Artificial Neural Networks To Distinguish Charcoal from Eucalyptus and Native Forests Based on Their Mineral Components
Charcoal is produced through the pyrolysis of wood. It is used as the main domestic energy source in many tropical countries from Africa and Asia, and it is used as a reductor product in the steel industry in Brazil. However, the indiscriminant use of wood from native forests is detrimental to susta...
Saved in:
Published in | Energy & fuels Vol. 34; no. 8; pp. 9599 - 9608 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
20.08.2020
|
Series | Energy & Fuels |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Charcoal is produced through the pyrolysis of wood. It is used as the main domestic energy source in many tropical countries from Africa and Asia, and it is used as a reductor product in the steel industry in Brazil. However, the indiscriminant use of wood from native forests is detrimental to sustainability. The development of rapid and efficient methodologies for distinguishing charcoal produced from native forest or Eucalyptus plantations, as found partially in Brazil, is essential to curb illegal charcoal transport and trade. The aim of this study was to distinguish charcoals from native or Eucalyptus woods by using artificial neural networks (ANNs) based on their mineral composition. Specimens from Brazilian native woods (Apuleia sp., Cedrela sp., Aspidosperma sp., Jacaranda sp., Peltogyne sp., Dipteryx sp., and Gochnatia sp.) and from Eucalyptus sp. hybrid woods of commercial forest plantations were pyrolyzed at temperatures from 300 °C to 700 °C in order to simulate the actual pyrolysis conditions and species widely used illegally in southeastern Brazil. Charcoals composition and proportion of mineral elements were determined by X-ray fluorescence. The ANNs were trained based on the elemental composition of the charcoal specimens to classify the species and origin of the charcoals (i.e., native forest or Eucalyptus). The ANNs based on mineral element content yielded high percentage of correct classification for charcoal specimens by species (72% accuracy) or origin (97% accuracy) from an independent validation sample set. |
---|---|
AbstractList | Charcoal is produced through the pyrolysis of wood. It is used as the main domestic energy source in many tropical countries from Africa and Asia, and it is used as a reductor product in the steel industry in Brazil. However, the indiscriminant use of wood from native forests is detrimental to sustainability. The development of rapid and efficient methodologies for distinguishing charcoal produced from native forest or Eucalyptus plantations, as found partially in Brazil, is essential to curb illegal charcoal transport and trade. The aim of this study was to distinguish charcoals from native or Eucalyptus woods by using artificial neural networks (ANNs) based on their mineral composition. Specimens from Brazilian native woods (Apuleia sp., Cedrela sp., Aspidosperma sp., Jacaranda sp., Peltogyne sp., Dipteryx sp., and Gochnatia sp.) and from Eucalyptus sp. hybrid woods of commercial forest plantations were pyrolyzed at temperatures from 300 °C to 700 °C in order to simulate the actual pyrolysis conditions and species widely used illegally in southeastern Brazil. Charcoals composition and proportion of mineral elements were determined by X-ray fluorescence. The ANNs were trained based on the elemental composition of the charcoal specimens to classify the species and origin of the charcoals (i.e., native forest or Eucalyptus). The ANNs based on mineral element content yielded high percentage of correct classification for charcoal specimens by species (72% accuracy) or origin (97% accuracy) from an independent validation sample set. |
Author | Carvalho, Geila Santos Guilherme, Luiz Roberto Guimarães Hein, Paulo Ricardo Gherardi Wojcieszak, Robert Ramalho, Fernanda Maria Guedes Napoli, Alfredo |
AuthorAffiliation | CIRAD UR BioWooEB Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide Département Persyst Departamento de Ciências Florestais Departamento de Ciência do Solo |
AuthorAffiliation_xml | – name: Departamento de Ciências Florestais – name: CIRAD UR BioWooEB – name: Département Persyst – name: Departamento de Ciência do Solo – name: Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide |
Author_xml | – sequence: 1 givenname: Fernanda Maria Guedes orcidid: 0000-0001-5701-4479 surname: Ramalho fullname: Ramalho, Fernanda Maria Guedes organization: Departamento de Ciências Florestais – sequence: 2 givenname: Geila Santos surname: Carvalho fullname: Carvalho, Geila Santos organization: Departamento de Ciência do Solo – sequence: 3 givenname: Paulo Ricardo Gherardi surname: Hein fullname: Hein, Paulo Ricardo Gherardi email: paulo.hein@ufla.br organization: Departamento de Ciências Florestais – sequence: 4 givenname: Alfredo surname: Napoli fullname: Napoli, Alfredo organization: CIRAD UR BioWooEB – sequence: 5 givenname: Robert orcidid: 0000-0002-8956-5846 surname: Wojcieszak fullname: Wojcieszak, Robert organization: Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide – sequence: 6 givenname: Luiz Roberto Guimarães surname: Guilherme fullname: Guilherme, Luiz Roberto Guimarães organization: Departamento de Ciência do Solo |
BackLink | https://hal.univ-lille.fr/hal-03034304$$DView record in HAL |
BookMark | eNqFkU1PGzEQhi1EJQLlN-Bje9gwa3uzm0MPacqXlNJLOFsTr5cYNnbq8YLy7-s0VKq4cBrZeh5r_L6n7NgHbxm7KGFcgigv0dDYehsfd91gexqDgRKkOmKjshJQVCCmx2wETVMXMBHqhJ0SPQHARDbViL3OYnKdMw57fm-H-Hek1xCfiS8D_-EoOf84OFrz-RqjCRnoYtjwq8Fgv9umgTj6lt9jci-WX4doKRH_jmRbHjxfrq2L_KfLC2ZzHjbbvL1P9Jl96rAne_42z9jD9dVyflssft3czWeLAlVZp0IpC9VEoRRQV9CCqlayBSPqpp00NXZYg1opmKpWYN3JzoAy-QAraaa2WbXyjH09vLvGXm-j22Dc6YBO384Wen8HMoclQb2Umf1yYLcx_B7yP_TGkbF9j96GgbSohBKNEDDN6LcDamIgirbTxqUcQfApout1CXpfjs7l6P_K0W_lZL9-5__b7WNTHsw98BSG6HN8H1p_AFsbr00 |
CitedBy_id | crossref_primary_10_1016_j_eti_2021_101788 crossref_primary_10_3390_agriengineering6030182 crossref_primary_10_1021_acs_energyfuels_2c01006 |
Cites_doi | 10.1007/s11119-018-9608-z 10.1016/j.engappai.2009.01.013 10.1016/j.ecoinf.2018.05.008 10.1007/s11104-019-04146-2 10.1007/s00226-018-1073-3 10.1016/j.jas.2013.12.001 10.1002/ep.10378 10.1016/j.ecoenv.2019.01.110 10.3390/f10010016 10.1016/B978-0-12-802139-2.00001-9 10.1016/j.compositesb.2016.04.036 10.12953/2177-6830/rcm.v6n3p269-274 10.1007/s00521-015-2075-9 10.1590/0100-67622016000300018 10.1016/j.molstruc.2014.12.008 10.2174/1874444301507010290 10.1007/978-981-13-9749-3_54 10.1007/s00340-019-7166-3 10.1016/j.sab.2016.12.006 10.1088/1757-899x/394/3/032044 10.1016/j.biortech.2015.12.024 10.1016/j.energy.2015.05.100 10.1021/acs.energyfuels.6b02446 10.1590/S0100-40422010000500016 10.1007/s00226-017-0915-8 10.1002/xrs.985 10.1007/s13762-013-0306-0 10.1007/s00226-017-0932-7 10.1590/0001-3765201620150322 10.1016/j.renene.2012.06.030 10.1590/1809-4392201304572 10.1007/s11270-017-3472-8 10.1590/01047760201824032552 10.1016/j.biombioe.2018.02.017 10.1016/S0167-7012(00)00201-3 10.4067/s0718-221x2018005041501 10.18671/scifor.v44n109.14 10.18671/scifor.v45n113.10 10.1002/bbb.1991 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7S9 L.6 1XC VOOES |
DOI | 10.1021/acs.energyfuels.0c01034 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5029 |
EndPage | 9608 |
ExternalDocumentID | oai_HAL_hal_03034304v1 10_1021_acs_energyfuels_0c01034 a42873375 |
GeographicLocations | Brazil Asia Africa |
GeographicLocations_xml | – name: Africa – name: Asia – name: Brazil |
GroupedDBID | 02 55A 5GY 7~N AABXI ABFLS ABMVS ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F X -~X .DC 4.4 5VS AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK ZCA ~02 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-a417t-44e0564a320750d045b3d0c278d687afa704b4094d2a7f3fc04c94d0b3c9e8bd3 |
IEDL.DBID | ACS |
ISSN | 0887-0624 1520-5029 |
IngestDate | Fri May 09 12:11:14 EDT 2025 Thu Jul 10 18:19:49 EDT 2025 Tue Jul 01 02:27:27 EDT 2025 Thu Apr 24 22:57:19 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Pyrolysis Minerals Wood Layers X-rays |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a417t-44e0564a320750d045b3d0c278d687afa704b4094d2a7f3fc04c94d0b3c9e8bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5701-4479 0000-0002-8956-5846 0000-0002-1559-3975 |
OpenAccessLink | https://hal.univ-lille.fr/hal-03034304 |
PQID | 2524282209 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_03034304v1 proquest_miscellaneous_2524282209 crossref_citationtrail_10_1021_acs_energyfuels_0c01034 crossref_primary_10_1021_acs_energyfuels_0c01034 acs_journals_10_1021_acs_energyfuels_0c01034 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-20 |
PublicationDateYYYYMMDD | 2020-08-20 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-20 day: 20 |
PublicationDecade | 2020 |
PublicationSeriesTitle | Energy & Fuels |
PublicationTitle | Energy & fuels |
PublicationTitleAlternate | Energy Fuels |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 Indústria Brasileira De Árvores (IBÁ) (ref2/cit2) 2017 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref15/cit15 doi: 10.1007/s11119-018-9608-z – ident: ref24/cit24 doi: 10.1016/j.engappai.2009.01.013 – ident: ref9/cit9 doi: 10.1016/j.ecoinf.2018.05.008 – ident: ref14/cit14 doi: 10.1007/s11104-019-04146-2 – ident: ref43/cit43 doi: 10.1007/s00226-018-1073-3 – ident: ref19/cit19 doi: 10.1016/j.jas.2013.12.001 – ident: ref21/cit21 doi: 10.1002/ep.10378 – ident: ref16/cit16 doi: 10.1016/j.ecoenv.2019.01.110 – ident: ref40/cit40 doi: 10.3390/f10010016 – ident: ref4/cit4 – ident: ref12/cit12 doi: 10.1016/B978-0-12-802139-2.00001-9 – ident: ref37/cit37 doi: 10.1016/j.compositesb.2016.04.036 – ident: ref31/cit31 doi: 10.12953/2177-6830/rcm.v6n3p269-274 – ident: ref36/cit36 doi: 10.1007/s00521-015-2075-9 – ident: ref41/cit41 doi: 10.1590/0100-67622016000300018 – ident: ref18/cit18 doi: 10.1016/j.molstruc.2014.12.008 – ident: ref23/cit23 doi: 10.2174/1874444301507010290 – ident: ref17/cit17 doi: 10.1007/978-981-13-9749-3_54 – ident: ref26/cit26 doi: 10.1007/s00340-019-7166-3 – ident: ref32/cit32 doi: 10.1016/j.sab.2016.12.006 – ident: ref44/cit44 doi: 10.1088/1757-899x/394/3/032044 – ident: ref30/cit30 doi: 10.1016/j.biortech.2015.12.024 – ident: ref33/cit33 doi: 10.1016/j.energy.2015.05.100 – ident: ref7/cit7 doi: 10.1021/acs.energyfuels.6b02446 – ident: ref10/cit10 doi: 10.1590/S0100-40422010000500016 – ident: ref1/cit1 – ident: ref34/cit34 – ident: ref25/cit25 doi: 10.1007/s00226-017-0915-8 – ident: ref13/cit13 doi: 10.1002/xrs.985 – ident: ref27/cit27 doi: 10.1007/s13762-013-0306-0 – ident: ref42/cit42 doi: 10.1007/s00226-017-0932-7 – ident: ref6/cit6 doi: 10.1590/0001-3765201620150322 – ident: ref20/cit20 doi: 10.1016/j.renene.2012.06.030 – ident: ref8/cit8 doi: 10.1590/1809-4392201304572 – ident: ref28/cit28 doi: 10.1007/s11270-017-3472-8 – ident: ref3/cit3 doi: 10.1590/01047760201824032552 – ident: ref5/cit5 – ident: ref11/cit11 doi: 10.1016/j.biombioe.2018.02.017 – ident: ref22/cit22 doi: 10.1016/S0167-7012(00)00201-3 – ident: ref39/cit39 doi: 10.4067/s0718-221x2018005041501 – ident: ref35/cit35 doi: 10.18671/scifor.v44n109.14 – ident: ref38/cit38 doi: 10.18671/scifor.v45n113.10 – ident: ref29/cit29 doi: 10.1002/bbb.1991 – volume-title: Relatório IBÁ 2017 year: 2017 ident: ref2/cit2 |
SSID | ssj0006385 |
Score | 2.348446 |
Snippet | Charcoal is produced through the pyrolysis of wood. It is used as the main domestic energy source in many tropical countries from Africa and Asia, and it is... |
SourceID | hal proquest crossref acs |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9599 |
SubjectTerms | Africa Apuleia Asia Aspidosperma Biofuels and Biomass Brazil Catalysis Cedrela charcoal Chemical Sciences Dipteryx elemental composition energy Eucalyptus fluorescence forests Gochnatia hybrids industry Jacaranda mineral content minerals Peltogyne pyrolysis steel trade wood X-radiation |
Title | Artificial Neural Networks To Distinguish Charcoal from Eucalyptus and Native Forests Based on Their Mineral Components |
URI | http://dx.doi.org/10.1021/acs.energyfuels.0c01034 https://www.proquest.com/docview/2524282209 https://hal.univ-lille.fr/hal-03034304 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BPRQOtKUgoA-Zqsfu1rG9cXLcbkErBBzaReIWObbDolYJqpMi-us7k01W0ArRnqJYdhLb83Jm5huA9z7VVvECOS1KPB5QUok8J8UgUtbaPNWpzik5-fQsnp6r44vRxQpED3jwRfTR2DD0bR5c0aC6GHJLpQnUKjwRcaLpvDWefF0KXySnUQ_uyWOh-pCuhx9EasmGe2ppdU5BkX_I5lbhHD2DL33aziLO5NuwqfOh_fU3iuO_z-U5bHbmJxsv6OUFrPhyC55O-qpvW7BxB6DwJdxQxwXGBCMYj_bSxo0HNqvYZxIQ5WVzFeaM_Pa2wg6UsMIOCeD29rpuAjOlY2ctvDijOqChDuwTqk7HqpLNyE3BTq9a6GtGsqkqKbJjG86PDmeT6aAr1TAwKtL1QCmPlpQyUpAJ4tBOzKXjVujE4SaZwmiucjpKOmF0IQvLlcUbnkub-iR3cgfWSnzDLjApdRIXsfUjr5VJjXEmEdoVwnICr4v24AMuY9axWshaL7qIMmq8s7ZZt7Z7EPcbm9kO9pyqb3x_fCBfDrxeIH88PuQdUs6yNyF3T8cnGbWhLJVKcvUTv_-gJ6wM95b8M6b0VRMyMUJ7CQ02nu7_3xxfwbqg3wCchN5rWKt_NP4N2kp1_rbljt8OHRNU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe28TB4GDBADAYYxCPtHNuNk8dSNhVo-0InjSfLsR02gZIJJ0Pw1-_OTcqYhCZ4imLZjj_Od-fc3e8Iee1zZSUr4aQlmYcLSi7gzAk-SKS1tshVrgoMTp4v0umx_HAyOtkgWR8LA4MI0FOIRvzf6ALJAZb5GA5XtiA1hsxihgK5SW6BSsLx2jWefFrzYKCqUY_xyVIue8-uv3eE0smGP6TT5in6Rl5j0VHuHN0ln9cjju4mX4dtUwztr2tgjv8zpXtkp1NG6XhFPffJhq92yfakzwG3S-5cgSt8QH5gxRXiBEVQj_iIXuSBLmv6DtlF9aU9C6cUrfi2hgoYvkIPEe7253nTBmoqRxcRbJxiVtDQBPoWBKmjdUWXaLSg87MIhE2RU9UV-nk8JMdHh8vJdNAlbhgYmahmIKUHvUoawVEhcaA1FsIxy1Xm0kyZ0igmC7xYOm5UKUrLpIUXVgib-6xw4hHZquALjwkVQmVpmVo_8kqa3BhnMq5cyS1DKLtkj7yBZdTdwQs62tR5orHwytrqbm33SNrvr7YdCDrm4vh2c0O2bni-wgG5uckrIKB1bcTxno5nGsuAswopmLyA8b_s6UvD3qK1xlS-boPmI9CeQH1j-ZN_m-MLsj1dzmd69n7x8Sm5zfEHAUN2uE-2mu-tfwZaVFM8jwfmEuCkG7U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELbaInE8cBQQ5TSIR3br2N44kXhZtl0t0K6Q2Ep9QZZjO7RqlaxwAoJfz4w3WZVKqIKnKJbt-JrDmZlvCHntc2UlK4HSkszDBSUXQHOCDxJprS1ylasCg5MP5-nsSH44Hh1vkLd9LAwMIkBPIRrxkaqXruwQBpJdLPcxJK5sQXIMmcUsBXKTXEPjHV69xpPPaz4MJ2vU43yylMveu-vvHaGEsuEPCbV5gv6Rl9h0lD3TO-TLetTR5eRs2DbF0P66BOj4v9O6S253Sikdr07RPbLhq21yY9Lngtsmty7AFt4nP7DiCnmCIrhHfERv8kAXNd1DtlF9bU_DCUVrvq2hAoax0H2Evf25bNpATeXoPIKOU8wOGppA34FAdbSu6AKNF_TwNAJiU-RYdYX-Hg_I0XR_MZkNugQOAyMT1Qyk9KBfSSM4KiYOtMdCOGa5ylyaKVMaxWSBF0zHjSpFaZm08MIKYXOfFU48JFsVfOERoUKoLC1T60deSZMb40zGlSu5ZQhpl-yQN7CMuiPAoKNtnScaCy-sre7Wdoek_R5r24GhY06O86sbsnXD5QoP5Oomr-AQrWsjnvdsfKCxDDiskILJ7zD-l_0Z07C3aLUxla_boPkItChQ41j--N_m-IJc_7Q31Qfv5x-fkJsc_xMw5IpPyVbzrfXPQJlqiueRZn4D2cweOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Networks+To+Distinguish+Charcoal+from+Eucalyptus+and+Native+Forests+Based+on+Their+Mineral+Components&rft.jtitle=Energy+%26+fuels&rft.au=Ramalho%2C+Fernanda+Maria+Guedes&rft.au=Carvalho%2C+Geila+Santos&rft.au=Hein%2C+Paulo+Ricardo+Gherardi&rft.au=Napoli%2C+Alfredo&rft.date=2020-08-20&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=34&rft.issue=8&rft.spage=9599&rft.epage=9608&rft_id=info:doi/10.1021%2Facs.energyfuels.0c01034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_energyfuels_0c01034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon |