Soil Color and Mineralogy Mapping Using Proximal and Remote Sensing in Midwest Brazil
Soil color and mineralogy are used as diagnostic criteria to distinguish different soil types. In the literature, 350–2500 nm spectra were successfully used to predict soil color and mineralogy, but these attributes currently are not mapped for most Brazilian soils. In this paper, we provided the fi...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 7; p. 1197 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil color and mineralogy are used as diagnostic criteria to distinguish different soil types. In the literature, 350–2500 nm spectra were successfully used to predict soil color and mineralogy, but these attributes currently are not mapped for most Brazilian soils. In this paper, we provided the first large-extent maps with 30 m resolution of soil color and mineralogy at three depth intervals for 850,000 km2 of Midwest Brazil. We obtained soil 350–2500 nm spectra from 1397 sites of the Brazilian Soil Spectral Library at 0–20 cm, 20–60, and 60–100 cm depths. Spectra was used to derive Munsell hue, value, and chroma, and also second derivative spectra of the Kubelka–Munk function, where key spectral bands were identified and their amplitude measured for mineral quantification. Landsat composites of topsoil and vegetation reflectance, together with relief and climate data, were used as covariates to predict Munsell color and Fe–Al oxides, and 1:1 and 2:1 clay minerals of topsoil and subsoil. We used random forest for soil modeling and 10-fold cross-validation. Soil spectra and remote sensing data accurately mapped color and mineralogy at topsoil and subsoil in Midwest Brazil. Hematite showed high prediction accuracy (R2 > 0.71), followed by Munsell value and hue. Satellite topsoil reflectance at blue spectral region was the most relevant predictor (25% global importance) for soil color and mineralogy. Our maps were consistent with pedological expert knowledge, legacy soil observations, and legacy soil class map of the study region. |
---|---|
AbstractList | Soil color and mineralogy are used as diagnostic criteria to distinguish different soil types. In the literature, 350–2500 nm spectra were successfully used to predict soil color and mineralogy, but these attributes currently are not mapped for most Brazilian soils. In this paper, we provided the first large-extent maps with 30 m resolution of soil color and mineralogy at three depth intervals for 850,000 km² of Midwest Brazil. We obtained soil 350–2500 nm spectra from 1397 sites of the Brazilian Soil Spectral Library at 0–20 cm, 20–60, and 60–100 cm depths. Spectra was used to derive Munsell hue, value, and chroma, and also second derivative spectra of the Kubelka–Munk function, where key spectral bands were identified and their amplitude measured for mineral quantification. Landsat composites of topsoil and vegetation reflectance, together with relief and climate data, were used as covariates to predict Munsell color and Fe–Al oxides, and 1:1 and 2:1 clay minerals of topsoil and subsoil. We used random forest for soil modeling and 10-fold cross-validation. Soil spectra and remote sensing data accurately mapped color and mineralogy at topsoil and subsoil in Midwest Brazil. Hematite showed high prediction accuracy (R² > 0.71), followed by Munsell value and hue. Satellite topsoil reflectance at blue spectral region was the most relevant predictor (25% global importance) for soil color and mineralogy. Our maps were consistent with pedological expert knowledge, legacy soil observations, and legacy soil class map of the study region. Soil color and mineralogy are used as diagnostic criteria to distinguish different soil types. In the literature, 350–2500 nm spectra were successfully used to predict soil color and mineralogy, but these attributes currently are not mapped for most Brazilian soils. In this paper, we provided the first large-extent maps with 30 m resolution of soil color and mineralogy at three depth intervals for 850,000 km2 of Midwest Brazil. We obtained soil 350–2500 nm spectra from 1397 sites of the Brazilian Soil Spectral Library at 0–20 cm, 20–60, and 60–100 cm depths. Spectra was used to derive Munsell hue, value, and chroma, and also second derivative spectra of the Kubelka–Munk function, where key spectral bands were identified and their amplitude measured for mineral quantification. Landsat composites of topsoil and vegetation reflectance, together with relief and climate data, were used as covariates to predict Munsell color and Fe–Al oxides, and 1:1 and 2:1 clay minerals of topsoil and subsoil. We used random forest for soil modeling and 10-fold cross-validation. Soil spectra and remote sensing data accurately mapped color and mineralogy at topsoil and subsoil in Midwest Brazil. Hematite showed high prediction accuracy (R2 > 0.71), followed by Munsell value and hue. Satellite topsoil reflectance at blue spectral region was the most relevant predictor (25% global importance) for soil color and mineralogy. Our maps were consistent with pedological expert knowledge, legacy soil observations, and legacy soil class map of the study region. |
Author | Safanelli, José Lucas Bonfatti, Benito Roberto Lacerda, Marilusa Pinto Coelho Rizzo, Rodnei Silvero, Nélida Elizabet Quiñonez Poppiel, Raúl Roberto Demattê, José Alexandre Melo |
Author_xml | – sequence: 1 givenname: Raúl Roberto orcidid: 0000-0002-1628-4154 surname: Poppiel fullname: Poppiel, Raúl Roberto – sequence: 2 givenname: Marilusa Pinto Coelho surname: Lacerda fullname: Lacerda, Marilusa Pinto Coelho – sequence: 3 givenname: Rodnei surname: Rizzo fullname: Rizzo, Rodnei – sequence: 4 givenname: José Lucas orcidid: 0000-0001-5410-5762 surname: Safanelli fullname: Safanelli, José Lucas – sequence: 5 givenname: Benito Roberto surname: Bonfatti fullname: Bonfatti, Benito Roberto – sequence: 6 givenname: Nélida Elizabet Quiñonez orcidid: 0000-0001-6021-2759 surname: Silvero fullname: Silvero, Nélida Elizabet Quiñonez – sequence: 7 givenname: José Alexandre Melo surname: Demattê fullname: Demattê, José Alexandre Melo |
BookMark | eNptkVFPHCEQx0ljk6r1pZ9gE18ak6uwsLA8tpfWmmja1N4zmYXZCxcOrrAXaz-9eFejMfIAE_jNf_jPHJGDmCIS8oHRT5xrep4La6liTKs35LBG7Uy0uj14Fr8jJ6WsaF2cM03FIVncJB-aeQopNxBdc-0jZghpeddcw2bj47JZlIf9Z05__RrCjvqF6zRhc4Nx9-ZjzXO3WKbmS4Z_Prwnb0cIBU_-n8dk8e3r7_n32dWPi8v556sZCKammetGlKNyTFtOO8FRMRS9ZEPbA9hulJpaQYcO3TggoFaKjqDl0PW8s04Kfkwu97ouwcpscv1gvjMJvNldpLw0kCdvA5pawzKwmjIJQsHQ69oqpTTXwoF1ULU-7rU2Of3ZVi9m7YvFECBi2hbT6l62qjaXVfT0BbpK2xyrU9PyvpdSqJ5Xiu4pm1MpGUdj_QSTT3HK4INh1DyMzTyNraacvUh59PQKfA9WLJiE |
CitedBy_id | crossref_primary_10_1002_saj2_70028 crossref_primary_10_1016_j_scitotenv_2024_174776 crossref_primary_10_1016_j_rse_2020_112117 crossref_primary_10_1016_j_geoderma_2023_116413 crossref_primary_10_1016_j_rse_2023_113845 crossref_primary_10_1016_j_geoderma_2021_115089 crossref_primary_10_1016_j_geoderma_2021_115042 crossref_primary_10_1016_j_envpol_2021_118397 crossref_primary_10_3390_agriengineering7030058 crossref_primary_10_1016_j_catena_2021_105670 crossref_primary_10_1016_j_geoderma_2020_114779 crossref_primary_10_1016_j_geoderma_2024_116915 crossref_primary_10_1016_j_catena_2021_105334 crossref_primary_10_1134_S1064229322060084 crossref_primary_10_1109_TGRS_2023_3307977 crossref_primary_10_1111_sum_12706 crossref_primary_10_3389_fenvs_2024_1291917 crossref_primary_10_3390_rs15020343 crossref_primary_10_1007_s43217_024_00196_4 crossref_primary_10_3390_rs13112223 crossref_primary_10_1016_j_scitotenv_2024_178341 crossref_primary_10_1016_j_scitotenv_2025_178791 crossref_primary_10_1016_j_jag_2025_104482 crossref_primary_10_1155_2022_1313819 crossref_primary_10_1016_j_catena_2023_107604 crossref_primary_10_1016_j_geoderma_2024_116824 crossref_primary_10_1016_j_still_2023_105808 crossref_primary_10_1016_j_geoderma_2023_116669 crossref_primary_10_1016_j_catena_2024_107988 crossref_primary_10_3389_fenvs_2023_1138177 crossref_primary_10_1016_j_jsames_2022_103881 crossref_primary_10_1016_j_soisec_2022_100057 |
Cites_doi | 10.1371/journal.pone.0169748 10.3390/rs11242905 10.2136/sssaj2006.0014 10.1016/j.geoderma.2019.01.007 10.1180/claymin.2008.043.1.11 10.1371/journal.pone.0125814 10.2136/sssaspecpub31 10.1590/2317-4889201620160023 10.1016/j.geoderma.2019.114039 10.2136/sssaj1984.03615995004800020024x 10.1111/j.1365-2389.1986.tb00382.x 10.1130/0016-7606(1977)88<174:VEOIIS>2.0.CO;2 10.2136/sssaj2013.02.0057 10.2136/sssaj1987.03615995005100050033x 10.1016/j.rse.2013.08.018 10.2136/sssaj2001.6541324x 10.7717/peerj.5518 10.1016/j.gsd.2019.03.003 10.1016/j.geoderma.2014.09.018 10.5194/isprsannals-II-4-71-2014 10.1016/j.geoderma.2009.01.025 10.2136/sssaj2017.04.0122 10.1023/A:1010933404324 10.1177/0967033518821965 10.1016/j.rse.2011.02.004 10.1346/CCMN.1998.0460506 10.1016/j.rse.2018.04.047 10.18637/jss.v087.c03 10.1590/18069657rbcs20160519 10.1002/widm.1301 10.1016/j.geoderma.2011.05.007 10.1016/j.geodrs.2014.08.001 10.2136/sssabookser1.2ed.c8 10.1007/BF00329030 10.1016/j.crte.2008.07.006 10.1214/15-AOS1321 10.1016/j.geoderma.2019.113913 10.2136/sssaj1994.03615995005800060033x 10.1016/j.geoderma.2017.10.053 10.1071/SR15142 10.1007/978-1-4020-8592-5 10.1371/journal.pone.0105992 10.1016/j.geoderma.2019.114061 10.1016/S0034-4257(96)00075-2 10.2136/sssaspecpub31.c2 10.1016/j.geoderma.2019.04.028 10.1002/joc.1276 10.1029/2011JF001977 10.1016/j.rse.2017.06.031 10.1016/j.geoderma.2013.02.013 10.1016/bs.agron.2017.01.003 10.1016/j.geoderma.2016.03.019 10.1016/j.catena.2019.104258 10.1016/j.geoderma.2016.09.024 10.1080/014311697217369 10.1016/j.trac.2010.05.006 10.1002/jpln.19921550520 10.1016/j.geoderma.2019.114067 10.1038/s41467-019-13276-1 10.2136/sssaj1984.03615995004800020036x 10.1016/j.catena.2005.11.001 10.1029/JB095iB08p12653 10.1111/ejss.12699 10.1016/j.geoderma.2019.05.043 10.2136/sssaj1987.03615995005100030025x 10.1016/j.rse.2017.11.004 10.1038/s41598-019-50376-w 10.1007/978-94-017-8023-0 10.1590/S0100-06832004000400010 10.1016/S0016-7061(03)00223-4 10.1016/j.geoderma.2019.01.025 10.1590/S0100-06832009000500029 10.1590/1678-992x-2017-0430 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs12071197 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_19cc1ac9016a47ab89071779394dacda 10_3390_rs12071197 |
GeographicLocations | Brazil Cerrado Biome |
GeographicLocations_xml | – name: Cerrado Biome – name: Brazil |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-a417t-d5fe6f7d19c30543e71e4861b28aac5f690c40b5edfbeae9770fa96b5835cd643 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:21:43 EDT 2025 Fri Jul 11 06:28:36 EDT 2025 Fri Jul 25 12:09:53 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Tue Jul 01 04:15:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a417t-d5fe6f7d19c30543e71e4861b28aac5f690c40b5edfbeae9770fa96b5835cd643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5410-5762 0000-0001-6021-2759 0000-0002-1628-4154 |
OpenAccessLink | https://doaj.org/article/19cc1ac9016a47ab89071779394dacda |
PQID | 2388664783 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_19cc1ac9016a47ab89071779394dacda proquest_miscellaneous_2986271971 proquest_journals_2388664783 crossref_citationtrail_10_3390_rs12071197 crossref_primary_10_3390_rs12071197 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Liu (ref_93) 2012; 171–172 Barbosa (ref_85) 2009; 33 ref_14 ref_13 Zhang (ref_17) 2019; 70 ref_19 ref_16 Clark (ref_62) 1990; 95 Loiseau (ref_72) 2019; 82 Bui (ref_25) 2010; 115 Gomes (ref_70) 2019; 340 Schaefer (ref_7) 2008; 43 Breiman (ref_42) 2001; 45 Melo (ref_87) 2001; 65 Silva (ref_10) 2020; 185 ref_27 Simon (ref_18) 2019; 361 Tadono (ref_67) 2014; 2 Post (ref_92) 1994; 58 ref_71 Curi (ref_5) 1984; 48 Torrent (ref_54) 2002; 1 ref_79 Maynard (ref_94) 2017; 285 ref_77 Wadoux (ref_73) 2019; 355 Hengl (ref_76) 2018; 6 Poppiel (ref_35) 2019; 328 Hamilton (ref_61) 2018; 87 (ref_11) 2006; 65 Zinn (ref_59) 2007; 71 Leenaars (ref_74) 2019; 361 ref_81 Sparks (ref_12) 2017; Volume 143 Kosmas (ref_56) 1984; 48 Hurst (ref_15) 1977; 88 Macedo (ref_57) 1987; 51 Liu (ref_88) 2020; 361 ref_89 Ducart (ref_32) 2016; 46 ref_86 Scheinost (ref_24) 1998; 46 Scornet (ref_43) 2015; 43 Hijmans (ref_66) 2005; 25 ref_50 Malone (ref_28) 2014; 1 Dalmolin (ref_33) 2020; 77 Roberts (ref_30) 2019; 10 Torrent (ref_9) 1986; 37 Canadell (ref_47) 1996; 108 ref_55 ref_53 ref_52 ref_51 McBratney (ref_63) 2003; 117 Gallo (ref_36) 2019; 343 Rogge (ref_38) 2018; 205 Bedidi (ref_31) 1997; 18 Fernandez (ref_83) 1992; 155 Palagos (ref_82) 2010; 29 Zinn (ref_84) 2016; 54 ref_69 ref_68 Das (ref_95) 2019; 8 ref_65 Fongaro (ref_39) 2018; 212 Rizzo (ref_20) 2016; 274 Liles (ref_90) 2013; 77 Mulder (ref_29) 2013; 139 Padarian (ref_80) 2019; 2019 Ramcharan (ref_97) 2018; 82 Terra (ref_60) 2018; 318 Fernandez (ref_22) 1987; 51 Silva (ref_75) 2019; 9 Dotto (ref_46) 2019; 354 Miller (ref_91) 2015; 239–240 Gorelick (ref_64) 2017; 202 Rossel (ref_26) 2011; 115 ref_45 ref_44 Escadafal (ref_23) 1988; 4 Poppiel (ref_37) 2018; 42 ref_41 ref_40 ref_1 Reatto (ref_96) 2008; 340 ref_3 Mattikalli (ref_21) 1997; 59 ref_49 Aitkenhead (ref_2) 2013; 200–201 ref_48 ref_8 Cattle (ref_34) 2009; 150 ref_4 Probst (ref_78) 2019; 9 ref_6 Gomes (ref_58) 2004; 28 |
References_xml | – ident: ref_71 doi: 10.1371/journal.pone.0169748 – ident: ref_40 doi: 10.3390/rs11242905 – volume: 71 start-page: 1204 year: 2007 ident: ref_59 article-title: Edaphic Controls on Soil Organic Carbon Retention in the Brazilian Cerrado: Texture and Mineralogy publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006.0014 – ident: ref_51 – ident: ref_16 – ident: ref_65 – volume: 340 start-page: 337 year: 2019 ident: ref_70 article-title: Modelling and mapping soil organic carbon stocks in Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.007 – volume: 43 start-page: 137 year: 2008 ident: ref_7 article-title: Minerals in the clay fraction of Brazilian Latosols (Oxisols): A review publication-title: Clay Miner. doi: 10.1180/claymin.2008.043.1.11 – ident: ref_69 doi: 10.1371/journal.pone.0125814 – ident: ref_4 doi: 10.2136/sssaspecpub31 – volume: 46 start-page: 331 year: 2016 ident: ref_32 article-title: de Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil publication-title: Braz. J. Geol. doi: 10.1590/2317-4889201620160023 – ident: ref_77 – volume: 361 start-page: 114039 year: 2019 ident: ref_18 article-title: Predicting the color of sandy soils from Wisconsin, USA publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114039 – volume: 48 start-page: 341 year: 1984 ident: ref_5 article-title: Toposequence of Oxisols from the Central Plateau of Brazil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1984.03615995004800020024x – volume: 37 start-page: 499 year: 1986 ident: ref_9 article-title: Use of the Kubelka—Munk Theory to Study the Influence of Iron Oxides on Soil Colour publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1986.tb00382.x – ident: ref_48 – volume: 88 start-page: 174 year: 1977 ident: ref_15 article-title: Visual estimation of iron in saprolite publication-title: GSA Bull. doi: 10.1130/0016-7606(1977)88<174:VEOIIS>2.0.CO;2 – volume: 77 start-page: 2173 year: 2013 ident: ref_90 article-title: Developing predictive soil C models for soils using quantitative color measurements publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2013.02.0057 – volume: 51 start-page: 1277 year: 1987 ident: ref_22 article-title: Calculation of Soil Color from Reflectance Spectra publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1987.03615995005100050033x – ident: ref_13 – volume: 139 start-page: 415 year: 2013 ident: ref_29 article-title: Characterizing regional soil mineral composition using spectroscopy and geostatistics publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.018 – ident: ref_45 – volume: 65 start-page: 1324 year: 2001 ident: ref_87 article-title: Chemical and Mineralogical Properties of Kaolinite-Rich Brazilian Soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.6541324x – volume: 6 start-page: e5518 year: 2018 ident: ref_76 article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables publication-title: PeerJ doi: 10.7717/peerj.5518 – volume: 8 start-page: 617 year: 2019 ident: ref_95 article-title: Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India publication-title: Groundw. Sustain. Dev. doi: 10.1016/j.gsd.2019.03.003 – ident: ref_53 – volume: 239–240 start-page: 97 year: 2015 ident: ref_91 article-title: Impact of multi-scale predictor selection for modeling soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.018 – volume: 2 start-page: 71 year: 2014 ident: ref_67 article-title: Precise global DEM generation by ALOS PRISM publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprsannals-II-4-71-2014 – ident: ref_3 – ident: ref_86 – volume: 150 start-page: 253 year: 2009 ident: ref_34 article-title: In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2009.01.025 – volume: 82 start-page: 186 year: 2018 ident: ref_97 article-title: Soil Property and Class Maps of the Conterminous United States at 100-Meter Spatial Resolution publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2017.04.0122 – ident: ref_14 – volume: 45 start-page: 5 year: 2001 ident: ref_42 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref_19 doi: 10.1177/0967033518821965 – volume: 115 start-page: 1443 year: 2011 ident: ref_26 article-title: Digitally mapping the information content of visible–near infrared spectra of surficial Australian soils publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.02.004 – volume: 46 start-page: 528 year: 1998 ident: ref_24 article-title: Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils publication-title: Clays Clay Miner. doi: 10.1346/CCMN.1998.0460506 – ident: ref_6 – ident: ref_50 – ident: ref_81 – volume: 212 start-page: 161 year: 2018 ident: ref_39 article-title: Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.047 – ident: ref_89 – volume: 87 start-page: 1 year: 2018 ident: ref_61 article-title: ggtern: An Extension to “ggplot2”, for the Creation of Ternary Diagrams publication-title: J. Stat. Softw. doi: 10.18637/jss.v087.c03 – volume: 42 start-page: e0160519 year: 2018 ident: ref_37 article-title: Surface Spectroscopy of Oxisols, Entisols and Inceptisol and Relationships with Selected Soil Properties publication-title: Revista Brasileira de Ciência do Solo doi: 10.1590/18069657rbcs20160519 – volume: 9 start-page: e1301 year: 2019 ident: ref_78 article-title: Hyperparameters and tuning strategies for random forest publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1301 – volume: 171–172 start-page: 44 year: 2012 ident: ref_93 article-title: Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS publication-title: Geoderma doi: 10.1016/j.geoderma.2011.05.007 – volume: 1 start-page: 31 year: 2014 ident: ref_28 article-title: A model for the identification of terrons in the Lower Hunter Valley, Australia publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2014.08.001 – ident: ref_1 doi: 10.2136/sssabookser1.2ed.c8 – volume: 108 start-page: 583 year: 1996 ident: ref_47 article-title: Maximum rooting depth of vegetation types at the global scale publication-title: Oecologia doi: 10.1007/BF00329030 – ident: ref_49 – volume: 340 start-page: 741 year: 2008 ident: ref_96 article-title: Variation of the kaolinite and gibbsite content at regional and local scale in Latosols of the Brazilian Central Plateau publication-title: C. R. Geosci. doi: 10.1016/j.crte.2008.07.006 – ident: ref_55 – volume: 4 start-page: 249 year: 1988 ident: ref_23 article-title: Modeling the relationships between Munsell soil color and soil spectral properties publication-title: Int. Agrophysics – volume: 43 start-page: 1716 year: 2015 ident: ref_43 article-title: Consistency of random forests publication-title: Ann. Stat. doi: 10.1214/15-AOS1321 – volume: 355 start-page: 113913 year: 2019 ident: ref_73 article-title: Sampling design optimization for soil mapping with random forest publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113913 – volume: 58 start-page: 1809 year: 1994 ident: ref_92 article-title: Relations between Soil Color and Landsat Reflectance on Semiarid Rangelands publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1994.03615995005800060033x – volume: 318 start-page: 123 year: 2018 ident: ref_60 article-title: Proximal spectral sensing in pedological assessments: Vis–NIR spectra for soil classification based on weathering and pedogenesis publication-title: Geoderma doi: 10.1016/j.geoderma.2017.10.053 – volume: 54 start-page: 440 year: 2016 ident: ref_84 article-title: Pedogenic and lithogenic gravels as indicators of soil polygenesis in the Brazilian Cerrado publication-title: Soil Res. doi: 10.1071/SR15142 – ident: ref_41 doi: 10.1007/978-1-4020-8592-5 – ident: ref_68 doi: 10.1371/journal.pone.0105992 – volume: 361 start-page: 114061 year: 2020 ident: ref_88 article-title: High-resolution and three-dimensional mapping of soil texture of China publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114061 – volume: 59 start-page: 14 year: 1997 ident: ref_21 article-title: Soil color modeling for the visible and near-infrared bands of Landsat sensors using laboratory spectral measurements publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00075-2 – ident: ref_8 doi: 10.2136/sssaspecpub31.c2 – volume: 328 start-page: 189 year: 2019 ident: ref_35 article-title: Pedology and soil class mapping from proximal and remote sensed data publication-title: Geoderma doi: 10.1016/j.geoderma.2019.04.028 – volume: 25 start-page: 1965 year: 2005 ident: ref_66 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: Int. J. Climatol. doi: 10.1002/joc.1276 – ident: ref_52 – ident: ref_27 doi: 10.1029/2011JF001977 – volume: 202 start-page: 18 year: 2017 ident: ref_64 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 200–201 start-page: 99 year: 2013 ident: ref_2 article-title: Prediction of soil characteristics and colour using data from the National Soils Inventory of Scotland publication-title: Geoderma doi: 10.1016/j.geoderma.2013.02.013 – volume: Volume 143 start-page: 175 year: 2017 ident: ref_12 article-title: Delineation of Soil Management Zones for Variable-Rate Fertilization: A Review publication-title: Advances in Agronomy doi: 10.1016/bs.agron.2017.01.003 – volume: 274 start-page: 18 year: 2016 ident: ref_20 article-title: Digital soil mapping at local scale using a multi-depth Vis–NIR spectral library and terrain attributes publication-title: Geoderma doi: 10.1016/j.geoderma.2016.03.019 – volume: 185 start-page: 104258 year: 2020 ident: ref_10 article-title: Spatial variability of iron oxides in soils from Brazilian sandstone and basalt publication-title: Catena doi: 10.1016/j.catena.2019.104258 – volume: 285 start-page: 94 year: 2017 ident: ref_94 article-title: Hyper-temporal remote sensing for digital soil mapping: Characterizing soil-vegetation response to climatic variability publication-title: Geoderma doi: 10.1016/j.geoderma.2016.09.024 – volume: 115 start-page: F04031 year: 2010 ident: ref_25 article-title: Mapping iron oxides and the color of Australian soil using visible–near-infrared reflectance spectra publication-title: J. Geophys. Res. – volume: 18 start-page: 2835 year: 1997 ident: ref_31 article-title: Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil publication-title: Int. J. Remote Sens. doi: 10.1080/014311697217369 – volume: 29 start-page: 1073 year: 2010 ident: ref_82 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2010.05.006 – volume: 155 start-page: 473 year: 1992 ident: ref_83 article-title: Munsell Colors of Soils Simulated by Mixtures of Goethite and Hematite with Kaolinite publication-title: Zeitschrift für Pflanzenernährung und Bodenkunde doi: 10.1002/jpln.19921550520 – volume: 82 start-page: 101905 year: 2019 ident: ref_72 article-title: Satellite data integration for soil clay content modelling at a national scale publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 361 start-page: 114067 year: 2019 ident: ref_74 article-title: Mapping the major soil-landscape resources of the Ethiopian Highlands using random forest publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114067 – volume: 10 start-page: 5297 year: 2019 ident: ref_30 article-title: Exposed soil and mineral map of the Australian continent revealing the land at its barest publication-title: Nat. Commun. doi: 10.1038/s41467-019-13276-1 – volume: 48 start-page: 401 year: 1984 ident: ref_56 article-title: Characterization of Iron Oxide Minerals by Second-Derivative Visible Spectroscopy publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1984.03615995004800020036x – ident: ref_79 – volume: 2019 start-page: 1 year: 2019 ident: ref_80 article-title: Machine learning and soil sciences: A review aided by machine learning tools publication-title: SOIL Discuss. – volume: 65 start-page: 118 year: 2006 ident: ref_11 article-title: Symbolism, knowledge and management of soil and land resources in indigenous communities: Ethnopedology at global, regional and local scales publication-title: Catena doi: 10.1016/j.catena.2005.11.001 – volume: 95 start-page: 12653 year: 1990 ident: ref_62 article-title: High spectral resolution reflectance spectroscopy of minerals publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/JB095iB08p12653 – volume: 70 start-page: 27 year: 2019 ident: ref_17 article-title: Digital mapping of a soil profile publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12699 – volume: 354 start-page: 113793 year: 2019 ident: ref_46 article-title: The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.043 – volume: 51 start-page: 690 year: 1987 ident: ref_57 article-title: Morphology, Mineralogy, and Genesis of a Hydrosequence of Oxisols in Brazil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1987.03615995005100030025x – volume: 205 start-page: 1 year: 2018 ident: ref_38 article-title: Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.11.004 – volume: 9 start-page: 13763 year: 2019 ident: ref_75 article-title: Digital soil mapping including additional point sampling in Posses ecosystem services pilot watershed, southeastern Brazil publication-title: Sci. Rep. doi: 10.1038/s41598-019-50376-w – ident: ref_44 doi: 10.1007/978-94-017-8023-0 – volume: 28 start-page: 679 year: 2004 ident: ref_58 article-title: Mineralogia, morfologia e análise microscópica de solos do bioma cerrado publication-title: Revista Brasileira de Ciência do Solo doi: 10.1590/S0100-06832004000400010 – volume: 1 start-page: 1438 year: 2002 ident: ref_54 article-title: Diffuse Reflectance Spectroscopy of Iron Oxides publication-title: Encycl. Surf. Colloid Sci. – volume: 117 start-page: 3 year: 2003 ident: ref_63 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 343 start-page: 269 year: 2019 ident: ref_36 article-title: Is it possible to map subsurface soil attributes by satellite spectral transfer models? publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.025 – volume: 33 start-page: 1373 year: 2009 ident: ref_85 article-title: Pedomorphogeological relations in the chapadas elevadas of the Distrito Federal, Brazil publication-title: Revista Brasileira de Ciência do Solo doi: 10.1590/S0100-06832009000500029 – volume: 77 start-page: e20170430 year: 2020 ident: ref_33 article-title: Open legacy soil survey data in Brazil: Geospatial data quality and how to improve it publication-title: Sci. Agric. doi: 10.1590/1678-992x-2017-0430 |
SSID | ssj0000331904 |
Score | 2.388212 |
Snippet | Soil color and mineralogy are used as diagnostic criteria to distinguish different soil types. In the literature, 350–2500 nm spectra were successfully used to... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1197 |
SubjectTerms | Accuracy aluminum oxide Brazil Cartography Clay minerals Climatic data Color data mining derivative spectra Diagnostic systems expert opinion Google Earth Engine Hematite Iron Laboratories Landsat Landsat satellites Machine learning Mapping meteorological data Mineralogy Minerals Munsell color system prediction Reflectance reflectance spectroscopy Remote sensing soil color Soil mapping Soil sciences Soil types Soils spatial data Spectra Spectral bands Spectrum analysis subsoil Subsoils Topsoil vegetation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_a88G-lNZaemrLSvviQzB7u8kmT6VXFCmciHrgW9jPa-BMNHdC9a_vTG7vLLQU8pSdLMnszudOfgPwRVhnlLOjRNhSJdKSHpRGJSFYl2amlCpQamBynp9N5Y-b7CYm3BaxrHKtE3tF7VpLOfJjNC1FTj9Giq939wl1jaLT1dhC4yVsoQouigFsjU_OLy43WZZU4BZL5QqXVGB8f9wt-AjNKieUpz8sUQ_Y_5c-7o3M6Rt4Hb1D9m21nG_hhW92YDs2Kv_5-A6mV209Zxjttx3TjWOTukeNbmePbKIJamHG-iIAdtG1v-pbnIuoLj0uiGdXVKyOY3WDzznCSGDjTj_V812Ynp5cfz9LYmeEREuulonLgs-Dcry0KK9SeMW9LHJuRoXWNgsY8lqZmsy7YLz26OOlQZe5ydDfsg6dkPcwaNrGfwAmpNEehbYIaMyDF9qYIsULQ7FcBC6HcLTmUmUjbDh1r5hXGD4QR6tnjg7h84b2bgWW8U-qMTF7Q0EA1_2NtptVUV4q_DLLtUVvJddSaVOUFHiiMiml09bpIRysl6qKUreonvfIEA43wygvdAiiG98-IE2JMZzC1-B7_59iH16NKLbuq3QOYLDsHvxHdECW5lPcZb8BymLbqw priority: 102 providerName: ProQuest |
Title | Soil Color and Mineralogy Mapping Using Proximal and Remote Sensing in Midwest Brazil |
URI | https://www.proquest.com/docview/2388664783 https://www.proquest.com/docview/2986271971 https://doaj.org/article/19cc1ac9016a47ab89071779394dacda |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB9a-2BfRNuK58expX3pQzB7u8kmj556SumJeD3wLeynBq5JiSeof72zm3geKPgiBALZ2bDM7OzML7v5DcBPpo0SRg8ipnMRce3XQa5E5Jw2caJyLpz_NDA-S0-n_PdlcrlU6sufCWvpgVvF7dNcayo1hq1UciFVlnsEgrMq50ZqE1IjjHlLYCqswQynVsxbPlKGuH6_uaED7Ek9u9NSBApE_S_W4RBcRuuw1mWF5KAdzQZ8sNUXWO0KlF_ff4XppC5nBFF-3RDE_mRcBrbo-uqejKWnWLgiYfOfnDf1XfkP3-WlLiwawpKJP6SObWWF_YznRiDDRj6Us28wHR3_PTyNuooIkeRUzCOTOJs6YVAp6KecWUEtz1KqBpmUOnEIdTWPVWKNU1ZazO1iJ_NUJZhnaYPJxyasVHVlt4AwrqRFZ80cBnFnmVQqi_FCCJYyR3kPfj1pqdAdXbivWjErEDZ4jRbPGu3Bj4Xs_5Yk41WpoVf2QsITW4cHaO6iM3fxlrl7sPtkqqLztpsC044s9T_Nsh58XzSjn_jND1nZ-hZlcsRuAodBt99jHDvweeCRdzjDswsr8-bW7mF6Mld9-JiNTvrw6eBo_GeC9-Hx2flFP8zPRzvg5tU |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsFDACDhyixrHzOiBEC8uWditEu1JvqZ9LpCUp2a1g-VH8RmayyRYJxK1STvHEisfjedjjbwBeCGN1ak0UCJOngTSkB6VOA--NDWOdy9TT1sD4KBlN5MfT-HQDfvV3YSitsteJraK2taE98h00LVlCFyPFm_NvAVWNotPVvoTGSiwO3PI7hmzz1_vvcH5fRtHw_cneKOiqCgRK8nQR2Ni7xKeW5wZlXQqXciezhOsoU8rEHsNFI0MdO-u1Uw79o9CrPNEx-irGogHHfq_BdSnQktPN9OGH9Z5OKFCgQ7lCQcX2cKeZ8wiNOCdMqT_sXlse4C_t35q04S242fmi7O1KeG7DhqvuwFZXFv3L8i5MjutyxvZQPzZMVZaNyxajup4u2VgRsMOUtSkH7FNT_yi_Yl9E9dnh9Dt2TKnx2FZW-J0lRAa226if5eweTK6EY_dhs6or9wCYkFo5VBGZR9fBO6G0zkJ8MPBLhOdyAK96LhWmAymnWhmzAoMV4mhxydEBPF_Tnq-gOf5JtUvMXlMQnHb7om6mRbc6CxyZ4cqgb5QomSqd5RTmourKpVXGqgFs91NVdGt8XlxK5ACerZtxddKRi6pcfYE0OUaMKf4Gf_j_Lp7C1uhkfFgc7h8dPIIbEUX1bX7QNmwumgv3GF2fhX7SyhuDs6sW8N8HXxg- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKdIKbAIOHCw4sfaax8QIm2jlpIoaonUm7vPECnYrZMKwk_j1zHj2CkSiFsln-zxyh5_OzPf7ngG4E2kjRJGh16kM-FxTXaQK-E5p40fq4wLR0sDw1FyOOGfzuKzLfjV_gtDaZWtTawNtSk1rZH30LWkCf0YGfVckxYx3h98uLj0qIMU7bS27TTWEDm2q-9I3xbvj_bxW78Nw8HBl71Dr-kw4EkeiKVnYmcTJ0yQacQ9j6wILE-TQIWplDp2SB0191VsjVNWWoyVfCezRMUYt2iDzhzHvQXbglhRB7b7B6PxyWaFx48Q3j5f10SNoszvVYsgRMmAKkz94QXrZgF_-YLawQ3uw70mMmUf11B6AFu2eAh3mibpX1ePYHJazuZsD61lxWRh2HBWV6wupys2lFTmYcrqBAQ2rsofs284FkmdWASDZaeUKI_XZgXeZ6g-A-tX8uds_hgmN6KzJ9ApysI-BRZxJS0ajNRhIOFsJJVKfTyQBiaRC3gX3rVaynVTspw6Z8xzpC6k0fxao114vZG9WBfq-KdUn5S9kaDi2vWJsprmzVzN8c10IDVGSonkQqo0I9KLhizjRmoju7Dbfqq8mfGL_BqfXXi1uYxzlTZgZGHLK5TJkD8KfIxg5_9DvITbCO7889Ho-BncDYni18lCu9BZVlf2OcZBS_WiARyD85vG-G-InB3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+Color+and+Mineralogy+Mapping+Using+Proximal+and+Remote+Sensing+in+Midwest+Brazil&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Poppiel%2C+Ra%C3%BAl+Roberto&rft.au=Lacerda%2C+Marilusa+Pinto+Coelho&rft.au=Rizzo%2C+Rodnei&rft.au=Safanelli%2C+Jos%C3%A9+Lucas&rft.date=2020-04-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=7&rft_id=info:doi/10.3390%2Frs12071197&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |