Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing

Printing of ultrathin layers of polymeric and colloidal inks is critical for the manufacturing of electronics on nonconventional substrates such as paper and polymer films. Recently, we found that nanoporous stamps overcome key limitations of traditional polymer stamps in flexographic printing, name...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 35; no. 24; pp. 7659 - 7671
Main Authors Mariappan, Dhanushkodi D, Kim, Sanha, Boutilier, Michael S. H, Zhao, Junjie, Zhao, Hangbo, Beroz, Justin, Muecke, Ulrich, Sojoudi, Hossein, Gleason, Karen, Brun, Pierre-Thomas, Hart, A. John
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.06.2019
Online AccessGet full text

Cover

Loading…
Abstract Printing of ultrathin layers of polymeric and colloidal inks is critical for the manufacturing of electronics on nonconventional substrates such as paper and polymer films. Recently, we found that nanoporous stamps overcome key limitations of traditional polymer stamps in flexographic printing, namely, enabling the printing of ultrathin nanoparticle films with micron-scale lateral precision. Here, we study the dynamics of liquid transfer between nanoporous stamps and solid substrates. The stamps comprise forests of polymer-coated carbon nanotubes, and the surface mechanics and wettability of the stamps are engineered to imbibe colloidal inks and transfer the ink upon contact with the target substrate. By high-speed imaging during printing, we observe the dynamics of liquid spreading, which is mediated by progressing contact between the nanostructured stamp surface and by the substrate and imbibition within the stamp–substrate gap. From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. Via modeling of the liquid dynamics, and comparison with data, we elucidate the scale- and rate-limiting aspects of the process. Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. Under these conditions, nanoparticle films with controlled thickness in the <100 nm regime can be printed using nanoporous stamp flexography, at speeds commensurate with industrial printing equipment.
AbstractList Printing of ultrathin layers of polymeric and colloidal inks is critical for the manufacturing of electronics on nonconventional substrates such as paper and polymer films. Recently, we found that nanoporous stamps overcome key limitations of traditional polymer stamps in flexographic printing, namely, enabling the printing of ultrathin nanoparticle films with micron-scale lateral precision. Here, we study the dynamics of liquid transfer between nanoporous stamps and solid substrates. The stamps comprise forests of polymer-coated carbon nanotubes, and the surface mechanics and wettability of the stamps are engineered to imbibe colloidal inks and transfer the ink upon contact with the target substrate. By high-speed imaging during printing, we observe the dynamics of liquid spreading, which is mediated by progressing contact between the nanostructured stamp surface and by the substrate and imbibition within the stamp-substrate gap. From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. Via modeling of the liquid dynamics, and comparison with data, we elucidate the scale- and rate-limiting aspects of the process. Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. Under these conditions, nanoparticle films with controlled thickness in the &lt;100 nm regime can be printed using nanoporous stamp flexography, at speeds commensurate with industrial printing equipment.
Printing of ultrathin layers of polymeric and colloidal inks is critical for the manufacturing of electronics on nonconventional substrates such as paper and polymer films. Recently, we found that nanoporous stamps overcome key limitations of traditional polymer stamps in flexographic printing, namely, enabling the printing of ultrathin nanoparticle films with micron-scale lateral precision. Here, we study the dynamics of liquid transfer between nanoporous stamps and solid substrates. The stamps comprise forests of polymer-coated carbon nanotubes, and the surface mechanics and wettability of the stamps are engineered to imbibe colloidal inks and transfer the ink upon contact with the target substrate. By high-speed imaging during printing, we observe the dynamics of liquid spreading, which is mediated by progressing contact between the nanostructured stamp surface and by the substrate and imbibition within the stamp–substrate gap. From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. Via modeling of the liquid dynamics, and comparison with data, we elucidate the scale- and rate-limiting aspects of the process. Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. Under these conditions, nanoparticle films with controlled thickness in the <100 nm regime can be printed using nanoporous stamp flexography, at speeds commensurate with industrial printing equipment.
Printing of ultrathin layers of polymeric and colloidal inks is critical for the manufacturing of electronics on non-conventional substrates such as paper and polymer films. Recently, we found that nanoporous stamps overcome key limitations of traditional polymer stamps in flexographic printing, namely enabling the printing of ultrathin nanoparticle films with micron-scale lateral precision. Here, we study the dynamics of liquid transfer between nanoporous stamps and solid substrates. The stamps comprise a forest of polymer-coated carbon nanotubes (CNTs), and the surface mechanics and wettability of the stamp are engineered to imbibe colloidal inks and transfer patterns by conformal contact with the substrates. By high-speed imaging during printing we observe the dynamics of liquid spreading, which is mediated by progressing contact between the nanostructure stamp surface and the substrate and imbibition within the stamp-substrate gap. From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. Via modeling of the liquid dynamics, and comparison with data, we elucidate the scale- and rate-limiting aspects of the process. Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and thickness decreases with retraction speed. Our results show that nanoparticle films with tailored thickness in the < 100 nm regime can be printed using nanoporous stamp flexography, at speeds commensurate with industrial equipment.
Author Zhao, Hangbo
Sojoudi, Hossein
Zhao, Junjie
Mariappan, Dhanushkodi D
Kim, Sanha
Hart, A. John
Brun, Pierre-Thomas
Muecke, Ulrich
Beroz, Justin
Boutilier, Michael S. H
Gleason, Karen
AuthorAffiliation Princeton University
Department of Chemical Engineering
Department of Mechanical Engineering
Department of Chemical and Biological Engineering
Department of Mathematics
Department of Materials Science and Engineering
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name:
– name: Department of Mechanical Engineering
– name: Princeton University
– name: Department of Mathematics
– name: Department of Chemical and Biological Engineering
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Dhanushkodi D
  orcidid: 0000-0002-4376-2238
  surname: Mariappan
  fullname: Mariappan, Dhanushkodi D
– sequence: 2
  givenname: Sanha
  surname: Kim
  fullname: Kim, Sanha
– sequence: 3
  givenname: Michael S. H
  surname: Boutilier
  fullname: Boutilier, Michael S. H
– sequence: 4
  givenname: Junjie
  surname: Zhao
  fullname: Zhao, Junjie
– sequence: 5
  givenname: Hangbo
  surname: Zhao
  fullname: Zhao, Hangbo
– sequence: 6
  givenname: Justin
  surname: Beroz
  fullname: Beroz, Justin
– sequence: 7
  givenname: Ulrich
  surname: Muecke
  fullname: Muecke, Ulrich
– sequence: 8
  givenname: Hossein
  surname: Sojoudi
  fullname: Sojoudi, Hossein
– sequence: 9
  givenname: Karen
  orcidid: 0000-0001-6127-1056
  surname: Gleason
  fullname: Gleason, Karen
– sequence: 10
  givenname: Pierre-Thomas
  surname: Brun
  fullname: Brun, Pierre-Thomas
  organization: Princeton University
– sequence: 11
  givenname: A. John
  orcidid: 0000-0002-7372-3512
  surname: Hart
  fullname: Hart, A. John
  email: ajhart@mit.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31013102$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1OwzAQhC0EoqXwBgj5yCXFdpykPiL-pQoQlBOHaOPYwVViBzuR4O1x1cKRw2ovM7M73xHat84qhE4pmVPC6AXIMG_BNt1o_FxUhPCc7KEpzRhJsgUr9tGUFDxNCp6nE3QUwpoQIlIuDtEkpYTGYVP0fv1toTMyYKfx0nyOpsYrDzZo5bH2rsOPYF3vvBsDfh2g6wM2Ft-b5iN5UcG142Ccxbet-nKNh_7DSPzsjR2MbY7RgYY2qJPdnqG325vV1X2yfLp7uLpcJsBpPiQAmmeFrDKdSyHJQnOeyhrqoiCC5rpiCy6AsFTqWnG2ACa4yjVITWvQVVanM3S-ze29-xxVGMrOBKnaSEfFt0vGaCqYyGLGDPGtVHoXgle67L3pwH-XlJQbrGXEWv5iLXdYo-1sd2GsOlX_mX45RgHZCjb2tRu9jYX_z_wB4aaLOw
CitedBy_id crossref_primary_10_1088_2058_8585_ac0c67
crossref_primary_10_1016_j_compositesb_2023_110913
crossref_primary_10_3390_app11177827
crossref_primary_10_3390_ma14112973
crossref_primary_10_1002_advs_202001778
crossref_primary_10_1038_s42254_020_0192_6
crossref_primary_10_1088_1674_1056_abb664
crossref_primary_10_1002_adfm_202005370
crossref_primary_10_1002_adem_202000548
crossref_primary_10_1016_j_precisioneng_2020_07_012
crossref_primary_10_1002_adfm_202201930
crossref_primary_10_1007_s40684_020_00200_y
crossref_primary_10_1149_1945_7111_acf248
crossref_primary_10_1021_acsanm_2c03247
crossref_primary_10_3390_coatings11060617
crossref_primary_10_1002_aelm_202100445
crossref_primary_10_1021_acsami_1c04544
crossref_primary_10_3390_coatings13020292
crossref_primary_10_1088_2058_8585_acf722
crossref_primary_10_3390_ma17112511
Cites_doi 10.1007/s10853-005-3659-z
10.1088/0957-4484/27/22/225302
10.1039/C5AN02328A
10.1002/adma.201202949
10.1109/WMCaS.2013.6563548
10.1021/la061904m
10.1021/acs.langmuir.6b03661
10.1017/S0022112010004611
10.1021/nl048905o
10.1016/j.proeng.2016.11.254
10.1002/adma.200602043
10.1146/annurev-fluid-010814-014620
10.1002/cjce.5450640302
10.1122/1.549000
10.1021/acs.langmuir.5b03292
10.1126/science.aao0098
10.1016/j.matchemphys.2007.11.042
10.1039/C5SM02451J
10.1088/0022-3727/12/9/009
10.1038/s41598-017-01391-2
10.1039/c4sm00075g
10.1063/1.1389080
10.1063/1.465782
10.1063/1.2959728
10.1021/acsami.8b01581
10.1002/aic.690120106
10.1021/la304870h
10.1063/1.4934961
10.1063/1.448997
10.1016/j.solmat.2008.10.004
10.1016/S1369-7021(12)70019-6
10.1016/j.surfcoat.2017.09.058
10.1039/C6SM00876C
10.1016/j.matchemphys.2011.05.064
10.1021/acsami.7b13713
10.1038/scientificamerican0104-56
10.1126/sciadv.1601660
10.1021/acsami.6b06838
10.1016/j.cis.2011.12.005
10.1016/j.powtec.2009.08.022
10.1016/j.apsusc.2010.07.057
10.1038/ncomms6259
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acs.langmuir.9b00460
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 7671
ExternalDocumentID 10_1021_acs_langmuir_9b00460
31013102
h73647470
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
4.4
AAHBH
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
CUPRZ
GGK
NPM
YQT
~02
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a416t-aaf457cb5f6c9c08f443cdad770916fb2849a023cfde428a294e6facf1dafb5d3
IEDL.DBID ACS
ISSN 0743-7463
IngestDate Fri Aug 16 08:08:11 EDT 2024
Fri Aug 23 01:23:16 EDT 2024
Wed Oct 16 00:51:08 EDT 2024
Thu Aug 27 13:43:57 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a416t-aaf457cb5f6c9c08f443cdad770916fb2849a023cfde428a294e6facf1dafb5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4376-2238
0000-0001-6127-1056
0000-0002-7372-3512
PMID 31013102
PQID 2213929502
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2213929502
crossref_primary_10_1021_acs_langmuir_9b00460
pubmed_primary_31013102
acs_journals_10_1021_acs_langmuir_9b00460
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-06-18
PublicationDateYYYYMMDD 2019-06-18
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
Chadov A. V. (ref21/cit21) 1979; 41
Rohsenow W. M. (ref33/cit33) 1998
ref16/cit16
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
McKinley G. H. (ref36/cit36) 2005; 2005
de Gennes P.-G. (ref37/cit37) 2002
ref19/cit19
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
Yakhnin ED C. A. (ref23/cit23) 1983; 41
ref41/cit41
ref22/cit22
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref48/cit48
  doi: 10.1007/s10853-005-3659-z
– ident: ref3/cit3
  doi: 10.1088/0957-4484/27/22/225302
– ident: ref9/cit9
  doi: 10.1039/C5AN02328A
– ident: ref16/cit16
  doi: 10.1002/adma.201202949
– ident: ref4/cit4
  doi: 10.1109/WMCaS.2013.6563548
– ident: ref31/cit31
  doi: 10.1021/la061904m
– ident: ref35/cit35
  doi: 10.1021/acs.langmuir.6b03661
– ident: ref30/cit30
  doi: 10.1017/S0022112010004611
– ident: ref5/cit5
  doi: 10.1021/nl048905o
– ident: ref10/cit10
  doi: 10.1016/j.proeng.2016.11.254
– ident: ref19/cit19
– volume-title: Capillarity and Wetting Phenomena—Drops, Bubbles, Pearls, Waves
  year: 2002
  ident: ref37/cit37
  contributor:
    fullname: de Gennes P.-G.
– ident: ref13/cit13
  doi: 10.1002/adma.200602043
– ident: ref22/cit22
  doi: 10.1146/annurev-fluid-010814-014620
– ident: ref34/cit34
  doi: 10.1002/cjce.5450640302
– ident: ref50/cit50
  doi: 10.1122/1.549000
– ident: ref40/cit40
– ident: ref27/cit27
  doi: 10.1021/acs.langmuir.5b03292
– ident: ref7/cit7
  doi: 10.1126/science.aao0098
– ident: ref47/cit47
  doi: 10.1016/j.matchemphys.2007.11.042
– ident: ref26/cit26
  doi: 10.1039/C5SM02451J
– ident: ref38/cit38
  doi: 10.1088/0022-3727/12/9/009
– volume: 41
  start-page: 700
  year: 1979
  ident: ref21/cit21
  publication-title: Kolloidn. Zh.
  contributor:
    fullname: Chadov A. V.
– ident: ref2/cit2
  doi: 10.1038/s41598-017-01391-2
– ident: ref24/cit24
  doi: 10.1039/c4sm00075g
– volume: 41
  start-page: 1034
  year: 1983
  ident: ref23/cit23
  publication-title: Kolloidn. Zh.
  contributor:
    fullname: Yakhnin ED C. A.
– volume-title: Handbook of Heat Transfer Media
  year: 1998
  ident: ref33/cit33
  contributor:
    fullname: Rohsenow W. M.
– ident: ref17/cit17
  doi: 10.1063/1.1389080
– ident: ref45/cit45
  doi: 10.1063/1.465782
– ident: ref46/cit46
  doi: 10.1063/1.2959728
– ident: ref14/cit14
  doi: 10.1021/acsami.8b01581
– ident: ref51/cit51
  doi: 10.1002/aic.690120106
– ident: ref25/cit25
  doi: 10.1021/la304870h
– ident: ref28/cit28
  doi: 10.1063/1.4934961
– ident: ref43/cit43
  doi: 10.1063/1.448997
– ident: ref12/cit12
  doi: 10.1016/j.solmat.2008.10.004
– ident: ref11/cit11
  doi: 10.1016/S1369-7021(12)70019-6
– ident: ref15/cit15
  doi: 10.1016/j.surfcoat.2017.09.058
– ident: ref29/cit29
  doi: 10.1039/C6SM00876C
– ident: ref18/cit18
– ident: ref42/cit42
  doi: 10.1016/j.matchemphys.2011.05.064
– ident: ref32/cit32
  doi: 10.1021/acsami.7b13713
– ident: ref6/cit6
  doi: 10.1038/scientificamerican0104-56
– ident: ref39/cit39
– ident: ref20/cit20
  doi: 10.1126/sciadv.1601660
– ident: ref1/cit1
  doi: 10.1021/acsami.6b06838
– ident: ref44/cit44
  doi: 10.1016/j.cis.2011.12.005
– ident: ref41/cit41
  doi: 10.1016/j.powtec.2009.08.022
– ident: ref49/cit49
  doi: 10.1016/j.apsusc.2010.07.057
– ident: ref8/cit8
  doi: 10.1038/ncomms6259
– volume: 2005
  start-page: 1274
  year: 2005
  ident: ref36/cit36
  publication-title: Polymer
  contributor:
    fullname: McKinley G. H.
SSID ssj0009349
Score 2.4545934
Snippet Printing of ultrathin layers of polymeric and colloidal inks is critical for the manufacturing of electronics on nonconventional substrates such as paper and...
Printing of ultrathin layers of polymeric and colloidal inks is critical for the manufacturing of electronics on non-conventional substrates such as paper and...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 7659
Title Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
URI http://dx.doi.org/10.1021/acs.langmuir.9b00460
https://www.ncbi.nlm.nih.gov/pubmed/31013102
https://search.proquest.com/docview/2213929502
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yH_TF-2XeiOCLD5lrmvTyKNMxRFTQwcCHkqQJFFk71xXEX-9JLw6VoT70pYTQnnPS7zs9N4TOtOm6xtMe4dwIwgAkSBDaTABugD0orWCBzba48wZDdjPio7mj-D2CT50LofKO_Xc3LpJpJyxjceCiL1MfzoelQr3HeZNdt6K7tu2mzzy3KZVbsIsFJJV_BaQFLLNEm_46um9qdqokk5dOMZMd9f6zheMfX2QDrdXEE19WlrKJlnS6hVZ6zby3bfR8VQ2nz3Fm8G3yWiQxLpHM6Cm2VSgYvsQZ0PWsyDFw1PEkx0mKbaIIsUGAyoQxGMJb1QY7UfhhmpSTKHbQsH_91BuQevQCEcDQZkQIw7ivJGhMhaobGMZcFYvY94FfeEYCqIUC4F6ZWIMDI2jItGeEMk4sjOSxu4taaZbqfYRdwbzAGOZzRzEulYyNI13f-k1dGnuyjc5BMlF9dPKojIpTJ7I3G3FFtbjaiDS6iiZVN45f1p82Co1AmjYWIlINYooodSwz5F3aRnuVpj93BMbrwEUP_vFkh2gVqJRt6ECc4Ai1ZtNCHwNdmcmT0kY_ADX16J4
link.rule.ids 315,783,787,2772,27088,27936,27937,57070,57120
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6KHurF96M-V_DiYWuT7CbNUapStRbBB4KHsLvZhSBNa9OA-OudTZoWBREPuSxh2cxM8n2bmf0G4ESblmd87VPOjaAMQYK2Q1sJwA2yB6UV3mCrLfp-94ndvPCXGvDqLAwuIsOZsiKJP1cXcM7smP2FN8iTcTMsUnK4U1_kAcasZUSdh7nWrleyXqu-GTDfq07M_TKLxSWVfcelX8hmATpXK_A8W25Ra_LWzCeyqT5_KDn--3lWYXlKQ8l5GTdrUNPpOtQ7Vfe3DXi9KFvVZ2RoSC95z5OYFLhm9JjYMykEv8tDJO_DPCPIWAejjCQpsWUj1KYEyoAmGBYfpSh2osj9OCn6UmzC09XlY6dLp40YqEC-NqFCGMYDJdF_KlSttmHMU7GIgwDZhm8kQlwoEPyViTVuZ4QbMu0boYwTCyN57G3BQjpM9Q4QTzC_bQwLuKMYl0rGxpFeYHdRLTf2ZQNO0TLR9EXKoiJH7jqRHazMFU3N1QBauSwaldocf9x_XPk1QmvazIhINZopcl3H8kTechuwXTp8NiPyXwcvd_cfKzuCevfxrhf1rvu3e7CEJMtKPVCnvQ8Lk3GuD5DITORhEbZfXnTw_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBejhXUva7duXbp11WAvfVAW2ZIdP4akIVtLCWyB0D0YfR2YUSeLYyj963vyR9YWwtge_CLEId-dfD_5Tr8j5LODXgiRi5iUoJjAIMH6ia8EkIDowTiDE3y1xVU0mYlvczl_0OoLF1GgpKJK4vtdvbTQMAzwL37c_8a7KbNVN6nScnha35UxD3zXhsHw-x--3bBGvp6BMxZR2N6a2yLFxyZTPI5NWwBnFXjG--R6s-Sq3uRXt1zrrrl7wub4X-90QF42cJQOav95RZ65_DXZG7Zd4A7Jz1Hdsr6gC6CX2e8ys7SKb-BW1N9Nofh9XiCIX5QFReR6syxollNfPsJ8aqB2bIrucVuTY2eGTldZ1Z_iDZmNz38MJ6xpyMAU4rY1UwqEjI1GO5rE9PogRGissnGMqCMCjaEuUQgCDFiHxxoVJMJFoAxwq0BLG74lO_kid-8IDZWI-gAiltwIqY22wHUY-9NUL7CR7pAz1EzabKgirXLlAU_9YKuutFFXh7DWbOmy5uj4y_xPrW1T1KbPkKjcoZrSIOAeL8pe0CFHtdE3EhEHc3yC439Y2Sl5Ph2N08uvVxfvyQvEWp7xgfH-B7KzXpXuBPHMWn-sPPceBMDzeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+Liquid+Transfer+from+Nanoporous+Stamps+in+High-Resolution+Flexographic+Printing&rft.jtitle=Langmuir&rft.au=Mariappan%2C+Dhanushkodi&rft.au=Kim%2C+Sanha&rft.au=Boutilier%2C+Michael+S+H&rft.au=Zhao%2C+Junjie&rft.date=2019-06-18&rft.eissn=1520-5827&rft_id=info:doi/10.1021%2Facs.langmuir.9b00460&rft_id=info%3Apmid%2F31013102&rft.externalDocID=31013102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon