry California NanoSystems Institute |
AuthorAffiliation_xml | – name: California NanoSystems Institute – name: University of California – name: Division of NanoMedicine, Department of Medicine – name: Laboratory of Controllable Preparation and Application of Nanomaterials, Research Center for Micro & Nano Materials and Technology, Technical Institute of Physics and Chemistry – name: Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Huan surname: Meng fullname: Meng, Huan email: hmeng@mednet.ucla.edu, anel@mednet.ucla.edu – sequence: 2 givenname: Meiying surname: Wang fullname: Wang, Meiying – sequence: 3 givenname: Huiyu surname: Liu fullname: Liu, Huiyu – sequence: 4 givenname: Xiangsheng surname: Liu fullname: Liu, Xiangsheng – sequence: 5 givenname: Allen surname: Situ fullname: Situ, Allen – sequence: 6 givenname: Bobby surname: Wu fullname: Wu, Bobby – sequence: 7 givenname: Zhaoxia surname: Ji fullname: Ji, Zhaoxia – sequence: 8 givenname: Chong Hyun surname: Chang fullname: Chang, Chong Hyun – sequence: 9 givenname: Andre E surname: Nel fullname: Nel, Andre E email: hmeng@mednet.ucla.edu, anel@mednet.ucla.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25776964$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UVtrFDEUDlKxF332TfIoyLTJzCSZfRFkta2w1UIt-BbOZM7UlEyyJjOl-z_8wWbYdVFBX5ITvls43zE58MEjIS85O-Ws5GdgkgcfTkXLmODsCTnii0oWrJFfD_az4IfkOKX7TFGNks_IYSmUkgtZH5Eftwlp6CnQlV3brlgGGLGjV5jCOsQwJXpjnTVAP-WYNcTRGof02sHYhzjQfNCbjcd4Z1OG6AUOxo7QWo8UfEevwbj8fkRH36OzDxg3dAz0chrAZ9CbiDDrlnnESK2nV9bgc_K0B5fwxe4-IbfnH74sL4vV54uPy3erAmquxqIDpRBF0_TAGmzaxgCYzgipOgFV2aIy7aLDBitsjJTYLHrJBcMSjWxLVVUn5O3Wdz21A3YG_RjB6XW0A8SNDmD1n4i33_RdeNB1zUUtymzwemcQw_cJ06gHmww6Bx7z7jRXsmSS1_Wc9er3rH3Iryoy4WxLMDGkFLHfUzjTc9l6V7belZ0V4i_FvPvRhvmz1v1H92ary4C-D1P0ecn_ZP8Eww3DVg |
CitedBy_id | crossref_primary_10_1021_acsami_6b14836 crossref_primary_10_3390_polym16081105 crossref_primary_10_1002_cnma_201700264 crossref_primary_10_1016_j_colsurfb_2017_10_005 crossref_primary_10_2174_1389450121666200703195229 crossref_primary_10_2174_1567201818666211214112710 crossref_primary_10_1007_s10971_018_4772_1 crossref_primary_10_1111_cbdd_13309 crossref_primary_10_1002_adma_201802368 crossref_primary_10_1021_acs_chemmater_7b01329 crossref_primary_10_1039_C5RA16511C crossref_primary_10_3390_bioengineering10101205 crossref_primary_10_1021_acsami_6b10360 crossref_primary_10_1016_j_yexcr_2021_112660 crossref_primary_10_1080_17425247_2016_1218464 crossref_primary_10_1021_acs_accounts_7b00635 crossref_primary_10_1038_s41467_018_04571_4 crossref_primary_10_1016_j_addr_2017_06_003 crossref_primary_10_1016_j_colsurfb_2016_12_024 crossref_primary_10_1016_j_ejpb_2023_09_014 crossref_primary_10_3389_fphar_2022_829796 crossref_primary_10_1016_j_jcis_2024_08_026 crossref_primary_10_1002_smll_201802112 crossref_primary_10_1016_j_jconrel_2017_08_016 crossref_primary_10_1016_j_actbio_2020_01_039 crossref_primary_10_1021_acs_molpharmaceut_5b00544 crossref_primary_10_2174_1567201819666220324093821 crossref_primary_10_1146_annurev_physchem_040215_112634 crossref_primary_10_1515_revce_2016_0018 crossref_primary_10_1002_slct_201802107 crossref_primary_10_1007_s00894_019_4178_1 crossref_primary_10_1016_j_colsurfa_2018_10_072 crossref_primary_10_1021_acs_molpharmaceut_3c00180 crossref_primary_10_1021_acsami_7b16685 crossref_primary_10_1172_JCI92284 crossref_primary_10_1039_C9TB01604J crossref_primary_10_1016_j_ijpharm_2018_03_037 crossref_primary_10_1039_D2NR04235E crossref_primary_10_1002_ange_202102059 crossref_primary_10_1016_j_biomaterials_2018_04_056 crossref_primary_10_1016_j_pharmthera_2022_108108 crossref_primary_10_1021_acsnano_2c01252 crossref_primary_10_2147_IJN_S259432 crossref_primary_10_1021_acsabm_0c00515 crossref_primary_10_1038_srep46540 crossref_primary_10_3390_pharmaceutics12070649 crossref_primary_10_1007_s10876_021_02009_4 crossref_primary_10_1007_s12010_022_04235_6 crossref_primary_10_1016_j_actbio_2022_12_013 crossref_primary_10_3390_cancers15164145 crossref_primary_10_1016_j_ijpharm_2020_119576 crossref_primary_10_1021_acsnano_6b00320 crossref_primary_10_1021_acsnano_9b04680 crossref_primary_10_1177_0885328218758925 crossref_primary_10_1016_j_canlet_2016_11_030 crossref_primary_10_1208_s12249_017_0877_z crossref_primary_10_1016_j_jddst_2017_04_019 crossref_primary_10_1038_am_2017_185 crossref_primary_10_1039_D3SC03877G crossref_primary_10_1038_s41596_020_00421_0 crossref_primary_10_1039_C8TB02473A crossref_primary_10_1080_1061186X_2024_2405711 crossref_primary_10_1039_C7LC00774D crossref_primary_10_1016_j_ijpharm_2019_118595 crossref_primary_10_1016_j_jddst_2022_103801 crossref_primary_10_1021_acsnano_7b02044 crossref_primary_10_1016_j_tranon_2018_02_023 crossref_primary_10_3390_pharmaceutics15041128 crossref_primary_10_1016_j_jconrel_2016_03_030 crossref_primary_10_1021_acs_langmuir_3c01576 crossref_primary_10_3389_fchem_2022_844426 crossref_primary_10_1002_bmm2_12083 crossref_primary_10_2174_0929867327666200212100257 crossref_primary_10_1016_j_cclet_2020_02_034 crossref_primary_10_3390_cancers12051189 crossref_primary_10_1039_C7QI00645D crossref_primary_10_1016_j_colsurfb_2017_06_039 crossref_primary_10_2147_IJN_S313153 crossref_primary_10_3389_fchem_2019_00343 crossref_primary_10_1016_j_biomaterials_2018_11_027 crossref_primary_10_1039_C7BM00297A crossref_primary_10_3390_cancers13133321 crossref_primary_10_1002_smll_202000673 crossref_primary_10_1021_acsami_7b06062 crossref_primary_10_3390_nano5021004 crossref_primary_10_1016_j_addr_2022_114357 crossref_primary_10_1002_chem_201604868 crossref_primary_10_1021_acs_nanolett_1c00168 crossref_primary_10_1016_j_biomaterials_2020_120635 crossref_primary_10_3390_polym11030511 crossref_primary_10_1002_smll_202104449 crossref_primary_10_1039_C6RA09816A crossref_primary_10_2174_0115733947242447231003035334 crossref_primary_10_3390_pharmaceutics12121156 crossref_primary_10_1021_acs_nanolett_7b04043 crossref_primary_10_1002_wnan_1983 crossref_primary_10_1016_j_biomaterials_2018_04_027 crossref_primary_10_1021_acsami_8b03008 crossref_primary_10_3389_fbioe_2024_1482637 crossref_primary_10_1021_acs_chemmater_6b05471 crossref_primary_10_3389_fbioe_2021_699610 crossref_primary_10_1021_acs_langmuir_1c02260 crossref_primary_10_1021_acsbiomaterials_9b00099 crossref_primary_10_1116_6_0001688 crossref_primary_10_1039_C7ME00050B crossref_primary_10_1002_INMD_20240131 crossref_primary_10_1002_anie_201611187 crossref_primary_10_1016_j_jconrel_2019_03_015 crossref_primary_10_1021_acsinfecdis_9b00285 crossref_primary_10_3390_molecules30061257 crossref_primary_10_1016_j_colsurfb_2022_112357 crossref_primary_10_1021_acs_bioconjchem_6b00158 crossref_primary_10_1002_smll_202101208 crossref_primary_10_1016_j_ijpharm_2020_120119 crossref_primary_10_1039_C6RA27802G crossref_primary_10_1002_adhm_201700831 crossref_primary_10_1016_j_colsurfb_2015_12_046 crossref_primary_10_2147_IJN_S334298 crossref_primary_10_1016_j_actbio_2020_09_009 crossref_primary_10_1039_C9NA00779B crossref_primary_10_1016_j_ijpharm_2023_123606 crossref_primary_10_4155_ppa_2023_0024 crossref_primary_10_1002_anbr_202100157 crossref_primary_10_1177_00368504241274967 crossref_primary_10_3892_ol_2017_6008 crossref_primary_10_1039_C8TB03318H crossref_primary_10_1088_2058_6272_aaabb5 crossref_primary_10_1002_ddr_21441 crossref_primary_10_1021_acsnano_8b06655 crossref_primary_10_1016_j_tiv_2018_06_019 crossref_primary_10_1002_smll_201502119 crossref_primary_10_1021_acsnano_5b07781 crossref_primary_10_1007_s11095_020_02888_8 crossref_primary_10_1016_j_biomaterials_2016_04_010 crossref_primary_10_1002_ange_201611187 crossref_primary_10_1016_j_msec_2016_10_081 crossref_primary_10_1038_nrclinonc_2016_119 crossref_primary_10_1016_j_envres_2023_117443 crossref_primary_10_1039_C9NR03684A crossref_primary_10_1016_j_jcis_2016_06_004 crossref_primary_10_1007_s13346_021_00935_4 crossref_primary_10_1039_C7TB00220C crossref_primary_10_1007_s11224_018_1227_9 crossref_primary_10_1016_j_biopha_2022_113305 crossref_primary_10_1088_1361_6528_ac0e68 crossref_primary_10_1002_marc_201600344 crossref_primary_10_1016_j_jcis_2021_02_054 crossref_primary_10_1016_j_pdpdt_2019_03_008 crossref_primary_10_1002_adfm_202100805 crossref_primary_10_3389_fphar_2023_1111991 crossref_primary_10_3390_bios12020109 crossref_primary_10_1016_j_ijpharm_2017_01_031 crossref_primary_10_1016_j_semradonc_2016_05_002 crossref_primary_10_1039_C6PY01188H crossref_primary_10_1016_j_colsurfa_2019_01_015 crossref_primary_10_1016_j_addr_2024_115291 crossref_primary_10_3390_molecules26082380 crossref_primary_10_1016_j_cplett_2017_07_053 crossref_primary_10_1039_D0NH00446D crossref_primary_10_1021_acsnano_0c08694 crossref_primary_10_2217_nnm_2017_0316 crossref_primary_10_1016_j_ajps_2021_06_001 crossref_primary_10_1016_j_ijpharm_2020_120139 crossref_primary_10_1016_j_isci_2022_105407 crossref_primary_10_1021_acs_analchem_7b01397 crossref_primary_10_1080_21691401_2018_1431651 crossref_primary_10_1039_C6NR04784J crossref_primary_10_1208_s12249_021_01985_0 crossref_primary_10_1016_j_cclet_2016_11_008 crossref_primary_10_1016_j_colsurfb_2021_112020 crossref_primary_10_1016_j_jconrel_2016_03_001 crossref_primary_10_1172_JCI93955 crossref_primary_10_1021_acsami_6b10370 crossref_primary_10_1016_j_cej_2020_127710 crossref_primary_10_3390_pharmaceutics14020390 crossref_primary_10_1016_j_ejpb_2021_04_020 crossref_primary_10_1021_acsami_8b15390 crossref_primary_10_1016_j_pmatsci_2020_100686 crossref_primary_10_1039_D0TB02168G crossref_primary_10_1002_cam4_6502 crossref_primary_10_1016_j_biomaterials_2018_09_043 crossref_primary_10_1002_cam4_2384 crossref_primary_10_1039_D2CC01601J crossref_primary_10_1039_D2RA03718A crossref_primary_10_3389_fmolb_2020_00193 crossref_primary_10_1016_j_mtbio_2024_101199 crossref_primary_10_1021_acsnano_3c04564 crossref_primary_10_1021_acsanm_3c00859 crossref_primary_10_1124_jpet_118_255786 crossref_primary_10_1016_j_micromeso_2016_09_025 crossref_primary_10_1002_cnma_201900202 crossref_primary_10_3390_ijms23094773 crossref_primary_10_1016_j_cbi_2020_109221 crossref_primary_10_1039_C6RA09017F crossref_primary_10_3390_biomedicines4030020 crossref_primary_10_3389_fphar_2024_1389922 crossref_primary_10_1016_j_apmt_2023_101834 crossref_primary_10_2174_1568026620666200101095641 crossref_primary_10_1007_s12032_024_02443_0 crossref_primary_10_3390_ijms21249573 crossref_primary_10_1016_j_ajps_2016_05_005 crossref_primary_10_1002_btm2_10129 crossref_primary_10_1021_acs_nanolett_4c02485 crossref_primary_10_1016_j_jconrel_2016_04_021 crossref_primary_10_1039_C6NR07894J crossref_primary_10_1080_17425247_2019_1575806 crossref_primary_10_3390_ma12101610 crossref_primary_10_1002_jcb_27421 crossref_primary_10_3390_nano13152250 crossref_primary_10_1016_j_bios_2017_01_049 crossref_primary_10_1002_adma_202306476 crossref_primary_10_1177_0885328219868851 crossref_primary_10_5772_63437 crossref_primary_10_1021_acsnano_2c06300 crossref_primary_10_2147_CMAR_S277324 crossref_primary_10_1016_j_jddst_2023_104305 crossref_primary_10_1021_acsnano_6b06040 crossref_primary_10_1002_mco2_163 crossref_primary_10_1038_s41598_023_28424_3 crossref_primary_10_1002_smll_202310241 crossref_primary_10_1016_j_cclet_2023_108184 crossref_primary_10_1016_j_jddst_2021_102392 crossref_primary_10_1016_j_actbio_2021_01_005 crossref_primary_10_1021_acsami_6b00251 crossref_primary_10_3389_fbioe_2023_1160509 crossref_primary_10_3390_pharmaceutics12060526 crossref_primary_10_1038_s41578_020_0230_0 crossref_primary_10_1002_advs_202201931 crossref_primary_10_1016_j_semcancer_2019_08_022 crossref_primary_10_3390_pharmaceutics11110574 crossref_primary_10_1002_anie_202102059 crossref_primary_10_1039_C5CC06654A crossref_primary_10_3892_mco_2019_1867 crossref_primary_10_1186_s12951_022_01738_6 crossref_primary_10_1016_j_jconrel_2024_01_004 crossref_primary_10_1021_acs_langmuir_5b02367 crossref_primary_10_1021_acsabm_8b00811 crossref_primary_10_1186_s12951_024_02975_7 crossref_primary_10_1007_s00604_018_2848_9 crossref_primary_10_1016_j_fct_2017_05_054 crossref_primary_10_3390_pharmaceutics15030818 crossref_primary_10_1039_C9BM00822E crossref_primary_10_1039_C9RA07051F crossref_primary_10_1002_VIW_20200190 crossref_primary_10_1016_j_canlet_2015_09_007 crossref_primary_10_1021_acsabm_5c00037 crossref_primary_10_1002_adma_201705660 crossref_primary_10_1208_s12248_018_0235_4 crossref_primary_10_1016_j_ejps_2016_08_021 crossref_primary_10_1002_advs_202002545 crossref_primary_10_3390_cancers14030622 crossref_primary_10_1016_j_colsurfb_2019_05_038 crossref_primary_10_3390_molecules23112906 crossref_primary_10_1021_jacs_0c00650 crossref_primary_10_1016_j_jconrel_2016_01_054 crossref_primary_10_1186_s40580_020_00224_9 crossref_primary_10_1021_acsami_6b09074 crossref_primary_10_1021_acs_langmuir_1c03002 crossref_primary_10_3389_fbioe_2023_1266652 crossref_primary_10_1016_j_jpha_2023_11_011 crossref_primary_10_1186_s40580_020_00247_2 crossref_primary_10_1002_smll_202303267 crossref_primary_10_1021_acsami_7b15296 crossref_primary_10_1016_j_addr_2018_06_014 crossref_primary_10_1021_acs_molpharmaceut_5b00280 crossref_primary_10_1021_acs_nanolett_8b03043 crossref_primary_10_1038_srep31009 crossref_primary_10_1039_C8TB00462E crossref_primary_10_1038_s41467_020_17996_7 crossref_primary_10_1016_j_biomaterials_2020_119999 crossref_primary_10_3390_molecules28031506 crossref_primary_10_1038_s41598_019_57155_7 crossref_primary_10_1080_1061186X_2017_1400553 crossref_primary_10_1016_j_eurpolymj_2021_110887 crossref_primary_10_1186_s12951_018_0340_7 crossref_primary_10_1016_j_nantod_2023_101864 crossref_primary_10_1080_00914037_2017_1393678 crossref_primary_10_1038_nrneph_2016_156 crossref_primary_10_1016_j_jconrel_2016_01_002 crossref_primary_10_1039_C6RA17213J crossref_primary_10_1248_cpb_c20_00008 crossref_primary_10_1016_j_cclet_2019_05_059 crossref_primary_10_1038_s41467_017_01651_9 crossref_primary_10_1002_adtp_202200079 crossref_primary_10_1016_j_critrevonc_2022_103677 crossref_primary_10_1016_j_addr_2015_10_022 crossref_primary_10_1016_j_jconrel_2018_11_013 crossref_primary_10_1002_adhm_201800300 crossref_primary_10_1186_s13020_022_00577_9 crossref_primary_10_1007_s40005_016_0252_1 crossref_primary_10_3389_fonc_2023_1217095 crossref_primary_10_1016_j_ijpharm_2022_122099 crossref_primary_10_1021_acsnano_3c07621 crossref_primary_10_15406_jnmr_2015_02_00043 crossref_primary_10_1021_acs_jpcc_8b06566 crossref_primary_10_3390_pharmaceutics14112280 crossref_primary_10_1007_s12274_018_2012_1 crossref_primary_10_1016_j_nantod_2023_102048 crossref_primary_10_1016_j_molliq_2019_03_040 crossref_primary_10_1016_j_micromeso_2018_02_008 crossref_primary_10_1016_j_pharmthera_2022_108300 crossref_primary_10_1016_j_onano_2023_100152 crossref_primary_10_1021_acsnano_7b02918 crossref_primary_10_1039_D1BM00393C crossref_primary_10_3389_fphar_2022_1025618 crossref_primary_10_1080_00222348_2023_2282346 crossref_primary_10_1016_j_drudis_2022_02_026 crossref_primary_10_3390_cancers15245753 crossref_primary_10_1016_j_actbio_2019_02_031 crossref_primary_10_1039_C7CC04872F crossref_primary_10_1016_j_nantod_2022_101446 crossref_primary_10_1016_j_apsb_2022_11_009 crossref_primary_10_1021_acsnano_6b05541 crossref_primary_10_1016_j_inoche_2024_113247 crossref_primary_10_1039_D1CS01022K crossref_primary_10_1186_s12943_023_01849_0 crossref_primary_10_1039_C9NA00282K crossref_primary_10_1002_smll_202005993 crossref_primary_10_1007_s10876_024_02739_1 crossref_primary_10_1021_acsnano_0c02197 crossref_primary_10_1096_fj_202001508R crossref_primary_10_1080_17425247_2016_1211637 crossref_primary_10_1002_jcp_26593 crossref_primary_10_3390_molecules29030675 crossref_primary_10_1021_acsnano_6b02819 crossref_primary_10_1021_acs_nanolett_0c00495 crossref_primary_10_3389_fnins_2020_00742 crossref_primary_10_1039_C5NR06734K crossref_primary_10_3390_molecules21040522 crossref_primary_10_1002_smll_201602263 crossref_primary_10_3389_fonc_2024_1246308 crossref_primary_10_1021_acsnano_8b06164 crossref_primary_10_1080_10717544_2018_1474974 crossref_primary_10_1039_D2EN00653G crossref_primary_10_4251_wjgo_v13_i4_231 crossref_primary_10_1039_D0TB00017E crossref_primary_10_1021_acs_nanolett_2c04834 crossref_primary_10_1016_j_biomaterials_2020_120157 crossref_primary_10_3389_fphar_2022_893151 crossref_primary_10_1002_adtp_201900076 crossref_primary_10_1007_s40242_017_6450_1 crossref_primary_10_1016_j_cocis_2017_07_003 crossref_primary_10_1016_j_jcis_2017_07_047 crossref_primary_10_1186_s12951_023_01994_0 |
Cites_doi | 10.1126/science.1183057 10.1016/S0090-9556(25)08805-1 10.1158/1535-7163.MCT-10-1091 10.1038/nrc1566 10.1021/nn3010087 10.1016/S0006-3495(90)82382-1 10.1007/s11434-014-0700-0 10.1021/nn204102q 10.1039/b924370d 10.1021/nl400681f 10.1038/491S58a 10.1016/j.drudis.2012.05.010 10.1136/gutjnl-2012-302529 10.1016/j.jconrel.2013.03.009 10.1021/cm402592t 10.1056/NEJMoa1304369 10.1158/2159-8290.CD-11-0242 10.1021/ja902039y 10.1021/nn103344k 10.1021/ja808018y 10.1021/nn100448z 10.1021/mp200243k 10.1038/nmat3049 10.1016/j.aca.2014.04.030 10.1038/nrgastro.2012.115 10.1021/nl048153y 10.1200/JCO.2006.07.9525 10.1021/nn200809t 10.1093/carcin/bgt227 10.1016/S0167-7799(99)01412-2 10.1124/dmd.112.048769 10.1021/nn100690m 10.1016/S0006-3495(97)78811-8 10.1021/nn405674m 10.1002/adfm.201401076 10.1038/nnano.2007.387 10.1126/science.271.5245.43 10.3402/nano.v1i0.5705 10.1200/JCO.2011.36.5742 10.1021/jz300021x 10.1021/nl801596a 10.1039/c2ib20137b 10.1021/nn3044066 10.1021/nl100991w 10.1021/ja104501a 10.1021/mp200613y 10.1002/smll.201000631 10.2967/jnumed.109.073361 10.1002/adma.201300299 10.1158/1078-0432.CCR-08-0515 10.1093/annonc/mdj941 10.1021/nn404083m 10.1124/mi.7.4.8 10.4155/tde.10.13 10.1021/nn9005973 10.1016/j.leukres.2008.06.028 10.1038/nmat3042 10.1126/science.1114397 |
ContentType | Journal Article |
Copyright | Copyright © 2015 American Chemical Society Copyright © 2015 American Chemical Society 2015 American Chemical Society |
Copyright_xml | – notice: Copyright © 2015 American Chemical Society – notice: Copyright © 2015 American Chemical Society 2015 American Chemical Society |
DBID | N~. AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
DOI | 10.1021/acsnano.5b00510 |
DatabaseName | Amer. Chemical Soc. (ACS) (Free, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: N~. name: Amer. Chemical Soc. (ACS) (Free, activated by CARLI) url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 3557 |
ExternalDocumentID | PMC4415452 25776964 10_1021_acsnano_5b00510 c512882636 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA016042 – fundername: NCI NIH HHS grantid: R01 CA133697 – fundername: NCI NIH HHS grantid: U01 CA198846 |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 N~. P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
ID | FETCH-LOGICAL-a417t-da77ee588fa08e8b8caacdc567d5a32be7cb9de8e3e8c66e89f6150e2ec6b2733 |
IEDL.DBID | N~. |
ISSN | 1936-0851 |
IngestDate | Thu Aug 21 13:19:09 EDT 2025 Fri Jul 11 10:50:34 EDT 2025 Thu Apr 03 07:06:31 EDT 2025 Tue Jul 01 04:50:07 EDT 2025 Thu Apr 24 23:03:55 EDT 2025 Thu Aug 27 13:42:06 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | co-delivery paclitaxel pancreatic cancer synergy mesoporous silica nanoparticle ratiometric gemcitabine |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a417t-da77ee588fa08e8b8caacdc567d5a32be7cb9de8e3e8c66e89f6150e2ec6b2733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1021/acsnano.5b00510 |
PMID | 25776964 |
PQID | 1762061443 |
PQPubID | 23500 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4415452 proquest_miscellaneous_1762061443 pubmed_primary_25776964 crossref_primary_10_1021_acsnano_5b00510 crossref_citationtrail_10_1021_acsnano_5b00510 acs_journals_10_1021_acsnano_5b00510 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ N~. UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-28 |
PublicationDateYYYYMMDD | 2015-04-28 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Dengler E. C. (ref52/cit52) 2013; 168 Moore M. J. (ref57/cit57) 2007; 25 Mai W. X. (ref10/cit10) 2013; 5 Mayer L. (ref29/cit29) 2007; 7 Meng H. (ref15/cit15) 2012; 3 van Schooneveld M. M. (ref25/cit25) 2008; 8 Meng H. (ref63/cit63) 2010; 4 Batist G. (ref41/cit41) 2009; 15 Zhang C. (ref58/cit58) 2011; 10 Meng H. (ref13/cit13) 2011; 5 Shipley L. A. (ref55/cit55) 1992; 20 Yang Y. (ref23/cit23) 2010; 12 Tardi P. (ref40/cit40) 2009; 33 Liu J. (ref28/cit28) 2009; 131 Ashley C. E. (ref21/cit21) 2012; 6 Federico C. (ref9/cit9) 2012; 2012 Awasthi N. (ref7/cit7) 2013; 34 von Maltzahn G. (ref62/cit62) 2011; 10 Aryal S. (ref42/cit42) 2011; 8 Ma L. (ref37/cit37) 2013; 7 ref38/cit38 Meng H. (ref12/cit12) 2013; 7 Linseisen F. M. (ref49/cit49) 1997; 72 Jacobetz M. A. (ref4/cit4) 2012; 62 Mackowiak S. A. (ref24/cit24) 2013; 13 Miao L. (ref43/cit43) 2014; 24 Lin N. (ref31/cit31) 2004; 12 Von Hoff D. D. (ref44/cit44) 2011; 29 Meng H. (ref11/cit11) 2010; 4 Hu C. (ref35/cit35) 2010; 1 Ashley C. E. (ref26/cit26) 2011; 10 Nel A. (ref46/cit46) 2006; 311 Sommerwerk A. (ref53/cit53) 2011; 8 Bayerl T. M. (ref48/cit48) 1990; 58 Roggers R. A. (ref51/cit51) 2012; 9 Cauda V. (ref20/cit20) 2010; 10 Meng H. (ref45/cit45) 2009; 3 Meng H. (ref16/cit16) 2011; 5 Argyo C. (ref22/cit22) 2013; 26 Bourzac K. (ref8/cit8) 2012; 491 Mornet S. (ref50/cit50) 2005; 5 Liu J. (ref27/cit27) 2009; 131 Meng H. (ref14/cit14) 2010; 132 Peer D. (ref33/cit33) 2007; 2 Frese K. K. (ref6/cit6) 2012; 2 Zhao F. (ref34/cit34) 2015; 60 Parhi P. (ref36/cit36) 2012; 17 DaCosta M. V. (ref60/cit60) 2014; 832 Baker J. A. R. (ref30/cit30) 2013; 41 Von Hoff D. D. (ref5/cit5) 2013; 369 Aryal S. (ref39/cit39) 2010; 6 Sugahara K. N. (ref61/cit61) 2010; 328 Sackmann E. (ref18/cit18) 1996; 271 Erkan M. (ref3/cit3) 2012; 9 Mini E. (ref2/cit2) 2006; 17 Meng H. (ref17/cit17) 2013; 7 Ferrari M. (ref32/cit32) 2005; 5 Zhang H. (ref59/cit59) 2012; 6 ref1/cit1 Sackmann E. (ref47/cit47) 2000; 18 Ji T. (ref54/cit54) 2013; 25 Linseisen F. M. (ref19/cit19) 1997; 72 Shu C. J. (ref56/cit56) 2010; 51 21685903 - Nat Mater. 2011 Jul;10(7):545-52 21524062 - ACS Nano. 2011 May 24;5(5):4131-44 18624389 - Nano Lett. 2008 Aug;8(8):2517-25 20718462 - J Am Chem Soc. 2010 Sep 15;132(36):12690-7 27199284 - ACS Nano. 2016 Jun 28;10(6):6416 19445508 - J Am Chem Soc. 2009 Jun 10;131(22):7567-9 8539599 - Science. 1996 Jan 5;271(5245):43-8 21499315 - Nat Mater. 2011 May;10(5):389-97 23517784 - J Control Release. 2013 Jun 10;168(2):209-24 23230131 - Drug Metab Dispos. 2013 Mar;41(3):541-5 10652510 - Trends Biotechnol. 2000 Feb;18(2):58-64 23042147 - Integr Biol (Camb). 2013 Jan;5(1):19-28 24131140 - N Engl J Med. 2013 Oct 31;369(18):1691-703 22738645 - Mol Pharm. 2012 Sep 4;9(9):2770-7 24274814 - ACS Nano. 2013 Nov 26;7(11):9518-25 21566062 - Mol Cancer Ther. 2011 Jul;10(7):1264-75 20731437 - ACS Nano. 2010 Aug 24;4(8):4539-50 21969517 - J Clin Oncol. 2011 Dec 1;29(34):4548-54 22466618 - Gut. 2013 Jan;62(1):112-20 24143858 - ACS Nano. 2013 Nov 26;7(11):10048-65 23803690 - Carcinogenesis. 2013 Oct;34(10):2361-9 25395922 - Adv Funct Mater. 2014 Nov 12;24(42):6601-6611 20515041 - Nano Lett. 2010 Jul 14;10(7):2484-92 18654426 - Nat Nanotechnol. 2007 Dec;2(12):751-60 23320289 - Nature. 2012 Nov 22;491(7425):S58-60 22652342 - Drug Discov Today. 2012 Sep;17(17-18):1044-52 24890691 - Anal Chim Acta. 2014 Jun 17;832:1-33 21563770 - ACS Nano. 2011 Jun 28;5(6):4434-47 22585996 - Cancer Discov. 2012 Mar;2(3):260-9 15569401 - Acta Pharmacol Sin. 2004 Dec;25(12):1584-9 21696189 - Mol Pharm. 2011 Aug 1;8(4):1401-7 20407714 - Phys Chem Chem Phys. 2010 May 7;12(17):4418-22 1362937 - Drug Metab Dispos. 1992 Nov-Dec;20(6):849-55 26285851 - J Phys Chem Lett. 2012 Feb 2;3(3):358-9 16456071 - Science. 2006 Feb 3;311(5761):622-7 22816135 - Ther Deliv. 2010 Aug;1(2):323-34 20378772 - Science. 2010 May 21;328(5981):1031-5 15794611 - Nano Lett. 2005 Feb;5(2):281-5 17452677 - J Clin Oncol. 2007 May 20;25(15):1960-6 18676016 - Leuk Res. 2009 Jan;33(1):129-39 9083669 - Biophys J. 1997 Apr;72(4):1659-67 20564488 - Small. 2010 Jul 5;6(13):1442-8 23662711 - Nano Lett. 2013 Jun 12;13(6):2576-83 2207243 - Biophys J. 1990 Aug;58(2):357-62 23703805 - Adv Mater. 2013 Jul 12;25(26):3508-25 23139626 - Int J Nanomedicine. 2012;7:5423-36 21452863 - ACS Nano. 2009 Jul 28;3(7):1620-7 20554721 - J Nucl Med. 2010 Jul;51(7):1092-8 16807468 - Ann Oncol. 2006 May;17 Suppl 5:v7-12 17827442 - Mol Interv. 2007 Aug;7(4):216-23 19173660 - J Am Chem Soc. 2009 Feb 4;131(4):1354-5 15738981 - Nat Rev Cancer. 2005 Mar;5(3):161-71 22710569 - Nat Rev Gastroenterol Hepatol. 2012 Aug;9(8):454-67 20429577 - ACS Nano. 2010 May 25;4(5):2773-83 23289892 - ACS Nano. 2013 Feb 26;7(2):994-1005 22502734 - ACS Nano. 2012 May 22;6(5):4349-68 19147776 - Clin Cancer Res. 2009 Jan 15;15(2):692-700 22309035 - ACS Nano. 2012 Mar 27;6(3):2174-88 22110857 - Nano Rev. 2010;1:null |
References_xml | – volume: 328 start-page: 1031 year: 2010 ident: ref61/cit61 publication-title: Science doi: 10.1126/science.1183057 – volume: 20 start-page: 849 year: 1992 ident: ref55/cit55 publication-title: Drug Metab. Dispos. doi: 10.1016/S0090-9556(25)08805-1 – volume: 10 start-page: 1264 year: 2011 ident: ref58/cit58 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-10-1091 – volume: 5 start-page: 161 year: 2005 ident: ref32/cit32 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1566 – volume: 6 start-page: 4349 year: 2012 ident: ref59/cit59 publication-title: ACS Nano doi: 10.1021/nn3010087 – volume: 58 start-page: 357 year: 1990 ident: ref48/cit48 publication-title: Biophys. J. doi: 10.1016/S0006-3495(90)82382-1 – volume: 60 start-page: 3 year: 2015 ident: ref34/cit34 publication-title: Sci. Bull. doi: 10.1007/s11434-014-0700-0 – volume: 6 start-page: 2174 year: 2012 ident: ref21/cit21 publication-title: ACS Nano doi: 10.1021/nn204102q – volume: 12 start-page: 4418 year: 2010 ident: ref23/cit23 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b924370d – volume: 13 start-page: 2576 year: 2013 ident: ref24/cit24 publication-title: Nano Lett. doi: 10.1021/nl400681f – volume: 491 start-page: S58 year: 2012 ident: ref8/cit8 publication-title: Nature doi: 10.1038/491S58a – volume: 17 start-page: 1044 year: 2012 ident: ref36/cit36 publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2012.05.010 – volume: 62 start-page: 112 year: 2012 ident: ref4/cit4 publication-title: Gut doi: 10.1136/gutjnl-2012-302529 – volume: 168 start-page: 209 year: 2013 ident: ref52/cit52 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2013.03.009 – volume: 26 start-page: 435 year: 2013 ident: ref22/cit22 publication-title: Chem. Mater. doi: 10.1021/cm402592t – volume: 369 start-page: 1691 year: 2013 ident: ref5/cit5 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1304369 – volume: 2 start-page: 260 year: 2012 ident: ref6/cit6 publication-title: Cancer Discovery doi: 10.1158/2159-8290.CD-11-0242 – volume: 131 start-page: 7567 year: 2009 ident: ref28/cit28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902039y – volume: 5 start-page: 4434 year: 2011 ident: ref16/cit16 publication-title: ACS Nano doi: 10.1021/nn103344k – volume: 131 start-page: 1354 year: 2009 ident: ref27/cit27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808018y – volume: 4 start-page: 2773 year: 2010 ident: ref63/cit63 publication-title: ACS Nano doi: 10.1021/nn100448z – volume: 8 start-page: 1401 year: 2011 ident: ref42/cit42 publication-title: Mol. Pharmaceutics doi: 10.1021/mp200243k – volume: 10 start-page: 545 year: 2011 ident: ref62/cit62 publication-title: Nat. Mater. doi: 10.1038/nmat3049 – volume: 832 start-page: 1 year: 2014 ident: ref60/cit60 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2014.04.030 – volume: 9 start-page: 454 year: 2012 ident: ref3/cit3 publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2012.115 – volume: 5 start-page: 281 year: 2005 ident: ref50/cit50 publication-title: Nano Lett. doi: 10.1021/nl048153y – volume: 25 start-page: 1960 year: 2007 ident: ref57/cit57 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2006.07.9525 – volume: 5 start-page: 4131 year: 2011 ident: ref13/cit13 publication-title: ACS Nano doi: 10.1021/nn200809t – volume: 34 start-page: 2361 year: 2013 ident: ref7/cit7 publication-title: Carcinogenesis doi: 10.1093/carcin/bgt227 – volume: 2012 start-page: 5423 year: 2012 ident: ref9/cit9 publication-title: Int. J. Nanomed. – volume: 18 start-page: 58 year: 2000 ident: ref47/cit47 publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(99)01412-2 – volume: 41 start-page: 541 year: 2013 ident: ref30/cit30 publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.112.048769 – volume: 4 start-page: 4539 year: 2010 ident: ref11/cit11 publication-title: ACS Nano doi: 10.1021/nn100690m – volume: 72 start-page: 1659 year: 1997 ident: ref19/cit19 publication-title: Biophys. J. doi: 10.1016/S0006-3495(97)78811-8 – volume: 7 start-page: 9518 year: 2013 ident: ref37/cit37 publication-title: ACS Nano doi: 10.1021/nn405674m – volume: 24 start-page: 6601 year: 2014 ident: ref43/cit43 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401076 – volume: 2 start-page: 751 year: 2007 ident: ref33/cit33 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.387 – volume: 271 start-page: 43 year: 1996 ident: ref18/cit18 publication-title: Science doi: 10.1126/science.271.5245.43 – ident: ref38/cit38 doi: 10.3402/nano.v1i0.5705 – volume: 29 start-page: 4548 year: 2011 ident: ref44/cit44 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2011.36.5742 – volume: 3 start-page: 358 year: 2012 ident: ref15/cit15 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300021x – volume: 8 start-page: 2517 year: 2008 ident: ref25/cit25 publication-title: Nano Lett. doi: 10.1021/nl801596a – volume: 5 start-page: 19 year: 2013 ident: ref10/cit10 publication-title: Integr. Biol. doi: 10.1039/c2ib20137b – volume: 12 start-page: 1584 year: 2004 ident: ref31/cit31 publication-title: Acta. Pharmacol. Sin. – volume: 7 start-page: 994 year: 2013 ident: ref12/cit12 publication-title: ACS Nano doi: 10.1021/nn3044066 – volume: 10 start-page: 2484 year: 2010 ident: ref20/cit20 publication-title: Nano Lett. doi: 10.1021/nl100991w – volume: 132 start-page: 12690 year: 2010 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104501a – volume: 9 start-page: 2770 year: 2012 ident: ref51/cit51 publication-title: Mol. Pharmaceutics doi: 10.1021/mp200613y – volume: 6 start-page: 1442 year: 2010 ident: ref39/cit39 publication-title: Small doi: 10.1002/smll.201000631 – volume: 72 start-page: 1659 year: 1997 ident: ref49/cit49 publication-title: Biophys. J. doi: 10.1016/S0006-3495(97)78811-8 – volume: 51 start-page: 1092 year: 2010 ident: ref56/cit56 publication-title: J. Nucl. Med. doi: 10.2967/jnumed.109.073361 – ident: ref1/cit1 – volume: 25 start-page: 3508 year: 2013 ident: ref54/cit54 publication-title: Adv. Mater. doi: 10.1002/adma.201300299 – volume: 15 start-page: 692 year: 2009 ident: ref41/cit41 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-08-0515 – volume: 8 start-page: 1978 year: 2011 ident: ref53/cit53 publication-title: Pulm. Pharmacol. Ther. – volume: 17 start-page: v7 year: 2006 ident: ref2/cit2 publication-title: Ann. Oncol. doi: 10.1093/annonc/mdj941 – volume: 7 start-page: 10048 year: 2013 ident: ref17/cit17 publication-title: ACS Nano doi: 10.1021/nn404083m – volume: 7 start-page: 216 year: 2007 ident: ref29/cit29 publication-title: Mol. Interventions doi: 10.1124/mi.7.4.8 – volume: 1 start-page: 323 year: 2010 ident: ref35/cit35 publication-title: Ther. Delivery doi: 10.4155/tde.10.13 – volume: 3 start-page: 1620 year: 2009 ident: ref45/cit45 publication-title: ACS Nano doi: 10.1021/nn9005973 – volume: 33 start-page: 129 year: 2009 ident: ref40/cit40 publication-title: Leuk. Res. doi: 10.1016/j.leukres.2008.06.028 – volume: 10 start-page: 476 year: 2011 ident: ref26/cit26 publication-title: Nat. Mater. doi: 10.1038/nmat3042 – volume: 311 start-page: 622 year: 2006 ident: ref46/cit46 publication-title: Science doi: 10.1126/science.1114397 – reference: 17452677 - J Clin Oncol. 2007 May 20;25(15):1960-6 – reference: 27199284 - ACS Nano. 2016 Jun 28;10(6):6416 – reference: 21524062 - ACS Nano. 2011 May 24;5(5):4131-44 – reference: 22466618 - Gut. 2013 Jan;62(1):112-20 – reference: 20564488 - Small. 2010 Jul 5;6(13):1442-8 – reference: 18654426 - Nat Nanotechnol. 2007 Dec;2(12):751-60 – reference: 2207243 - Biophys J. 1990 Aug;58(2):357-62 – reference: 16807468 - Ann Oncol. 2006 May;17 Suppl 5:v7-12 – reference: 19445508 - J Am Chem Soc. 2009 Jun 10;131(22):7567-9 – reference: 22585996 - Cancer Discov. 2012 Mar;2(3):260-9 – reference: 17827442 - Mol Interv. 2007 Aug;7(4):216-23 – reference: 26285851 - J Phys Chem Lett. 2012 Feb 2;3(3):358-9 – reference: 16456071 - Science. 2006 Feb 3;311(5761):622-7 – reference: 1362937 - Drug Metab Dispos. 1992 Nov-Dec;20(6):849-55 – reference: 23803690 - Carcinogenesis. 2013 Oct;34(10):2361-9 – reference: 20515041 - Nano Lett. 2010 Jul 14;10(7):2484-92 – reference: 24274814 - ACS Nano. 2013 Nov 26;7(11):9518-25 – reference: 24890691 - Anal Chim Acta. 2014 Jun 17;832:1-33 – reference: 21696189 - Mol Pharm. 2011 Aug 1;8(4):1401-7 – reference: 22816135 - Ther Deliv. 2010 Aug;1(2):323-34 – reference: 22110857 - Nano Rev. 2010;1:null – reference: 22309035 - ACS Nano. 2012 Mar 27;6(3):2174-88 – reference: 21563770 - ACS Nano. 2011 Jun 28;5(6):4434-47 – reference: 15794611 - Nano Lett. 2005 Feb;5(2):281-5 – reference: 21969517 - J Clin Oncol. 2011 Dec 1;29(34):4548-54 – reference: 23139626 - Int J Nanomedicine. 2012;7:5423-36 – reference: 20378772 - Science. 2010 May 21;328(5981):1031-5 – reference: 20554721 - J Nucl Med. 2010 Jul;51(7):1092-8 – reference: 22652342 - Drug Discov Today. 2012 Sep;17(17-18):1044-52 – reference: 23703805 - Adv Mater. 2013 Jul 12;25(26):3508-25 – reference: 8539599 - Science. 1996 Jan 5;271(5245):43-8 – reference: 9083669 - Biophys J. 1997 Apr;72(4):1659-67 – reference: 22738645 - Mol Pharm. 2012 Sep 4;9(9):2770-7 – reference: 18676016 - Leuk Res. 2009 Jan;33(1):129-39 – reference: 23289892 - ACS Nano. 2013 Feb 26;7(2):994-1005 – reference: 23320289 - Nature. 2012 Nov 22;491(7425):S58-60 – reference: 23517784 - J Control Release. 2013 Jun 10;168(2):209-24 – reference: 23230131 - Drug Metab Dispos. 2013 Mar;41(3):541-5 – reference: 15569401 - Acta Pharmacol Sin. 2004 Dec;25(12):1584-9 – reference: 21452863 - ACS Nano. 2009 Jul 28;3(7):1620-7 – reference: 25395922 - Adv Funct Mater. 2014 Nov 12;24(42):6601-6611 – reference: 21499315 - Nat Mater. 2011 May;10(5):389-97 – reference: 24143858 - ACS Nano. 2013 Nov 26;7(11):10048-65 – reference: 21566062 - Mol Cancer Ther. 2011 Jul;10(7):1264-75 – reference: 19173660 - J Am Chem Soc. 2009 Feb 4;131(4):1354-5 – reference: 20429577 - ACS Nano. 2010 May 25;4(5):2773-83 – reference: 20718462 - J Am Chem Soc. 2010 Sep 15;132(36):12690-7 – reference: 18624389 - Nano Lett. 2008 Aug;8(8):2517-25 – reference: 21685903 - Nat Mater. 2011 Jul;10(7):545-52 – reference: 20731437 - ACS Nano. 2010 Aug 24;4(8):4539-50 – reference: 15738981 - Nat Rev Cancer. 2005 Mar;5(3):161-71 – reference: 23042147 - Integr Biol (Camb). 2013 Jan;5(1):19-28 – reference: 22710569 - Nat Rev Gastroenterol Hepatol. 2012 Aug;9(8):454-67 – reference: 19147776 - Clin Cancer Res. 2009 Jan 15;15(2):692-700 – reference: 23662711 - Nano Lett. 2013 Jun 12;13(6):2576-83 – reference: 10652510 - Trends Biotechnol. 2000 Feb;18(2):58-64 – reference: 24131140 - N Engl J Med. 2013 Oct 31;369(18):1691-703 – reference: 20407714 - Phys Chem Chem Phys. 2010 May 7;12(17):4418-22 – reference: 22502734 - ACS Nano. 2012 May 22;6(5):4349-68 |
SSID | ssj0057876 |
Score | 2.6114275 |
Snippet | Recently, a commercial albumin-bound paclitaxel (PTX) nanocarrier (Abraxane) was approved as the first new drug for pancreatic ductal adenocarcinoma in almost... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3540 |
SubjectTerms | Albumins - chemistry Albumins - pharmacology Albumins - therapeutic use Animals Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Biocompatibility Cancer Cell Line, Tumor Cell Transformation, Neoplastic Cytidine Deaminase - metabolism Deoxycytidine - analogs & derivatives Deoxycytidine - chemistry Deoxycytidine - pharmacology Deoxycytidine - therapeutic use Drug Carriers - chemistry Drug Synergism Drugs Effectiveness Female Gene Expression Regulation, Neoplastic - drug effects Humans Lipid Bilayers - chemistry Lipids Metabolites Mice Nanoparticles - chemistry Nanostructure Paclitaxel - chemistry Paclitaxel - pharmacology Paclitaxel - therapeutic use Pancreatic Neoplasms - drug therapy Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - pathology Porosity Silicon Dioxide - chemistry Tumors |
Title | Use of a Lipid-Coated Mesoporous Silica Nanoparticle Platform for Synergistic Gemcitabine and Paclitaxel Delivery to Human Pancreatic Cancer in Mice |
URI | http://dx.doi.org/10.1021/acsnano.5b00510 https://www.ncbi.nlm.nih.gov/pubmed/25776964 https://www.proquest.com/docview/1762061443 https://pubmed.ncbi.nlm.nih.gov/PMC4415452 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOBQ8WahVIPUA5csu45fOVYLpUJaVGlZqbfIdsZipcWpmiDRC7-CH8w4yS7dVpW45OKHkszY_j6P_Q1jR3qCk8CdyEzuJpkocplZ4hGZCN6KwhLp6m65zr-q06X4ci7P_4lF34zg8-kH65toYz2WvQPdZw-4IqdLOS5_jzeTbvI71QeQiSATitiq-NzqIC1Dvtldhm5hy5tHJK-tOSeP2f4AFuG4t-4Tdg_jU_bomoTgM_Zn2SDUASykLNRVNqsJPFYwx6YmZE20HhartC8HNI0SP-57grO1bRNaBXrA4ird_-sEm-Ez_vCr1hJdRrCxgjPrk4r3L1zDR1ynMxxX0NbQbf1TYewxp4dZcp5LWEWY08zznC1PPn2bnWZDpoXMiqlus8pqjSiNCXZi0DjjrfWVl0pX0ubcofauqNBgjsYrhaYISUgeOXrlCADlL9herCO-YuC0rGzgnSy_0EEbQRxUueAQPQ88H7Ej-v3lMFKasguC82k5WKkcrDRi4419Sj-olaekGeu7G7zfNrjohTrurvpuY_CSBlOKkNiIZJFySktDR5HpNV_2DrDtjOY2rQolRkzvuMa2QhLq3i2Jq--dYHfirELy1__36W_YQ0JlMoWsuDlge-3lT3xLyKd1h4T8Z4vDzvP_AmEDBOc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOQAHypvlOUg9cMmSdR52jtWWskC3Ktqu1FtkOxOxYnFQk5Uov4MfzNjJhm6rSnDJIbFHfoxnvsnYnxnbFSGGJddxICMdBnEWJYGiOCKIS6PiTFHQ5U-5To_SyTz-dJqcbrFwfRaGGlGTpNon8f-yC4ze0TurbDVMWj26wW4SFOFOp_fGs7XtdeqXtnlkipMJTPRkPlcEOG9k6k1vdAViXt4pecH1HOywL32j_Y6Tb8NVo4fm1yU-x__p1T12t8OhsNcqzn22hfYBu3OBnfAh-z2vEaoSFLgLrotgXBEuLWCKdUWgvVrVMFu4X35AFppC71YSHC9V44Aw0ANm5-5ooeeChg_43SwaRZE4grIFHCvjCMJ_4hL2cem2h5xDU4HPKtBH28JZA2Onl2ewsDAlo_aIzQ_en4wnQXeJQ6DikWiCQgmBmEhZqlCi1NIoZQqTpKJIVMQ1CqOzAiVGKE2aosxKx1GPHE2qCVtFj9m2rSw-ZaBFUqiSe8b_WJRCxhTeprrUiIaXPBqwXRrPvFuEde7z63yUd4Ocd4M8YMP1nOemI0J393Esr6_wtq_wo-UAub7om7US5bROXfJFWaQZyUfkdXz0Tc180ipVL4zMpkizNB4wsaFufQHHAb75xS6-ei5wFw7HCX_2b11_zW5NTqaH-eHHo8_P2W0Cf4nLjHH5gm03Zyt8SQCr0a_8mvoDmZAlDQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZtCqU9lL67bdJOIYdevPXasiUfw6bb9LHLQrqQm9FjRBa2cogdSC79Ff3BHdneJZsQ6MUHWxKyZyR9n0fzibF9EWPsEs0jmeo44kWaRYp4RMSdUbxQRLraLNfpLD9a8O8n2UmfFBZyYagTNbVUt0H8MKrPrOsVBkaf6b5XvhpmnS_dZw8IjMThwIbZn-F6_g0umHexZOLKBCg2gj63Gggrkqm3V6RbMPPmbslry8_kKXvS40Y46Az9jN1D_5w9vqYm-IL9XdQIlQMF4UBqG40rwpEWplhXBLKJ4cPxMvyiA5pRiSp3LcF8pZoAXIEucHwVUgFb7Wb4ir_NslHEnBGUtzBXJgh6X-IKDnEVtnNcQVNBGwWgh76DnwbGwY_OYelhSpPQS7aYfPk1Por6QxcixUeiiawSAjGT0qlYotTSKGWsyXJhM5UmGoXRhUWJKUqT5ygLFzTlMUGTa8JC6Su24yuPbxhokVnlklahnwsnJCc6mmunEU3iknTA9unzl_2gqcs2Hp6Myt5KZW-lARuu7VOaXrg8nJ-xurvCp02Fs06z4-6iH9cGL2lchWCJ8kgWKUe0SrRsmbr5unOATWM0zYm8yPmAiS3X2BQImt3bT_zytNXuDvSVZ8nb_3v1D-zh_HBS_vw2-_GOPSKsloVAViJ32U5zfoF7hIca_b51_391mgqh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+a+lipid-coated+mesoporous+silica+nanoparticle+platform+for+synergistic+gemcitabine+and+paclitaxel+delivery+to+human+pancreatic+cancer+in+mice&rft.jtitle=ACS+nano&rft.au=Meng%2C+Huan&rft.au=Wang%2C+Meiying&rft.au=Liu%2C+Huiyu&rft.au=Liu%2C+Xiangsheng&rft.date=2015-04-28&rft.eissn=1936-086X&rft.volume=9&rft.issue=4&rft.spage=3540&rft_id=info:doi/10.1021%2Facsnano.5b00510&rft_id=info%3Apmid%2F25776964&rft.externalDocID=25776964 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |