Soil Color and Mineralogy Mapping Using Proximal and Remote Sensing in Midwest Brazil

Soil color and mineralogy are used as diagnostic criteria to distinguish different soil types. In the literature, 350–2500 nm spectra were successfully used to predict soil color and mineralogy, but these attributes currently are not mapped for most Brazilian soils. In this paper, we provided the fi...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 7; p. 1197
Main Authors Poppiel, Raúl Roberto, Lacerda, Marilusa Pinto Coelho, Rizzo, Rodnei, Safanelli, José Lucas, Bonfatti, Benito Roberto, Silvero, Nélida Elizabet Quiñonez, Demattê, José Alexandre Melo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil color and mineralogy are used as diagnostic criteria to distinguish different soil types. In the literature, 350–2500 nm spectra were successfully used to predict soil color and mineralogy, but these attributes currently are not mapped for most Brazilian soils. In this paper, we provided the first large-extent maps with 30 m resolution of soil color and mineralogy at three depth intervals for 850,000 km2 of Midwest Brazil. We obtained soil 350–2500 nm spectra from 1397 sites of the Brazilian Soil Spectral Library at 0–20 cm, 20–60, and 60–100 cm depths. Spectra was used to derive Munsell hue, value, and chroma, and also second derivative spectra of the Kubelka–Munk function, where key spectral bands were identified and their amplitude measured for mineral quantification. Landsat composites of topsoil and vegetation reflectance, together with relief and climate data, were used as covariates to predict Munsell color and Fe–Al oxides, and 1:1 and 2:1 clay minerals of topsoil and subsoil. We used random forest for soil modeling and 10-fold cross-validation. Soil spectra and remote sensing data accurately mapped color and mineralogy at topsoil and subsoil in Midwest Brazil. Hematite showed high prediction accuracy (R2 > 0.71), followed by Munsell value and hue. Satellite topsoil reflectance at blue spectral region was the most relevant predictor (25% global importance) for soil color and mineralogy. Our maps were consistent with pedological expert knowledge, legacy soil observations, and legacy soil class map of the study region.
AbstractList Soil color and mineralogy are used as diagnostic criteria to distinguish different soil types. In the literature, 350–2500 nm spectra were successfully used to predict soil color and mineralogy, but these attributes currently are not mapped for most Brazilian soils. In this paper, we provided the first large-extent maps with 30 m resolution of soil color and mineralogy at three depth intervals for 850,000 km² of Midwest Brazil. We obtained soil 350–2500 nm spectra from 1397 sites of the Brazilian Soil Spectral Library at 0–20 cm, 20–60, and 60–100 cm depths. Spectra was used to derive Munsell hue, value, and chroma, and also second derivative spectra of the Kubelka–Munk function, where key spectral bands were identified and their amplitude measured for mineral quantification. Landsat composites of topsoil and vegetation reflectance, together with relief and climate data, were used as covariates to predict Munsell color and Fe–Al oxides, and 1:1 and 2:1 clay minerals of topsoil and subsoil. We used random forest for soil modeling and 10-fold cross-validation. Soil spectra and remote sensing data accurately mapped color and mineralogy at topsoil and subsoil in Midwest Brazil. Hematite showed high prediction accuracy (R² > 0.71), followed by Munsell value and hue. Satellite topsoil reflectance at blue spectral region was the most relevant predictor (25% global importance) for soil color and mineralogy. Our maps were consistent with pedological expert knowledge, legacy soil observations, and legacy soil class map of the study region.
Soil color and mineralogy are used as diagnostic criteria to distinguish different soil types. In the literature, 350–2500 nm spectra were successfully used to predict soil color and mineralogy, but these attributes currently are not mapped for most Brazilian soils. In this paper, we provided the first large-extent maps with 30 m resolution of soil color and mineralogy at three depth intervals for 850,000 km2 of Midwest Brazil. We obtained soil 350–2500 nm spectra from 1397 sites of the Brazilian Soil Spectral Library at 0–20 cm, 20–60, and 60–100 cm depths. Spectra was used to derive Munsell hue, value, and chroma, and also second derivative spectra of the Kubelka–Munk function, where key spectral bands were identified and their amplitude measured for mineral quantification. Landsat composites of topsoil and vegetation reflectance, together with relief and climate data, were used as covariates to predict Munsell color and Fe–Al oxides, and 1:1 and 2:1 clay minerals of topsoil and subsoil. We used random forest for soil modeling and 10-fold cross-validation. Soil spectra and remote sensing data accurately mapped color and mineralogy at topsoil and subsoil in Midwest Brazil. Hematite showed high prediction accuracy (R2 > 0.71), followed by Munsell value and hue. Satellite topsoil reflectance at blue spectral region was the most relevant predictor (25% global importance) for soil color and mineralogy. Our maps were consistent with pedological expert knowledge, legacy soil observations, and legacy soil class map of the study region.
Author Safanelli, José Lucas
Bonfatti, Benito Roberto
Lacerda, Marilusa Pinto Coelho
Rizzo, Rodnei
Silvero, Nélida Elizabet Quiñonez
Poppiel, Raúl Roberto
Demattê, José Alexandre Melo
Author_xml – sequence: 1
  givenname: Raúl Roberto
  orcidid: 0000-0002-1628-4154
  surname: Poppiel
  fullname: Poppiel, Raúl Roberto
– sequence: 2
  givenname: Marilusa Pinto Coelho
  surname: Lacerda
  fullname: Lacerda, Marilusa Pinto Coelho
– sequence: 3
  givenname: Rodnei
  surname: Rizzo
  fullname: Rizzo, Rodnei
– sequence: 4
  givenname: José Lucas
  orcidid: 0000-0001-5410-5762
  surname: Safanelli
  fullname: Safanelli, José Lucas
– sequence: 5
  givenname: Benito Roberto
  surname: Bonfatti
  fullname: Bonfatti, Benito Roberto
– sequence: 6
  givenname: Nélida Elizabet Quiñonez
  orcidid: 0000-0001-6021-2759
  surname: Silvero
  fullname: Silvero, Nélida Elizabet Quiñonez
– sequence: 7
  givenname: José Alexandre Melo
  surname: Demattê
  fullname: Demattê, José Alexandre Melo
BookMark eNptkVFPHCEQx0ljk6r1pZ9gE18ak6uwsLA8tpfWmmja1N4zmYXZCxcOrrAXaz-9eFejMfIAE_jNf_jPHJGDmCIS8oHRT5xrep4La6liTKs35LBG7Uy0uj14Fr8jJ6WsaF2cM03FIVncJB-aeQopNxBdc-0jZghpeddcw2bj47JZlIf9Z05__RrCjvqF6zRhc4Nx9-ZjzXO3WKbmS4Z_Prwnb0cIBU_-n8dk8e3r7_n32dWPi8v556sZCKammetGlKNyTFtOO8FRMRS9ZEPbA9hulJpaQYcO3TggoFaKjqDl0PW8s04Kfkwu97ouwcpscv1gvjMJvNldpLw0kCdvA5pawzKwmjIJQsHQ69oqpTTXwoF1ULU-7rU2Of3ZVi9m7YvFECBi2hbT6l62qjaXVfT0BbpK2xyrU9PyvpdSqJ5Xiu4pm1MpGUdj_QSTT3HK4INh1DyMzTyNraacvUh59PQKfA9WLJiE
CitedBy_id crossref_primary_10_1002_saj2_70028
crossref_primary_10_1016_j_scitotenv_2024_174776
crossref_primary_10_1016_j_rse_2020_112117
crossref_primary_10_1016_j_geoderma_2023_116413
crossref_primary_10_1016_j_rse_2023_113845
crossref_primary_10_1016_j_geoderma_2021_115089
crossref_primary_10_1016_j_geoderma_2021_115042
crossref_primary_10_1016_j_envpol_2021_118397
crossref_primary_10_3390_agriengineering7030058
crossref_primary_10_1016_j_catena_2021_105670
crossref_primary_10_1016_j_geoderma_2020_114779
crossref_primary_10_1016_j_geoderma_2024_116915
crossref_primary_10_1016_j_catena_2021_105334
crossref_primary_10_1134_S1064229322060084
crossref_primary_10_1109_TGRS_2023_3307977
crossref_primary_10_1111_sum_12706
crossref_primary_10_3389_fenvs_2024_1291917
crossref_primary_10_3390_rs15020343
crossref_primary_10_1007_s43217_024_00196_4
crossref_primary_10_3390_rs13112223
crossref_primary_10_1016_j_scitotenv_2024_178341
crossref_primary_10_1016_j_scitotenv_2025_178791
crossref_primary_10_1016_j_jag_2025_104482
crossref_primary_10_1155_2022_1313819
crossref_primary_10_1016_j_catena_2023_107604
crossref_primary_10_1016_j_geoderma_2024_116824
crossref_primary_10_1016_j_still_2023_105808
crossref_primary_10_1016_j_geoderma_2023_116669
crossref_primary_10_1016_j_catena_2024_107988
crossref_primary_10_3389_fenvs_2023_1138177
crossref_primary_10_1016_j_jsames_2022_103881
crossref_primary_10_1016_j_soisec_2022_100057
Cites_doi 10.1371/journal.pone.0169748
10.3390/rs11242905
10.2136/sssaj2006.0014
10.1016/j.geoderma.2019.01.007
10.1180/claymin.2008.043.1.11
10.1371/journal.pone.0125814
10.2136/sssaspecpub31
10.1590/2317-4889201620160023
10.1016/j.geoderma.2019.114039
10.2136/sssaj1984.03615995004800020024x
10.1111/j.1365-2389.1986.tb00382.x
10.1130/0016-7606(1977)88<174:VEOIIS>2.0.CO;2
10.2136/sssaj2013.02.0057
10.2136/sssaj1987.03615995005100050033x
10.1016/j.rse.2013.08.018
10.2136/sssaj2001.6541324x
10.7717/peerj.5518
10.1016/j.gsd.2019.03.003
10.1016/j.geoderma.2014.09.018
10.5194/isprsannals-II-4-71-2014
10.1016/j.geoderma.2009.01.025
10.2136/sssaj2017.04.0122
10.1023/A:1010933404324
10.1177/0967033518821965
10.1016/j.rse.2011.02.004
10.1346/CCMN.1998.0460506
10.1016/j.rse.2018.04.047
10.18637/jss.v087.c03
10.1590/18069657rbcs20160519
10.1002/widm.1301
10.1016/j.geoderma.2011.05.007
10.1016/j.geodrs.2014.08.001
10.2136/sssabookser1.2ed.c8
10.1007/BF00329030
10.1016/j.crte.2008.07.006
10.1214/15-AOS1321
10.1016/j.geoderma.2019.113913
10.2136/sssaj1994.03615995005800060033x
10.1016/j.geoderma.2017.10.053
10.1071/SR15142
10.1007/978-1-4020-8592-5
10.1371/journal.pone.0105992
10.1016/j.geoderma.2019.114061
10.1016/S0034-4257(96)00075-2
10.2136/sssaspecpub31.c2
10.1016/j.geoderma.2019.04.028
10.1002/joc.1276
10.1029/2011JF001977
10.1016/j.rse.2017.06.031
10.1016/j.geoderma.2013.02.013
10.1016/bs.agron.2017.01.003
10.1016/j.geoderma.2016.03.019
10.1016/j.catena.2019.104258
10.1016/j.geoderma.2016.09.024
10.1080/014311697217369
10.1016/j.trac.2010.05.006
10.1002/jpln.19921550520
10.1016/j.geoderma.2019.114067
10.1038/s41467-019-13276-1
10.2136/sssaj1984.03615995004800020036x
10.1016/j.catena.2005.11.001
10.1029/JB095iB08p12653
10.1111/ejss.12699
10.1016/j.geoderma.2019.05.043
10.2136/sssaj1987.03615995005100030025x
10.1016/j.rse.2017.11.004
10.1038/s41598-019-50376-w
10.1007/978-94-017-8023-0
10.1590/S0100-06832004000400010
10.1016/S0016-7061(03)00223-4
10.1016/j.geoderma.2019.01.025
10.1590/S0100-06832009000500029
10.1590/1678-992x-2017-0430
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs12071197
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_19cc1ac9016a47ab89071779394dacda
10_3390_rs12071197
GeographicLocations Brazil
Cerrado Biome
GeographicLocations_xml – name: Cerrado Biome
– name: Brazil
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-a417t-d5fe6f7d19c30543e71e4861b28aac5f690c40b5edfbeae9770fa96b5835cd643
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:21:43 EDT 2025
Fri Jul 11 06:28:36 EDT 2025
Fri Jul 25 12:09:53 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Tue Jul 01 04:15:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a417t-d5fe6f7d19c30543e71e4861b28aac5f690c40b5edfbeae9770fa96b5835cd643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5410-5762
0000-0001-6021-2759
0000-0002-1628-4154
OpenAccessLink https://doaj.org/article/19cc1ac9016a47ab89071779394dacda
PQID 2388664783
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_19cc1ac9016a47ab89071779394dacda
proquest_miscellaneous_2986271971
proquest_journals_2388664783
crossref_citationtrail_10_3390_rs12071197
crossref_primary_10_3390_rs12071197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_93) 2012; 171–172
Barbosa (ref_85) 2009; 33
ref_14
ref_13
Zhang (ref_17) 2019; 70
ref_19
ref_16
Clark (ref_62) 1990; 95
Loiseau (ref_72) 2019; 82
Bui (ref_25) 2010; 115
Gomes (ref_70) 2019; 340
Schaefer (ref_7) 2008; 43
Breiman (ref_42) 2001; 45
Melo (ref_87) 2001; 65
Silva (ref_10) 2020; 185
ref_27
Simon (ref_18) 2019; 361
Tadono (ref_67) 2014; 2
Post (ref_92) 1994; 58
ref_71
Curi (ref_5) 1984; 48
Torrent (ref_54) 2002; 1
ref_79
Maynard (ref_94) 2017; 285
ref_77
Wadoux (ref_73) 2019; 355
Hengl (ref_76) 2018; 6
Poppiel (ref_35) 2019; 328
Hamilton (ref_61) 2018; 87
(ref_11) 2006; 65
Zinn (ref_59) 2007; 71
Leenaars (ref_74) 2019; 361
ref_81
Sparks (ref_12) 2017; Volume 143
Kosmas (ref_56) 1984; 48
Hurst (ref_15) 1977; 88
Macedo (ref_57) 1987; 51
Liu (ref_88) 2020; 361
ref_89
Ducart (ref_32) 2016; 46
ref_86
Scheinost (ref_24) 1998; 46
Scornet (ref_43) 2015; 43
Hijmans (ref_66) 2005; 25
ref_50
Malone (ref_28) 2014; 1
Dalmolin (ref_33) 2020; 77
Roberts (ref_30) 2019; 10
Torrent (ref_9) 1986; 37
Canadell (ref_47) 1996; 108
ref_55
ref_53
ref_52
ref_51
McBratney (ref_63) 2003; 117
Gallo (ref_36) 2019; 343
Rogge (ref_38) 2018; 205
Bedidi (ref_31) 1997; 18
Fernandez (ref_83) 1992; 155
Palagos (ref_82) 2010; 29
Zinn (ref_84) 2016; 54
ref_69
ref_68
Das (ref_95) 2019; 8
ref_65
Fongaro (ref_39) 2018; 212
Rizzo (ref_20) 2016; 274
Liles (ref_90) 2013; 77
Mulder (ref_29) 2013; 139
Padarian (ref_80) 2019; 2019
Ramcharan (ref_97) 2018; 82
Terra (ref_60) 2018; 318
Fernandez (ref_22) 1987; 51
Silva (ref_75) 2019; 9
Dotto (ref_46) 2019; 354
Miller (ref_91) 2015; 239–240
Gorelick (ref_64) 2017; 202
Rossel (ref_26) 2011; 115
ref_45
ref_44
Escadafal (ref_23) 1988; 4
Poppiel (ref_37) 2018; 42
ref_41
ref_40
ref_1
Reatto (ref_96) 2008; 340
ref_3
Mattikalli (ref_21) 1997; 59
ref_49
Aitkenhead (ref_2) 2013; 200–201
ref_48
ref_8
Cattle (ref_34) 2009; 150
ref_4
Probst (ref_78) 2019; 9
ref_6
Gomes (ref_58) 2004; 28
References_xml – ident: ref_71
  doi: 10.1371/journal.pone.0169748
– ident: ref_40
  doi: 10.3390/rs11242905
– volume: 71
  start-page: 1204
  year: 2007
  ident: ref_59
  article-title: Edaphic Controls on Soil Organic Carbon Retention in the Brazilian Cerrado: Texture and Mineralogy
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0014
– ident: ref_51
– ident: ref_16
– ident: ref_65
– volume: 340
  start-page: 337
  year: 2019
  ident: ref_70
  article-title: Modelling and mapping soil organic carbon stocks in Brazil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.007
– volume: 43
  start-page: 137
  year: 2008
  ident: ref_7
  article-title: Minerals in the clay fraction of Brazilian Latosols (Oxisols): A review
  publication-title: Clay Miner.
  doi: 10.1180/claymin.2008.043.1.11
– ident: ref_69
  doi: 10.1371/journal.pone.0125814
– ident: ref_4
  doi: 10.2136/sssaspecpub31
– volume: 46
  start-page: 331
  year: 2016
  ident: ref_32
  article-title: de Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil
  publication-title: Braz. J. Geol.
  doi: 10.1590/2317-4889201620160023
– ident: ref_77
– volume: 361
  start-page: 114039
  year: 2019
  ident: ref_18
  article-title: Predicting the color of sandy soils from Wisconsin, USA
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114039
– volume: 48
  start-page: 341
  year: 1984
  ident: ref_5
  article-title: Toposequence of Oxisols from the Central Plateau of Brazil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1984.03615995004800020024x
– volume: 37
  start-page: 499
  year: 1986
  ident: ref_9
  article-title: Use of the Kubelka—Munk Theory to Study the Influence of Iron Oxides on Soil Colour
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1986.tb00382.x
– ident: ref_48
– volume: 88
  start-page: 174
  year: 1977
  ident: ref_15
  article-title: Visual estimation of iron in saprolite
  publication-title: GSA Bull.
  doi: 10.1130/0016-7606(1977)88<174:VEOIIS>2.0.CO;2
– volume: 77
  start-page: 2173
  year: 2013
  ident: ref_90
  article-title: Developing predictive soil C models for soils using quantitative color measurements
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2013.02.0057
– volume: 51
  start-page: 1277
  year: 1987
  ident: ref_22
  article-title: Calculation of Soil Color from Reflectance Spectra
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1987.03615995005100050033x
– ident: ref_13
– volume: 139
  start-page: 415
  year: 2013
  ident: ref_29
  article-title: Characterizing regional soil mineral composition using spectroscopy and geostatistics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.018
– ident: ref_45
– volume: 65
  start-page: 1324
  year: 2001
  ident: ref_87
  article-title: Chemical and Mineralogical Properties of Kaolinite-Rich Brazilian Soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.6541324x
– volume: 6
  start-page: e5518
  year: 2018
  ident: ref_76
  article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
  publication-title: PeerJ
  doi: 10.7717/peerj.5518
– volume: 8
  start-page: 617
  year: 2019
  ident: ref_95
  article-title: Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India
  publication-title: Groundw. Sustain. Dev.
  doi: 10.1016/j.gsd.2019.03.003
– ident: ref_53
– volume: 239–240
  start-page: 97
  year: 2015
  ident: ref_91
  article-title: Impact of multi-scale predictor selection for modeling soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.018
– volume: 2
  start-page: 71
  year: 2014
  ident: ref_67
  article-title: Precise global DEM generation by ALOS PRISM
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprsannals-II-4-71-2014
– ident: ref_3
– ident: ref_86
– volume: 150
  start-page: 253
  year: 2009
  ident: ref_34
  article-title: In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.01.025
– volume: 82
  start-page: 186
  year: 2018
  ident: ref_97
  article-title: Soil Property and Class Maps of the Conterminous United States at 100-Meter Spatial Resolution
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2017.04.0122
– ident: ref_14
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_42
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_19
  doi: 10.1177/0967033518821965
– volume: 115
  start-page: 1443
  year: 2011
  ident: ref_26
  article-title: Digitally mapping the information content of visible–near infrared spectra of surficial Australian soils
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.02.004
– volume: 46
  start-page: 528
  year: 1998
  ident: ref_24
  article-title: Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1998.0460506
– ident: ref_6
– ident: ref_50
– ident: ref_81
– volume: 212
  start-page: 161
  year: 2018
  ident: ref_39
  article-title: Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.047
– ident: ref_89
– volume: 87
  start-page: 1
  year: 2018
  ident: ref_61
  article-title: ggtern: An Extension to “ggplot2”, for the Creation of Ternary Diagrams
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v087.c03
– volume: 42
  start-page: e0160519
  year: 2018
  ident: ref_37
  article-title: Surface Spectroscopy of Oxisols, Entisols and Inceptisol and Relationships with Selected Soil Properties
  publication-title: Revista Brasileira de Ciência do Solo
  doi: 10.1590/18069657rbcs20160519
– volume: 9
  start-page: e1301
  year: 2019
  ident: ref_78
  article-title: Hyperparameters and tuning strategies for random forest
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1301
– volume: 171–172
  start-page: 44
  year: 2012
  ident: ref_93
  article-title: Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.05.007
– volume: 1
  start-page: 31
  year: 2014
  ident: ref_28
  article-title: A model for the identification of terrons in the Lower Hunter Valley, Australia
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2014.08.001
– ident: ref_1
  doi: 10.2136/sssabookser1.2ed.c8
– volume: 108
  start-page: 583
  year: 1996
  ident: ref_47
  article-title: Maximum rooting depth of vegetation types at the global scale
  publication-title: Oecologia
  doi: 10.1007/BF00329030
– ident: ref_49
– volume: 340
  start-page: 741
  year: 2008
  ident: ref_96
  article-title: Variation of the kaolinite and gibbsite content at regional and local scale in Latosols of the Brazilian Central Plateau
  publication-title: C. R. Geosci.
  doi: 10.1016/j.crte.2008.07.006
– ident: ref_55
– volume: 4
  start-page: 249
  year: 1988
  ident: ref_23
  article-title: Modeling the relationships between Munsell soil color and soil spectral properties
  publication-title: Int. Agrophysics
– volume: 43
  start-page: 1716
  year: 2015
  ident: ref_43
  article-title: Consistency of random forests
  publication-title: Ann. Stat.
  doi: 10.1214/15-AOS1321
– volume: 355
  start-page: 113913
  year: 2019
  ident: ref_73
  article-title: Sampling design optimization for soil mapping with random forest
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.113913
– volume: 58
  start-page: 1809
  year: 1994
  ident: ref_92
  article-title: Relations between Soil Color and Landsat Reflectance on Semiarid Rangelands
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1994.03615995005800060033x
– volume: 318
  start-page: 123
  year: 2018
  ident: ref_60
  article-title: Proximal spectral sensing in pedological assessments: Vis–NIR spectra for soil classification based on weathering and pedogenesis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.10.053
– volume: 54
  start-page: 440
  year: 2016
  ident: ref_84
  article-title: Pedogenic and lithogenic gravels as indicators of soil polygenesis in the Brazilian Cerrado
  publication-title: Soil Res.
  doi: 10.1071/SR15142
– ident: ref_41
  doi: 10.1007/978-1-4020-8592-5
– ident: ref_68
  doi: 10.1371/journal.pone.0105992
– volume: 361
  start-page: 114061
  year: 2020
  ident: ref_88
  article-title: High-resolution and three-dimensional mapping of soil texture of China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114061
– volume: 59
  start-page: 14
  year: 1997
  ident: ref_21
  article-title: Soil color modeling for the visible and near-infrared bands of Landsat sensors using laboratory spectral measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00075-2
– ident: ref_8
  doi: 10.2136/sssaspecpub31.c2
– volume: 328
  start-page: 189
  year: 2019
  ident: ref_35
  article-title: Pedology and soil class mapping from proximal and remote sensed data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.04.028
– volume: 25
  start-page: 1965
  year: 2005
  ident: ref_66
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1276
– ident: ref_52
– ident: ref_27
  doi: 10.1029/2011JF001977
– volume: 202
  start-page: 18
  year: 2017
  ident: ref_64
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 200–201
  start-page: 99
  year: 2013
  ident: ref_2
  article-title: Prediction of soil characteristics and colour using data from the National Soils Inventory of Scotland
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.02.013
– volume: Volume 143
  start-page: 175
  year: 2017
  ident: ref_12
  article-title: Delineation of Soil Management Zones for Variable-Rate Fertilization: A Review
  publication-title: Advances in Agronomy
  doi: 10.1016/bs.agron.2017.01.003
– volume: 274
  start-page: 18
  year: 2016
  ident: ref_20
  article-title: Digital soil mapping at local scale using a multi-depth Vis–NIR spectral library and terrain attributes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.03.019
– volume: 185
  start-page: 104258
  year: 2020
  ident: ref_10
  article-title: Spatial variability of iron oxides in soils from Brazilian sandstone and basalt
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104258
– volume: 285
  start-page: 94
  year: 2017
  ident: ref_94
  article-title: Hyper-temporal remote sensing for digital soil mapping: Characterizing soil-vegetation response to climatic variability
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.09.024
– volume: 115
  start-page: F04031
  year: 2010
  ident: ref_25
  article-title: Mapping iron oxides and the color of Australian soil using visible–near-infrared reflectance spectra
  publication-title: J. Geophys. Res.
– volume: 18
  start-page: 2835
  year: 1997
  ident: ref_31
  article-title: Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697217369
– volume: 29
  start-page: 1073
  year: 2010
  ident: ref_82
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2010.05.006
– volume: 155
  start-page: 473
  year: 1992
  ident: ref_83
  article-title: Munsell Colors of Soils Simulated by Mixtures of Goethite and Hematite with Kaolinite
  publication-title: Zeitschrift für Pflanzenernährung und Bodenkunde
  doi: 10.1002/jpln.19921550520
– volume: 82
  start-page: 101905
  year: 2019
  ident: ref_72
  article-title: Satellite data integration for soil clay content modelling at a national scale
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 361
  start-page: 114067
  year: 2019
  ident: ref_74
  article-title: Mapping the major soil-landscape resources of the Ethiopian Highlands using random forest
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114067
– volume: 10
  start-page: 5297
  year: 2019
  ident: ref_30
  article-title: Exposed soil and mineral map of the Australian continent revealing the land at its barest
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13276-1
– volume: 48
  start-page: 401
  year: 1984
  ident: ref_56
  article-title: Characterization of Iron Oxide Minerals by Second-Derivative Visible Spectroscopy
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1984.03615995004800020036x
– ident: ref_79
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref_80
  article-title: Machine learning and soil sciences: A review aided by machine learning tools
  publication-title: SOIL Discuss.
– volume: 65
  start-page: 118
  year: 2006
  ident: ref_11
  article-title: Symbolism, knowledge and management of soil and land resources in indigenous communities: Ethnopedology at global, regional and local scales
  publication-title: Catena
  doi: 10.1016/j.catena.2005.11.001
– volume: 95
  start-page: 12653
  year: 1990
  ident: ref_62
  article-title: High spectral resolution reflectance spectroscopy of minerals
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/JB095iB08p12653
– volume: 70
  start-page: 27
  year: 2019
  ident: ref_17
  article-title: Digital mapping of a soil profile
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12699
– volume: 354
  start-page: 113793
  year: 2019
  ident: ref_46
  article-title: The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.043
– volume: 51
  start-page: 690
  year: 1987
  ident: ref_57
  article-title: Morphology, Mineralogy, and Genesis of a Hydrosequence of Oxisols in Brazil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1987.03615995005100030025x
– volume: 205
  start-page: 1
  year: 2018
  ident: ref_38
  article-title: Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.11.004
– volume: 9
  start-page: 13763
  year: 2019
  ident: ref_75
  article-title: Digital soil mapping including additional point sampling in Posses ecosystem services pilot watershed, southeastern Brazil
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50376-w
– ident: ref_44
  doi: 10.1007/978-94-017-8023-0
– volume: 28
  start-page: 679
  year: 2004
  ident: ref_58
  article-title: Mineralogia, morfologia e análise microscópica de solos do bioma cerrado
  publication-title: Revista Brasileira de Ciência do Solo
  doi: 10.1590/S0100-06832004000400010
– volume: 1
  start-page: 1438
  year: 2002
  ident: ref_54
  article-title: Diffuse Reflectance Spectroscopy of Iron Oxides
  publication-title: Encycl. Surf. Colloid Sci.
– volume: 117
  start-page: 3
  year: 2003
  ident: ref_63
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 343
  start-page: 269
  year: 2019
  ident: ref_36
  article-title: Is it possible to map subsurface soil attributes by satellite spectral transfer models?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.025
– volume: 33
  start-page: 1373
  year: 2009
  ident: ref_85
  article-title: Pedomorphogeological relations in the chapadas elevadas of the Distrito Federal, Brazil
  publication-title: Revista Brasileira de Ciência do Solo
  doi: 10.1590/S0100-06832009000500029
– volume: 77
  start-page: e20170430
  year: 2020
  ident: ref_33
  article-title: Open legacy soil survey data in Brazil: Geospatial data quality and how to improve it
  publication-title: Sci. Agric.
  doi: 10.1590/1678-992x-2017-0430
SSID ssj0000331904
Score 2.388212
Snippet Soil color and mineralogy are used as diagnostic criteria to distinguish different soil types. In the literature, 350–2500 nm spectra were successfully used to...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1197
SubjectTerms Accuracy
aluminum oxide
Brazil
Cartography
Clay minerals
Climatic data
Color
data mining
derivative spectra
Diagnostic systems
expert opinion
Google Earth Engine
Hematite
Iron
Laboratories
Landsat
Landsat satellites
Machine learning
Mapping
meteorological data
Mineralogy
Minerals
Munsell color system
prediction
Reflectance
reflectance spectroscopy
Remote sensing
soil color
Soil mapping
Soil sciences
Soil types
Soils
spatial data
Spectra
Spectral bands
Spectrum analysis
subsoil
Subsoils
Topsoil
vegetation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_a88G-lNZaemrLSvviQzB7u8kmT6VXFCmciHrgW9jPa-BMNHdC9a_vTG7vLLQU8pSdLMnszudOfgPwRVhnlLOjRNhSJdKSHpRGJSFYl2amlCpQamBynp9N5Y-b7CYm3BaxrHKtE3tF7VpLOfJjNC1FTj9Giq939wl1jaLT1dhC4yVsoQouigFsjU_OLy43WZZU4BZL5QqXVGB8f9wt-AjNKieUpz8sUQ_Y_5c-7o3M6Rt4Hb1D9m21nG_hhW92YDs2Kv_5-A6mV209Zxjttx3TjWOTukeNbmePbKIJamHG-iIAdtG1v-pbnIuoLj0uiGdXVKyOY3WDzznCSGDjTj_V812Ynp5cfz9LYmeEREuulonLgs-Dcry0KK9SeMW9LHJuRoXWNgsY8lqZmsy7YLz26OOlQZe5ydDfsg6dkPcwaNrGfwAmpNEehbYIaMyDF9qYIsULQ7FcBC6HcLTmUmUjbDh1r5hXGD4QR6tnjg7h84b2bgWW8U-qMTF7Q0EA1_2NtptVUV4q_DLLtUVvJddSaVOUFHiiMiml09bpIRysl6qKUreonvfIEA43wygvdAiiG98-IE2JMZzC1-B7_59iH16NKLbuq3QOYLDsHvxHdECW5lPcZb8BymLbqw
  priority: 102
  providerName: ProQuest
Title Soil Color and Mineralogy Mapping Using Proximal and Remote Sensing in Midwest Brazil
URI https://www.proquest.com/docview/2388664783
https://www.proquest.com/docview/2986271971
https://doaj.org/article/19cc1ac9016a47ab89071779394dacda
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB9a-2BfRNuK58expX3pQzB7u8kmj556SumJeD3wLeynBq5JiSeof72zm3geKPgiBALZ2bDM7OzML7v5DcBPpo0SRg8ipnMRce3XQa5E5Jw2caJyLpz_NDA-S0-n_PdlcrlU6sufCWvpgVvF7dNcayo1hq1UciFVlnsEgrMq50ZqE1IjjHlLYCqswQynVsxbPlKGuH6_uaED7Ek9u9NSBApE_S_W4RBcRuuw1mWF5KAdzQZ8sNUXWO0KlF_ff4XppC5nBFF-3RDE_mRcBrbo-uqejKWnWLgiYfOfnDf1XfkP3-WlLiwawpKJP6SObWWF_YznRiDDRj6Us28wHR3_PTyNuooIkeRUzCOTOJs6YVAp6KecWUEtz1KqBpmUOnEIdTWPVWKNU1ZazO1iJ_NUJZhnaYPJxyasVHVlt4AwrqRFZ80cBnFnmVQqi_FCCJYyR3kPfj1pqdAdXbivWjErEDZ4jRbPGu3Bj4Xs_5Yk41WpoVf2QsITW4cHaO6iM3fxlrl7sPtkqqLztpsC044s9T_Nsh58XzSjn_jND1nZ-hZlcsRuAodBt99jHDvweeCRdzjDswsr8-bW7mF6Mld9-JiNTvrw6eBo_GeC9-Hx2flFP8zPRzvg5tU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsFDACDhyixrHzOiBEC8uWditEu1JvqZ9LpCUp2a1g-VH8RmayyRYJxK1STvHEisfjedjjbwBeCGN1ak0UCJOngTSkB6VOA--NDWOdy9TT1sD4KBlN5MfT-HQDfvV3YSitsteJraK2taE98h00LVlCFyPFm_NvAVWNotPVvoTGSiwO3PI7hmzz1_vvcH5fRtHw_cneKOiqCgRK8nQR2Ni7xKeW5wZlXQqXciezhOsoU8rEHsNFI0MdO-u1Uw79o9CrPNEx-irGogHHfq_BdSnQktPN9OGH9Z5OKFCgQ7lCQcX2cKeZ8wiNOCdMqT_sXlse4C_t35q04S242fmi7O1KeG7DhqvuwFZXFv3L8i5MjutyxvZQPzZMVZaNyxajup4u2VgRsMOUtSkH7FNT_yi_Yl9E9dnh9Dt2TKnx2FZW-J0lRAa226if5eweTK6EY_dhs6or9wCYkFo5VBGZR9fBO6G0zkJ8MPBLhOdyAK96LhWmAymnWhmzAoMV4mhxydEBPF_Tnq-gOf5JtUvMXlMQnHb7om6mRbc6CxyZ4cqgb5QomSqd5RTmourKpVXGqgFs91NVdGt8XlxK5ACerZtxddKRi6pcfYE0OUaMKf4Gf_j_Lp7C1uhkfFgc7h8dPIIbEUX1bX7QNmwumgv3GF2fhX7SyhuDs6sW8N8HXxg-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKdIKbAIOHCw4sfaax8QIm2jlpIoaonUm7vPECnYrZMKwk_j1zHj2CkSiFsln-zxyh5_OzPf7ngG4E2kjRJGh16kM-FxTXaQK-E5p40fq4wLR0sDw1FyOOGfzuKzLfjV_gtDaZWtTawNtSk1rZH30LWkCf0YGfVckxYx3h98uLj0qIMU7bS27TTWEDm2q-9I3xbvj_bxW78Nw8HBl71Dr-kw4EkeiKVnYmcTJ0yQacQ9j6wILE-TQIWplDp2SB0191VsjVNWWoyVfCezRMUYt2iDzhzHvQXbglhRB7b7B6PxyWaFx48Q3j5f10SNoszvVYsgRMmAKkz94QXrZgF_-YLawQ3uw70mMmUf11B6AFu2eAh3mibpX1ePYHJazuZsD61lxWRh2HBWV6wupys2lFTmYcrqBAQ2rsofs284FkmdWASDZaeUKI_XZgXeZ6g-A-tX8uds_hgmN6KzJ9ApysI-BRZxJS0ajNRhIOFsJJVKfTyQBiaRC3gX3rVaynVTspw6Z8xzpC6k0fxao114vZG9WBfq-KdUn5S9kaDi2vWJsprmzVzN8c10IDVGSonkQqo0I9KLhizjRmoju7Dbfqq8mfGL_BqfXXi1uYxzlTZgZGHLK5TJkD8KfIxg5_9DvITbCO7889Ho-BncDYni18lCu9BZVlf2OcZBS_WiARyD85vG-G-InB3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+Color+and+Mineralogy+Mapping+Using+Proximal+and+Remote+Sensing+in+Midwest+Brazil&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Poppiel%2C+Ra%C3%BAl+Roberto&rft.au=Lacerda%2C+Marilusa+Pinto+Coelho&rft.au=Rizzo%2C+Rodnei&rft.au=Safanelli%2C+Jos%C3%A9+Lucas&rft.date=2020-04-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=7&rft_id=info:doi/10.3390%2Frs12071197&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon