Use of a Lipid-Coated Mesoporous Silica Nanoparticle Platform for Synergistic Gemcitabine and Paclitaxel Delivery to Human Pancreatic Cancer in Mice

Recently, a commercial albumin-bound paclitaxel (PTX) nanocarrier (Abraxane) was approved as the first new drug for pancreatic ductal adenocarcinoma in almost a decade. PTX improves the pharmaceutical efficacy of the first-line pancreatic cancer drug, gemcitabine (GEM), through suppression of the tu...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 9; no. 4; pp. 3540 - 3557
Main Authors Meng, Huan, Wang, Meiying, Liu, Huiyu, Liu, Xiangsheng, Situ, Allen, Wu, Bobby, Ji, Zhaoxia, Chang, Chong Hyun, Nel, Andre E
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, a commercial albumin-bound paclitaxel (PTX) nanocarrier (Abraxane) was approved as the first new drug for pancreatic ductal adenocarcinoma in almost a decade. PTX improves the pharmaceutical efficacy of the first-line pancreatic cancer drug, gemcitabine (GEM), through suppression of the tumor stroma and inhibiting the expression of the GEM-inactivating enzyme, cytidine deaminase (CDA). We asked, therefore, whether it was possible to develop a mesoporous silica nanoparticle (MSNP) carrier for pancreatic cancer to co-deliver a synergistic GEM/PTX combination. High drug loading was achieved by a custom-designed coated lipid film technique to encapsulate a calculated dose of GEM (40 wt %) by using a supported lipid bilayer (LB). The uniform coating of the 65 nm nanoparticles by a lipid membrane allowed incorporation of a sublethal amount of hydrophobic PTX, which could be co-delivered with GEM in pancreatic cells and tumors. We demonstrate that ratiometric PTX incorporation and delivery by our LB-MSNP could suppress CDA expression, contemporaneous with induction of oxidative stress as the operating principle for PTX synergy. To demonstrate the in vivo efficacy, mice carrying subcutaneous PANC-1 xenografts received intravenous (IV) injection of PTX/GEM-loaded LB-MSNP. Drug co-delivery provided more effective tumor shrinkage than GEM-loaded LB-MSNP, free GEM, or free GEM plus Abraxane. Comparable tumor shrinkage required coadministration of 12 times the amount of free Abraxane. High-performance liquid chromatography analysis of tumor-associated GEM metabolites confirmed that, compared to free GEM, MSNP co-delivery increased the phosphorylated DNA-interactive GEM metabolite 13-fold and decreased the inactivated and deaminated metabolite 4-fold. IV injection of MSNP-delivered PTX/GEM in a PANC-1 orthotopic model effectively inhibited primary tumor growth and eliminated metastatic foci. The enhanced in vivo efficacy of the dual delivery carrier could be achieved with no evidence of local or systemic toxicity. In summary, we demonstrate the development of an effective LB-MSNP nanocarrier for synergistic PTX/GEM delivery in pancreatic cancer.
AbstractList Recently, a commercial albumin-bound paclitaxel (PTX) nanocarrier (Abraxane) was approved as the first new drug for pancreatic ductal adenocarcinoma in almost a decade. PTX improves the pharmaceutical efficacy of the first-line pancreatic cancer drug, gemcitabine (GEM), through suppression of the tumor stroma and inhibiting the expression of the GEM-inactivating enzyme, cytidine deaminase (CDA). We asked, therefore, whether it was possible to develop a mesoporous silica nanoparticle (MSNP) carrier for pancreatic cancer to co-deliver a synergistic GEM/PTX combination. High drug loading was achieved by a custom-designed coated lipid film technique to encapsulate a calculated dose of GEM (40 wt %) by using a supported lipid bilayer (LB). The uniform coating of the 65 nm nanoparticles by a lipid membrane allowed incorporation of a sublethal amount of hydrophobic PTX, which could be co-delivered with GEM in pancreatic cells and tumors. We demonstrate that ratiometric PTX incorporation and delivery by our LB-MSNP could suppress CDA expression, contemporaneous with induction of oxidative stress as the operating principle for PTX synergy. To demonstrate the in vivo efficacy, mice carrying subcutaneous PANC-1 xenografts received intravenous (IV) injection of PTX/GEM-loaded LB-MSNP. Drug co-delivery provided more effective tumor shrinkage than GEM-loaded LB-MSNP, free GEM, or free GEM plus Abraxane. Comparable tumor shrinkage required coadministration of 12 times the amount of free Abraxane. High-performance liquid chromatography analysis of tumor-associated GEM metabolites confirmed that, compared to free GEM, MSNP co-delivery increased the phosphorylated DNA-interactive GEM metabolite 13-fold and decreased the inactivated and deaminated metabolite 4-fold. IV injection of MSNP-delivered PTX/GEM in a PANC-1 orthotopic model effectively inhibited primary tumor growth and eliminated metastatic foci. The enhanced in vivo efficacy of the dual delivery carrier could be achieved with no evidence of local or systemic toxicity. In summary, we demonstrate the development of an effective LB-MSNP nanocarrier for synergistic PTX/GEM delivery in pancreatic cancer. Keywords: gemcitabine; paclitaxel; co-delivery; synergy; ratiometric; mesoporous silica nanoparticle; pancreatic cancer
Recently, a commercial albumin-bound paclitaxel (PTX) nanocarrier (Abraxane) was approved as the first new drug for pancreatic ductal adenocarcinoma in almost a decade. PTX improves the pharmaceutical efficacy of the first-line pancreatic cancer drug, gemcitabine (GEM), through suppression of the tumor stroma and inhibiting the expression of the GEM-inactivating enzyme, cytidine deaminase (CDA). We asked, therefore, whether it was possible to develop a mesoporous silica nanoparticle (MSNP) carrier for pancreatic cancer to co-deliver a synergistic GEM/PTX combination. High drug loading was achieved by a custom-designed coated lipid film technique to encapsulate a calculated dose of GEM (40 wt %) by using a supported lipid bilayer (LB). The uniform coating of the 65 nm nanoparticles by a lipid membrane allowed incorporation of a sublethal amount of hydrophobic PTX, which could be co-delivered with GEM in pancreatic cells and tumors. We demonstrate that ratiometric PTX incorporation and delivery by our LB-MSNP could suppress CDA expression, contemporaneous with induction of oxidative stress as the operating principle for PTX synergy. To demonstrate the in vivo efficacy, mice carrying subcutaneous PANC-1 xenografts received intravenous (IV) injection of PTX/GEM-loaded LB-MSNP. Drug co-delivery provided more effective tumor shrinkage than GEM-loaded LB-MSNP, free GEM, or free GEM plus Abraxane. Comparable tumor shrinkage required coadministration of 12 times the amount of free Abraxane. High-performance liquid chromatography analysis of tumor-associated GEM metabolites confirmed that, compared to free GEM, MSNP co-delivery increased the phosphorylated DNA-interactive GEM metabolite 13-fold and decreased the inactivated and deaminated metabolite 4-fold. IV injection of MSNP-delivered PTX/GEM in a PANC-1 orthotopic model effectively inhibited primary tumor growth and eliminated metastatic foci. The enhanced in vivo efficacy of the dual delivery carrier could be achieved with no evidence of local or systemic toxicity. In summary, we demonstrate the development of an effective LB-MSNP nanocarrier for synergistic PTX/GEM delivery in pancreatic cancer.
Recently, a commercial albumin-bound paclitaxel (PTX) nanocarrier (Abraxane) was approved as the first new drug for pancreatic ductal adenocarcinoma in almost a decade. PTX improves the pharmaceutical efficacy of the first-line pancreatic cancer drug, gemcitabine (GEM), through suppression of the tumor stroma and inhibiting the expression of the GEM-inactivating enzyme, cytidine deaminase (CDA). We asked, therefore, whether it was possible to develop a mesoporous silica nanoparticle (MSNP) carrier for pancreatic cancer to co-deliver a synergistic GEM/PTX combination. High drug loading was achieved by a custom-designed coated lipid film technique to encapsulate a calculated dose of GEM (40 wt %) by using a supported lipid bilayer (LB). The uniform coating of the 65 nm nanoparticles by a lipid membrane allowed incorporation of a sublethal amount of hydrophobic PTX, which could be co-delivered with GEM in pancreatic cells and tumors. We demonstrate that ratiometric PTX incorporation and delivery by our LB-MSNP could suppress CDA expression, contemporaneous with induction of oxidative stress as the operating principle for PTX synergy. To demonstrate the in vivo efficacy, mice carrying subcutaneous PANC-1 xenografts received intravenous (IV) injection of PTX/GEM-loaded LB-MSNP. Drug co-delivery provided more effective tumor shrinkage than GEM-loaded LB-MSNP, free GEM, or free GEM plus Abraxane. Comparable tumor shrinkage required coadministration of 12 times the amount of free Abraxane. High-performance liquid chromatography analysis of tumor-associated GEM metabolites confirmed that, compared to free GEM, MSNP co-delivery increased the phosphorylated DNA-interactive GEM metabolite 13-fold and decreased the inactivated and deaminated metabolite 4-fold. IV injection of MSNP-delivered PTX/GEM in a PANC-1 orthotopic model effectively inhibited primary tumor growth and eliminated metastatic foci. The enhanced in vivo efficacy of the dual delivery carrier could be achieved with no evidence of local or systemic toxicity. In summary, we demonstrate the development of an effective LB-MSNP nanocarrier for synergistic PTX/GEM delivery in pancreatic cancer.
Author Wu, Bobby
Ji, Zhaoxia
Liu, Xiangsheng
Wang, Meiying
Nel, Andre E
Situ, Allen
Meng, Huan
Chang, Chong Hyun
Liu, Huiyu
AuthorAffiliation Chinese Academy of Sciences
Division of NanoMedicine, Department of Medicine
University of California
Laboratory of Controllable Preparation and Application of Nanomaterials, Research Center for Micro & Nano Materials and Technology, Technical Institute of Physics and Chemistry
California NanoSystems Institute
AuthorAffiliation_xml – name: California NanoSystems Institute
– name: University of California
– name: Division of NanoMedicine, Department of Medicine
– name: Laboratory of Controllable Preparation and Application of Nanomaterials, Research Center for Micro & Nano Materials and Technology, Technical Institute of Physics and Chemistry
– name: Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Huan
  surname: Meng
  fullname: Meng, Huan
  email: hmeng@mednet.ucla.edu, anel@mednet.ucla.edu
– sequence: 2
  givenname: Meiying
  surname: Wang
  fullname: Wang, Meiying
– sequence: 3
  givenname: Huiyu
  surname: Liu
  fullname: Liu, Huiyu
– sequence: 4
  givenname: Xiangsheng
  surname: Liu
  fullname: Liu, Xiangsheng
– sequence: 5
  givenname: Allen
  surname: Situ
  fullname: Situ, Allen
– sequence: 6
  givenname: Bobby
  surname: Wu
  fullname: Wu, Bobby
– sequence: 7
  givenname: Zhaoxia
  surname: Ji
  fullname: Ji, Zhaoxia
– sequence: 8
  givenname: Chong Hyun
  surname: Chang
  fullname: Chang, Chong Hyun
– sequence: 9
  givenname: Andre E
  surname: Nel
  fullname: Nel, Andre E
  email: hmeng@mednet.ucla.edu, anel@mednet.ucla.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25776964$$D View this record in MEDLINE/PubMed
BookMark eNp9UVtrFDEUDlKxF332TfIoyLTJzCSZfRFkta2w1UIt-BbOZM7UlEyyJjOl-z_8wWbYdVFBX5ITvls43zE58MEjIS85O-Ws5GdgkgcfTkXLmODsCTnii0oWrJFfD_az4IfkOKX7TFGNks_IYSmUkgtZH5Eftwlp6CnQlV3brlgGGLGjV5jCOsQwJXpjnTVAP-WYNcTRGof02sHYhzjQfNCbjcd4Z1OG6AUOxo7QWo8UfEevwbj8fkRH36OzDxg3dAz0chrAZ9CbiDDrlnnESK2nV9bgc_K0B5fwxe4-IbfnH74sL4vV54uPy3erAmquxqIDpRBF0_TAGmzaxgCYzgipOgFV2aIy7aLDBitsjJTYLHrJBcMSjWxLVVUn5O3Wdz21A3YG_RjB6XW0A8SNDmD1n4i33_RdeNB1zUUtymzwemcQw_cJ06gHmww6Bx7z7jRXsmSS1_Wc9er3rH3Iryoy4WxLMDGkFLHfUzjTc9l6V7belZ0V4i_FvPvRhvmz1v1H92ary4C-D1P0ecn_ZP8Eww3DVg
CitedBy_id crossref_primary_10_1021_acsami_6b14836
crossref_primary_10_3390_polym16081105
crossref_primary_10_1002_cnma_201700264
crossref_primary_10_1016_j_colsurfb_2017_10_005
crossref_primary_10_2174_1389450121666200703195229
crossref_primary_10_2174_1567201818666211214112710
crossref_primary_10_1007_s10971_018_4772_1
crossref_primary_10_1111_cbdd_13309
crossref_primary_10_1002_adma_201802368
crossref_primary_10_1021_acs_chemmater_7b01329
crossref_primary_10_1039_C5RA16511C
crossref_primary_10_3390_bioengineering10101205
crossref_primary_10_1021_acsami_6b10360
crossref_primary_10_1016_j_yexcr_2021_112660
crossref_primary_10_1080_17425247_2016_1218464
crossref_primary_10_1021_acs_accounts_7b00635
crossref_primary_10_1038_s41467_018_04571_4
crossref_primary_10_1016_j_addr_2017_06_003
crossref_primary_10_1016_j_colsurfb_2016_12_024
crossref_primary_10_1016_j_ejpb_2023_09_014
crossref_primary_10_3389_fphar_2022_829796
crossref_primary_10_1016_j_jcis_2024_08_026
crossref_primary_10_1002_smll_201802112
crossref_primary_10_1016_j_jconrel_2017_08_016
crossref_primary_10_1016_j_actbio_2020_01_039
crossref_primary_10_1021_acs_molpharmaceut_5b00544
crossref_primary_10_2174_1567201819666220324093821
crossref_primary_10_1146_annurev_physchem_040215_112634
crossref_primary_10_1515_revce_2016_0018
crossref_primary_10_1002_slct_201802107
crossref_primary_10_1007_s00894_019_4178_1
crossref_primary_10_1016_j_colsurfa_2018_10_072
crossref_primary_10_1021_acs_molpharmaceut_3c00180
crossref_primary_10_1021_acsami_7b16685
crossref_primary_10_1172_JCI92284
crossref_primary_10_1039_C9TB01604J
crossref_primary_10_1016_j_ijpharm_2018_03_037
crossref_primary_10_1039_D2NR04235E
crossref_primary_10_1002_ange_202102059
crossref_primary_10_1016_j_biomaterials_2018_04_056
crossref_primary_10_1016_j_pharmthera_2022_108108
crossref_primary_10_1021_acsnano_2c01252
crossref_primary_10_2147_IJN_S259432
crossref_primary_10_1021_acsabm_0c00515
crossref_primary_10_1038_srep46540
crossref_primary_10_3390_pharmaceutics12070649
crossref_primary_10_1007_s10876_021_02009_4
crossref_primary_10_1007_s12010_022_04235_6
crossref_primary_10_1016_j_actbio_2022_12_013
crossref_primary_10_3390_cancers15164145
crossref_primary_10_1016_j_ijpharm_2020_119576
crossref_primary_10_1021_acsnano_6b00320
crossref_primary_10_1021_acsnano_9b04680
crossref_primary_10_1177_0885328218758925
crossref_primary_10_1016_j_canlet_2016_11_030
crossref_primary_10_1208_s12249_017_0877_z
crossref_primary_10_1016_j_jddst_2017_04_019
crossref_primary_10_1038_am_2017_185
crossref_primary_10_1039_D3SC03877G
crossref_primary_10_1038_s41596_020_00421_0
crossref_primary_10_1039_C8TB02473A
crossref_primary_10_1080_1061186X_2024_2405711
crossref_primary_10_1039_C7LC00774D
crossref_primary_10_1016_j_ijpharm_2019_118595
crossref_primary_10_1016_j_jddst_2022_103801
crossref_primary_10_1021_acsnano_7b02044
crossref_primary_10_1016_j_tranon_2018_02_023
crossref_primary_10_3390_pharmaceutics15041128
crossref_primary_10_1016_j_jconrel_2016_03_030
crossref_primary_10_1021_acs_langmuir_3c01576
crossref_primary_10_3389_fchem_2022_844426
crossref_primary_10_1002_bmm2_12083
crossref_primary_10_2174_0929867327666200212100257
crossref_primary_10_1016_j_cclet_2020_02_034
crossref_primary_10_3390_cancers12051189
crossref_primary_10_1039_C7QI00645D
crossref_primary_10_1016_j_colsurfb_2017_06_039
crossref_primary_10_2147_IJN_S313153
crossref_primary_10_3389_fchem_2019_00343
crossref_primary_10_1016_j_biomaterials_2018_11_027
crossref_primary_10_1039_C7BM00297A
crossref_primary_10_3390_cancers13133321
crossref_primary_10_1002_smll_202000673
crossref_primary_10_1021_acsami_7b06062
crossref_primary_10_3390_nano5021004
crossref_primary_10_1016_j_addr_2022_114357
crossref_primary_10_1002_chem_201604868
crossref_primary_10_1021_acs_nanolett_1c00168
crossref_primary_10_1016_j_biomaterials_2020_120635
crossref_primary_10_3390_polym11030511
crossref_primary_10_1002_smll_202104449
crossref_primary_10_1039_C6RA09816A
crossref_primary_10_2174_0115733947242447231003035334
crossref_primary_10_3390_pharmaceutics12121156
crossref_primary_10_1021_acs_nanolett_7b04043
crossref_primary_10_1002_wnan_1983
crossref_primary_10_1016_j_biomaterials_2018_04_027
crossref_primary_10_1021_acsami_8b03008
crossref_primary_10_3389_fbioe_2024_1482637
crossref_primary_10_1021_acs_chemmater_6b05471
crossref_primary_10_3389_fbioe_2021_699610
crossref_primary_10_1021_acs_langmuir_1c02260
crossref_primary_10_1021_acsbiomaterials_9b00099
crossref_primary_10_1116_6_0001688
crossref_primary_10_1039_C7ME00050B
crossref_primary_10_1002_INMD_20240131
crossref_primary_10_1002_anie_201611187
crossref_primary_10_1016_j_jconrel_2019_03_015
crossref_primary_10_1021_acsinfecdis_9b00285
crossref_primary_10_3390_molecules30061257
crossref_primary_10_1016_j_colsurfb_2022_112357
crossref_primary_10_1021_acs_bioconjchem_6b00158
crossref_primary_10_1002_smll_202101208
crossref_primary_10_1016_j_ijpharm_2020_120119
crossref_primary_10_1039_C6RA27802G
crossref_primary_10_1002_adhm_201700831
crossref_primary_10_1016_j_colsurfb_2015_12_046
crossref_primary_10_2147_IJN_S334298
crossref_primary_10_1016_j_actbio_2020_09_009
crossref_primary_10_1039_C9NA00779B
crossref_primary_10_1016_j_ijpharm_2023_123606
crossref_primary_10_4155_ppa_2023_0024
crossref_primary_10_1002_anbr_202100157
crossref_primary_10_1177_00368504241274967
crossref_primary_10_3892_ol_2017_6008
crossref_primary_10_1039_C8TB03318H
crossref_primary_10_1088_2058_6272_aaabb5
crossref_primary_10_1002_ddr_21441
crossref_primary_10_1021_acsnano_8b06655
crossref_primary_10_1016_j_tiv_2018_06_019
crossref_primary_10_1002_smll_201502119
crossref_primary_10_1021_acsnano_5b07781
crossref_primary_10_1007_s11095_020_02888_8
crossref_primary_10_1016_j_biomaterials_2016_04_010
crossref_primary_10_1002_ange_201611187
crossref_primary_10_1016_j_msec_2016_10_081
crossref_primary_10_1038_nrclinonc_2016_119
crossref_primary_10_1016_j_envres_2023_117443
crossref_primary_10_1039_C9NR03684A
crossref_primary_10_1016_j_jcis_2016_06_004
crossref_primary_10_1007_s13346_021_00935_4
crossref_primary_10_1039_C7TB00220C
crossref_primary_10_1007_s11224_018_1227_9
crossref_primary_10_1016_j_biopha_2022_113305
crossref_primary_10_1088_1361_6528_ac0e68
crossref_primary_10_1002_marc_201600344
crossref_primary_10_1016_j_jcis_2021_02_054
crossref_primary_10_1016_j_pdpdt_2019_03_008
crossref_primary_10_1002_adfm_202100805
crossref_primary_10_3389_fphar_2023_1111991
crossref_primary_10_3390_bios12020109
crossref_primary_10_1016_j_ijpharm_2017_01_031
crossref_primary_10_1016_j_semradonc_2016_05_002
crossref_primary_10_1039_C6PY01188H
crossref_primary_10_1016_j_colsurfa_2019_01_015
crossref_primary_10_1016_j_addr_2024_115291
crossref_primary_10_3390_molecules26082380
crossref_primary_10_1016_j_cplett_2017_07_053
crossref_primary_10_1039_D0NH00446D
crossref_primary_10_1021_acsnano_0c08694
crossref_primary_10_2217_nnm_2017_0316
crossref_primary_10_1016_j_ajps_2021_06_001
crossref_primary_10_1016_j_ijpharm_2020_120139
crossref_primary_10_1016_j_isci_2022_105407
crossref_primary_10_1021_acs_analchem_7b01397
crossref_primary_10_1080_21691401_2018_1431651
crossref_primary_10_1039_C6NR04784J
crossref_primary_10_1208_s12249_021_01985_0
crossref_primary_10_1016_j_cclet_2016_11_008
crossref_primary_10_1016_j_colsurfb_2021_112020
crossref_primary_10_1016_j_jconrel_2016_03_001
crossref_primary_10_1172_JCI93955
crossref_primary_10_1021_acsami_6b10370
crossref_primary_10_1016_j_cej_2020_127710
crossref_primary_10_3390_pharmaceutics14020390
crossref_primary_10_1016_j_ejpb_2021_04_020
crossref_primary_10_1021_acsami_8b15390
crossref_primary_10_1016_j_pmatsci_2020_100686
crossref_primary_10_1039_D0TB02168G
crossref_primary_10_1002_cam4_6502
crossref_primary_10_1016_j_biomaterials_2018_09_043
crossref_primary_10_1002_cam4_2384
crossref_primary_10_1039_D2CC01601J
crossref_primary_10_1039_D2RA03718A
crossref_primary_10_3389_fmolb_2020_00193
crossref_primary_10_1016_j_mtbio_2024_101199
crossref_primary_10_1021_acsnano_3c04564
crossref_primary_10_1021_acsanm_3c00859
crossref_primary_10_1124_jpet_118_255786
crossref_primary_10_1016_j_micromeso_2016_09_025
crossref_primary_10_1002_cnma_201900202
crossref_primary_10_3390_ijms23094773
crossref_primary_10_1016_j_cbi_2020_109221
crossref_primary_10_1039_C6RA09017F
crossref_primary_10_3390_biomedicines4030020
crossref_primary_10_3389_fphar_2024_1389922
crossref_primary_10_1016_j_apmt_2023_101834
crossref_primary_10_2174_1568026620666200101095641
crossref_primary_10_1007_s12032_024_02443_0
crossref_primary_10_3390_ijms21249573
crossref_primary_10_1016_j_ajps_2016_05_005
crossref_primary_10_1002_btm2_10129
crossref_primary_10_1021_acs_nanolett_4c02485
crossref_primary_10_1016_j_jconrel_2016_04_021
crossref_primary_10_1039_C6NR07894J
crossref_primary_10_1080_17425247_2019_1575806
crossref_primary_10_3390_ma12101610
crossref_primary_10_1002_jcb_27421
crossref_primary_10_3390_nano13152250
crossref_primary_10_1016_j_bios_2017_01_049
crossref_primary_10_1002_adma_202306476
crossref_primary_10_1177_0885328219868851
crossref_primary_10_5772_63437
crossref_primary_10_1021_acsnano_2c06300
crossref_primary_10_2147_CMAR_S277324
crossref_primary_10_1016_j_jddst_2023_104305
crossref_primary_10_1021_acsnano_6b06040
crossref_primary_10_1002_mco2_163
crossref_primary_10_1038_s41598_023_28424_3
crossref_primary_10_1002_smll_202310241
crossref_primary_10_1016_j_cclet_2023_108184
crossref_primary_10_1016_j_jddst_2021_102392
crossref_primary_10_1016_j_actbio_2021_01_005
crossref_primary_10_1021_acsami_6b00251
crossref_primary_10_3389_fbioe_2023_1160509
crossref_primary_10_3390_pharmaceutics12060526
crossref_primary_10_1038_s41578_020_0230_0
crossref_primary_10_1002_advs_202201931
crossref_primary_10_1016_j_semcancer_2019_08_022
crossref_primary_10_3390_pharmaceutics11110574
crossref_primary_10_1002_anie_202102059
crossref_primary_10_1039_C5CC06654A
crossref_primary_10_3892_mco_2019_1867
crossref_primary_10_1186_s12951_022_01738_6
crossref_primary_10_1016_j_jconrel_2024_01_004
crossref_primary_10_1021_acs_langmuir_5b02367
crossref_primary_10_1021_acsabm_8b00811
crossref_primary_10_1186_s12951_024_02975_7
crossref_primary_10_1007_s00604_018_2848_9
crossref_primary_10_1016_j_fct_2017_05_054
crossref_primary_10_3390_pharmaceutics15030818
crossref_primary_10_1039_C9BM00822E
crossref_primary_10_1039_C9RA07051F
crossref_primary_10_1002_VIW_20200190
crossref_primary_10_1016_j_canlet_2015_09_007
crossref_primary_10_1021_acsabm_5c00037
crossref_primary_10_1002_adma_201705660
crossref_primary_10_1208_s12248_018_0235_4
crossref_primary_10_1016_j_ejps_2016_08_021
crossref_primary_10_1002_advs_202002545
crossref_primary_10_3390_cancers14030622
crossref_primary_10_1016_j_colsurfb_2019_05_038
crossref_primary_10_3390_molecules23112906
crossref_primary_10_1021_jacs_0c00650
crossref_primary_10_1016_j_jconrel_2016_01_054
crossref_primary_10_1186_s40580_020_00224_9
crossref_primary_10_1021_acsami_6b09074
crossref_primary_10_1021_acs_langmuir_1c03002
crossref_primary_10_3389_fbioe_2023_1266652
crossref_primary_10_1016_j_jpha_2023_11_011
crossref_primary_10_1186_s40580_020_00247_2
crossref_primary_10_1002_smll_202303267
crossref_primary_10_1021_acsami_7b15296
crossref_primary_10_1016_j_addr_2018_06_014
crossref_primary_10_1021_acs_molpharmaceut_5b00280
crossref_primary_10_1021_acs_nanolett_8b03043
crossref_primary_10_1038_srep31009
crossref_primary_10_1039_C8TB00462E
crossref_primary_10_1038_s41467_020_17996_7
crossref_primary_10_1016_j_biomaterials_2020_119999
crossref_primary_10_3390_molecules28031506
crossref_primary_10_1038_s41598_019_57155_7
crossref_primary_10_1080_1061186X_2017_1400553
crossref_primary_10_1016_j_eurpolymj_2021_110887
crossref_primary_10_1186_s12951_018_0340_7
crossref_primary_10_1016_j_nantod_2023_101864
crossref_primary_10_1080_00914037_2017_1393678
crossref_primary_10_1038_nrneph_2016_156
crossref_primary_10_1016_j_jconrel_2016_01_002
crossref_primary_10_1039_C6RA17213J
crossref_primary_10_1248_cpb_c20_00008
crossref_primary_10_1016_j_cclet_2019_05_059
crossref_primary_10_1038_s41467_017_01651_9
crossref_primary_10_1002_adtp_202200079
crossref_primary_10_1016_j_critrevonc_2022_103677
crossref_primary_10_1016_j_addr_2015_10_022
crossref_primary_10_1016_j_jconrel_2018_11_013
crossref_primary_10_1002_adhm_201800300
crossref_primary_10_1186_s13020_022_00577_9
crossref_primary_10_1007_s40005_016_0252_1
crossref_primary_10_3389_fonc_2023_1217095
crossref_primary_10_1016_j_ijpharm_2022_122099
crossref_primary_10_1021_acsnano_3c07621
crossref_primary_10_15406_jnmr_2015_02_00043
crossref_primary_10_1021_acs_jpcc_8b06566
crossref_primary_10_3390_pharmaceutics14112280
crossref_primary_10_1007_s12274_018_2012_1
crossref_primary_10_1016_j_nantod_2023_102048
crossref_primary_10_1016_j_molliq_2019_03_040
crossref_primary_10_1016_j_micromeso_2018_02_008
crossref_primary_10_1016_j_pharmthera_2022_108300
crossref_primary_10_1016_j_onano_2023_100152
crossref_primary_10_1021_acsnano_7b02918
crossref_primary_10_1039_D1BM00393C
crossref_primary_10_3389_fphar_2022_1025618
crossref_primary_10_1080_00222348_2023_2282346
crossref_primary_10_1016_j_drudis_2022_02_026
crossref_primary_10_3390_cancers15245753
crossref_primary_10_1016_j_actbio_2019_02_031
crossref_primary_10_1039_C7CC04872F
crossref_primary_10_1016_j_nantod_2022_101446
crossref_primary_10_1016_j_apsb_2022_11_009
crossref_primary_10_1021_acsnano_6b05541
crossref_primary_10_1016_j_inoche_2024_113247
crossref_primary_10_1039_D1CS01022K
crossref_primary_10_1186_s12943_023_01849_0
crossref_primary_10_1039_C9NA00282K
crossref_primary_10_1002_smll_202005993
crossref_primary_10_1007_s10876_024_02739_1
crossref_primary_10_1021_acsnano_0c02197
crossref_primary_10_1096_fj_202001508R
crossref_primary_10_1080_17425247_2016_1211637
crossref_primary_10_1002_jcp_26593
crossref_primary_10_3390_molecules29030675
crossref_primary_10_1021_acsnano_6b02819
crossref_primary_10_1021_acs_nanolett_0c00495
crossref_primary_10_3389_fnins_2020_00742
crossref_primary_10_1039_C5NR06734K
crossref_primary_10_3390_molecules21040522
crossref_primary_10_1002_smll_201602263
crossref_primary_10_3389_fonc_2024_1246308
crossref_primary_10_1021_acsnano_8b06164
crossref_primary_10_1080_10717544_2018_1474974
crossref_primary_10_1039_D2EN00653G
crossref_primary_10_4251_wjgo_v13_i4_231
crossref_primary_10_1039_D0TB00017E
crossref_primary_10_1021_acs_nanolett_2c04834
crossref_primary_10_1016_j_biomaterials_2020_120157
crossref_primary_10_3389_fphar_2022_893151
crossref_primary_10_1002_adtp_201900076
crossref_primary_10_1007_s40242_017_6450_1
crossref_primary_10_1016_j_cocis_2017_07_003
crossref_primary_10_1016_j_jcis_2017_07_047
crossref_primary_10_1186_s12951_023_01994_0
Cites_doi 10.1126/science.1183057
10.1016/S0090-9556(25)08805-1
10.1158/1535-7163.MCT-10-1091
10.1038/nrc1566
10.1021/nn3010087
10.1016/S0006-3495(90)82382-1
10.1007/s11434-014-0700-0
10.1021/nn204102q
10.1039/b924370d
10.1021/nl400681f
10.1038/491S58a
10.1016/j.drudis.2012.05.010
10.1136/gutjnl-2012-302529
10.1016/j.jconrel.2013.03.009
10.1021/cm402592t
10.1056/NEJMoa1304369
10.1158/2159-8290.CD-11-0242
10.1021/ja902039y
10.1021/nn103344k
10.1021/ja808018y
10.1021/nn100448z
10.1021/mp200243k
10.1038/nmat3049
10.1016/j.aca.2014.04.030
10.1038/nrgastro.2012.115
10.1021/nl048153y
10.1200/JCO.2006.07.9525
10.1021/nn200809t
10.1093/carcin/bgt227
10.1016/S0167-7799(99)01412-2
10.1124/dmd.112.048769
10.1021/nn100690m
10.1016/S0006-3495(97)78811-8
10.1021/nn405674m
10.1002/adfm.201401076
10.1038/nnano.2007.387
10.1126/science.271.5245.43
10.3402/nano.v1i0.5705
10.1200/JCO.2011.36.5742
10.1021/jz300021x
10.1021/nl801596a
10.1039/c2ib20137b
10.1021/nn3044066
10.1021/nl100991w
10.1021/ja104501a
10.1021/mp200613y
10.1002/smll.201000631
10.2967/jnumed.109.073361
10.1002/adma.201300299
10.1158/1078-0432.CCR-08-0515
10.1093/annonc/mdj941
10.1021/nn404083m
10.1124/mi.7.4.8
10.4155/tde.10.13
10.1021/nn9005973
10.1016/j.leukres.2008.06.028
10.1038/nmat3042
10.1126/science.1114397
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright © 2015 American Chemical Society 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
– notice: Copyright © 2015 American Chemical Society 2015 American Chemical Society
DBID N~.
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
5PM
DOI 10.1021/acsnano.5b00510
DatabaseName Amer. Chemical Soc. (ACS) (Free, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

MEDLINE

Database_xml – sequence: 1
  dbid: N~.
  name: Amer. Chemical Soc. (ACS) (Free, activated by CARLI)
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 3557
ExternalDocumentID PMC4415452
25776964
10_1021_acsnano_5b00510
c512882636
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA016042
– fundername: NCI NIH HHS
  grantid: R01 CA133697
– fundername: NCI NIH HHS
  grantid: U01 CA198846
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
N~.
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
5PM
ID FETCH-LOGICAL-a417t-da77ee588fa08e8b8caacdc567d5a32be7cb9de8e3e8c66e89f6150e2ec6b2733
IEDL.DBID N~.
ISSN 1936-0851
IngestDate Thu Aug 21 13:19:09 EDT 2025
Fri Jul 11 10:50:34 EDT 2025
Thu Apr 03 07:06:31 EDT 2025
Tue Jul 01 04:50:07 EDT 2025
Thu Apr 24 23:03:55 EDT 2025
Thu Aug 27 13:42:06 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords co-delivery
paclitaxel
pancreatic cancer
synergy
mesoporous silica nanoparticle
ratiometric
gemcitabine
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a417t-da77ee588fa08e8b8caacdc567d5a32be7cb9de8e3e8c66e89f6150e2ec6b2733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1021/acsnano.5b00510
PMID 25776964
PQID 1762061443
PQPubID 23500
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4415452
proquest_miscellaneous_1762061443
pubmed_primary_25776964
crossref_primary_10_1021_acsnano_5b00510
crossref_citationtrail_10_1021_acsnano_5b00510
acs_journals_10_1021_acsnano_5b00510
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
N~.
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-28
PublicationDateYYYYMMDD 2015-04-28
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Dengler E. C. (ref52/cit52) 2013; 168
Moore M. J. (ref57/cit57) 2007; 25
Mai W. X. (ref10/cit10) 2013; 5
Mayer L. (ref29/cit29) 2007; 7
Meng H. (ref15/cit15) 2012; 3
van Schooneveld M. M. (ref25/cit25) 2008; 8
Meng H. (ref63/cit63) 2010; 4
Batist G. (ref41/cit41) 2009; 15
Zhang C. (ref58/cit58) 2011; 10
Meng H. (ref13/cit13) 2011; 5
Shipley L. A. (ref55/cit55) 1992; 20
Yang Y. (ref23/cit23) 2010; 12
Tardi P. (ref40/cit40) 2009; 33
Liu J. (ref28/cit28) 2009; 131
Ashley C. E. (ref21/cit21) 2012; 6
Federico C. (ref9/cit9) 2012; 2012
Awasthi N. (ref7/cit7) 2013; 34
von Maltzahn G. (ref62/cit62) 2011; 10
Aryal S. (ref42/cit42) 2011; 8
Ma L. (ref37/cit37) 2013; 7
ref38/cit38
Meng H. (ref12/cit12) 2013; 7
Linseisen F. M. (ref49/cit49) 1997; 72
Jacobetz M. A. (ref4/cit4) 2012; 62
Mackowiak S. A. (ref24/cit24) 2013; 13
Miao L. (ref43/cit43) 2014; 24
Lin N. (ref31/cit31) 2004; 12
Von Hoff D. D. (ref44/cit44) 2011; 29
Meng H. (ref11/cit11) 2010; 4
Hu C. (ref35/cit35) 2010; 1
Ashley C. E. (ref26/cit26) 2011; 10
Nel A. (ref46/cit46) 2006; 311
Sommerwerk A. (ref53/cit53) 2011; 8
Bayerl T. M. (ref48/cit48) 1990; 58
Roggers R. A. (ref51/cit51) 2012; 9
Cauda V. (ref20/cit20) 2010; 10
Meng H. (ref45/cit45) 2009; 3
Meng H. (ref16/cit16) 2011; 5
Argyo C. (ref22/cit22) 2013; 26
Bourzac K. (ref8/cit8) 2012; 491
Mornet S. (ref50/cit50) 2005; 5
Liu J. (ref27/cit27) 2009; 131
Meng H. (ref14/cit14) 2010; 132
Peer D. (ref33/cit33) 2007; 2
Frese K. K. (ref6/cit6) 2012; 2
Zhao F. (ref34/cit34) 2015; 60
Parhi P. (ref36/cit36) 2012; 17
DaCosta M. V. (ref60/cit60) 2014; 832
Baker J. A. R. (ref30/cit30) 2013; 41
Von Hoff D. D. (ref5/cit5) 2013; 369
Aryal S. (ref39/cit39) 2010; 6
Sugahara K. N. (ref61/cit61) 2010; 328
Sackmann E. (ref18/cit18) 1996; 271
Erkan M. (ref3/cit3) 2012; 9
Mini E. (ref2/cit2) 2006; 17
Meng H. (ref17/cit17) 2013; 7
Ferrari M. (ref32/cit32) 2005; 5
Zhang H. (ref59/cit59) 2012; 6
ref1/cit1
Sackmann E. (ref47/cit47) 2000; 18
Ji T. (ref54/cit54) 2013; 25
Linseisen F. M. (ref19/cit19) 1997; 72
Shu C. J. (ref56/cit56) 2010; 51
21685903 - Nat Mater. 2011 Jul;10(7):545-52
21524062 - ACS Nano. 2011 May 24;5(5):4131-44
18624389 - Nano Lett. 2008 Aug;8(8):2517-25
20718462 - J Am Chem Soc. 2010 Sep 15;132(36):12690-7
27199284 - ACS Nano. 2016 Jun 28;10(6):6416
19445508 - J Am Chem Soc. 2009 Jun 10;131(22):7567-9
8539599 - Science. 1996 Jan 5;271(5245):43-8
21499315 - Nat Mater. 2011 May;10(5):389-97
23517784 - J Control Release. 2013 Jun 10;168(2):209-24
23230131 - Drug Metab Dispos. 2013 Mar;41(3):541-5
10652510 - Trends Biotechnol. 2000 Feb;18(2):58-64
23042147 - Integr Biol (Camb). 2013 Jan;5(1):19-28
24131140 - N Engl J Med. 2013 Oct 31;369(18):1691-703
22738645 - Mol Pharm. 2012 Sep 4;9(9):2770-7
24274814 - ACS Nano. 2013 Nov 26;7(11):9518-25
21566062 - Mol Cancer Ther. 2011 Jul;10(7):1264-75
20731437 - ACS Nano. 2010 Aug 24;4(8):4539-50
21969517 - J Clin Oncol. 2011 Dec 1;29(34):4548-54
22466618 - Gut. 2013 Jan;62(1):112-20
24143858 - ACS Nano. 2013 Nov 26;7(11):10048-65
23803690 - Carcinogenesis. 2013 Oct;34(10):2361-9
25395922 - Adv Funct Mater. 2014 Nov 12;24(42):6601-6611
20515041 - Nano Lett. 2010 Jul 14;10(7):2484-92
18654426 - Nat Nanotechnol. 2007 Dec;2(12):751-60
23320289 - Nature. 2012 Nov 22;491(7425):S58-60
22652342 - Drug Discov Today. 2012 Sep;17(17-18):1044-52
24890691 - Anal Chim Acta. 2014 Jun 17;832:1-33
21563770 - ACS Nano. 2011 Jun 28;5(6):4434-47
22585996 - Cancer Discov. 2012 Mar;2(3):260-9
15569401 - Acta Pharmacol Sin. 2004 Dec;25(12):1584-9
21696189 - Mol Pharm. 2011 Aug 1;8(4):1401-7
20407714 - Phys Chem Chem Phys. 2010 May 7;12(17):4418-22
1362937 - Drug Metab Dispos. 1992 Nov-Dec;20(6):849-55
26285851 - J Phys Chem Lett. 2012 Feb 2;3(3):358-9
16456071 - Science. 2006 Feb 3;311(5761):622-7
22816135 - Ther Deliv. 2010 Aug;1(2):323-34
20378772 - Science. 2010 May 21;328(5981):1031-5
15794611 - Nano Lett. 2005 Feb;5(2):281-5
17452677 - J Clin Oncol. 2007 May 20;25(15):1960-6
18676016 - Leuk Res. 2009 Jan;33(1):129-39
9083669 - Biophys J. 1997 Apr;72(4):1659-67
20564488 - Small. 2010 Jul 5;6(13):1442-8
23662711 - Nano Lett. 2013 Jun 12;13(6):2576-83
2207243 - Biophys J. 1990 Aug;58(2):357-62
23703805 - Adv Mater. 2013 Jul 12;25(26):3508-25
23139626 - Int J Nanomedicine. 2012;7:5423-36
21452863 - ACS Nano. 2009 Jul 28;3(7):1620-7
20554721 - J Nucl Med. 2010 Jul;51(7):1092-8
16807468 - Ann Oncol. 2006 May;17 Suppl 5:v7-12
17827442 - Mol Interv. 2007 Aug;7(4):216-23
19173660 - J Am Chem Soc. 2009 Feb 4;131(4):1354-5
15738981 - Nat Rev Cancer. 2005 Mar;5(3):161-71
22710569 - Nat Rev Gastroenterol Hepatol. 2012 Aug;9(8):454-67
20429577 - ACS Nano. 2010 May 25;4(5):2773-83
23289892 - ACS Nano. 2013 Feb 26;7(2):994-1005
22502734 - ACS Nano. 2012 May 22;6(5):4349-68
19147776 - Clin Cancer Res. 2009 Jan 15;15(2):692-700
22309035 - ACS Nano. 2012 Mar 27;6(3):2174-88
22110857 - Nano Rev. 2010;1:null
References_xml – volume: 328
  start-page: 1031
  year: 2010
  ident: ref61/cit61
  publication-title: Science
  doi: 10.1126/science.1183057
– volume: 20
  start-page: 849
  year: 1992
  ident: ref55/cit55
  publication-title: Drug Metab. Dispos.
  doi: 10.1016/S0090-9556(25)08805-1
– volume: 10
  start-page: 1264
  year: 2011
  ident: ref58/cit58
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-10-1091
– volume: 5
  start-page: 161
  year: 2005
  ident: ref32/cit32
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1566
– volume: 6
  start-page: 4349
  year: 2012
  ident: ref59/cit59
  publication-title: ACS Nano
  doi: 10.1021/nn3010087
– volume: 58
  start-page: 357
  year: 1990
  ident: ref48/cit48
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(90)82382-1
– volume: 60
  start-page: 3
  year: 2015
  ident: ref34/cit34
  publication-title: Sci. Bull.
  doi: 10.1007/s11434-014-0700-0
– volume: 6
  start-page: 2174
  year: 2012
  ident: ref21/cit21
  publication-title: ACS Nano
  doi: 10.1021/nn204102q
– volume: 12
  start-page: 4418
  year: 2010
  ident: ref23/cit23
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b924370d
– volume: 13
  start-page: 2576
  year: 2013
  ident: ref24/cit24
  publication-title: Nano Lett.
  doi: 10.1021/nl400681f
– volume: 491
  start-page: S58
  year: 2012
  ident: ref8/cit8
  publication-title: Nature
  doi: 10.1038/491S58a
– volume: 17
  start-page: 1044
  year: 2012
  ident: ref36/cit36
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2012.05.010
– volume: 62
  start-page: 112
  year: 2012
  ident: ref4/cit4
  publication-title: Gut
  doi: 10.1136/gutjnl-2012-302529
– volume: 168
  start-page: 209
  year: 2013
  ident: ref52/cit52
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2013.03.009
– volume: 26
  start-page: 435
  year: 2013
  ident: ref22/cit22
  publication-title: Chem. Mater.
  doi: 10.1021/cm402592t
– volume: 369
  start-page: 1691
  year: 2013
  ident: ref5/cit5
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1304369
– volume: 2
  start-page: 260
  year: 2012
  ident: ref6/cit6
  publication-title: Cancer Discovery
  doi: 10.1158/2159-8290.CD-11-0242
– volume: 131
  start-page: 7567
  year: 2009
  ident: ref28/cit28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902039y
– volume: 5
  start-page: 4434
  year: 2011
  ident: ref16/cit16
  publication-title: ACS Nano
  doi: 10.1021/nn103344k
– volume: 131
  start-page: 1354
  year: 2009
  ident: ref27/cit27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808018y
– volume: 4
  start-page: 2773
  year: 2010
  ident: ref63/cit63
  publication-title: ACS Nano
  doi: 10.1021/nn100448z
– volume: 8
  start-page: 1401
  year: 2011
  ident: ref42/cit42
  publication-title: Mol. Pharmaceutics
  doi: 10.1021/mp200243k
– volume: 10
  start-page: 545
  year: 2011
  ident: ref62/cit62
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3049
– volume: 832
  start-page: 1
  year: 2014
  ident: ref60/cit60
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2014.04.030
– volume: 9
  start-page: 454
  year: 2012
  ident: ref3/cit3
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2012.115
– volume: 5
  start-page: 281
  year: 2005
  ident: ref50/cit50
  publication-title: Nano Lett.
  doi: 10.1021/nl048153y
– volume: 25
  start-page: 1960
  year: 2007
  ident: ref57/cit57
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2006.07.9525
– volume: 5
  start-page: 4131
  year: 2011
  ident: ref13/cit13
  publication-title: ACS Nano
  doi: 10.1021/nn200809t
– volume: 34
  start-page: 2361
  year: 2013
  ident: ref7/cit7
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgt227
– volume: 2012
  start-page: 5423
  year: 2012
  ident: ref9/cit9
  publication-title: Int. J. Nanomed.
– volume: 18
  start-page: 58
  year: 2000
  ident: ref47/cit47
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(99)01412-2
– volume: 41
  start-page: 541
  year: 2013
  ident: ref30/cit30
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.112.048769
– volume: 4
  start-page: 4539
  year: 2010
  ident: ref11/cit11
  publication-title: ACS Nano
  doi: 10.1021/nn100690m
– volume: 72
  start-page: 1659
  year: 1997
  ident: ref19/cit19
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(97)78811-8
– volume: 7
  start-page: 9518
  year: 2013
  ident: ref37/cit37
  publication-title: ACS Nano
  doi: 10.1021/nn405674m
– volume: 24
  start-page: 6601
  year: 2014
  ident: ref43/cit43
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401076
– volume: 2
  start-page: 751
  year: 2007
  ident: ref33/cit33
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.387
– volume: 271
  start-page: 43
  year: 1996
  ident: ref18/cit18
  publication-title: Science
  doi: 10.1126/science.271.5245.43
– ident: ref38/cit38
  doi: 10.3402/nano.v1i0.5705
– volume: 29
  start-page: 4548
  year: 2011
  ident: ref44/cit44
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2011.36.5742
– volume: 3
  start-page: 358
  year: 2012
  ident: ref15/cit15
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz300021x
– volume: 8
  start-page: 2517
  year: 2008
  ident: ref25/cit25
  publication-title: Nano Lett.
  doi: 10.1021/nl801596a
– volume: 5
  start-page: 19
  year: 2013
  ident: ref10/cit10
  publication-title: Integr. Biol.
  doi: 10.1039/c2ib20137b
– volume: 12
  start-page: 1584
  year: 2004
  ident: ref31/cit31
  publication-title: Acta. Pharmacol. Sin.
– volume: 7
  start-page: 994
  year: 2013
  ident: ref12/cit12
  publication-title: ACS Nano
  doi: 10.1021/nn3044066
– volume: 10
  start-page: 2484
  year: 2010
  ident: ref20/cit20
  publication-title: Nano Lett.
  doi: 10.1021/nl100991w
– volume: 132
  start-page: 12690
  year: 2010
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104501a
– volume: 9
  start-page: 2770
  year: 2012
  ident: ref51/cit51
  publication-title: Mol. Pharmaceutics
  doi: 10.1021/mp200613y
– volume: 6
  start-page: 1442
  year: 2010
  ident: ref39/cit39
  publication-title: Small
  doi: 10.1002/smll.201000631
– volume: 72
  start-page: 1659
  year: 1997
  ident: ref49/cit49
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(97)78811-8
– volume: 51
  start-page: 1092
  year: 2010
  ident: ref56/cit56
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.109.073361
– ident: ref1/cit1
– volume: 25
  start-page: 3508
  year: 2013
  ident: ref54/cit54
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300299
– volume: 15
  start-page: 692
  year: 2009
  ident: ref41/cit41
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-08-0515
– volume: 8
  start-page: 1978
  year: 2011
  ident: ref53/cit53
  publication-title: Pulm. Pharmacol. Ther.
– volume: 17
  start-page: v7
  year: 2006
  ident: ref2/cit2
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdj941
– volume: 7
  start-page: 10048
  year: 2013
  ident: ref17/cit17
  publication-title: ACS Nano
  doi: 10.1021/nn404083m
– volume: 7
  start-page: 216
  year: 2007
  ident: ref29/cit29
  publication-title: Mol. Interventions
  doi: 10.1124/mi.7.4.8
– volume: 1
  start-page: 323
  year: 2010
  ident: ref35/cit35
  publication-title: Ther. Delivery
  doi: 10.4155/tde.10.13
– volume: 3
  start-page: 1620
  year: 2009
  ident: ref45/cit45
  publication-title: ACS Nano
  doi: 10.1021/nn9005973
– volume: 33
  start-page: 129
  year: 2009
  ident: ref40/cit40
  publication-title: Leuk. Res.
  doi: 10.1016/j.leukres.2008.06.028
– volume: 10
  start-page: 476
  year: 2011
  ident: ref26/cit26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3042
– volume: 311
  start-page: 622
  year: 2006
  ident: ref46/cit46
  publication-title: Science
  doi: 10.1126/science.1114397
– reference: 17452677 - J Clin Oncol. 2007 May 20;25(15):1960-6
– reference: 27199284 - ACS Nano. 2016 Jun 28;10(6):6416
– reference: 21524062 - ACS Nano. 2011 May 24;5(5):4131-44
– reference: 22466618 - Gut. 2013 Jan;62(1):112-20
– reference: 20564488 - Small. 2010 Jul 5;6(13):1442-8
– reference: 18654426 - Nat Nanotechnol. 2007 Dec;2(12):751-60
– reference: 2207243 - Biophys J. 1990 Aug;58(2):357-62
– reference: 16807468 - Ann Oncol. 2006 May;17 Suppl 5:v7-12
– reference: 19445508 - J Am Chem Soc. 2009 Jun 10;131(22):7567-9
– reference: 22585996 - Cancer Discov. 2012 Mar;2(3):260-9
– reference: 17827442 - Mol Interv. 2007 Aug;7(4):216-23
– reference: 26285851 - J Phys Chem Lett. 2012 Feb 2;3(3):358-9
– reference: 16456071 - Science. 2006 Feb 3;311(5761):622-7
– reference: 1362937 - Drug Metab Dispos. 1992 Nov-Dec;20(6):849-55
– reference: 23803690 - Carcinogenesis. 2013 Oct;34(10):2361-9
– reference: 20515041 - Nano Lett. 2010 Jul 14;10(7):2484-92
– reference: 24274814 - ACS Nano. 2013 Nov 26;7(11):9518-25
– reference: 24890691 - Anal Chim Acta. 2014 Jun 17;832:1-33
– reference: 21696189 - Mol Pharm. 2011 Aug 1;8(4):1401-7
– reference: 22816135 - Ther Deliv. 2010 Aug;1(2):323-34
– reference: 22110857 - Nano Rev. 2010;1:null
– reference: 22309035 - ACS Nano. 2012 Mar 27;6(3):2174-88
– reference: 21563770 - ACS Nano. 2011 Jun 28;5(6):4434-47
– reference: 15794611 - Nano Lett. 2005 Feb;5(2):281-5
– reference: 21969517 - J Clin Oncol. 2011 Dec 1;29(34):4548-54
– reference: 23139626 - Int J Nanomedicine. 2012;7:5423-36
– reference: 20378772 - Science. 2010 May 21;328(5981):1031-5
– reference: 20554721 - J Nucl Med. 2010 Jul;51(7):1092-8
– reference: 22652342 - Drug Discov Today. 2012 Sep;17(17-18):1044-52
– reference: 23703805 - Adv Mater. 2013 Jul 12;25(26):3508-25
– reference: 8539599 - Science. 1996 Jan 5;271(5245):43-8
– reference: 9083669 - Biophys J. 1997 Apr;72(4):1659-67
– reference: 22738645 - Mol Pharm. 2012 Sep 4;9(9):2770-7
– reference: 18676016 - Leuk Res. 2009 Jan;33(1):129-39
– reference: 23289892 - ACS Nano. 2013 Feb 26;7(2):994-1005
– reference: 23320289 - Nature. 2012 Nov 22;491(7425):S58-60
– reference: 23517784 - J Control Release. 2013 Jun 10;168(2):209-24
– reference: 23230131 - Drug Metab Dispos. 2013 Mar;41(3):541-5
– reference: 15569401 - Acta Pharmacol Sin. 2004 Dec;25(12):1584-9
– reference: 21452863 - ACS Nano. 2009 Jul 28;3(7):1620-7
– reference: 25395922 - Adv Funct Mater. 2014 Nov 12;24(42):6601-6611
– reference: 21499315 - Nat Mater. 2011 May;10(5):389-97
– reference: 24143858 - ACS Nano. 2013 Nov 26;7(11):10048-65
– reference: 21566062 - Mol Cancer Ther. 2011 Jul;10(7):1264-75
– reference: 19173660 - J Am Chem Soc. 2009 Feb 4;131(4):1354-5
– reference: 20429577 - ACS Nano. 2010 May 25;4(5):2773-83
– reference: 20718462 - J Am Chem Soc. 2010 Sep 15;132(36):12690-7
– reference: 18624389 - Nano Lett. 2008 Aug;8(8):2517-25
– reference: 21685903 - Nat Mater. 2011 Jul;10(7):545-52
– reference: 20731437 - ACS Nano. 2010 Aug 24;4(8):4539-50
– reference: 15738981 - Nat Rev Cancer. 2005 Mar;5(3):161-71
– reference: 23042147 - Integr Biol (Camb). 2013 Jan;5(1):19-28
– reference: 22710569 - Nat Rev Gastroenterol Hepatol. 2012 Aug;9(8):454-67
– reference: 19147776 - Clin Cancer Res. 2009 Jan 15;15(2):692-700
– reference: 23662711 - Nano Lett. 2013 Jun 12;13(6):2576-83
– reference: 10652510 - Trends Biotechnol. 2000 Feb;18(2):58-64
– reference: 24131140 - N Engl J Med. 2013 Oct 31;369(18):1691-703
– reference: 20407714 - Phys Chem Chem Phys. 2010 May 7;12(17):4418-22
– reference: 22502734 - ACS Nano. 2012 May 22;6(5):4349-68
SSID ssj0057876
Score 2.6114275
Snippet Recently, a commercial albumin-bound paclitaxel (PTX) nanocarrier (Abraxane) was approved as the first new drug for pancreatic ductal adenocarcinoma in almost...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3540
SubjectTerms Albumins - chemistry
Albumins - pharmacology
Albumins - therapeutic use
Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Biocompatibility
Cancer
Cell Line, Tumor
Cell Transformation, Neoplastic
Cytidine Deaminase - metabolism
Deoxycytidine - analogs & derivatives
Deoxycytidine - chemistry
Deoxycytidine - pharmacology
Deoxycytidine - therapeutic use
Drug Carriers - chemistry
Drug Synergism
Drugs
Effectiveness
Female
Gene Expression Regulation, Neoplastic - drug effects
Humans
Lipid Bilayers - chemistry
Lipids
Metabolites
Mice
Nanoparticles - chemistry
Nanostructure
Paclitaxel - chemistry
Paclitaxel - pharmacology
Paclitaxel - therapeutic use
Pancreatic Neoplasms - drug therapy
Pancreatic Neoplasms - metabolism
Pancreatic Neoplasms - pathology
Porosity
Silicon Dioxide - chemistry
Tumors
Title Use of a Lipid-Coated Mesoporous Silica Nanoparticle Platform for Synergistic Gemcitabine and Paclitaxel Delivery to Human Pancreatic Cancer in Mice
URI http://dx.doi.org/10.1021/acsnano.5b00510
https://www.ncbi.nlm.nih.gov/pubmed/25776964
https://www.proquest.com/docview/1762061443
https://pubmed.ncbi.nlm.nih.gov/PMC4415452
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOBQ8WahVIPUA5csu45fOVYLpUJaVGlZqbfIdsZipcWpmiDRC7-CH8w4yS7dVpW45OKHkszY_j6P_Q1jR3qCk8CdyEzuJpkocplZ4hGZCN6KwhLp6m65zr-q06X4ci7P_4lF34zg8-kH65toYz2WvQPdZw-4IqdLOS5_jzeTbvI71QeQiSATitiq-NzqIC1Dvtldhm5hy5tHJK-tOSeP2f4AFuG4t-4Tdg_jU_bomoTgM_Zn2SDUASykLNRVNqsJPFYwx6YmZE20HhartC8HNI0SP-57grO1bRNaBXrA4ird_-sEm-Ez_vCr1hJdRrCxgjPrk4r3L1zDR1ynMxxX0NbQbf1TYewxp4dZcp5LWEWY08zznC1PPn2bnWZDpoXMiqlus8pqjSiNCXZi0DjjrfWVl0pX0ubcofauqNBgjsYrhaYISUgeOXrlCADlL9herCO-YuC0rGzgnSy_0EEbQRxUueAQPQ88H7Ej-v3lMFKasguC82k5WKkcrDRi4419Sj-olaekGeu7G7zfNrjohTrurvpuY_CSBlOKkNiIZJFySktDR5HpNV_2DrDtjOY2rQolRkzvuMa2QhLq3i2Jq--dYHfirELy1__36W_YQ0JlMoWsuDlge-3lT3xLyKd1h4T8Z4vDzvP_AmEDBOc
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOQAHypvlOUg9cMmSdR52jtWWskC3Ktqu1FtkOxOxYnFQk5Uov4MfzNjJhm6rSnDJIbFHfoxnvsnYnxnbFSGGJddxICMdBnEWJYGiOCKIS6PiTFHQ5U-5To_SyTz-dJqcbrFwfRaGGlGTpNon8f-yC4ze0TurbDVMWj26wW4SFOFOp_fGs7XtdeqXtnlkipMJTPRkPlcEOG9k6k1vdAViXt4pecH1HOywL32j_Y6Tb8NVo4fm1yU-x__p1T12t8OhsNcqzn22hfYBu3OBnfAh-z2vEaoSFLgLrotgXBEuLWCKdUWgvVrVMFu4X35AFppC71YSHC9V44Aw0ANm5-5ooeeChg_43SwaRZE4grIFHCvjCMJ_4hL2cem2h5xDU4HPKtBH28JZA2Onl2ewsDAlo_aIzQ_en4wnQXeJQ6DikWiCQgmBmEhZqlCi1NIoZQqTpKJIVMQ1CqOzAiVGKE2aosxKx1GPHE2qCVtFj9m2rSw-ZaBFUqiSe8b_WJRCxhTeprrUiIaXPBqwXRrPvFuEde7z63yUd4Ocd4M8YMP1nOemI0J393Esr6_wtq_wo-UAub7om7US5bROXfJFWaQZyUfkdXz0Tc180ipVL4zMpkizNB4wsaFufQHHAb75xS6-ei5wFw7HCX_2b11_zW5NTqaH-eHHo8_P2W0Cf4nLjHH5gm03Zyt8SQCr0a_8mvoDmZAlDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZtCqU9lL67bdJOIYdevPXasiUfw6bb9LHLQrqQm9FjRBa2cogdSC79Ff3BHdneJZsQ6MUHWxKyZyR9n0fzibF9EWPsEs0jmeo44kWaRYp4RMSdUbxQRLraLNfpLD9a8O8n2UmfFBZyYagTNbVUt0H8MKrPrOsVBkaf6b5XvhpmnS_dZw8IjMThwIbZn-F6_g0umHexZOLKBCg2gj63Gggrkqm3V6RbMPPmbslry8_kKXvS40Y46Az9jN1D_5w9vqYm-IL9XdQIlQMF4UBqG40rwpEWplhXBLKJ4cPxMvyiA5pRiSp3LcF8pZoAXIEucHwVUgFb7Wb4ir_NslHEnBGUtzBXJgh6X-IKDnEVtnNcQVNBGwWgh76DnwbGwY_OYelhSpPQS7aYfPk1Por6QxcixUeiiawSAjGT0qlYotTSKGWsyXJhM5UmGoXRhUWJKUqT5ygLFzTlMUGTa8JC6Su24yuPbxhokVnlklahnwsnJCc6mmunEU3iknTA9unzl_2gqcs2Hp6Myt5KZW-lARuu7VOaXrg8nJ-xurvCp02Fs06z4-6iH9cGL2lchWCJ8kgWKUe0SrRsmbr5unOATWM0zYm8yPmAiS3X2BQImt3bT_zytNXuDvSVZ8nb_3v1D-zh_HBS_vw2-_GOPSKsloVAViJ32U5zfoF7hIca_b51_391mgqh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+a+lipid-coated+mesoporous+silica+nanoparticle+platform+for+synergistic+gemcitabine+and+paclitaxel+delivery+to+human+pancreatic+cancer+in+mice&rft.jtitle=ACS+nano&rft.au=Meng%2C+Huan&rft.au=Wang%2C+Meiying&rft.au=Liu%2C+Huiyu&rft.au=Liu%2C+Xiangsheng&rft.date=2015-04-28&rft.eissn=1936-086X&rft.volume=9&rft.issue=4&rft.spage=3540&rft_id=info:doi/10.1021%2Facsnano.5b00510&rft_id=info%3Apmid%2F25776964&rft.externalDocID=25776964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon